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Motivation

How do we know what the average American thinks about an issue?

Usual approach: conduct on opinion poll, randomly sample 1000 or so
people, and present the average of their opinions

But how do we know this matches the average opinion of all Americans?
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Motivation

In particular, how do we know how far the sample mean, x̄, is from the
population mean, x̄population?

x̄− x̄population =?

If our sample isn’t very representative of the population,
these might be far apart

Without knowing anything but the sample, can we estimate the deviation
between the sample mean and the population mean?
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Populations & Samples

We will consider groups of observations at two distinct levels:

Population All the potential units of analysis in our chosen research design

Ideally we’d like to analyze a census, or complete set, of these
observations

Example: Average support x̄population of all Washingtonians for
same-sex marriage

Sample The units of analysis actually collected for our study
Usually a subset of the population

Example: Average support x̄ of 500 randomly selected
Washingtonians for same-sex marriage
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Sampling Frames

In an ideal situation, our sample and population will contain the same cases
(a census)

Usually, we must instead make inferences about the population using a
subset, or sample, of cases

Can select this sample in different ways
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Sampling Frames

Random sample Make a list of the full population and randomly select by
identification number.

E.g., Random Digit Dialling of phone numbers.

If done correclty, makes inference “easy”

Stratified sample If we can’t randomly sample properly, but have detailed
information on the population, we could re-weight our flawed
random sample based on identifiable strata

E.g., If a phone survey fails to reach enough people who work
at night, we could give the few we reach extra weight based on
their known population frequency

If done correctly, produces something close to a random sample
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Sampling Frames

Convenience sample If we can’t form any sort of random sample, we might
take people non-randomly who are close at hand

E.g., When studying a hard to reach population, we might ask
each member we find to nominate other members, forming a
snowball sample

Comnvenience samples do not allow scientific inference to the
population parameters
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When sampling goes wrong

If a random sample is non-representative, will adding more random sample
help make it so?

Yes

If a stratified sample has the wrong weights, will adding more samples make it
representative? No

Are convenience samples more likely to be representative as they get larger?
NO! No matter how large a convenience sample, they are likely to be sampled
with huge and unknown selection bias
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Sampling Inference

Our goal is to make scientificially valid inferences from the random or
representative sample we’ve collected

Standard scientific practice requires that we quantify the uncertainty
introduced by sampling

To learn how to do this, we need two new concepts:

the standard error and t-statistic,

and two new continuous probability distributions:

the χ2 distribution and t distribution

Today, we focus on the standard error
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Student height example

60 65 70 75 80
height (inches)

In a class of 179
students, 119 students
submitted their heights
in inches, with a mean
of 66.6 inches and a
standard deviation of
4.1 inches.

The class distribution
of heights is shown
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Student height example

60 65 70 75 80
height (inches)

About 2/3s of the class
submitted heights.

Getting that kind of
response from a
population is expensive
and impractical in most
cases

Suppose we just
wanted to know the
average height in the
class?
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Student height example

60 65 70 75 80
height (inches)

How well could we
estimate the class
mean from a sample of
a specific size?

And how can we tell if
our sample estimate of
the mean is reliable?

We need a way to
predict how much our
sample mean will
diverge from the
population mean
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Useful concepts for estimating uncertainty (statistical inference)

Error The difference between an estimate (based on a sample) and
the true value of a quantity (in the population)

Root mean squared error (RMSE) The average amount of error observed
across repeated samples from the population.

(To avoid cancellation of equal and opposite errors,
we “average” error by squaring first, then taking the mean,
then the square root)

Standard error An estimate of the error in our sample’s estimate of the
population quantity.

Thus the standard error is the best guess from a single sample
of what the RMSE would turn out to be if we could afford to take
many samples
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Concepts for statistical inference applied to the sample mean

Error The difference between the sample mean (estimate) and
population mean (“truth”)

Root mean squared error (RMSE) The average amount of error observed
between the sample means and the population mean.

(To avoid cancellation of equal and opposite errors,
we “average” error by squaring first, then taking the mean,
then the square root)

Standard error An estimate of the error in our sample’s estimate of the
population mean.

