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Aside on mathematical notation

Pr(A) the probability that event A happens out of a discrete
set of possible events

P(A) the probability that event A happens out of a contin-
uum of possible events

Pr(not A) the probability something other than A happens

Pr(A ∪ B) the probability either A or B (or both) happen
(∪ stands for union)

Pr(A ∩ B) the probability A and B happen at the same time
(∩ stands for intersection)

Pr(A|B) the probability A happens given that B is certain to
happen
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Four examples

Time for a second opinion? During a routine checkup, your doctor tells you
some bad news: you tested positive for a rare disease. The
disease affects 1 in 10,000 people, and the test has a 99%
effectiveness rate. What are the chances you have the disease?

Concepts applied: Sample spaces. Conditional probability.

A statistician plays the lottery What are your chances of winning the
lottery?

Concepts applied: Complex events. Independence. Joint
probability. Expected value.
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Four examples

The prosecutor’s fallacy Out of a city of 6 million people, a prosecutor has
matched your DNA to a crime scene, and tells the jury that only
1 in 1,000,000 people have matching DNA. You know you are
innocent. But how can you convince a jury?

Concepts applied: Inverse probability, Bayes Rule.

Let’s make a deal On a game show, you get to choose one of three doors.
Only one has a car; the others have goats. After you suggest a
door, the host opens one door (to reveal a goat), and offers you
the chance to switch to door number 3. Do you stay or switch?

Concepts applied: Monte Carlo simulation for complex
probability problems.
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Essential concepts

Event Any specific outcome that might occur. Mutually exclusive with
other events.

Example: A World Cup Soccer game between the US and
England could end in a victory for the US.

Sample space A set of all the events that might occur.

Example: A World Cup Soccer game between the US and
England could end in three ways: Win, Loss, Tie

Probability A number, between 0 and 1, assigned to each of the possible
outcomes in the sample space.

Example: Pr(Win) = 0.3, Pr(Loss) = 0.5, Pr(Tie) = 0.2
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Axioms of Probability
An axiom is an assumption we cannot prove, and must make to get started in
a field of mathematics.

Probability theory relies on just three axioms:

1 Each event has a probability of 0 or more. (Anything could happen.)

2 The total probability of all the events in the sample space is 1.
(Something must happen.)

3 If two events A and B cannot simultaneously occur, the probability that
either occurs is Pr(A) + Pr(B)
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Approaches to Probability

Frequency Interpretation We observe how often an event occurs in a set of
trials. The ratio of successes to trials show reflect the long-term
probability of the event.

Theoretical interpretation The above suggests there is also some true,
usually unknown, probability that an event occurs in nature.

Subjective Interpretation Probabilities may also reflect personal beliefs
about the likelihood of an event.

We’ll mostly rely on the frequency interpretation, but will use all three at
different points in the course
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Visualizing sample spaces and events with Venn Diagrams

Pr(A)

Pr(not A)

The entire
rectangle is
the sample
space, and
has area, or
total
probability, of
1

The area of
the small
circle
represents
the
probability
that event A
happens
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Visualizing sample spaces and events with Venn Diagrams

Pr(A) Pr(B)

If the circles
for two
different
events don’t
overlap, they
are disjoint

We say these
events are
mutually
exclusive
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Visualizing sample spaces and events with Venn Diagrams

Pr(A) Pr(B)

Pr(A ∩ B)

If the circles
overlap, both
events could
happen at
once

The
probability
both happen
is the joint
probability of
A ∩ B
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Tools to solve probability problems

Complement rule Pr(A) = 1− Pr(not A)

Addition rule (generally) Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)

Addition rule (mutually exclusive events) Pr(A ∪ B) = Pr(A) + Pr(B) if
Pr(A ∩ B) = 0

Conditional probability Pr(A|B) = Pr(A ∩ B)/Pr(B)

Independence of events Events are independent only if Pr(A|B) = Pr(A)

Joint probability (independent events) Pr(A ∩ B) = Pr(A)Pr(B)

Joint probability (generally) Pr(A ∩ B) = Pr(A)Pr(B|A)
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Time for a Second Opinion?

During a routine checkup, your doctor tells you some bad news:
you tested positive for a rare disease.

