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Assessing relationships between variables

Last week, we focused on variation within variables

But most of statistics is concerned with relationships between variables

Most important question: Does variation in X cause variation in Y?

Hard question we won’t tackle today

Instead, when X varies, do we consistently see similar variation in Y?

That is, are X and Y correlated?
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The right tool for the job

This week, we introduce basic tools for understanding correlation

The right tool for our data depends on the order of measurement of the
“dependent variable” and the covariate

(Note: “dependent variable”, “response variable”, and “outcome variable” are
synonyms)

If outcome is continuous and the covariate is discrete, consider box plots

If both are continuous, consider scatterplots

If both are discrete, consider a contingency table (“cross-tabulation”)
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Outline

Comparing two samples with box plots
Example: GDP and partisan government

Exploring continuous relationships with scatterplots
Examples: Height and Weight of 20-year old males;

Challenger Launch Decision

Best fit lines for scattterplots
Example: Cross-national fertility

Relationships between ordered variables in tables
Example: Voting and Education
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Naïve use of these methods may produce misleading results

Three most important reasons:

Confounders If we think X causes Y, but we have left out the real causal
variable Z, we could be mislead by this confounding factor.

Sampling Error Small samples may create a misleading impression of the
relation between X and Y

Correlation does not always imply causation If X and Y are correlated,
either X may cause Y, or Y may cause X, or both, or neither
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Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-à-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth all else equal)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

GDP Growth The per capita GDP growth rate

Party The party of the president (Democrat or Republican)
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Histogram of US GDP Growth, 1951−−2000
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GDP Growth under Democratic Presidents
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GDP Growth under Republican Presidents
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Box plots: Annual US GDP growth, 1951–2000
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GDP and Partisan Government

Are you persuaded by this analysis? How might it have gone wrong?

Confounders What if other factors, omitted from the analysis, really drive
growth? (Partisan control of Congress, or international
economic conditions, or the past party in power)

Sample Error What if we just don’t have enough data to determine the
relationship?

Causation Could we have the direction of the causal arrow wrong? What if
voters prefer Democrats when the economy is strong, and
Republicans when it is weak?

We haven’t introduced the tools to solve these problems yet –
we need to learn some probability first
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Stochastic and deterministic relationships

Some relationships are deterministic

They always work, without any error, noise, or surprises

1 2 + 2 = 4, always. Mathematical laws are deterministic

2 The fruit of a peach tree is always a peach, not an orange.

(But maybe a mutant peach tree could make something new?)

3 Opening the refrigerator turns on a light.
(But what if the light burns out?)

A stochastic process contains at least some natural random error,
perhaps in addition to a pattern

Real world relationships are almost always stochastic
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Correlation and covariance

We often want to summarize the amount of signal vs. noise in a real world
relationship.

One way to do that is with a correlation coefficient.
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Correlation between two random variables

We often want to summarize the amount of signal vs. noise in a real world
relationship.

One way to do that is with a correlation coefficient.

We will work up to correlation coefficients by first exploring:

Scatterplots
Standardization
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Height and weight example

Summary Statistics

Height in feet Weight in pounds
Mean 5.89 177.3
Standard deviation 0.25 28.5

The CDC provides data from 2010 on the height (in feet) and weight (in
pounds) for 21-year-old males

We have 137 cases in our sample

Question: to what extend do greater height & weight go together?

Best way to start exploring a relationship is graphically
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Height and Weight: Scatterplot
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the means of
each variable

Mean height is
x̄ = 5.89 feet

Mean weight is
ȳ = 177.3 pounds
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Height and Weight: Scatterplot
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Scatterplots

Most powerful tool for bivariate data analysis

Need additive level variables though!

No matter what advanced methods we learn,
scatterplots will always be useful
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Standardization

The relation between height and weight would be easier to understand
if height and weight were in the same units

But that seems impossible! How do you convert “pounds” and “feet” to a
common unit?