Your book also calls this the standard deviation of the sampling
mean (Chapter 7)
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60 65 70 75

height (inches)

population 

 mean

Above are the submitted height data and their mean

We will replicate this exercise in our (smaller) class

While we record the heights of several samples from our class, . . .
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60 65 70 75

height (inches)

sample 1 

 mean

I will explore a set of 14 pre-selected samples of 8 heights each,
using the old 179 class data

Note that the means and variances of the samples can differ from the full
population. . .
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60 65 70 75

height (inches)

sample 2 

 mean

I will explore a set of 14 pre-selected samples of 8 heights each

Note that the means and variances of the samples can differ from the full
population. . .

. . . but can also resemble it fairly closely
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60 65 70 75

height (inches)

sample 3 

 mean

Sometimes an individual sample can be so far off that it would mislead us
considerably

This is more likely the smaller the sample
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60 65 70 75

height (inches)

sample 4 

 mean

Sometimes an individual sample can be so far off that it would mislead us
considerably

This is more likely the smaller the sample

But even with samples as tiny as 8 students,
most of the time the sample mean is fairly close to the population mean
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60 65 70 75

height (inches)

sample 5 

 mean

Moreover, the sample mean seems just as likely to be below the population
mean . . .
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60 65 70 75

height (inches)

sample 6 

 mean

Moreover, the sample mean seems just as likely to be below the population
mean . . .

. . . as above it.
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60 65 70 75

height (inches)

sample 7 

 mean

Moreover, the sample mean seems just as likely to be below the population
mean . . .

. . . as above it.

When an estimate is neither systematically too high or too low, it is unbiased
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60 65 70 75

height (inches)

sample 8 

 mean

Unbiased estimators can still sometimes be far from the true value
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60 65 70 75

height (inches)

sample 9 

 mean

Unbiased estimators can still sometimes be far from the true value

But on average, over many samples, unbiased estimators will equal the truth,
rather than show systematic bias up or down
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60 65 70 75

height (inches)

sample 10 

 mean

We also want out estimates to be close to the truth most of the time, a
separate issue from bias
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60 65 70 75

height (inches)

sample 11 

 mean

We also want out estimates to be close to the truth most of the time, a
separate issue from bias

Sample estimates which are usually close to the population value are said to
have low error or to be efficient
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60 65 70 75

height (inches)

sample 12 

 mean

Notice that although the sample mean bounces back and forth,
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Notice that although the sample mean bounces back and forth,

it tends to stay close to the population mean
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60 65 70 75

height (inches)

sample 14 

 mean

Notice that although the sample mean bounces back and forth,

it tends to stay close to the population mean

and doesn’t range as far as the data itself
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60 65 70 75

height (inches)

population 

 mean

That is, the standard deviation of the sample means is smaller than the
standard deviation of the data itself:

sd(x̄) < sd(x)
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Student height example

60 65 70 75 80
height (inches)

We now overlay the
distribution of sampling
means in red

Note that the
distribution of sampling
means looks quite
Normal, even though
the distribution of
heights is only
approximately Normal.
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Student height example

60 65 70 75 80
height (inches)

This is the Central
Limit Theorem again:

As we take more and
more samples, the
distribution of the
sampling means of any
random variable
approaches the
Normal (with few
exceptions)
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Student height example

60 65 70 75 80
height (inches)

To estimate the mean
of population well, we
want to make the
distribution of sampling
means (in red) as
narrow as possible:
ideally, a spike right
over the true
population mean

How can we do this?
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The Law of Large Numbers

When sampling from a population, our estimates of features of that population
get better the more data we sample

What do we mean by better estimates?

An estimate with smaller standard error (expected deviation from the truth)

Formula for the standard error of the mean:

se(x̄) =
sd (x)√

n

The Law of Large Numbers applies to estimating the mean of a population:

Our estimate of the mean, x̄ gets closer to the truth,
and its standard error, se(x̄) gets smaller as the sampled n increases
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The Square Root Law

Formula for the standard error of the mean:

se(x̄) =
sd (x)√

n

Remember that the smaller se(x̄) is, the better our estimate

Making n bigger—adding more observations—will indeed shrink se(x̄),
but there are diminishing returns

Because se(x̄) depends on
√

n,
to halve the amount of error we must quadruple the amount of data

If our se is 1 inch of height with 100 observations,
to reduce our expected error to 0.5 inches, we need 400 total observations

Note a surprise: the size of the population does not appear in this formula,
and does not affect the precision of our estimates!