The disease affects 1 in 10,000 people,
and the test has a 99% effectiveness rate.

What are the chances you have the disease?
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Steps to solve a probability problem

1 Identify the possible events

2 Identify the quantity of interest in terms of probability of specific events

3 Collect all the probabilities you know

4 Use the rules of probability to calculate what you want to know from what
you do know

Chris Adolph (UW) Probability 13 / 83



Identify the possible events

You can either have the disease or not have the disease

You can either test positive or negative

This leads to four possible combinations which comprise the whole sample
space:

have disease and positive
have disease and negative
no disease and positive
no disease and negative
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Venn Diagram of disease and test events

Pr(disease) = 1 in 10,000

Let’s start
with the event
of having the
disease
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Venn Diagram of disease and test events

Pr(positive) = ?

Testing
positive is a
separate,
possibly joint
event with
having the
disease

We don’t yet
know the
marginal
probability of
testing
positive
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Venn Diagram of disease and test events

Pr(no disease ∩ negative)

The area
outside both
circles is the
probability of
neither
having the
disease nor
testing
positive
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Venn Diagram of disease and test events

Pr(no disease ∩ negative)

Pr(no disease ∩ positive)

This large
crescent
shape is the
probability of
testing
positive even
though you
don’t have
the disease
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Venn Diagram of disease and test events

Pr(disease ∩ positive)

Pr(no disease ∩ negative)

Pr(no disease ∩ positive)
This
intersection is
the
probability of
testing
positive and
having the
disease
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Venn Diagram of disease and test events

Pr(disease ∩ positive)

Pr(disease ∩ negative)

Pr(no disease ∩ negative)

Pr(no disease ∩ positive)
And this
crescent is
the
probability of
having the
disease but
failing to
detect it
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Identify the quantity of interest

Clearly, we want to know the possibility you have the disease
given a positive test result

The simple probability of having a disease isn’t enough –
you are worried because you have new information:
you had a positive test

In formal terms, we want to find:

Pr(disease|positive)

This is not the same as either Pr(disease) or Pr(positive)

How do we find it? Let’s start with what we know
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Collect all the probabilities you know

We know how likely a random person is to have the disease:

Pr(disease) = 1 in 10,000
= 0.01%
= 0.0001

From this, we can calculate the complement:

Pr(no disease) = 1− Pr(disease)
= 9,999 in 10,000
= 99.99%
= 0.9999
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Collect all the probabilities you know

We also know some conditional probabilities. The test is “99% effective”,
meaning it has a 99% probability of detecting the correct disease status, so:

Pr(positive|disease) = 0.99
= 99 in 100

Pr(negative|disease) = 0.01
= 1 in 100

Pr(positive|no disease) = 0.01
= 1 in 100

Pr(negative|no disease) = 0.99
= 99 in 100
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What we still don’t know

Pr(disease|positive) = ?
Pr(no disease|positive) = ?

How are we going to calculate these?

We have a formula for conditional probabilities:

conditional probability =
joint probability

marginal probability

Pr(A|B) =
Pr(A ∩ B)

Pr(B)

So we need to calculate some joint probabilities
(the areas in the Venn Diagrams)
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive
negative

One way to calculate missing probabilities is to make a contingency table, and
see if we can fill in the blanks

Chris Adolph (UW) Probability 25 / 83



Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive
negative

1,000,000

Let’s choose a large “sample” size, and then compute appropriate frequencies

That is, we’ll work with the frequency interpretation of probability
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive
negative

100 999,900 1,000,000

If the Pr(disease) is 1 in 10,000,
then out of a sample of 1 million, about 100 should have the disease.

These simple probabilities fill in the margins of the table,
and so simple probabilities are often called marginal probabilities
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 99
negative 1

100 999,900 1,000,000

We know from the conditional probability of test results given disease
that 99 of the 100 disease cases should be detected

This helps us fill in the joint probabilities of disease and test results
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 99 9,999
negative 1 989,901

100 999,900 1,000,000

Likewise, we can fill in the fraction of non-disease cases
that the test should correctly identify
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 99 9,999 10,098
negative 1 989,901 989,902

100 999,900 1,000,000

That just leaves the marginal totals of positive and negative results,
which we find by adding up the rows

