CSSS/SOC/STAT 321 Case-Based Statistics I

Relationships in Data: A first pass

Christopher Adolph

Department of Political Science and Center for Statistics and the Social Sciences University of Washington, Seattle Last week, we focused on variation within variables

But most of statistics is concerned with relationships between variables

Most important question: Does variation in *X* cause variation in *Y*?

Hard question we won't tackle today

Instead, when X varies, do we consistently see similar variation in Y?

That is, are X and Y correlated?

The right tool for the job

This week, we introduce basic tools for understanding correlation

The right tool for our data depends on the order of measurement of the "dependent variable" and the covariate

(Note: "dependent variable", "response variable", and "outcome variable" are synonyms)

If outcome is continuous and the covariate is discrete, consider box plots

If both are continuous, consider scatterplots

If both are discrete, consider a contingency table ("cross-tabulation")

Outline

Comparing two samples with box plots Example: GDP and partisan government

Exploring continuous relationships with scatterplots Examples: Height and Weight of 20-year old males; Challenger Launch Decision

> Best fit lines for scattlerplots Example: Cross-national fertility

Relationships between ordered variables in tables *Example: Voting and Education*

Naïve use of these methods may produce misleading results

Three most important reasons:

Confounders If we think *X* causes *Y*, but we have left out the *real* causal variable *Z*, we could be mislead by this confounding factor.

Naïve use of these methods may produce misleading results

Three most important reasons:

Confounders If we think *X* causes *Y*, but we have left out the *real* causal variable *Z*, we could be mislead by this confounding factor.

Sampling Error Small samples may create a misleading impression of the relation between *X* and *Y*

Naïve use of these methods may produce misleading results

Three most important reasons:

Confounders If we think *X* causes *Y*, but we have left out the *real* causal variable *Z*, we could be mislead by this confounding factor.

Sampling Error Small samples may create a misleading impression of the relation between *X* and *Y*

Correlation does not always imply causation If *X* and *Y* are correlated, either *X* may cause *Y*, or *Y* may cause *X*, or both, or *neither*

Example 1: US Economic growth

Let's investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-à-vis inflation than the Right

If there is partisan control of the economy, then Left should have higher growth all else equal)

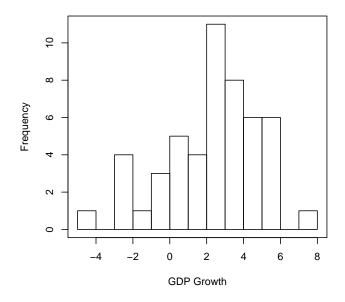
Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

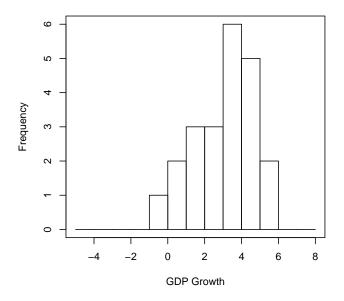
GDP Growth The per capita GDP growth rate

Party The party of the president (Democrat or Republican)

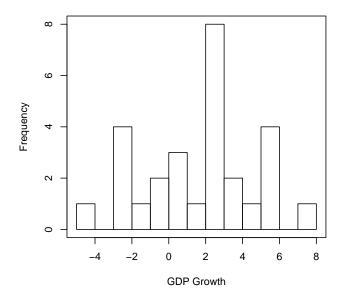
Histogram of US GDP Growth, 1951--2000

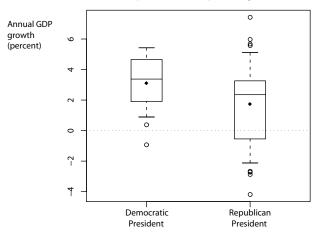


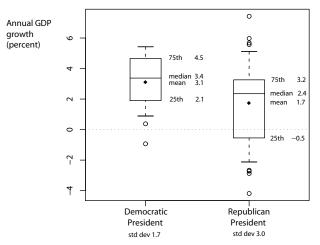
GDP Growth under Democratic Presidents

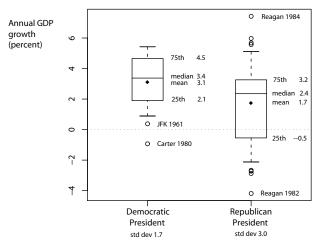


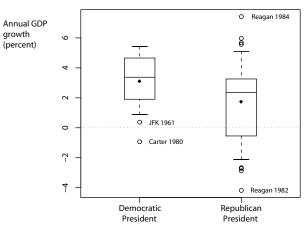
GDP Growth under Republican Presidents











GDP and Partisan Government

Are you persuaded by this analysis? How might it have gone wrong?

GDP and Partisan Government

Are you persuaded by this analysis? How might it have gone wrong?

Confounders What if other factors, omitted from the analysis, really drive growth? (Partisan control of Congress, or international economic conditions, or the past party in power)

Sample Error What if we just don't have enough data to determine the relationship?

Causation Could we have the direction of the causal arrow wrong? What if voters prefer Democrats when the economy is strong, and Republicans when it is weak?

We haven't introduced the tools to solve these problems yet – we need to learn some probability first

Stochastic and deterministic relationships

Some relationships are deterministic

They always work, without any error, noise, or surprises

 \bigcirc 2+2=4, always. Mathematical laws are deterministic

Interpretent of a peach tree is always a peach, not an orange.

Stochastic and deterministic relationships

Some relationships are deterministic

They always work, without any error, noise, or surprises

 \bigcirc 2+2=4, always. Mathematical laws are deterministic

- The fruit of a peach tree is always a peach, not an orange. (But maybe a mutant peach tree could make something new?)
- Opening the refrigerator turns on a light.

Stochastic and deterministic relationships

Some relationships are deterministic

They always work, without any error, noise, or surprises

 \bigcirc 2+2=4, always. Mathematical laws are deterministic

- The fruit of a peach tree is always a peach, not an orange. (But maybe a mutant peach tree could make something new?)
- Opening the refrigerator turns on a light. (But what if the light burns out?)

A **stochastic** process contains at least *some* natural random error, perhaps in addition to a pattern

Real world relationships are almost always stochastic

We often want to summarize the amount of signal vs. noise in a real world relationship.

One way to do that is with a correlation coefficient.

Correlation between two random variables

We often want to summarize the amount of signal vs. noise in a real world relationship.

One way to do that is with a correlation coefficient.