Chris Adolph (UW) Statistical Inference 35 / 107



Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

The
population
mean, 66.6
inches, is
the
average
height in
the class

Below it are
the means
of 14
samples of
8 students I
drew to
simulate
“rows” of
the
classroom
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

The
population
mean, 66.6
inches, is
the
average
height in
the class

The
average
sample
mean
matches
the
population
mean
almost
exactly
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
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Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

Sampling
Error is
how much
this row of
students
differs from
the class
mean:

How wrong
(&in what
direction)
you’d be if
you used
your row to
estimate
the class
average
height
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
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Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

RMSE is
“root mean
squared
error”

RMSE is
the
average
error we
would
make if we
predicted
the class
from each
row sample
in turn
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

Because
errors can
be + or −,
we square
error
before
averaging,
then take
the square
root of the
sum of
squared
errors to
get RMSE

We need
lots of
samples to
calculate
RMSE
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

The
standard
error is
how much
we expect
this sample
to miss by

sd(heightsample)√
8

An
estimate of
RMSE we
construct
just from
one sample
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Sampling Std Std
Mean Error Dev Error

Population 66.6 — 4.1 —
Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

The
average
standard
error is
how much
we expect
to miss the
population
mean in
repeated
samples

Avg SE
should
match
RMSE
pretty
closely
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Sample 1 68.4 1.9 2.2 0.8
Sample 2 66.7 0.2 5.5 2.0
Sample 3 63.6 −3.0 2.1 0.8
Sample 4 65.8 −0.7 4.4 1.6
Sample 5 64.0 −2.6 3.5 1.2
Sample 6 67.7 1.2 5.2 1.9
Sample 7 67.3 0.7 2.5 0.9
Sample 8 70.3 3.7 5.4 1.9
Sample 9 65.6 −0.9 4.8 1.7
Sample 10 66.4 −0.2 3.9 1.4
Sample 11 67.1 0.5 3.9 1.4
Sample 12 64.9 −1.7 3.8 1.3
Sample 13 66.8 0.2 2.9 1.0
Sample 14 68.5 1.9 1.7 0.6

Sample Mean 66.6 Avg SE 1.4
Pop Mean 66.6 RMSE 1.8

Standard
errors tell
us how
much we
can trust
our sample
estimates

If standard
errors are
close to
RMSE,
then they
are close to
the true
error in the
estimate
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Hypothesis testing

A framework for using a sample to test whether the mean of a population is on
one side of a reference point

Invented by Jerzy Neyman & Egon Pearson, using concepts by R A Fisher

This framework tends to mislead if not precisely understood, but is still widely
used in teaching statistics and in older publications. Be warned!

Hypothesis testing terms:

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

Hypothesis testing attempts to reject the Null hypothesis
in favor of the alternative hypothesis

Hypothesis testing does not directly test the alternative hypothesis, but
attempts to reject a reference point far away from it
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

For example, we might try to reject x̄population = µ0
in favor of x̄population > µ0

Hypothesis testing does not directly test the alternative hypothesis, but
attempts to reject a reference point far away from it
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

Notice the italicized words. Our own theory is (somewhat) summarized by the
alternative hypothesis,

But everything will hinge on an arbitrary reference point.
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

Suppose we wanted to know if the average UW student works more than 10
hours a week.

We could randomly sample 1000 students;

ask how many hours they work per week, Hi;
calculate H̄ for the sample;
in order to learn about the average population spending H̄population
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

To see if H̄population > 10,
we could test against the null hypothesis that H̄population = 10 exactly

Suppose we reject the null hypothesis of 10 hours or less.
We can say that we have rejected that possibility,
or that Hpopulation is statistically significantly greater than 10 hours.
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Hypothesis testing

Null hypothesis The reference point we arbitrarily chose. Denote as µ0.

Alternative hypothesis The side of the reference point which we think
contains the population mean

Could the true population mean hours still be 10.01?