Chris Adolph (UW) Probability 30 / 83



Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 0.000099 0.009999 0.010098
negative 0.000001 0.989901 0.989902

0.0001 0.99999 1.0

Dividing through by the grand sum of the table converts all the entries to
probabilities

Note that unlikely last week, we want to divide by the overall sum, not the
column sums. Our goal is to find the probabilities of each combination of
events
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive Pr(positive)
negative Pr(negative)

Pr(disease) Pr(no disease) Pr(any event)

Let’s think about what we’ve done in terms of probabilities

The margins of the table have the simple probabilities of each event
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive Pr(positive)
negative Pr(negative)

Pr(disease) Pr(no disease) Pr(any event)

And the cells of the table show the joint probability of each combination of
events

Chris Adolph (UW) Probability 33 / 83



Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive Pr(positive)
negative Pr(negative)

Pr(disease) Pr(no disease) Pr(any event)

We can use these cells to compute any conditional probability we want:

conditional probability =
joint probability

marginal probability

Pr(disease|positive) =
Pr(disease ∩ positive)

Pr(positive)
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 0.000099 0.009999 0.010098
negative 0.000001 0.989901 0.989902

0.0001 0.99999 1.0

Pr(disease|negative) =
Pr(disease ∩ positive)

Pr(positive)

=
0.000099
0.010098

= 0.0098
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Use the rules of probability to calculate the missing probabilities

2 × 2 table for disease test example

disease no disease

positive 0.000099 0.009999 0.010098
negative 0.000001 0.989901 0.989902

0.0001 0.99999 1.0

If you randomly test people for the disease, and get a positive result,
there are 99 chances in 100 that the person doesn’t have the disease

And only a 1 in 100 chance of the person having the disease,
despite the positive test!
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Alternative Presentation: Probability Trees

Many students find conditional probabilities easier to understanding using tree
diagrams

We will look at this problem a second way using a tree

Each node in the tree represents a random variable

Each branch represents a possible value of that variable

Tracing out each branch to the tip shows the joint probability that a set of
variables come out a certain way
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100

999,900

989,901

9,999

99

1

Out of 1,000,000 people positive test

have disease

don’t have disease

positive test

negative test

negative test

Again suppose we took 1,000,000 people, and their outcomes followed
exactly the joint and marginal probabilities we determined for each event.

We would have the above tree, where numbers at the right show the total
people with all the conditions on the corresponding branch

Chris Adolph (UW) Probability 38 / 83



0.010098

0.989902

0.989901

0.009999

0.000099

0.000001

Out of 1.0 total probability positive test

have disease

don’t have disease

positive test

negative test

negative test

If we divide through by 1,000,000, we get the underlying probabilities.

Let’s leave them aside for the moment, and find the probability of disease
given a positive diagnosis, Pr(disease|positive) using frequencies out of one
million
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100

999,900

989,901

9,999

99

1

Out of 1,000,000 people positive test

have disease

don’t have disease

positive test

negative test

negative test

How many people out of 1,000,000 received positive diagnoses?

The red path above highlights one way: 99 people in 1,000,000 will get a
positive diagnosis and have the disease
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999,900

989,901

9,999

99

1

Out of 1,000,000 people positive test

have disease

don’t have disease

positive test

negative test

negative test

How many people out of 1,000,000 received positive diagnoses?

But there is another way: 9,999 people out of 1,000,000 will test positive even
without the disease
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100

999,900

989,901

9,999

99

1

Out of 1,000,000 people positive test

have disease

don’t have disease

positive test

negative test

negative test

A total of 99 + 9, 999 receive positive diagnoses, but only 99 of these people
have the disease.

Pr(disease|positive) =
99

99 + 9, 999
= 0.0098 ≈ 1 percent probability
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Out of 1.0 total probability positive test
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positive test

negative test

negative test

We could also solve this tree using the probabilities themselves,
and the formula for conditional probability

conditional probability =
joint probability

marginal probability

Pr(disease|positive) =
Pr(disease ∩ positive)

Pr(positive)
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0.010098

0.989902

0.989901

0.009999

0.000099

0.000001

Out of 1.0 total probability positive test

have disease

don’t have disease

positive test

negative test

negative test

What is the marginal probability of a positive diagnosis, Pr(positive)?