We will work up to correlation coefficients by first exploring:

- Scatterplots
- Standardization

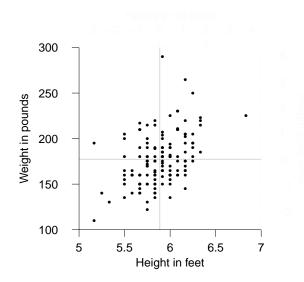
Summary Statistics			
Mean Standard deviation	Height in feet 5.89 0.25	Weight in pounds 177.3 28.5	

The CDC provides data from 2010 on the height (in feet) and weight (in pounds) for 21-year-old males

- We have 137 cases in our sample
- Question: to what extend do greater height & weight go together?

Best way to start exploring a relationship is graphically

Height and Weight: Scatterplot

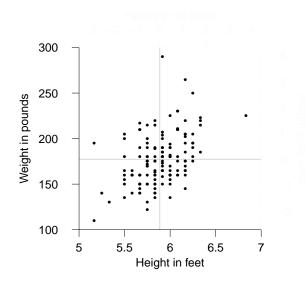


Gray lines mark the means of each variable

Mean height is $\bar{x} = 5.89$ feet

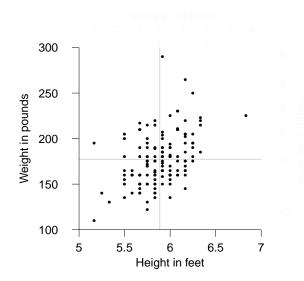
Mean weight is $\bar{y} = 177.3$ pounds

Height and Weight: Scatterplot



Is there a relationship between height and weight?

Height and Weight: Scatterplot



Is there a relationship between height and weight?

Height and weight appear moderately *positively* correlated

More of one usually means more of the other (but not always)

Scatterplots

Most powerful tool for bivariate data analysis

Need additive level variables though!

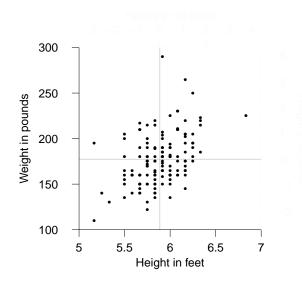
No matter what advanced methods we learn, scatterplots will *always* be useful

Standardization

The relation between height and weight would be easier to understand if height and weight were in the same units

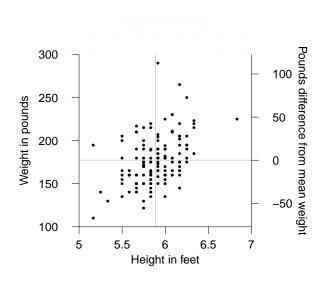
But that seems impossible! How do you convert "pounds" and "feet" to a common unit?

Not impossible. The first step is to mean-center the variables



Let's mean-center weight

This means we need to "remove" the average weight from each observation



The right axis shows the *deviation* of each individual from the mean weight

 $y_i - \bar{y}$

This doesn't change the data: we've just translated to a new unit

Standardization

It would be easier to understand the relationship between height and weight if height and weight were in the same units

How can this be done?

First step: Mean-centering

$$y_i - \bar{y}$$

Standardization

It would be easier to understand the relationship between height and weight if height and weight were in the same units

How can this be done?

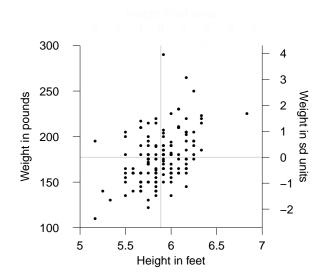
First step: Mean-centering

$$y_i - \overline{y}$$

Second step: Convert to standard deviation units

$$\frac{y_i - \bar{y}}{\sigma_y}$$

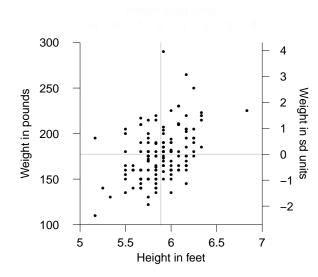
We can use this procedure to convert any continuous variable to a standardized unit



The right axis shows weight in standard deviation units

$$\frac{y_i - \bar{y}}{\sigma_y}$$

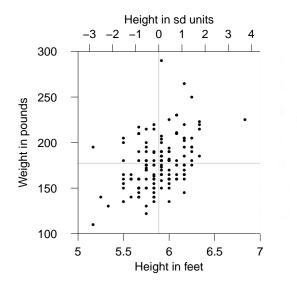
This still doesn't change the data: again, we've just translated to a new unit



The right axis shows weight in standard deviation units

What does that mean?

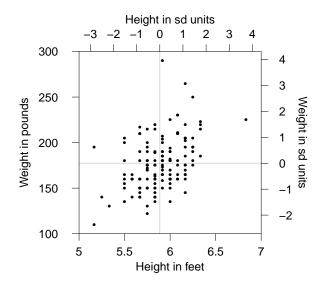
One unit is now the average gap between a randomly drawn individual and the mean



One unit is now the average gap between a randomly drawn individual and the mean

We could convert anything to standard deviation units

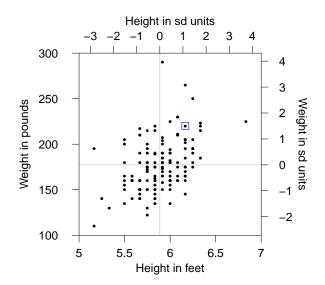
The top axis shows height in *standard deviation units*



Standardization hasn't changed the pattern in the data at all

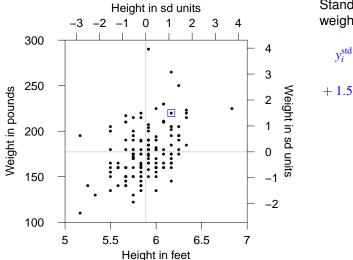
We've just relabeled units

Why did we do this? To help calculate the amount of correlation between height and weight

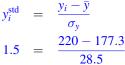


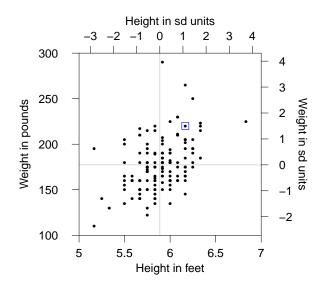
Standardized weight for blue obs:

$$y_i^{\text{std}} = \frac{y_i - \bar{y}}{\sigma_y}$$

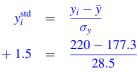


Standardized weight for blue obs:



