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General instructions for homeworks: Homework can be handwritten or typed. For any
exercises done with R or other statistical packages, you should attach all code you have
written and all (interesting) output. Materials should be stapled together in order by
problem. The most readable and elegant format for homework answers incorporates
student comments, code, output, and graphics into a seamless narrative, as one would
see in a textbook.

Bonus Problem: The Effect of Measurement Error on Linear Regression

Just as omitting a control from a regression can cause bias, so to can including a control
which is measured with error—even if that error is random. ead Section . of Fox
carefully, and then solve the following problems:

a. Fox problem . (page )

b. Fox problem .

c. Fox problem .

d. Fox problem .
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Problem 1: Showing Confidence

We revisit the sprinters data we considered in Problem Set .

a. Add confidence intervals to the plots you made for Problem Set , problem
d. using the predict() command to generate the confidence intervals around
the expected finish times.

b. erun the analysis and recreate the plot, adding confidence intervals, for the
model:

log(Finishi) = β0 + β1Yeari + β2Womeni + β3Yeari × Womeni + εi

Be sure to explain in words how this specification differs from the one used in
part a.

c. erun the analysis and recreate the plot, adding confidence intervals, for the
model:

Finishi = β0 + β1Yeari + β2Womeni + β3Yeari × Womeni

+β4Year2i + β5Year2i × Womeni + εi

Be sure to explain in words how this specification differs from the ones used in
part a. and b.

d. Compare the visual fit of these models to the data within the observed period.
Which do you find plausible fits?

e. Do these models have different predictions for the Olympics of ? (Hint:
extending your plots to go up to  is an easy way to see this.) Why or why
not?

f. Now create a new variable, the ratio of men’s time to women’s time in each
year. Logit-transform this variable and regress it on year. Plot the results, with
confidence intervals, on the scale of the ratio men’s time to women’s time (i.e.,
transform it back from logit). Does this approach make any assumptions about
men’s times or women’s times that might be problematic?
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Problem 2: Model Selection: Oil & Democracy

For this problem, we will use a cleaned-up version of the dataset employed by Michael
oss in “Does Oil Hinder Democracy?” World Politics, . In that paper, oss esti-
mated a time series cross-section model of Polity scores regressed on oil exports and
a battery of controls. In this problem, we will focus on a single cross-section (saving
the time series cross-section analysis for a later optional homework), and instead focus
on model fitting and robustness to outliers. A description of the included variables
follows:

Variable Description

regime1 1–10 scale increasing in democracy; computed from Polity components
oilL5 Fuel exports as a proportion of GDP, lagged 5 years
metalL5 Ore and mineral exports as a proportion of GDP, lagged 5 years
GDPpcL5 per capita GDP in PPP dollars, lagged 5 years
islam Muslims as a proportion of population,  data
oecd dummy for rich industrialized countries
cty_name the name of the country observed
id a three character abbreviation of the country name
id1 a numeric country code
year the year of the observation (for this slice, it is always )

We will use this dataset and the baseline regression from oss () to explore our
tools for specifying regression models and improving fit.

a. Load the dataset ross95.csv, which contains a partially cleaned cross-section of
replication data for the year . Estimate a linear regression of regime1 on
oilL5, metalL5, GDPpcL5, islam, and oecd. ecord the standard error of the re-
gression, and calculate the expected change in regime1 given a change in oilL5

from the 50th percentile to the 95th percentile of the fully observed data, all else
equal.

b. Using the residuals from the regression in part a., create the following diagnostic
plots: (i) plot the residuals against the fitted values, (ii) plot the residuals against
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each covariate, (iii) plot the studentized residuals against the standardized hat-
values. What do these diagnostics tell you about the presence of heteroskedas-
ticity, specification error, and outliers?

c. erun the regression using either log or logit transformations on any covariates
you see fit. Youwill likely run several specifications. In each run, record the stan-
dard error of the regression, and the expected change in regime1 given a change
in oilL5 from the 50th percentile to the 95th percentile of the fully observed
data. See the appendix for some tips and warnings about transforming these
data, though.

d. erun all yourmodels using robust regressionwith anM-estimator. In each run,
record the standard error of the regression, and the expected change in regime1

given a change in oilL5 from the 50th percentile to the 95th percentile of the
fully observed data.

e. erun all your models using robust and resistant regression with an MM-
estimator. In each run, record the standard error of the regression, and the ex-
pected change in regime1 given a change in oilL5 from the 50th percentile to the
95th percentile of the fully observed data.

f. How much substantive difference does finding the best model make? (Be specific
and concrete; i.e., show what each model does. I’m asking for a more detailed
answer than you usually see in articles.) How much substantive doubt is there
in the result if we are not sure which of the models you fit is the “right” one?

g. Which model of those you have estimated do you trust most, and why? What
other problems in the specification or estimationmethod remain unaddressed by
our efforts?
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Appendix: How Do I Log a Covariate with Zeros? · Christopher Adolph

If you try to log or logit transform a covariate x with observed zeros, you will dis-
cover a problem: you can’t log a zero! A common (but wrong) “solution” is to add a
small amount to the zeros (e.g., 0.1 or 0.001, etc.). It turns out that you can introduce
substantial large bias in your β̂s by choosing different tiny amounts to add to your 0s:
logging small numbers spreads those numbers out over a huge range. Adding 0.001 be-
fore logging a variable is not very different from subtracting 10,000 from an unlogged
variable! So don’t ever do this, even as a first try.