The sum of the probabilities in red: Pr(positive) = 0.010098
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0.010098

0.989902

0.989901

0.009999

0.000099

0.000001

Out of 1.0 total probability positive test

have disease

don’t have disease

positive test

negative test

negative test

What is the joint probability of a positive diagnosis and a positive test?

The probability in red: Pr(disease ∩ positive) = 0.000099

Chris Adolph (UW) Probability 45 / 83



0.010098
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Out of 1.0 total probability positive test
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don’t have disease

positive test

negative test

negative test

Pr(disease|positive) =
Pr(disease ∩ positive)

Pr(positive)

=
0.000099
0.010098

= 0.0098

≈ 1 percent probability
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Things to ponder

1 It looks like a test for a rare disease would need to be staggeringly
accurate before we trust it

But remember we assumed the test was administered at random

What if your doctor already suspected you had the disease.
Would you still discount a positive result?

2 We can present probabilities as proportions (0.001) or as ratios (1 in
1000). Which do you find easier to understand?

This example was administered as a test question to a panel of doctors

Using proportions, most doctors got the answer badly wrong
(Kahneman & Tversky)

Using ratios to understand the problem, most got it right! (Gigerenzer)
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A statistician plays the lottery

Most US states run lotteries involving a daily drawing of 6 numbered balls
from an urn, without replacement

In WA, lottery players pick six unique integers from 1 to 49

A player who picks all 6 numbers correctly wins the jackpot

If no one picks all 6 numbers, the jackpot rolls over to the next drawing

In WA and other states, partial matches win smaller prizes;
we will neglect these to keep our example simple
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A statistician plays the lottery

Questions a statistician asks about a lottery:

1 What is the probability of winning the jackpot from buying a single ticket?

2 What is the expected return on a single ticket?

3 Can I increase my expected return using a strategy?

4 Based on the above, should I play the lottery?
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Probability of winning the jackpot

What is the sample space?

All possible combinations of 6 different numbers chosen at random between 1
and 49.

What is the probability of matching such a number?

Start by identifying the event of interest:

Matching all 6 selected numbers

This is a complex event consisting of six sequential sub-events

Let’s denote a successful match of the nth number as mn
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Probability of winning the jackpot

To have a “success”, we must see the following six events in order:

Match the first draw (a random selection out of 49 numbers) to any of our
6 picks.

We have six chances in 49 to get this right, so our probability is:

Pr(m1) = 6/49 = 0.1224

Match the second draw (randomly chosen from 48 remaining numbers) to
any of our remaining five picks.

Assuming we got the first number, we have five chances in 48 to get this
right:

Pr(m2|m1) = 5/48 = 0.1042
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Probability of winning the jackpot

Match the third draw (randomly chosen from 47 remaining numbers) to
any of our remaining four picks.

Assuming we got the first and second numbers, we have four chances in
47 to get this right:

Pr(m3|m1,m2) = 4/47 = 0.0851

Match the fourth draw (randomly chosen from 46 remaining numbers) to
any of our remaining three picks.

Assuming we got the first, second, and third numbers, we have three
chances in 46 to get this right:

Pr(m4|m1,m2,m3) = 3/46 = 0.0652
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Probability of winning the jackpot

Match the fifth draw (randomly chosen from 45 remaining numbers) to
any of our remaining two picks.

Assuming we got the first, second, third, and fourth numbers, we have
two chances in 45 to get this right:

Pr(m5|m1,m2,m3,m4) = 2/45 = 0.0444

Match the sixth draw (randomly chosen from 44 remaining numbers) to
our only remaining pick.

Assuming we got the first, second, third, fourth, and fifth numbers, we
have one chance in 44 to get this right:

Pr(m6|m1,m2,m3,m4,m5) = 1/44 = 0.0227
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Probability of winning the jackpot

Note something interesting: matching numbers gets harder as we go,
because our set of possible matches is shrinking.

To win the jackpot, we must match all six numbers,
so we need the joint probability of the above events.