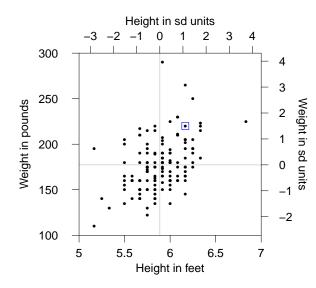


Standardized weight for blue obs:



Standardized height for the blue obs:

$$x_i^{\text{std}} = \frac{x_i - \bar{x}}{\sigma_x}$$



Standardized weight for blue obs:

$$y_i^{\text{std}} = \frac{y_i - \bar{y}}{\sigma_y}$$

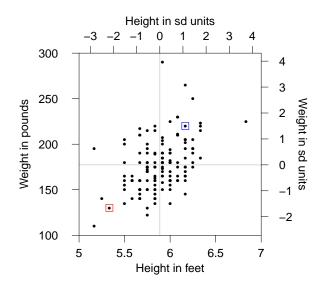
+ 1.5 = $\frac{220 - 177.3}{28.5}$

Standardized height for the blue obs:

+

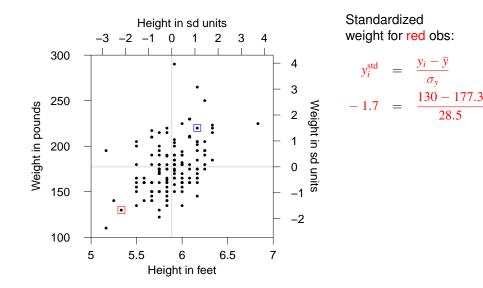
$$x_{i}^{\text{std}} = \frac{x_{i} - \bar{x}}{\sigma_{x}}$$

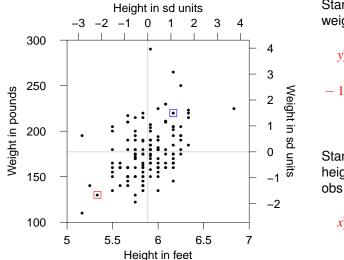
1.1 = $\frac{6.17 - 5.89}{0.25}$



Standardized weight for red obs:

$$y_i^{\text{std}} = \frac{y_i - \bar{y}}{\sigma_y}$$

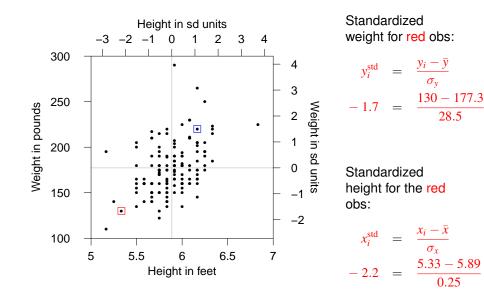




Standardized weight for red obs: $y_i^{\text{std}} = \frac{y_i - \bar{y}}{\sigma_y}$ $-1.7 = \frac{130 - 177.3}{28.5}$

Standardized height for the red obs:

$$\sigma_i^{\text{std}} = \frac{x_i - \bar{x}}{\sigma_x}$$



Correlation coefficient

The *correlation coefficient* between two variables measures the strength of association between them on a [-1, 1] scale

For a population, the correlation of *X* and *Y* is:

$$\operatorname{corr}(X,Y) = \rho_{X,Y} = \frac{\operatorname{E}\left((X - \operatorname{E}(X))\left(Y - \operatorname{E}(Y)\right)\right)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}}$$

Note: the numerator of the above is also known as the *covariance*, or $\sigma_{X,Y}$, so the population correlation $\rho_{X,Y}$ can also be stated as:

$$\rho_{X,Y} = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$$

Correlation coefficient

To estimate the correlation of two variables from a sample, we can average the products of their standardized values:

$$r_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} y_i^{\text{std}} x_i^{\text{std}}$$

Correlation coefficient

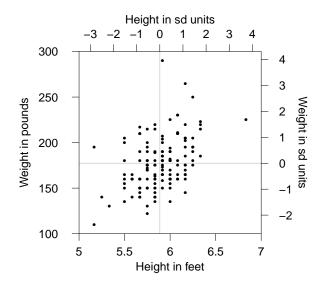
To estimate the correlation of two variables from a sample, we can average the products of their standardized values:

$$r_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} y_i^{\text{std}} x_i^{\text{std}}$$
$$r_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{y_i - \bar{y}}{\sigma_y} \right) \left(\frac{x_i - \bar{x}}{\sigma_x} \right)$$

When two variables are closely related,

their standardized values are similar, and their sample correlation is greater

Height and Weight: Correlation

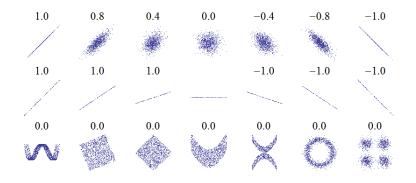


The correlation coefficient for height and weight is

$$r = 0.43$$

Is this "big"?

Correlation examples



Correlation coefficients measure strength of association

When two variables X and Y are highly correlated:

- They have $|r_{X,Y}| \approx 1$
- If we know X, we can narrow the expected range of Y down to a small interval
- If we know Y, we can narrow the expected range of X down to a small interval

In 1986, the Challenger space shuttle exploded moments after liftoff

Decision to launch one of the most scrutinized in history

Failure of O-rings in the solid-fuel rocket boosters blamed for explosion

Could this failure have been forseen? Using statistics?

Here is the data on O-ring failures at different launch temperatures

Flights with Flt Number	O-ring damage Temp (F)
2	70
41b	57
41c	63
41d	70
51c	53
61a	79
61c	58

Morton-Thiokol engineers made this table & worried about launching below 53 degrees (Why?)

O-ring would erode or have "blow-by" (2 ways to fail) in cold temp

Here is the data on O-ring failures at different launch temperatures

Flights with C Flt Number)-ring damage Temp (F)
2	70
41b	57
41c	63
41d	70
51c	53
61a	79
61c	58

Failed to convince administrators there was a danger

(Counter-argument: "damages at low and high temps")

Here is the data on O-ring failures at different launch temperatures

Flights with O Flt Number	-ring damage Temp (F)
2	70
41b	57
41c	63
41d	70
51c	53
61a	79
61c	58

Are there problems with this presentation? with the use of data?