Yes. Hypothesis tests are sharp and arbitrary.

The truth could be any value on this side of the null hypothesis.
Take care in selecting the null and interpreting the meaning of the test.
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From z-scores to t-statistics

How do we perform a hypothesis test?

We need some way to standardize the distance between our sample mean x̄
and the null hypothesis µ0

With z-scores, we standardized using z = (x− µ)/σ

Here, we do something similar, using the standard error, to standardize the
gap:

t =
sample statistic of interest− µ0

se(sample statistic of interest)

The t statistic of an estimate is:
the estimate itself, minus a hypothetical level,
divided by the standard error of the estimate
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The t-statistic

In the case of the sample mean,

t =
x̄− µ0

se(x̄)

=
x̄− µ0

sd(x)/
√

n

We are converting the gap between the data and the null
into standard error units

We will often set our hypothetical comparison level µ0 = 0, so this frequently
reduces to:

t =
x̄

sd(x)/
√

n
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The t-statistic

t =
x̄− µ0

se(x̄)

As with z-scores, our goal is to say how “unusual” the observed t is with
reference to the distribution of t

But t isn’t Normally distributed, so can’t use the method we used for z-scores
(looking up the quantiles of the Normal distribution)

We need to take a detour back to probability theory to figure out its distribution
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The χ2 distribution

Recall the Normal distribution describes the behavior of the sum of an infinite
number of independent random variables

What if we have a variable X2 that is the sum of n <∞ squared independent
standard Normal random variables?

X2 = x2
1 + x2

2 + . . . x2
n

This is the sum of a finite set of Normal random variables, so the Normal
doesn’t quite apply

What distribution does this sum really follow?
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The χ2 distribution

X2 = x2
1 + x2

2 + . . . x2
k , n <∞

follows a χ2 (chi-squared) distribution, with this pdf:

χ2(X2
n) =

1
2n/2Γ(n/2)

(X2)(n−2)/2 exp(−X/2)

which has “degrees of freedom” n

Γ(·) is the Gamma function, an interpolated factorial

Moments: E(χ2) = n and Var(χ2) = 2n
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χ2 approaches the Normal as k increases
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Figure 3: Chi square probability density functions.
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The t distribution

The χ2 is a key building block for another useful distribution,
which describes the behavior of a very specific ratio:

Z√
X2/n

where Z is Normally distributed and
X2 is distributed χ2 with n degrees of freedom.

The ratio above follows the Student’s t distribution with n degrees of freedom:

t(n) =
Γ
( n+1

2

)
√

Γ(n/2)
× 1

(1 + t2/n)(n+1)/2
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The t distribution

t(n) =
Γ
( n+1

2

)
√

Γ(n/2)
× 1

(1 + t2/n)(n+1)/2

Moments:

E(t) = 0 (we could change this)

Var(t) = n/(n− 2) for n > 2. Not defined for n = 1.

As the degrees of freedom grow, the t distribution approximates the Normal

For low degrees of freedom, the t has fatter tails
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Example t distributions
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Figure 4: t probability density functions.
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The t distribution

Suppose we have a variable t that is t-distributed with mean 0 and 5 degrees
of freedom

That is, P(t) = t(5)

What are the “critical” values of t we would see just

once in 10 draws?

once in 20 draws?

once in 100 draws?

Put still another way,
which critical values will bound the 90% (or 95%, or 99%)
most ordinary t draws?
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Areas under the t

−2.015 0.000 2.015

t distribution with 
5 degrees of freedom

5 percent of the mass

Another 5 percent 
of the mass, for a total 
of 10 percent

90% of the mass of t(5) is between
-2.015 and 2.015

Values outside the critical values are “unusual”.

