
POLS/CSSS 503:

Advanced Quantitative Political Methodology

Regression & Graphics in R

Christopher Adolph

Department of Political Science

and

Center for Statistics and the Social Sciences

University of Washington, Seattle

Matrix Algebra in R

det(a) Computes the determinant of matrix a

solve(a) Computes the inverse of matrix a

t(a) Takes the transpose of a

a%*%b Matrix multiplication of a by b

a*b Element by element multiplication

An R list is a basket containing many other variables

> x <- list(a=1, b=c(2,15), giraffe="hello")

> x$a

[1] 1

> x$b

[1] 2 15

> x$b[2]

[1] 15

> x$giraffe

[1] "hello"

> x[3]

$giraffe

[1] "hello"

> x[["giraffe"]]

[1] "hello"

R lists

Things to remember about lists

• Lists can contain any number of variables of any type

• Lists can contain other lists

• Contents of a list can be accessed by name or by position

• Allow us to move lots of variables in and out of functions

• Functions often return lists (only way to have multiple outputs)

lm() basics
To run a regression

res <- lm(y~x1+x2+x3,

data, # A dataframe containing

y, x1, x2, etc.

na.action="")

To print a summary

summary(res)

To get the coefficients

res$coefficients

or

coef(res)

#To get residuals

res$residuals

#or

resid(res)

lm() basics

To get the variance-covariance matrix of the regressors

vcov(res)

To get the standard errors

sqrt(diag(vcov(res)))

To get the fitted values

predict(res)

To get expected values for a new observation or dataset

predict(res,

newdata, # a dataframe with same x vars

as data, but new values

interval = "confidence", # alternative: "prediction"

level = 0.95

)

R lists & Object Oriented Programming

A list object in R can be given a special “class” using the class() function

This is just a metatag telling other R functions that this list object conforms to a
certain format

So when we run a linear regression like this:

res <- lm(y~x1+x2+x3, data, na.action="")

The result res is a list object of class ‘‘lm’’

Other functions like plot() and predict() will react to res in a special way
because of this class designation

Specifically, they will run functions called plot.lm() and predict.lm()

Object-oriented programming:
a function does different things depending on class of input object

An example: Party systems & Redistribution

Cross sectional data on industrial democracies:

povred Percent of citizens lifted out of poverty
by taxes and transfers

lnenp Natural log of effective number of parties
maj Majoritarian election system dummy
pr Proportional representation dummy
unam Unanimity government dummy (Switz)

Source of data & plot: Torben Iversen and David Soskice, 2002, “Why do some
democracies redistribute more than others?” Harvard University.

An example: Party systems & Redistribution

Clear memory of all objects

rm(list=ls())

Load data

file <- "iver.csv";

data <- read.csv(file,header=TRUE);

attach(data)

lm.result <- lm(povred~lnenp)

print(summary(lm.result))

An example: Party systems & Redistribution

Call:

lm(formula = povred ~ lnenp)

Residuals:

Min 1Q Median 3Q Max

-48.907 -4.115 8.377 11.873 18.101

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.80 16.15 1.349 0.2021

lnenp 24.17 12.75 1.896 0.0823 .

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.34 on 12 degrees of freedom

Multiple R-Squared: 0.2305, Adjusted R-squared: 0.1664

F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229

An example: Party systems & Redistribution

A new model with multiple regressors

lm.result2 <- lm(povred~lnenp+maj+pr)

print(summary(lm.result2))

An example: Party systems & Redistribution

Call:

lm(formula = povred ~ lnenp + maj + pr)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -31.29 26.55 -1.179 0.26588

lnenp 26.69 14.15 1.886 0.08867 .

maj 48.95 17.86 2.740 0.02082 *

pr 58.17 13.52 4.302 0.00156 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-Squared: 0.7378, Adjusted R-squared: 0.6592

F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964

An example: Party systems & Redistribution

A new model with multiple regressors and no constant

lm.result3 <- lm(povred~lnenp+maj+pr+unam-1)

print(summary(lm.result3))

An example: Party systems & Redistribution

Call:

lm(formula = povred ~ lnenp + maj + pr + unam - 1)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

lnenp 26.69 14.15 1.886 0.0887 .

maj 17.66 12.69 1.392 0.1941

pr 26.88 21.18 1.269 0.2331

unam -31.29 26.55 -1.179 0.2659

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-Squared: 0.9636, Adjusted R-squared: 0.949