Engineers did not consider successes, only failures; "selection on the dependent variable" (selection bias)

All flights, chronological order			
Damage?	Temp (F)	Damage?	Temp (F)
No	66	No	78
Yes	70	No	67
No	69	Yes	53
No	68	No	67
No	67	No	75
No	72	No	70
No	73	No	81
No	70	No	76
Yes	57	Yes	79
Yes	63	No	76
Yes	70	Yes	58

Other problems?

Engineers did not consider successes, only failures; "selection on the dependent variable" (selection bias)

All flights, chronological order			
Damage?	Temp (F)	Damage?	Temp (F)
No	66	No	78
Yes	70	No	67
No	69	Yes	53
No	68	No	67
No	67	No	75
No	72	No	70
No	73	No	81
No	70	No	76
Yes	57	Yes	79
Yes	63	No	76
Yes	70	Yes	58

Other problems? Why sort by launch number?

O-ring damage pre-Challenger, by temperature at launch			
Damage?	Temp (F)	Damage?	Temp (F)
Yes	53	Yes	70
Yes	57	0	70
Yes	58	0	70
Yes	63	0	72
No	66	No	73
No	67	No	75
No	67	No	76
No	67	No	76
No	68	No	78
No	69	Yes	79
Yes	70	0	81

The evidence begins to speak for itself.

What if Morton-Thiokol engineers had made this table before the launch?

Why didn't NASA make the right decision?

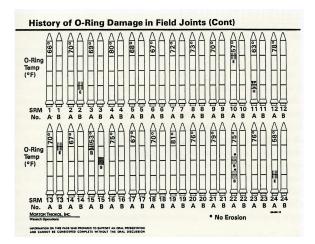
Many answers in the literature: bureaucratic politics; group think; bounded rationality, etc.

But Edward Tufte thinks it may have been a matter of presentation & modeling:

- Never made the right tables or graphics
- Selected only failure data
- Never considered a even simple statistical model

What do you think? How would you approach the data?

This is what Morton-Thiokol came up with to present after the disaster:



Scatterplots

Most powerful tool for bivariate data analysis

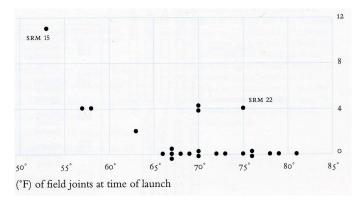
Will show full pattern of conditional expectation, including nonlinearity & outliers

Need additive level variables though!

No matter what advanced methods we learn, scatterplots will always be useful

How about a scatterplot for shuttle data? Need an additive measure of O-ring damage (Tufte's index)

Vertical axis is an O-ring damage index (due to Tufte, who made the plot)

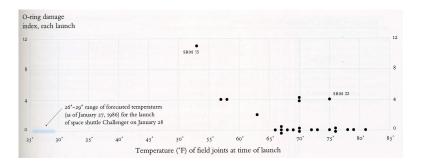


The correlation between the damage index and the temperature is -0.64 (What does this mean?)

Chris Adolph (UW)

What was the forecast temperature for launch?

What was the forecast temperature for launch? 26 to 29 degrees Fahrenheit!



The shuttle was launched in unprecendented cold

Imagine you are the analyst making the launch recommendation.

You've made the scatterplot above. What would you add to it?

Put another way, what do you is the first question you expect from your boss?

Imagine you are the analyst making the launch recommendation.

You've made the scatterplot above. What would you add to it?

Put another way, what do you is the first question you expect from your boss?

"What's the chance of failure at 26 degrees?"

The scatterplot suggests the answer is "high", but that's vague.

But what if the next launch is at 58 degrees? Or 67 degrees?

Clearly, we want a more precise way to state the probability of failure

Another reason we need to learn probability theory...

In the next example, we refine our scatterplots by adding a line of best fit

This line is produced by a technique called *linear regression*

Major focus of the last two+ weeks of 321

Key for today: understanding what a *regression coefficient* is, and how it differs from a correlation coefficient

Cross-national fertility Example

We have cross-national data from several sources:

Fertility The average number of children born per adult female, in 2000 (United Nations)

Education Ratio The ratio of girls to boys in primary and secondary education, in 2000 (Word Bank Development Indicators)

GDP per capita Economic activity in thousands of dollars, purchasing power parity in 2000 (Penn World Tables)

What are the levels of measurement of these variables?

Our question: how are these variables related to each other?

Example: Fertility, Female Education, and Development

Specifically, we ask:

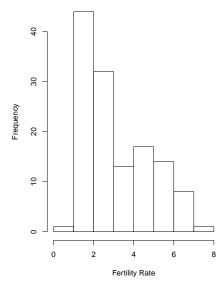
Example: Fertility, Female Education, and Development

Specifically, we ask:

 If the level of female education changed by a certain amount, how much would we expect Fertility to change? Specifically, we ask:

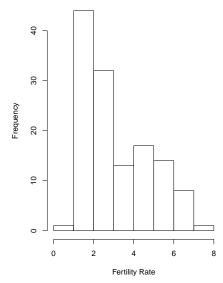
- If the level of female education changed by a certain amount, how much would we expect Fertility to change?
- If the level of GDP per capita changed by a certain amount, how much would we expect Fertility to change?

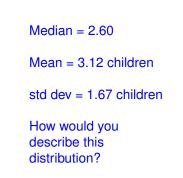
Summary of Univariate Distribution: Fertility



Median = 2.60 Mean = 3.12 children std dev = 1.67 children

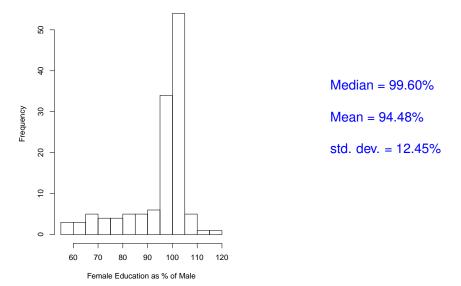
Summary of Univariate Distribution: Fertility



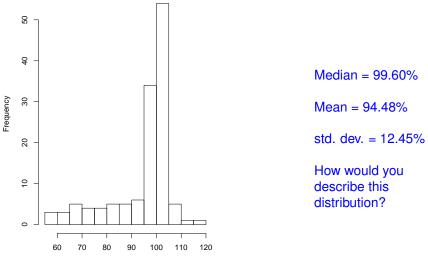


Chris Adolph (UW)