We use the general rule for calculating the joint probability of multiple events:

Pr(Jackpot) = Pr(m1 ∩ m2 ∩ m3 ∩ m4 ∩ m5 ∩ m6)

= Pr(m1)× Pr(m2|m1)× Pr(m3|m1,m2)× Pr(m4|m1,m2,m3)

×Pr(m5|m1,m2,m3,m4)× Pr(m6|m1,m2,m3,m4,m5)

=
6

49
× 5

48
× 4

47
× 3

46
× 2

45
× 1

44

=
1

13, 983, 816
= 0.0000000715
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What is the expected return from a single ticket?

Suppose a lottery ticket costs one dollar

How much, on average, you expect to get back from the dollar you spend on a
lottery ticket is the expected value of the ticket.

Let’s denote the specific set of six number we chose as ticketi, and the
amount of money in the jackpot as J.

E(ticketi) = J × Pr(ticketi wins)
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Is the lottery a good investment?

Suppose the jackpot is 1 million dollars. Then

E(ticketi) = 1, 000, 000× 0.0000000715 = 0.07

If you played the lottery many millions of times at a $1 million jackpot, you
would expect to get back an average of 7 cents for every dollar in tickets
purchased

To break even, the jackpot would have to be about $14 million each time

But even then, over any short run of lotteries, you would expect nothing.

The lottery is high risk, with most of the expected return coming from a low
probability event
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What is the expected return from a single ticket? (redux)

But wait! There are other players, and nothing prevents them from picking the
same six numbers!

If we pick the winning numbers, but so do q other people, we will have to split
the jackpot q + 1 ways!

And the bigger the jackpot, the more people play. . .

So really,

E(ticketi) = J × Pr(ticketi wins)
[1× Pr(no one else chooses ticketi)
+2× Pr(one other player chooses ticketi)
+3× Pr(two other players choose ticketi) . . .]

Split jackpots shrink our winnings a lot!
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A strategy for the lottery

All lottery numbers are equally likely to appear.

No six numbers are more likely to win than any other.

So is there any strategy we can use to maximize our winnings?

All numbers are equally likely to win,
but not all numbers are equally likely to split the jackpot

If we pick numbers no one else plays,
we win just as often as ever, but never have to split our winnings
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A strategy for the lottery

Most people misunderstand the concept of a random number sequence.

The sequence
9, 15, 17, 20, 35, 37

is just as likely to appear as
1, 2, 3, 4, 5, 6

or

44, 45, 46, 47, 48, 49

But most lottery players would see these sequences as “unlikely”

(How would you minimize returns from the lottery?

Play numbers appearing in

recent birthdays and anniversaries!)
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Is the lottery worth playing?
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http://xkcd.com/795/
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The prosecutor’s fallacy

DNA evidence can help clinch the case against a criminal suspect

Suppose the probability of a DNA match between two randomly selected
people is 1 in 1,000,000

If a suspect’s DNA matches evidence from a crime scene, guilt is very likely

But what if a prosecutor doesn’t have a suspect?
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The scenario

A prosecutor needs a suspect for a murder,
but has nothing but DNA from the crime scene

The prosecutor thinks the murderer could be anyone in the city,
which has 6 million residents

He begins testing them at random – and his first DNA match is you

Based on nothing but the DNA evidence, he charges you with the crime

He tells the grand jury that your guilt is beyond doubt,
because the probability of a DNA match by chance is just 1 in 1 million

You know you are innocent.
But how do you argue against the prosecutor’s statistical argument?
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But I’m innocent!

What probability do we want to calculate?

Pr(innocent|DNA match)

What probability has the prosecutor calculated?

Pr(DNA match|innocent)

The prosecutor has confused one conditional probability with its inverse!
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What probabilities do we know?

What is the probability that you are innocent, before we do the DNA test?

Pr(innocent) = 5, 999, 999 in 6, 000, 000 = 0.9999998

Suppose that there are exactly 6 matches to the DNA in the city.
Then what is the probability that you are innocent after a successful DNA
match?

Pr(innocent|DNA match) =
Pr(innocent ∩ DNA match)

Pr(DNA match)

=
5 in 6, 000, 000
6 in 6, 000, 000

=
5
6

Confusing one probability for its inverse could get you railroaded!
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The prosecutor’s fallacy

Mining a sufficiently large dataset for a coincidence guarantees that you find
what you were looking for, so that the act of finding that coincidence proves
nothing

The prosecutor’s fallacy is well-known. A prosecutor who misuses statistical
evidence in this way would risk serious sanctions

But wait a minute! DNA evidence gets used successfully in court all the time!
What gives?