Not impossible. The first step is to mean-center the variables
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Height and Weight: Standardization
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Height and Weight: Standardization

5 5.5 6 6.5 7

100

150

200

250

300

−3 −2 −1 0 1 2 3 4

−50

0

50

100

Height in feet

Height in sd units

W
ei

gh
t i

n 
po

un
ds

P
ounds difference from

 m
ean w

eight

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

The right axis
shows the
deviation of each
individual from the
mean weight

yi − ȳ
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change the data:
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Standardization

It would be easier to understand the relationship between height and weight if
height and weight were in the same units

How can this be done?

First step: Mean-centering

yi − ȳ

Second step: Convert to standard deviation units

yi − ȳ
σy

We can use this procedure to convert any continuous variable to a
standardized unit
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Height and Weight: Standardization
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This still doesn’t
change the data:
again, we’ve just
translated to a new
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Height and Weight: Standardization
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What does that
mean?

One unit is now the
average gap
between a
randomly drawn
individual and the
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Height and Weight: Standardization
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Height and Weight: Standardization
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hasn’t changed the
pattern in the data
at all

We’ve just
relabeled units

Why did we do
this? To help
calculate the
amount of
correlation
between height
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Height and Weight: Standardization
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Correlation coefficient

The correlation coefficient between two variables measures the strength of
association between them on a [−1, 1] scale

For a population, the correlation of X and Y is:

corr(X,Y) = ρX,Y =
E ((X − E(X)) (Y − E(Y)))√

var(X)
√

var(Y)

Note: the numerator of the above is also known as the covariance, or σX,Y ,
so the population correlation ρX,Y can also be stated as:

ρX,Y =
σX,Y

σXσY
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Correlation coefficient

To estimate the correlation of two variables from a sample, we can average
the products of their standardized values:

rX,Y =
1

n− 1

n∑
i=1

ystd
i xstd

i

rX,Y =
1

n− 1

n∑
i=1

(
yi − ȳ
σy

)(
xi − x̄
σx

)

When two variables are closely related,
their standardized values are similar, and their sample correlation is greater
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Height and Weight: Correlation
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The correlation
coefficient for
height and weight
is

r = 0.43

Is this “big”?
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Correlation examples
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Correlation coefficients measure strength of association

When two variables X and Y are highly correlated:

They have |rX,Y | ≈ 1

If we know X,
we can narrow the expected range of Y down to a small interval

If we know Y,
we can narrow the expected range of X down to a small interval
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The Challenger launch decision

In 1986, the Challenger space shuttle exploded moments after liftoff

Decision to launch one of the most scrutinized in history

Failure of O-rings in the solid-fuel rocket boosters blamed for explosion

Could this failure have been forseen? Using statistics?
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The Challenger launch decision

Here is the data on O-ring failures at different launch temperatures

Flights with O-ring damage
Flt Number Temp (F)

2 70
41b 57
41c 63
41d 70
51c 53
61a 79
61c 58

Morton-Thiokol engineers made this table & worried about launching below 53
degrees (Why?)

O-ring would erode or have “blow-by” (2 ways to fail) in cold temp
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The Challenger launch decision

Here is the data on O-ring failures at different launch temperatures

Flights with O-ring damage
Flt Number Temp (F)

2 70
41b 57
41c 63
41d 70
51c 53
61a 79
61c 58

Failed to convince administrators there was a danger

(Counter-argument: “damages at low and high temps”)
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The Challenger launch decision

Here is the data on O-ring failures at different launch temperatures

Flights with O-ring damage
Flt Number Temp (F)

2 70
41b 57
41c 63
41d 70
51c 53
61a 79
61c 58

Are there problems with this presentation? with the use of data?
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The Challenger launch decision

Engineers did not consider successes, only failures;
“selection on the dependent variable” (selection bias)

All flights, chronological order
Damage? Temp (F) Damage? Temp (F)

No 66 No 78
Yes 70 No 67
No 69 Yes 53
No 68 No 67
No 67 No 75
No 72 No 70
No 73 No 81
No 70 No 76
Yes 57 Yes 79
Yes 63 No 76
Yes 70 Yes 58

Other problems?