Summary of Univariate Distribution: Education Ratio

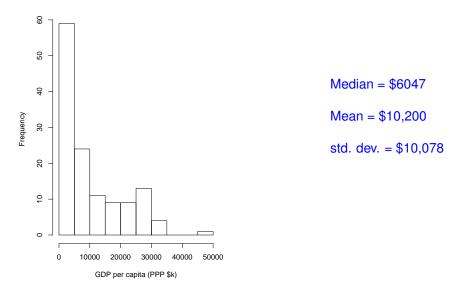


Summary of Univariate Distribution: Education Ratio

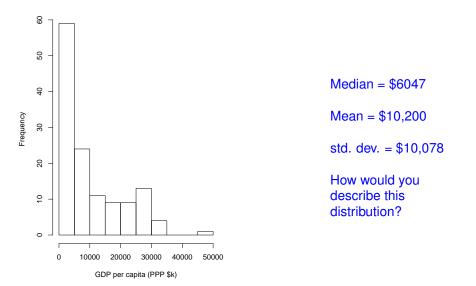


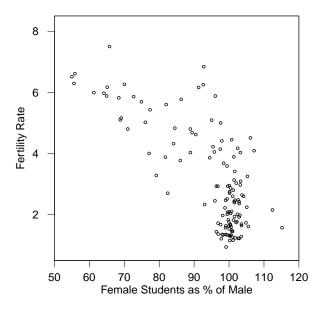
Female Education as % of Male

Summary of Univariate Distribution: GDP per capita

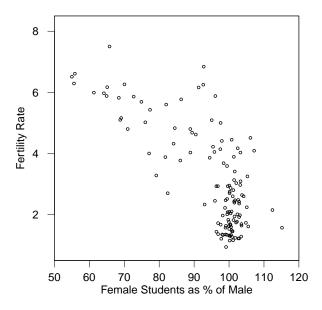


Summary of Univariate Distribution: GDP per capita



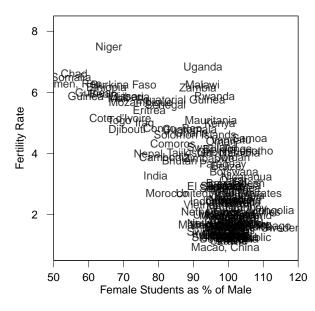


How would you describe the relationship between Fertility & Education Ratio?

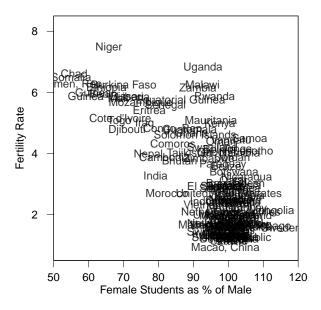


How would you describe the relationship between Fertility & Education Ratio?

If I asked you to predict Fertility for a country not sampled, how accurate do you expect your prediction to be?

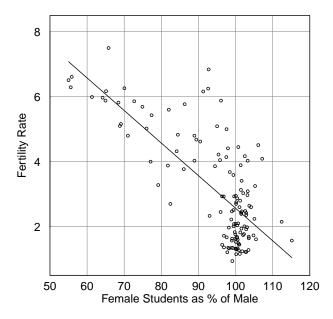


Labelling cases sometimes helps, especially for identifying outliers

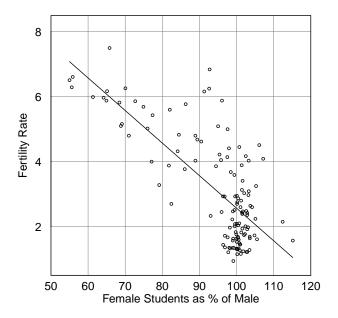


Labelling cases sometimes helps, especially for identifying *outliers*

What makes a point an outlier?



The best fit line is the line that passes closest to the majority of the points



The best fit line is the line that passes closest to the majority of the points

If we take this line to be our model of Fertility, how do we interpret it?

Best fit lines

From high school math, a line on a plane follows this equation:

y = b + mx

where:

- y is the dependent variable,
- x is the independent variable,
- *m* is the slope of the line, or the change in *y* for a 1 unit change in *x*,
- and b is the intercept, or value of y when x = 0

Best fit lines

Customarily, in statistics, we write the equation of a line as:

$$y = \beta_0 + \beta_1 x$$

where:

- y_i is the dependent variable
- x is the independent variable,
- β₁ is a regression coefficient. It conveys the slope of the line, or the change in *y* for a 1 unit change in *x*,
- and β₀ is the intercept, or value of y when x = 0

Best fit for fertility against education ratio

$$\widehat{\text{Fertility}} = \hat{\beta}_0 + \hat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

The above equation is the best fit line given by *linear regression*

The $\hat{\beta}$'s are the estimated linear regression *coefficients*

Fertility is the *fitted value*, or model prediction, of the level of Fertility given the EduRatio

Intrepreting regression coefficients

 $\widehat{\text{Fertility}} = \hat{\beta}_0 + \hat{\beta}_1 \text{EduRatio}$ $\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$

Interpreting $\hat{\beta}_1 = -0.10$:

Increasing EduRatio by 1 unit lowers Fertility by 0.10 units.

Because EduRatio is measured in percentage points, this means a 10% increase in female education (relative to males) will lower the number of children a woman has over her lifetime by 1 on average.

Intrepreting regression intercepts

$$\widehat{\text{Fertility}} = \widehat{\beta}_0 + \widehat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

Interpreting $\hat{\beta}_0 = 12.59$:

If EduRatio is 0, Fertility will be 12.59.

If there are no girls in primary or secondary education, then women are expected to have 12.59 children on average over their lifetimes.

Can we trust this prediction?

Intrepreting regression intercepts

$$\widehat{\text{Fertility}} = \widehat{\beta}_0 + \widehat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

Interpreting $\hat{\beta}_0 = 12.59$:

If EduRatio is 0, Fertility will be 12.59.

If there are no girls in primary or secondary education, then women are expected to have 12.59 children on average over their lifetimes.

Can we trust this prediction? No.

No country has 0 female education, so this is an *extrapolation* from the model.

Using regression coefficients to predict specific cases

$$\widehat{\text{Fertility}} = \hat{\beta}_0 + \hat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

How many children do we expect women to have if girls get half the education boys do?

If EduRatio is 50, Fertility will be $12.59 - 0.10 \times 50 = 7.59$.

How many children do we expect women to have if girls get the same education boys do?

If EduRatio is 100, Fertility will be $12.59 - 0.10 \times 100 = 2.59$.