Using DNA to conduct a fishing expedition doesn’t yield strong evidence.

But a DNA match on a single prior suspect is different.

To see this, we need one more bit of probability theory: Bayes Rule.
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Bayes Rule

Suppose we know Pr(B|A), but want to know Pr(A|B) instead?
That is, we want to invert conditional probabilities:

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B)

The formula in words:

conditional probability of A given B =

conditional probability of B given A × marginal probability of A
marginal probability of B

Special names for the elements of Bayes’ Rule:

posterior probability of A given B =

likelihood of B given A × prior probability of A
prior probability of B
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Bayes Theorem (derivation)

conditional probability =
joint probability

marginal probability

Pr(A|B) =
Pr(A ∩ B)

Pr(B)

Pr(B|A) =
Pr(A ∩ B)

Pr(A)
Pr(B|A)Pr(A) = Pr(A ∩ B)

Pr(A|B)Pr(B) = Pr(A ∩ B)

Pr(A|B)Pr(B) = Pr(B|A)Pr(A)

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)

Bayes Rule is the foundation for a major branch of statistics, called Bayesian
statistics. UW a major center for Bayesian research.
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Bayes Rule and a DNA match

We can use Bayes rule to figure out the probability that a suspect is guilty
given a successful DNA match.

Pr(innocent|DNA match) =
Pr(DNA match|innocent)× Pr(innocent)

Pr(DNA match)

We need to rewrite the denominator to sum up the probability of a DNA match
in each scenario:

Pr(DNA match) = Pr(DNA match|innocent)× Pr(innocent)
+Pr(DNA match|not innocent)× Pr(not innocent)
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Bayes Rule and a DNA match

Pr(innocent|DNA match) =
Pr(DNA match|innocent)× Pr(innocent)
Pr(DNA match|innocent)× Pr(innocent)

+Pr(DNA match|not innocent)× Pr(not innocent)

This formula requires several pieces of information:

Prior probability of innocence, Pr(innocent) Let’s set this to 95%, in
accordance with the principle of “innocent until proven guilty”.

Likelihood of DNA against an innocent party, Pr(DNA match|innocent)
This is the crux of the problem. Let’s set this to 1 in 1 million
initially.

Probability of a DNA match given a guilty party, Pr(DNA match|not innocent)
Let’s suppose the test performs perfectly when the party is
guilty, so this is 1.
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Bayes Rule and a DNA match

Supposing the DNA test really only goes against the innocent 1 in 1 million
tries, we have:

Pr(innocent|DNA match) =
Pr(DNA match|innocent)× Pr(innocent)
Pr(DNA match|innocent)× Pr(innocent)
+Pr(DNA match|not innocent)× Pr(not innocent)

=
0.000001× 0.95

0.000001× 0.95 + 1× 0.05
= 0.00002

When DNA evidence weighs against a single suspect –
even one accorded a strong presumption of innocence –
the updated probability of innocence is microscopic
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Bayes Rule and a DNA match

Suppose the prosecutor is on a fishing expedition in a large population

He waits until he has a match before going to court,
so the probability of a match – regardless of innocence or guilt – is 1.0!

Pr(innocent|DNA match) =
Pr(DNA match|innocent)× Pr(innocent)
Pr(DNA match|innocent)× Pr(innocent)
+Pr(DNA match|not innocent)× Pr(not innocent)

=
1× 0.95

1× 0.95 + 1× 0.05
= 0.95

Bayes Rule tells us that in this case,
DNA evidence adds no evidence of guilt whatsoever

We could tweak this by changing the prior or likelihood to include our
assumption that someone in town must be guilty –
but that’s not likely to fly in court or get us very far
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Let’s Make a Deal

On Let’s Make a Deal, host Monty Hall offers you the following choice:

1 There are 3 doors. Behind one is a car. Behind the other two are goats.

2 You choose a door. It stays closed.

3 Monty picks one of the two remaining doors, and opens it to reveal a goat.

4 Your choice: Keep the door you chose in step 1, or switch to the third
door.

What should you do?
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Let’s Make a Deal

What is the probability problem here?