We expect to see these values rarely, and may even suspect we have the
wrong distribution if we see them often
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Areas under the t

−2.015 0.000 2.015

t distribution with 
5 degrees of freedom

5 percent of the mass

Another 5 percent 
of the mass, for a total 
of 10 percent

90% of the mass of t(5) is between
-2.015 and 2.015

Note that the above distribution is a t with 4 degrees of freedom

Degrees of freedom roughly here reflect how many independent pieces of
information helped create the t-ratio
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Areas under the t

−1.645 0.000 1.645

t distribution with 
∞ degrees of freedom

5 percent of the mass

Another 5 percent 
of the mass, for a total 
of 10 percent

90% of the mass of t(∞) is between
-1.645 and 1.645

More information make t “better behaved”, so that extreme values occur less
often,

More dfs thus make the tails thinner, and make critical values smaller
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Areas under the t

−2.571 0.000 2.571

t distribution with 
5 degrees of freedom

2.5 percent of the mass

Another 2.5 percent 
of the mass, for a total 
of 5 percent

95% of the mass of t(5) is between
-2.571 and 2.571

Going back to the df = 5 case, notice we can choose what constitutes unusual

Here, we’ve raise the bar: only the 5% most extreme values are unusual, so
the critical values increase
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Areas under the t

−1.96 0.00 1.96

t distribution with 
∞ degrees of freedom

2.5 percent of the mass

Another 2.5 percent 
of the mass, for a total 
of 5 percent

95% of the mass of t(∞) is between
-1.96 and 1.96

The infinite degrees of freedom critical values for the 95% case

This is the most widely used standard for whether a t-ratio is unusual

Chris Adolph (UW) Statistical Inference 65 / 107



Areas under the t

−4.032 0.000 4.032

t distribution with 
5 degrees of freedom

0.5 percent of the mass

Another 0.5 percent 
of the mass, for a total 
of 1 percent

99% of the mass of t(5) is between
-4.032 and 4.032

The most stringent commonly used standard is 99%

In this case, a draw from the t must be in the 1% most extreme region to be
considered unusual
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Areas under the t

−2.576 0.000 2.576

t distribution with 
∞ degrees of freedom

0.5 percent of the mass

Another 0.5 percent 
of the mass, for a total 
of 1 percent

99% of the mass of t(∞) is between
-2.576 and 2.576

The infinite degrees of freedom case for 99%

Quick check: what do the critical values here mean?

Chris Adolph (UW) Statistical Inference 67 / 107



Critical values of the t distribution

We can state how unusual a t-ratio is under the assumption that it is
distributed t(n)

Test level Interval df = 5 df =∞
0.1 level 90% 2.015 1.645
0.05 level 95% 2.571 1.960
0.01 level 99% 4.032 2.576

These will be very useful for quantifying the uncertainty of estimates
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The t-statistic

Note that the t-statistic should be t distributed!

1 x̄: The mean of x is the sum of a large number of independent variables,
and thus will tend to be Normally distributed, by the Central Limit
Theorem

2 var(x): The variance of x is the sum of n squared variables,
and is thus χ2 distributed

3 The ratio of a Normal variable and the square root of a χ2 variable
is t-distributed
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The t-statistic

Originally discovered by William Gosset, a statistician working at Guinness
Brewery in the 1908 on the problem of measuring the quality of beer

Guinness was a pioneer of early statistical quality control, but forbade its
statisticians from publishing (trade secrets!)

Gosset published his discovery under the pseudonym “Student”.
Hence this is Student’s t-test
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The t-statistic

We can use the t-test to assess how likely it is that the truth deviates from a
hypothetical value, given the sample estimate and standard error

That is, given x̄− µ0 as large as the one we saw, uncertainty of that estimate
sd(x)/

√
n, how likely is it that the population mean of x is actual µ0 or smaller?

Large t could occur in one of two way:

1 A unusual random sample far from the true population mean,
which happens to be close to µ0

2 A typical sample from a population mean that is larger than µ0
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The t-statistic

We will never know which situation we are in, and we don’t know the
probability of the latter case at all

But we can calculate the probability we would see a t as large as the one we
saw by chance.

This probability is known as the p-value

To look it up in a table or stat package, we need to know the degrees of
freedom

Roughly, dfs are how much information we have,
in this case, n− 1, since calculating x̄ uses up a degree of freedom
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Significance tests

We call an estimate statistically significant when we would only expect to see
such a large t by chance less often than a prespecified siginificance level α

A statistical significance test checks whether the p-value associated with a
t-test is below alpha, which is most often set to 0.05

Significance tests are tests against a specific null hypothesis, and are
“conservative” in the sense of being likely to favor the null over our own
hypothesis
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Are significance tests “really” conservative?’