Using regression coefficients to predict specific cases

$$\widehat{\text{Fertility}} = \hat{\beta}_0 + \hat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

If EduRatio is 100, Fertility will be $12.59 - 0.10 \times 100 = 2.59$.

Does this hold exactly for any country with education parity?

Using regression coefficients to predict specific cases

$$\widehat{\text{Fertility}} = \hat{\beta}_0 + \hat{\beta}_1 \text{EduRatio}$$

$$\widehat{\text{Fertility}} = 12.59 - 0.10 \times \text{EduRatio}$$

If EduRatio is 100, Fertility will be $12.59 - 0.10 \times 100 = 2.59$.

Does this hold exactly for any country with education parity?

No. It holds on average. In any specific case *i*, there is some error between the expected and actual levels of Fertility

What's the difference between correlation coefficients and regression coefficients

The correlation coefficient (r) measures the strength of relationship between X and Y

Works in both directions

[-1, 1] scale (standardized)

The regression coefficient (β) measures the substance of the relationship

Tells us how much *Y* increases for a one-unit increase in *X*

Intrepretable in one direction, and can take on any real value

Contrasting *r* **and** β

Low *r* between Fertility and Education Ratio, for example, would tell us that many other random factors besides female education intervene in causing Fertility in a particular case

High *r* would tell us that few stochastic factors intervene in any particular case. (In this case, r = -0.75, which is "high" in absolute value)

Low β would tell us that it takes a lot of female education to lower Fertility, on average

High β would tell us that a little bit of female education lowers Fertility a lot, on average

Tabular presentations of covariation

Scatterplots are great for showing the relationship between continuous variables

But potentially misleading if variables are discrete

What if we can only order the categories of variables, but lack additive scales?

What if we don't even know the order?

A table of one variable against another will help investigate even unordered variables

Example: Education & Partisan Identification

We have two variables from the General Social Survey:

Education Highest degree attained: No degree, High School diploma, Associates Degree, Bachelors Degree, Graduate Degree

Party Identification Strong Democrat, Democrat, Leans Democratic, Independent, Leans Republican, Republican, Strong Republican, Other

We take these data from the 1990 and 2006 samples of the GSS

What is the level of measurement of these variables?

How can we ascertain the relationship between them?

Monotonicity

Monotonic relationships are those which either consistently move in the same direction, or at least "stay still":

- If adding years of education always increases the *expected* probability one is Republican, or at least never lowers it, then Republican ID is *monotonically increasing* in Education
- If adding years of education always decreases the *expected* probability one is Republican, or at least never raises it, then Republican ID is *monotonically decreasing* in Education
- If adding years of education at first raises the expected probability of Republican ID, but then lowers it (or vice versa), the relationship is *non-monotonic*

Constructing a contingency table

The simplest way to explore the relationship between two discrete variables is a *contingency table*:

- We consider every possible combination of education and party ID
- Total up all subjects with that combination
- Enter the sum in a *cross-tabulation*, with one variable's categories as the columns, and the other variable's categories as the rows
- Customarily, the "dependent variable" (to the extent we believe one variable depends on the other) is the row variable

				Highest Deg	gree Attain	ed	
		None	HS	Assoc	College	Grad	Sum
	Str. Dem.	97	347	54	110	91	699
	Dem.	115	384	52	116	69	736
	Lean Dem.	67	265	50	87	58	527
Party ID	Indep.	263	503	86	92	53	997
Faity ID	Lean Rep.	39	168	28	60	32	327
	Rep.	56	307	64	158	52	637
	Str. Rep.	40	256	37	118	44	495
	Other	9	32	3	18	3	65
	Sum	686	2262	374	759	402	4483

2006 General Social Survey: Partisanship & Education

The above is a *contingency table* or *cross-tabulation*.

Powerful way to get the data. Can be tweaked to be more informative.

2006 GSS	2006 GSS: Collapse partisans, treat leaners as independent										
		None	HS	Highest Deg Assoc	gree Attaine College	ed Grad	Sum				
Party ID	Democrat Independent Republican Other	212 369 96 9	731 936 563 32	106 164 101 3	226 239 276 18	160 143 96 3	1435 1851 1132 65				
	Sum	686	2262	374	759	402	4483				

The first thing we will do is collapse some similar categories

Create Democrat out of the old "Strong Democrat" and "Democrat"

Create **Indepedent** out of the old "Leans Democratic", "Independent", and "Leans Republican"

Create Republican out of the old "Strong Republican" and "Republican"

2006 GSS: Collapse partisans, treat leaners as independent										
		None	HS	Highest Deg Assoc	gree Attaine College	ed Grad	Sum			
Party ID	Democrat Independent Republican Other	212 369 96 9	731 936 563 32	106 164 101 3	226 239 276 18	160 143 96 3	1435 1851 1132 65			
	Sum	686	2262	374	759	402	4483			

Consolidation of categories reduces noise in each cell, but at a price: we've lost some of the fine-grained nature of our data

Introduces a trade-off between borrowing strength by pooling cells and informative measuremnt

Tabular methods pose this dilemma when applied to detailed ordered variables

2006 GSS: Collapse partisans, treat leaners as independent										
		None	HS	Highest Deg Assoc	gree Attaine College	ed Grad	Sum			
Party ID	Democrat Independent Republican Other	212 369 96 9	731 936 563 32	106 164 101 3	226 239 276 18	160 143 96 3	1435 1851 1132 65			
	Sum	686	2262	374	759	402	4483			

Collapsing Party ID has simplified our table, but it's still hard to see the relationship between the variables

What could we do?

2006 GSS: Collapse partisans, treat leaners as independent										
		None	HS	Highest Deg Assoc	gree Attain College	ed Grad	Sum			
Party ID	Democrat Independent Republican Other	212 369 96 9	731 936 563 32	106 164 101 3	226 239 276 18	160 143 96 3	1435 1851 1132 65			
	Sum	686	2262	374	759	402	4483			

Collapsing Party ID has simplified our table, but it's still hard to see the relationship between the variables

What could we do? Perhaps percentages would be easier?

Let's divide by N = 4483, the total number of observations

		None	HS	Assoc	College	Grad	Sum
	Democrat	4.7%	16.3%	2.4%	5.0%	3.6%	32.0%
Porty ID	Independent	8.2	20.9	3.7	5.3	3.2	41.3
Party ID	Republican	2.1	12.6	2.3	6.2	2.1	25.3
	Other	0.2	0.7	0.1	0.4	0.1	1.4
	Sum	15.3	50.5	8.3	16.9	9.0	100.0
	/						

Does this help?