1 What is the probability of a car from staying?
2 What is the probability of a car from switching?
3 Which is bigger?

How can we solve the problem?
1 Use probability theory: Bayes’ Rule
2 Use brute force: Monte Carlo simulation

Using probability theory can get hard for complex scenarios

Monte Carlo is equally easy no matter how complex the scenario,
but requires programming
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Bayes Rule Solution (1)

We have doors A, B, and C.

Ex ante, the probability the car is behind each of these doors is just

Pr(A) = Pr(B) = Pr(C) =
1
3

Since the contestant picks a door D at random,

Pr(D) = 1
3

For the sake of argument, suppose the contestant chooses D = A.
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Bayes Rule Solution (2)

Now, Monty Hall picks a door E to show a goat.

We want to know the probability that the remaining door F hides a car given
Monty’s exposure of door E .

For the sake of argument, suppose that Monty picks E = B.

We need to calculate Pr(F|E = B). Use Bayes’ Rule:

Pr(a|b) = Pr(b|a)× Pr(a)
Pr(b)

or in our case,

Pr(F|E = B) =
Pr(E = B|F)× Pr(F)

Pr(E = B)
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Bayes Rule Solution (3)
The problem we need to solve:

Pr(F|E = B) =
Pr(E = B|F)× Pr(F)

Pr(E = B)

We need Pr(E = B|F), the probability Monty would open door B if the
remaining door F = C actual held the car. By the rules of the game, this must
be 1: Monty never shows the car.

We have the marginal probability that F = C holds the car; it’s 1/3.

Finally, we have the probability that Monty would “choose” to open B rather
than C. This, of course, is 1/2.

Substituting into Bayes’ Rule, we find

Pr(F|E = B) =
1× 1

3
1
2

=
2
3
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Monty Hall: Intuitive solution

Can we explain the Monty Hall problem without explaining Bayes Rule?

Key is to notice that Monty is filtering out a goat from the two remaining doors:

Assume probability of a car behind each door is 1/3, ex ante

Collectively, probability of car behind door 2 or 3 is 2/3

Monty revealing a goat shows us where car must be if it was behind 2 or 3

In effect, Monty is giving us a choice to take any car behind door 1 or any
car behind doors 2 and 3
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Solving Monty Hall without math or intuition

What if we can’t wrap our brains around the intuition of a complex random
situation, or figure out how to apply probability theory to it?

We can still calculate any probability we want using simulation

We could do this with scraps of paper and a hat:
just act out the random experiment, and see what happens

Only problem is we’ll need to repeat the experiment 1000s of times to
estimate probabilities precisely

So let’s do it on the computer instead!
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Warning: programming content

The last part of this lecture is a bit advanced

Shows what you can do in R with a little programming knowledge

Not required that you learn how to do this for 321.
But it may be useful later in your academic or professional careers
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Pseudo-code: A sketch of the desired R program

1 Set up the doors, goats, and car
2 Contestant picks a door
3 Monty “picks” a remaining door
4 Record where the car and goats were
5 Do all of the above many many times
6 Print the fraction of times a car was found
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# Monty Hall Problem
# Chris Adolph
# 1/6/2005

sims <- 10000 # Simulations run
doors <- c(1,0,0) # The car (1) and the goats (0)
cars.chosen <- 0 # Save cars from first choice here
cars.rejected <- 0 # Save cars from switching here

for (i in 1:sims) { # Loop through simulations

# First, contestant picks a door
first.choice <- sample(doors,3,replace=F)

# Choosing a door means rejecting the other two
chosen <- first.choice[1]
rejected <- first.choice[2:3]
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# Monty Hall removes a goat from the rejected doors
rejected <- sort(rejected)
if (rejected[1]==0)

rejected <- rejected[2]

# Record keeping: where was the car?
cars.chosen <- cars.chosen + chosen
cars.rejected <- cars.rejected + rejected

}

# Print results
cat("Probability of a car from staying with 1st door",

cars.chosen/sims,"\n")

cat("Probability of a car from switching to 2nd door",
cars.rejected/sims,"\n")

Chris Adolph (UW) Probability 83 / 83


	Probability Basics
	Time for a Second Opinion?
	A statistician plays the lottery
	The prosecutor's fallacy
	Let's Make a Deal