F-statistic: 66.13 on 4 and 10 DF, p-value: 3.731e-07

An example: Party systems & Redistribution

A model with an interaction term added

lm.result4 <- lm(povred~lnenp+maj+pr+lnenp:maj)

print(summary(lm.result4))

An example: Party systems & Redistribution

Call:

lm(formula = povred ~ lnenp + maj + pr + lnenp:maj)

Residuals:

Min 1Q Median 3Q Max

-22.25124 0.06679 2.85314 4.73179 12.99480

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

lnenp 16.78 17.39 0.965 0.35994

maj 16.34 37.65 0.434 0.67445

pr 56.18 13.70 4.102 0.00267 **

lnenp:maj 29.55 30.02 0.984 0.35065

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-Squared: 0.7633, Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

An example: Party systems & Redistribution

A quicker way to add interactions

lm.result5 <- lm(povred~pr+lnenp*maj)

print(summary(lm.result5))

An example: Party systems & Redistribution

Call:

lm(formula = povred ~ pr + lnenp * maj)

Residuals:

Min 1Q Median 3Q Max

-22.25124 0.06679 2.85314 4.73179 12.99480

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

pr 56.18 13.70 4.102 0.00267 **

lnenp 16.78 17.39 0.965 0.35994

maj 16.34 37.65 0.434 0.67445

lnenp:maj 29.55 30.02 0.984 0.35065

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-Squared: 0.7633, Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

R Graphics

R has several graphics systems.

The base system

The grid system

(grid is more powerful, but has a steeper learning curve.
See Paul Murrel’s book on R Graphics for an introduction.)

Focus here on base

R Graphics: Devices

Everything you draw in R must be drawn on a canvas

Must create the canvas before you draw anything

Computer canvasses are devices you draw to

Devices save graphical input in different ways

Sometimes to the disk, sometimes to the screen

Most important distinction: raster vs. vector devices

Vector vs. raster

Pointalism = raster graphics. Plot each pixel on an n by m grid.

Vector vs. raster
Pixel = Point = Raster

Good for pictures. Bad for drawings/graphics/cartoons.

(Puzzle: isn’t everything raster? In display, yes. Not in storage)

Advantages of vector:

• Easily manipulable/modifiable groupings of objects

• Easy to scale objects larger or smaller/ Arbitrary precision

• Much smaller file sizes

• Can always convert to raster (but not the other way round, at least not well)

Disadvantages:

• A photograph would be really hard to show (and huge file size)

• Not web accessible. Convert to PNG or PDF.

Some common graphics file formats

Lossy Lossless

Raster .gif, .jpeg .wmf, .png, .bmp

Vector — .ps, .eps, .pdf, .ai, .wmf

Lossy means during file compression, some data is (intentionally) lost

Avoid lossy formats whenever possible

Some common graphics file formats

In R, have access to several formats:

win.metafile() wmf, Windows media file
pdf() pdf, Adobe portable data file
postscript() postscript file (printer language)

windows() opens a screen; PC only
quartz() opens a screen; Mac only
x11() opens a screen; works on all systems

Latex, Mac, and Unix users can’t use wmf

windows(record=TRUE) let’s you cycle thru old graphs with arrow keys

High-level graphics commands

In R, High level graphics commands:

• produce a standard graphic type

• fill in lots of details (axes, titles, annotation)

• have many configurable parameters

• have varied flexibility

You don’t need to use HLCs to make R graphics.

Could use primitive commands to do each task above

Using low levels commands gives more control but takes more time

Some major high-level graphics commands

Graphic Base command Lattice command
scatterplot plot() xyplot()
line plot plot(. . . ,type=”l”) xyplot(. . . ,type=”l”)
Bar chart barplot() barchart()
Histogram hist() histogram()
Smoothed histograms plot() after density() densityplot()
boxplot boxplot() bwplot()
Dot plot dotchart() dotplot()
Contour plots contour() contourplot()
image plot image() levelplot()
3D surface persp() wireframe()
3D scatter scatterplot3d()* cloud()
conditional plots coplot() xyplot()
Scatterplot matrix splom()
Parallel coordinates parallel()
Star plot stars()
Stem-and-leaf plots stem()
ternary plot ternaryplot() in vcd
Fourfold plot fourfoldplot() in vcd
Mosaic plots mosaicplot() in vcd

Scatterplot: plot()