		Highest Degree Attained					
		None	HS	Assoc	College	Grad	Sum
	Democrat	4.7%	16.3%	2.4%	5.0%	3.6%	32.0%
Porty ID	Independent	8.2	20.9	3.7	5.3	3.2	41.3
Party ID	Republican	2.1	12.6	2.3	6.2	2.1	25.3
	Other	0.2	0.7	0.1	0.4	0.1	1.4
	Sum	15.3	50.5	8.3	16.9	9.0	100.0

Does this help?

Not really. It's still hard to see the effects of each variable *separately*

We see that the combination of Democrat and High School is common, and Republican and College is rare, but does that mean there is an association?

That is, does being College educated make one less likely to be Republican? Or is it just that there are more High School grads than College grads?

		None	HS	Assoc	College	Grad	Sum
	Democrat	4.7%	16.3%	2.4%	5.0%	3.6%	32.0%
Dorty ID	Independent	8.2	20.9	3.7	5.3	3.2	41.3
Party ID	Republican	2.1	12.6	2.3	6.2	2.1	25.3
	Other	0.2	0.7	0.1	0.4	0.1	1.4
	Sum	15.3	50.5	8.3	16.9	9.0	100.0

What can we do to zero in on the likelihood that one is Republican given that one has a College Degree?

That is, how do we estimate the conditional probability Pr(Republican|College)?

		Highest Degree Attained					
		None	HS	Assoc	College	Grad	Sum
	Democrat	4.7%	16.3%	2.4%	5.0%	3.6%	32.0%
Dorth ID	Independent	8.2	20.9	3.7	5.3	3.2	41.3
Party ID	Republican	2.1	12.6	2.3	6.2	2.1	25.3
	Other	0.2	0.7	0.1	0.4	0.1	1.4
	Sum	15.3	50.5	8.3	16.9	9.0	100.0

What can we do to zero in on the likelihood that one is Republican given that one has a College Degree?

That is, how do we estimate the conditional probability Pr(Republican|College)?

How about the percentage of College grads that vote Republican in the sample?

2006 GSS: Column percentages

		Highest Degree Attained						
		None	HS	Assoc	College	Grad	Sum	
	Democrat	30.9%	32.3%	28.3%	29.8%	39.8%	32.0%	
Dorth ID	Independent	53.8	41.4	43.9	31.5	35.6	41.3	
Party ID	Republican	14.0	24.9	27.0	36.4	23.9	25.3	
	Other	1.3	1.4	0.8	2.4	0.7	1.4	
	Sum	100.0	100.0	100.0	100.0	100.0	100.0	

How about the percentage of College grads that vote Republican in the sample?

That is, what if we divide each *column* by its sum, to see how people with a given level of the column variable Education get distributed on the row variable, Partisan ID?

This is called showing "column percentages." Most useful presentation of a cross-tab

2006 GSS: Column percentages

		Highest Degree Attained					
		None	HS	Assoc	College	Grad	Sum
	Democrat	30.9%	32.3%	28.3%	29.8%	39.8%	32.0%
Dorth ID	Independent	53.8	41.4	43.9	31.5	35.6	41.3
Party ID	Republican	14.0	24.9	27.0	36.4	23.9	25.3
	Other	1.3	1.4	0.8	2.4	0.7	1.4
	Sum	100.0	100.0	100.0	100.0	100.0	100.0

Notice that with column percentages, each column sums to 100%

The interesting comparisons appear when we look across each row

For each row, higher values show positive relationships between that column category and the current row.

Low values within the row show negative relationships between the column category and the current row.

2006 GSS: Column percentages

		Highest Degree Attained							
		None HS Assoc College Grad S							
	Democrat	30.9%	32.3%	28.3%	29.8%	39.8%	32.0%		
Devety JD	Independent	53.8	41.4	43.9	31.5	35.6	41.3		
Party ID	Republican	14.0	24.9	27.0	36.4	23.9	25.3		
	Other	1.3	1.4	0.8	2.4	0.7	1.4		
	Sum	100.0	100.0	100.0	100.0	100.0	100.0		

In this example, Pr(Democrat) is higher for those without high school diplomas or with graduate degrees, but lower for those with college degrees

Republicans do best among College degree holders, and worse at the ends of the Education spectrum

That is, support for either party seems to be a *non-monotonic* function of Education

2006 GSS: Column percentages

		Highest Degree Attained							
		None HS Assoc College Grad Su							
	Democrat	30.9%	32.3%	28.3%	29.8%	39.8%	32.0%		
DeuterID	Independent	53.8	41.4	43.9	31.5	35.6	41.3		
Party ID	Republican	14.0	24.9	27.0	36.4	23.9	25.3		
	Other	1.3	1.4	0.8	2.4	0.7	1.4		
	Sum	100.0	100.0	100.0	100.0	100.0	100.0		

Notice that comparisons *across* rows in the column percentage cross-tab mean something different from comparisons across rows

For instance, Democrats do almost as well as Republicans in the strongest Republican category, College.

Why? College grads are more likely to be Republicans than any other education group. *But* more people on average are Dems, so even in this relatively weak category, Dems are fairly strong

2006 GSS: Column percentages

		Highest Degree Attained								
		None	None HS Assoc College Grad Su							
	Democrat	30.9%	32.3%	28.3%	29.8%	39.8%	32.0%			
Porty ID	Independent	53.8	41.4	43.9	31.5	35.6	41.3			
Party ID	Republican	14.0	24.9	27.0	36.4	23.9	25.3			
	Other	1.3	1.4	0.8	2.4	0.7	1.4			
	Sum	100.0	100.0	100.0	100.0	100.0	100.0			

What if you encounter a cross-tab "in the field"?

Check if it's in column percentages, then start looking for patterns in each row

Remember this mantra: Sum Down, Compare Across

2006 GSS: Row percentages

		Highest Degree Attained					
		None	HS	Assoc	College	Grad	Sum
	Democrat	14.8%	50.9%	7.4%	15.7%	11.1%	100.0%
Dorth (ID	Independent	19.9	50.6	8.9	12.9	7.7	100.0
Party ID	Republican	8.5	49.7	8.9	24.4	8.5	100.0
	Other	13.8	49.2	4.6	27.7	4.6	100.0
	Sum	15.3	50.5	8.3	16.9	9.0	100.0

Why don't we use row percentages?