Type I error Probability of falsely rejecting the null

Type II error Probability of falsely accepting the null

Significance tests minimize the chance of Type I error at the expense of
allowing for more Type II error

Is this a good idea?

The null hypothesis is usually arbitrary,
and our prior belief is usually that it is unlikely.

Significance tests may lead to excessive contrarianism, which is not
“conservative” at all
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Confidence intervals

An better alternative to p-values which conveys the same information is the
confidence interval

In repeated samples from the same population, the 95% confidence interval
contains the true population mean 95% of the time

Warning! We cannot say the truth lies in the confidence interval we calculate
with 95% probability—we don’t know in this specific case

But if we conduct 20 studies, and in each report a 95% confidence interval,
we will expect to be “wrong” in only one study (1 in 20)
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Calculating the confidence interval

We pick a confidence level, such as 95%

Then, we look up the critical value of t containing that 95% of the t distribution,
and calculate:

x̄lower = x̄− t∗n−1 × se(x̄)

x̄upper = x̄ + t∗n−1 × se(x̄)

Note that for the 95% CI, the critical value with infinite degrees of freedom is
±1.96, so 95% CIs are roughly ±2 standard errors from the estimate
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Example: Washington Same-Sex Marriage Referendum

This summer, Governor Gregoire signed legislation recognizing same-sex
marriage in Washington State.

Opponents successfully petitioned to put the law on the November ballot.

By the time you hear this lecture, this issue will be decided...
Did the poll one year ago get it right?
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The Washington Poll, October 2011, asked a prescient question of 983
Washington registered voters

Next year the legislature could pass a law allowing gay and lesbian couples to
get married. If that happens, there could be a referendum in which voters
would be asked to approve or reject the law.

If such a referendum were held today: Would you vote YES – that is, to keep a
law in place allowing gay and lesbian couples to marry OR would you vote NO,
against the law – to make it so that gay and lesbian couples could not marry?

The Washington Poll found that 55 percent of registered voters would keep
same-sex marriage, and 38 percent would not.

(The Washington Poll is conducted by my colleagues, Matt Barreto and
Christopher Parker, and Betsy Cooper, of UW Political Science. See
www.washingtonpoll.org.)
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Example: Washington Same-Sex Marriage Referendum

The Washington Poll found that 55 percent of registered voters would keep
same-sex marriage, and 38 percent would not.

How certain is this result?

We will use the raw data from this survey to investigate

Some caveats:
1 Original survey was stratified, and weighted some groups more heavily;

we will ignore weights

2 To simplify, we will ignore non-response and “I don’t knows”.

Because of the above (especially 2) our proportions in this lecture differ from
the official results of the poll.
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Example: Washington Same-Sex Marriage Referendum

Our initial N of people responding YES or NO on the same-sex referendum is
979.

Of these, 61.6% say YES, they would vote to keep SSM.

Assuming the caveats above pose no problems, how certain are we the
referendum will pass based on this sample?
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Example: Washington Same-Sex Marriage Referendum

How likely is it that a survey of 979 random individuals from a population
would find 61.6% support for a measure when really only 50% or less support
the measure?

Let’s use a t-test:

t =
x̄− µ0

se(x̄)

=
x̄− µ0

sd(x)/
√

n

=
0.616− 0.5
0.487/

√
979

= 7.454

A t this big would appear by chance only 1 in 504,000,000,000 random
samples of 979 people, (1 in 504 billion), for a p = 0.0000000000001985
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Example: Washington Same-Sex Marriage Referendum

A t this big would appear by chance only 1 in 504,000,000,000 random
samples of 979 people, (1 in 504 billion), for a p = 0.0000000000001985

Why is this so unlikely? Suppose that in October, a bare majority of
Washington registered voters really did oppose same-sex marriage.

Then to get 61.6% approval, instead of the correct 50% approval, the
Washington Poll would have needed to sample 979× (0.616− 0.500) = 114
more supporters than we would expect on average in 979 random draws.