●

●

●●

●●
●

●

●●●●●

●●

●●●●●●●●●●●●●●●
●●

●●●●

●●
●●

●

●●●●●
●

0 10 20 30 40

−
3

−
2

−
1

0
1

2

plot(x, type = "p")

Index

x
<

−
 s

or
t(

rn
or

m
(4

7)
)

Line plot: plot(...,type="l")

0 10 20 30 40

−
2

−
1

0
1

plot(x, type = "l")

Index

x
<

−
 s

or
t(

rn
or

m
(4

7)
)

(Smoothed) Histograms: densityplot() & others

Height (inches)

D
en

si
ty

60 65 70 75

0.00

0.05

0.10

0.15

0.20

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0.00

0.05

0.10

0.15

0.20

Alto 1
0.00

0.05

0.10

0.15

0.20

Soprano 2

60 65 70 75

Soprano 1

Dot plot: dotplot()

Barley Yield (bushels/acre)

20 30 40 50 60

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Contour plot: contour()

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0
60

0

100 300 500 700

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

Image plot: image()

x

y

100 200 300 400 500 600 700 800

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

Image plot with contours: contour(...,add=TRUE)

x

y

100 200 300 400 500 600 700 800

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

3D surface: persp()

x

y
z

3D surface: wireframe()

row
column

volcano

Conditional plots: coplot()

●

●
●

68
70

72

●

●

●
●

●
●●

●●

3000 4500 6000

●
●

●
●●

●

● ● ●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

68
70

72

●

●

●●

●

●

●

● ●

●

●
●

68
70

72

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

3000 4500 6000

●

●
●●

●

●

●

●

●

●

●

●

●

●

3000 4500 6000

68
70

72

Income

Li
fe

.E
xp

0.5 1.0 1.5 2.0 2.5

Given : Illiteracy

N
or

th
ea

st
S

ou
th

N
or

th
 C

en
tr

al
W

es
t

G
iv

en
 :

st
at

e.
re

gi
on

3D scatter: scatterplot3d() in own library

scatterplot3d − 5

 8 10 12 14 16 18 20 22

10
20

30
40

50
60

70
80

60
65

70
75

80
85

90

Girth

H
ei

gh
t

V
ol

um
e

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scatterplot matrix: splom()