A Solution: the logBound and logitBound Transformations

Abetter solution that avoids arbitrary assumptions and bias is to “dummyout” the zeros
before logging. This procedure treats the zero cases as sui generis: they are uniquely
different from the rest of our cases, and we estimate the way in which they are different
through a separate parameter. We end up with two variables on the right-hand side:
an indicator of whether xi = 0, and the log (or logit) of xi in those cases where xi ̸= 0.
That is, if you want to regress y on log(x) but x contains 0s, estimate this regression:

yi = β0 + β1I(xi > 0) + β2log
′(xi) + εi ()

where I(·) is an indicator function and log′(·) is defined as:

log′(x) =

{
0 if x ≤ 0
log(x) if x > 0

()

If we suppose that xi is the number of cigarettes person i smokes per day, and yi is i’s
probability of getting lung cancer, the specificationmakes sense: people who currently
smoke even a little bit likely have a discretely higher chance of lung cancer than non-
smokers, while the amount a smoker smokesmay increase cancer probabilities but with
diminishing marginal risk.

As you might imagine, the logic of equations  and  changes slightly if x needs to
be logit transformed. ecall that the logit transformation,

logit(x) = log
( x
1 − x

)
,
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fails if x is not between 0 and 1, so we need to dummy out xi ≥ 1 and xi ≤ 0 separately:

yi = β0 + β1I(xi > 0) + β2I(xi ≥ 1) + β3logit
′(xi) + εi ()

where I(·) is an indicator function and logit′(·) is defined as:

logit′(x) =


0 if x ≤ 0
log

(
x

1−x

)
if 0 < x < 1

0 if x ≥ 1
()

Note that we will only need all three pieces of Equation  if the covariate to be logit
transformed contains both 0s and 1s; should either extreme be missing, we need only
add one dummy variable to the specification.

The logBound() and logitBound() functions in the simcf package carry out these
transformations for you. After loading the library, the above regression is as simple as:

res <- lm(y~logBound(x), data)

You can compare goodness of fit as usual. Moreover, you can use this technique on the
right-hand side of any regression-like model, not just least squares regression.

Interpretation of results

Take special care in interpretingmodels inmodelswith logBound(x) or logitBound(x) in
themodel formula. In setting up a hypothetical scenario for post-estimation prediction,
make sure both the dummy term and the log term are set consistent with each other.
For example, if the dummy is set to 0, the log must also be zero. And if the log is set
to something other than 0, the dummy must be set to 1. Otherwise, you are asking
the model to predict a logically impossible scenario; e.g., asking what happens when
someone both smokes zero cigarettes and smokes twenty cigarettes in the same day.

I recommend either calculating the predicted values of regime1 “by hand”, or using
the simcf package, as illustrated below. Our old friend predict() is very unlikely to
return results for models including these terms, though if it does return an answer it
will agree with other methods.

# Use simcf to predict the change in democracy given a shift from

# the 50th percentile of \% oil production to the 95th, all else equal.

# Note that this code is specifically set up for this example;
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# if you wish to reuse it for other applications, you could

# rewrite it.

predOil <- function(res,formula,data,sims=10000,ci=0.95) {

require(MASS)

require(simcf)

pe <- res$coefficients

vc <- vcov(res)

simbetas <- mvrnorm(sims,pe,vc)

xscen <- cfMake(formula, data=data, nscen=1)

xscen <- cfChange(xscen, "oilL5",

x = quantile(data$oilL5,probs=0.95),

xpre= quantile(data$oilL5,probs=0.5),

scen=1)

linearsimfd(xscen, simbetas, ci=ci)

}

# Example call to this function (mdata is our listwise deleted dataframe)

m0 <- regime ~ oilL5 + metalL5 + GDPpcL5 + logitBound(islam) + oecd

res0.lm <- lm(m0, data=mdata)

PredOil0.lm <- predOil(res0.lm, m0, mdata)

# After this step, it would be a good idea to place the latest

# values of summary(res0.lm)$sigma, PredOil0.lm$pe, PredOil0$lower,

# and PredOil1$upper in vectors collecting your results across

# different runs.
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