That’s as unlikely as flipping a coin 979 times and getting 603 heads and 376
tails.
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Example: Washington Same-Sex Marriage Referendum

Another way to summarize the uncertainty in our polling results is to calculate
a confidence interval

We can state with 95% confidence that the actual level of support for
same-sex marriage among all Washington RVs in April was between 58.5%
and 64.6%

Notice these numbers are 61.6%± 3.1%, which also happens to be the
“margin of error” for the poll (journalists’ name for a confidence interval).

Unfortunately, “margin of error” is a misleading name:
errors can be bigger than this margin, & are guaranteed to be 5% of the time!
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Example: Washington Same-Sex Marriage Referendum

The Washington Poll’s sample of Washington voters includes 317 voters over
the age of 65, 53.9% percent of whom said they would support SSM

Do a majority of older Washingtonians actually support SSM?
Or is this a sampling error?

If we made the mistake of judging by the “margin of error” for the whole
survey, we might think a majority of older voters did support SSM:

53.9%− 3.1% = 50.8%
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Example: Washington Same-Sex Marriage Referendum

Let’s do our own t-test to be sure:

t =
x̄− µ0

se(x̄)

=
x̄− µ0

sd(x)/
√

n

=
0.539− 0.500
0.499/

√
317

= 1.406

This is a pretty small t-statistic, one we would see by chance in 1 out of 6
random samples. The p-value is 0.161.

We find that the 95% confidence interval ranges from 48.4% to 59.5%, which
is equal to our estimate of 53.9% by ±5.5%.

We are not certain that Washington 65+’s supported SSM in October.
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Example: Washington Same-Sex Marriage Referendum

1 Uncertainty depends on the size of the sample (which has changed)

2 Uncertainty depends on the variance of the sample (which has changed)
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Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



Change in Size of Sample

Suppose Washington elderly were evenly split on the same-sex marriage in
October.

Then, to get 53.9% of 65+’s in favor in a sample of 317, The Washington Poll
would need to have randomly sampled 317× (0.539− 0.500) = 12 more
people in favor than they would expect to on average

This is exactly the same as flipping a coin 317 times and getting 170 heads
and 147 tails. A little unlikely, but not very unlikely.

The margin of error reported with a survey applies only to the full population

Any average we calculate for a subgroup (the young, women, Republicans,
Hispanics, etc.) will have a unique confidence interval, always bigger than that
for the whole sample

The smaller the n, the bigger the confidence interval, the less certain the
finding

Chris Adolph (UW) Statistical Inference 88 / 107



On confidence versus significance

There are two ways we could report our finding on older voters support for
same-sex marriage:

Significance test Based on a survey of Washington registered voters, we
estimate 54% of voters over 65 years supported same-sex
marriage in October. However, this estimate is not statistically
significantly different from 50% at the 0.05 level.

Confidence interval Based on a survey of Washington registered voters, we
estimate 53.9% of voters over 65 years supported same-sex
marriage in October. The 95% confidence interval for this
estimate ranges from 48.4% to 59.5%, suggesting anywhere
from a slight majority against same-sex marriage to a large
majority in favor.
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On confidence versus significance

These write-ups present the same results. They rely on the same math and
the same statistical theory.

The significance test presentation obscures the substantive impact of the
result in jargon, and makes it appear ignorable.

The confidence interval focuses on the substantive impact of the result, and
clarifies what we can and cannot reject:

Although we aren’t sure how many older voters supported same-sex marriage
in October,

it is very likely that half or more do,

and very unlikely that a large percentage of older were opposed before 2012
started
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On confidence versus significance

The significance test forces you to accept the author’s arbitrary null hypothesis

The confidence interval allows you to choose you own null

And shows how robust your findings are to slight changes in the null
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The irrelevance of population size

t =
x̄− µ0

sd(x)/
√

n

Notice one number that doesn’t appear in this formula: the size of the
population

The precision of an estimate doesn’t depend on the size of the population,
only the size of the sample.

That’s why you tend to see polls using samples of 500 to 2000 respondents
regardless of whether they are sampling from a small town population or the
whole country
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Comparing two means

So far, we have asked how far the mean of our sample might differ from a
specific value

e.g., how much does the average support for same-sex marriage differ from
0.5?

But what if we want to compare two groups in our sample?