Scatter Plot Matrix

Sepal
Length ●●●●

●
●

●
●

●
●

●
●●

●

● ●
●

●
●
●

●
●

●
●
●● ●●●

●●
● ●

●
●●

●
●

●

●●
● ●

●●
●

●
●

●
● ●●●●

●
●

●
●
●
●
●
●●

●

●●
●
●
●
●
●
●

●
●
●●●

●●
●●
●●
●
●●
●
●
●

●●
●●
●●●
●
●

●
●

●

●
●●

●
●

●●

●
●

●
●
●●

●
●

●
●

●●
●

●●
●●
●
●●●

●●
●

●●

●●
●●

●
●●

●

●
●
●

●

●

●

●
●

Sepal
Width

●

●
●●

●
●

●●

●
●

●
●
●●

●
●

●
●
●●
●
●●
●●
●
●●●
●●
●

●●

●●
●●

●
●●

●

●
●
●

●

●

●

●
●

●●●●●●●●● ● ●●●● ●●●● ●●●●
●

●●●●●●●● ●●●●● ●●● ●●●● ●●●●● ●● ●●●● ●●●●●● ●●●● ● ●●●●●●●
●

●●● ●●●●●● ●●●●●●● ●●● ●●●
● ●● ●●

Petal
Length

setosa

Sepal
Length

●
●

●

●

●

●
●

●

●

●●

●● ●
●

●

●●
●

●
●●●●

●●
●●

●
●●●
●●

●
●

●
●

●●●
●

●

●
●●●

●

●
●

●
●
●

●

●

●
●

●

●

●●

●●●
●

●

●●
●

●
●● ●●

●●
●●

●
●●●
● ●

●
●

●
●

●●●
●

●

●
●●●
●

●
●

●● ●

●

●●

●

●

●
●

●

●

●

●●
●●

●

●
●

●
●
●

●●●●
●●

●
●●

●●
●

●
●

●

●

●●
●

●
●

●
●● ●

●
●

Sepal
Width

●●●

●

●●

●

●

●
●

●

●

●

●●
●●

●

●
●

●
●

●
●●●●
●●

●
●●
● ●

●
●
●

●

●

●●
●

●
●

●
●●●

●
●

●●
●

●
●● ●

●

●
●

●
●●
●

●
●●

●
●

●
●
●
●●
●●

●●●

●●●
●

●
● ● ●●●●
● ●

●
●

●●● ●

●

●
●●

●
●

●● ●

●

●
●

●
●●

●

●
●●●

●
●

●
●

●●
●●

●●
●

●●●●

●
● ●●● ●●

● ●
●

●
●●●●

●

●
Petal

Length

versicolor

Sepal
Length

●
●

●

●●

●

●

●
●

●

●●
●

●●
●●

●●

●

●

●

●

●
●

●

●●
●

●●
●

●●●

●

●●
●

●●●

●

●●●
● ●

●
●

●
●

●

●●

●

●

●
●
●

●●
●

●●
●●

●●

●

●

●

●

●
●
●

●●
●

●●
●

●●●

●

●●
●

●●●

●

●●●
●●●
●

●

●
●●● ●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
● ●●

● ●
●
●

●
●
●

●

●●
●

●
●
●● ●●●

●

●●
●

●

●
●

●

Sepal
Width

●

●
●●● ●

●
●

●

●
●

●
●

●
●
●
●

●

●
●

●
● ●●

●●
●
●

●
●
●

●

●●
●

●
●
●●●●●

●

●●
●

●

●
●

●

●
●

●●●
●

●

●
● ●

●●
●

●● ●●

●●

●
●

●

●

●
● ●

●●
● ●●

●
●
●

●
●

●●
●

●●●●
●●
●●●

●●
●

●
●●●
●

●

●
● ●

●●●
●● ●●

●●

●
●

●

●

●
●●

●●
●●● ●
●
●

●
●

●●
●
●●●●
●●

●● ● ●● Petal
Length

virginica

Three

Varieties

of

Iris

Ternary plot: ternaryplot() in vcd

liberal conservative

other

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

Star plot: stars()

Motor Trend Cars : full stars()

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLC Cadillac FleetwoodLincoln Continental Chrysler Imperial Fiat 128

Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28

Pontiac Firebird Fiat X1−9 Porsche 914−2 Lotus Europa Ford Pantera L Ferrari Dino

Maserati Bora Volvo 142E
mpg

cyl
disp

hp

drat

wt
qsec

Stem-and-leaf plot

stem> stem(log10(islands))

The decimal point is at the |

1 | 1111112222233444

1 | 5555556666667899999

2 | 3344

2 | 59

3 |

3 | 5678

4 | 012

Basic customization

For any given high-level plotting command, there are many options listed in help

barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,

horiz = FALSE, density = NULL, angle = 45,

col = NULL, border = par("fg"),

main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

xlim = NULL, ylim = NULL, xpd = TRUE,

axes = TRUE, axisnames = TRUE,

cex.axis = par("cex.axis"), cex.names = par("cex.axis"),

inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0, ...)

Just the tip of the iceberg: notice the ...

This means you can pass other, unspecified commands throough barplot

Basic customization

The most important (semi-) documented parameters to send through ... are
settings to par()

Most base (traditional) graphics options are set through par()

par() has no effect on lattice or grid graphics

Consult help(par) for the full list of options

Some key examples, grouped functionally

par() settings

Customizing text size:

cex Text size (a multiplier)
cex.axis Text size of tick numbers
cex.lab Text size of axes labels
cex.main Text size of plot title
cex.sub Text size of plot subtitle

note the latter will multiply off the basic cex

par() settings

More text specific formatting

font Font face (bold, italic)
font.axis etc

srt Rotation of text in plot (degrees)
las Rotation of text in margin (degrees)

Note the distinction between text in the plot and outside.

Text in the plot is plotted with text()

Text outside the plot is plotted with mtext(), which was designed to put on titles,
etc.

par() settings

Formatting for most any object

bg background color
col Color of lines, symbols in plot
col.axis Color of tick numbers, etc

The above expect colors (see colors() for a list of names

par() settings

Formatting for lines and symbols

lty Line type (solid, dashed, etc)
lwd Line width (default too large; try really small, e.g., 0)
pch Data symbol type; see example(points)

You will very often need to set the above

More par() settings

Formatting for axes

lab Number of ticks
xaxp Number of ticks for xaxis
tck,tcl Length of ticks relative to plot/text
mgp Axis spacing: axis title, tick labels, axis line

These may seem trivial, but affect the aesthetics of the plot & effective use of space

R defaults to excessive mgp, which looks ugly & wastes space

par() settings

More formating for axes

The following commands are special:
they are primitives in par() that can’t be set inside the ... of high-level commands

You must set them with par() first

usr Ranges of axes, (xmin, xmax, ymin, ymax)
xlog Log scale for x axis?
ylog Log scale for y axis?