Because they show the conditioning of the columns on the rows, and we normally put the "dependent variable" in the rows

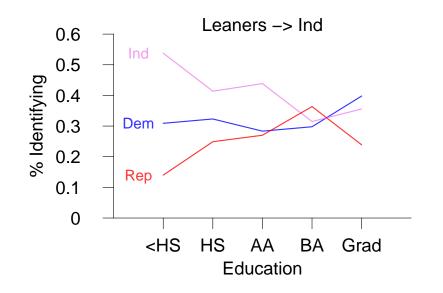
Just because our data come in a table doesn't mean we have to leave them there

A picture is often easier to sort out

But we need to plot the *right* numbers

What happens if we plot the *column percentages* from our tables?

The table as a graph



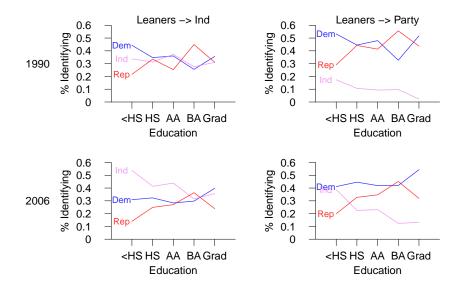
Exploring model sensitivity

We made several assumptions in tabulating and analyzing our data

Categorizing Leaners We grouped leaners with other Independents. But many political scientists think they are actually intense partisans Is 2006 special? We looked at just one year in American politics. Do our findings hold in other years? Is there interesting variation over time?

We could make more tables categorizing the leaners as partisans, or using data from, say 1990.

But who wants to pore over 4 cross-tabs?



If we want to consider possible confounders, we need more than two dimensions to our table

That is, we need one dimension for every independent variable, plus one for our dependent variable

This gets tricky fast: hard to visualize, or do our column percents trick

But important to consider: if we don't include confounders, we can make very incorrect inferences about relationships

Suppose the (fictional) University of Tlon is sued for discriminatory hiring

Both sides stipulate that

- the best candidate can be determined uniquely
- should always be hired
- is equally likely to be male or female

The case turns on whether the University hired male and female candidates at the same rate

Here is the data for the university's "eclectic" departments

Hiring data for TIon University's "eclectic" departments							
Departments	Men Wo Hired Applied Hired	omen Applied					

Here is the data for the university's "eclectic" departments

Hiring data for Tlon University's "eclectic" departments							
	Ν	/len	Wo	omen			
Departments	Hired	Applied	Hired	Applied			
Ancient Egyptian Algebra	2	8	1	5			

Here is the data for the university's "eclectic" departments

Hiring data for TIon University's "eclectic" departments								
Men Women								
Departments	Hired	Applied	Hired	Applied				
Ancient Egyptian Algebra	Ancient Egyptian Algebra 2 8 1 5							
Navajo Cryptography	4	5	6	8				

Here is the data for the university's "eclectic" departments

Hiring data for TIon University's "eclectic" departments Men Women Departments Hired Applied Hired Applied Ancient Egyptian Algebra 2 5 8 1 Navajo Cryptography 4 5 6 8

The plaintiffs point out that in each dept, a greater % of men were hired:

Departments Ancient Egyptian Algebra	Men 25%	>	Women 20%		
---	------------	---	--------------	--	--

Here is the data for the university's "eclectic" departments

Hiring data for TIon University's "eclectic" departments

	N	/len	Wo	omen	
Departments	Hired	Applied	Hired	Applied	
Ancient Egyptian Algebra	2	8	1	5	
Navajo Cryptography	4	5	6	8	

The plaintiffs point out that in each dept, a greater % of men were hired:

Departments	Men		Women	1
Ancient Egyptian Algebra	25%	>	20%	
Navajo Cryptography	80%	>	75%	

"But wait!" says the defense. "Look at the totals"

	/len	vvC	omen	
Hired	Applied	Hired	Applied	
2 8		1	5	
4 5		6	8	
	Hired 2 4	2 8	2 8 1	2 8 1 5

"But wait!" says the defense. "Look at the totals"

	Ν	/len	Wo	omen	
Departments	Hired	Applied	Hired	Applied	
Ancient Egyptian Algebra	2	8	1	5	
Navajo Cryptography	4	5	6	8	
Total	6	13	7	13	

"We actually hired more women at a higher rate than men!"

"But wait!" says the defense. "Look at the totals"

	Men		Women		
Departments	Hired	Applied	Hired	Applied	
Ancient Egyptian Algebra	2	8	1	5	
Navajo Cryptography	4	5	6	8	
Total	6	13	7	13	

"We actually hired more women at a higher rate than men!"

The plaintiffs in a lawsuit point out that in each dept, a greater % of men were hired:

Departments	Men		Women
Ancient Egyptian Algebra	25%	>	20%
Navajo Cryptography	80%	>	75%

"But wait!" says the defense. "Look at the totals"

	Men		Women		
Departments	Hired	Applied	Hired	Applied	
Ancient Egyptian Algebra	2	8	1	5	
Navajo Cryptography	4	5	6	8	
Total	6	13	7	13	

"We actually hired more women at a higher rate than men!"

The plaintiffs in a lawsuit point out that in each dept, a greater % of men were hired:

Departments	Men		Women	
Ancient Egyptian Algebra	25%	>	20%	
Navajo Cryptography	80%	>	75%	
Both departments	46%	<	54%	

What's going on here?

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

When we look at the dept totals, we "control" for this difference in hiring difficulty

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

When we look at the dept totals, we "control" for this difference in hiring difficulty

When we look at the grand total, we are omitting department-level variables

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

When we look at the dept totals, we "control" for this difference in hiring difficulty

When we look at the grand total, we are omitting department-level variables

But these department level variables are confounders: correlated with the outcome *and* with our explanatory variable

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

When we look at the dept totals, we "control" for this difference in hiring difficulty

When we look at the grand total, we are omitting department-level variables

But these department level variables are confounders: correlated with the outcome *and* with our explanatory variable

Omitting them leads to this confusion, known as Simpson's Paradox

The Departments are different. Perhaps AEA has much less funding that NC, and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo Cryptography

When we look at the dept totals, we "control" for this difference in hiring difficulty

When we look at the grand total, we are omitting department-level variables

But these department level variables are confounders: correlated with the outcome *and* with our explanatory variable

Omitting them leads to this confusion, known as Simpson's Paradox