That is, what if we want to compare two means to each other?

e.g., how much does the average support for same-sex marriage among
those with a close gay friend or family member differ from support among
those without (knowledge of) close contact with someone gay?
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A simple cross-tab

Have contact?
Yes No Total

Support SSM 399 204 603
Oppose SSM 183 193 376

Total 582 397 979

Here are the two variables, support for SSM and contact, in a cross-tabulation

Let’s convert to column percentages
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A simple cross-tab

Have contact?
Yes No Mean

Support SSM 68.6% 51.4% 61.6%
Oppose SSM 31.4% 48.6 38.4%

Total 100.0% 100.0% 100.0%

This table shows much more support for SSM among those with contact than
those without (68.6% vs. 51.4%, or 17.2% more support)

Our question:

How certain are we that this difference in mean support across groups in our
sample really exists in the Washington voter population?
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t-test for comparison of means

To make inferences about the difference in means of two samples, we can do
a difference in means t-test

Remember the form of a t-statistic:

t =
sample statistic of interest− µ0

se(sample statistic of interest)

Before, the sample statistic of interest was x̄, but now it is x̄− ȳ. We want to
know if this difference is itself different from zero, so:

t =
(x̄− ȳ)− 0
se(x̄− ȳ)
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t-test for comparison of means

Our difference-of-means t-statistic is:

t =
(x̄− ȳ)− 0
se(x̄− ȳ)

Calculating this t by hand is hard, so we’ll let the computer do it.

Then we’ll check if this t-statistic exceeds the chosen critical value
or simply calculate the probability of seeing so large a t
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Example: Washington Same-Sex Marriage Referendum

Voters in the Washington Poll sample with contact were 17.2% more likely to
support same-sex marriage

How certain are we that this difference holds in the population?

That is, how certain are we that Pr(support|contact)−Pr(support|no contact) > 0?

We can do a comparison of means t-test.

We find t = 5.425, which implies a p-value of 0.00000007661.

The 95% confidence interval is ranges from +11.0% to +23.4%. (What does
this mean?)
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Example: Household Weath and Race

In a sample of 10,000 households, we found households headed by a
self-identified white earned more, on average, than households headed by a
self-identified black or Hispanic.

How certain are we that these sample results hold in the full American
population?
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Example: Household Weath and Race

Let’s do a comparison-of-means t-test for black and white households

Average gap between black and white household wealth, in $k: -496.7

t-stat: -19.8

p-value: 0.00000000000000022

(that’s just 1 in 4,540,000,000,000,000, or 4.5 thousand trillion)

95% CI: −545.9 to −447.5
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Summing up

We’ve added several new tools to our analytic toolkit:
1 Standard errors of estimates

2 t-tests and confidence intervals for a sample mean

3 t-tests and CIs for a comparison of means
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Caveats

Comparison of means tests seem especially helpful for our inference about
hypotheses

We can now state whether apparent differences in conditional means are
likely to be mere happenstance, or real features of the population

But are there reasons to doubt findings from a comparison of means test?

These tests still don’t control for confounders. So results might be spurious.
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Wait! What are degrees of freedom (df)?

Degrees of freedom:
The number of separate pieces of information used to calculate a statistic

“separate” = “freely movable”

Not the same thing as the number of observations (may be the same as N or
less)

Relevance: how many quantities could we estimate from a set of data?

Can’t be more quantities than are left to vary!
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How many things can we estimate using?

two numbers, x1 and x2

2 things

Now I decide to add an assumption regarding the value of x2

two numbers, x1 and 3 1 thing

Instead, suppose I assume I know the mean?

two numbers, x1 and x2, and x̄ = 2 1 thing

How does this work at larger scales?

fifty numbers, x1, . . . x50, and x̄ = 2 49 things

fifty numbers, x1, . . . x50, x̄ = 2, and σ2 = 0.5 48 things
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Degrees of freedom (df)

Degrees of freedom (df): the remaining allowed ways you could move the data

If we make as many assumptions as there are observations, nothing left to
estimate
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Derivation of the standard error of the mean
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Derivation of the standard error of the mean

Now we make use of the fact that for uncorrelated x1, . . . , xi, . . . xn,
var
(∑n
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=
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