You can also make a logged axis by hand, as we will do now

Making a Scatterplot from Scratch

Using the Redistribution data, make a quick scatterplot for screen display:

Make a plot of the data (automatic axes, etc)

plot(x=lnenp,

y=povred,

xlab="Log Effective Number of Parties",

ylab="Poverty Reduction")

One way to add a regression line to the plot

abline(lm.result$coefficients[1], # Intercept

lm.result$coefficients[2], # Slope

col="black")

The above is easy for bivariate models

For multivariate models, you need to calculate

an appropriate intercept to take account

of all the other covariates

A simple plot

●

●

●

●
●

●

●

●

●●
●

●

●

●

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

10
20

30
40

50
60

70
80

Log Effective Number of Parties

P
ov

er
ty

 R
ed

uc
tio

n

What do we learn about the data from this plot?

What is problematic about this plot?

A better scatterplot from scratch

Let’s make a better scatterplot, and save it to the disk as a PDF

First, let’s find the confidence intervals for the fitted model:

Generate expected values & CIs for povred at each lnenp

Make a list of hypothetical effective number of parties values

lnenp.hyp <- seq(0.5,2,0.1)

Use this list as "newdata" for the predict command

xnew <- list(lnenp=lnenp.hyp

)

Pass the fitted model and newdata to predict, and

ask for 95 % CIs around the Y-hat

povred.pred <- predict(lm.result,

newdata=xnew,

interval="confidence",

level=0.95

)

Plotting preliminaries

Open a pdf file for plotting

pdf("redist.pdf",

height=5,

width=5)

Create a new plot

plot.new()

Plotting preliminaries

Set the plotting region limits

par(usr=c(0.5,2,0,100))

Create the x-axis

x.ticks <- c(2,3,4,5,6,7)

axis(1, # Which axis to make (1 indicates x)

at=log(x.ticks), # Where to put the ticks

labels=x.ticks # How to label the ticks

)

Create the y-axis

axis(2,at=seq(0,100,10))

Add plot titles

title(xlab="Effective Number of Parties",

ylab="Poverty Reduction"

)

Plot the CI as a shaded polygon

Plot ci for the regression line

Make the x-coord of a confidence envelope polygon

xpoly <- c(lnenp.hyp,

rev(lnenp.hyp),

lnenp.hyp[1])

Make the y-coord of a confidence envelope polygon

ypoly <- c(povred.pred[,2],

rev(povred.pred[,3]),

povred.pred[1,2])

Choose the color of the polygon

col <- "gray70"

Plot the polygon first, before the points & lines

polygon(x=xpoly,

y=ypoly,

col=col,

border=FALSE

)

Add the regression line and the data

Plot the expected values for the regression model

lines(x=lnenp.hyp,

y=povred.pred[,1],

col="black")

Plot the data for the regression model

#points(x=lnenp,

y=povred,

col="black", # see colors() for color names

pch=1) # see example(points) for symbols

Use colors and shapes to show categorical covariates

points(x=lnenp[maj==1],

y=povred[maj==1],

col="blue", # see colors() for color names

pch=17) # see example(points) for symbols

points(x=lnenp[pr==1],

y=povred[pr==1],

col="green", # see colors() for color names

pch=15) # see example(points) for symbols

points(x=lnenp[unam==1],

y=povred[unam==1],

col="red", # see colors() for color names

pch=16) # see example(points) for symbols

Label the points and close the plot

text(x=lnenp,

y=povred-3,

labels=cty,

col="black",

cex=0.5

)

Finish drawing the box around the plot area

box()

Close the device (ie, save the graph)

dev.off()

The finished plot

2 3 4 5 6 7

0
10

30
50

70
90

Effective Number of Parties

P
ov

er
ty

 R
ed

uc
tio

n

●

Australia

Belgium

Canada

Denmark
Finland

France

Germany

Italy

NetherlandsNorway
Sweden

Switzerland

United Kingdom

United States

What does this tell us about the data?

What could we improve, in the plot or the model?