Why sort by launch number?
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The Challenger launch decision

O-ring damage pre-Challenger, by temperature at launch
Damage? Temp (F) Damage? Temp (F)

Yes 53 Yes 70
Yes 57 0 70
Yes 58 0 70
Yes 63 0 72
No 66 No 73
No 67 No 75
No 67 No 76
No 67 No 76
No 68 No 78
No 69 Yes 79
Yes 70 0 81

The evidence begins to speak for itself.
What if Morton-Thiokol engineers had made this table before the launch?
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The Challenger launch decision

Why didn’t NASA make the right decision?

Many answers in the literature:
bureaucratic politics; group think; bounded rationality, etc.

But Edward Tufte thinks it may have been a matter of presentation & modeling:

Never made the right tables or graphics

Selected only failure data

Never considered a even simple statistical model

What do you think? How would you approach the data?
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The Challenger launch decision

This is what Morton-Thiokol came up with to present after the disaster:

A marvel of poor design that obscures the data and makes analysis harder.
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Scatterplots

Most powerful tool for bivariate data analysis

Will show full pattern of conditional expectation, including nonlinearity &
outliers

Need additive level variables though!

No matter what advanced methods we learn, scatterplots will always be useful
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The Challenger launch decision
How about a scatterplot for shuttle data? Need an additive measure of O-ring
damage (Tufte’s index)

Vertical axis is an O-ring damage index (due to Tufte, who made the plot)

The correlation between the damage index and the temperature is −0.64
(What does this mean?)
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The Challenger launch decision

What was the forecast temperature for launch?

26 to 29 degrees Fahrenheit!

The shuttle was launched in unprecendented cold
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The Challenger launch decision

What was the forecast temperature for launch? 26 to 29 degrees Fahrenheit!

The shuttle was launched in unprecendented cold
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The Challenger launch decision

Imagine you are the analyst making the launch recommendation.

You’ve made the scatterplot above. What would you add to it?

Put another way, what do you is the first question you expect from your boss?

“What’s the chance of failure at 26 degrees?”

The scatterplot suggests the answer is “high”, but that’s vague.

But what if the next launch is at 58 degrees? Or 67 degrees?

Clearly, we want a more precise way to state the probability of failure

Another reason we need to learn probability theory. . .
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The Line of Best Fit

In the next example, we refine our scatterplots by adding a line of best fit

This line is produced by a technique called linear regression

Major focus of the last two+ weeks of 321

Key for today: understanding what a regression coefficient is, and how it
differs from a correlation coefficient
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Cross-national fertility Example

We have cross-national data from several sources:

Fertility The average number of children born per adult female, in 2000
(United Nations)

Education Ratio The ratio of girls to boys in primary and secondary
education, in 2000 (Word Bank Development Indicators)

GDP per capita Economic activity in thousands of dollars, purchasing power
parity in 2000 (Penn World Tables)

What are the levels of measurement of these variables?

Our question: how are these variables related to each other?
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Example: Fertility, Female Education, and Development

Specifically, we ask:

If the level of female education changed by a certain amount, how much
would we expect Fertility to change?

If the level of GDP per capita changed by a certain amount, how much
would we expect Fertility to change?
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Summary of Univariate Distribution: Fertility

Fertility Rate
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Summary of Univariate Distribution: Education Ratio

Female Education as % of Male
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Summary of Univariate Distribution: GDP per capita

GDP per capita (PPP $k)
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Summary of Univariate Distribution: GDP per capita
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describe the
relationship
between Fertility &
Education Ratio?

If I asked you to
predict Fertility for
a country not
sampled, how
accurate do you
expect your
prediction to be?
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Best fit lines

From high school math, a line on a plane follows this equation:

y = b + mx

where:

y is the dependent variable,

x is the independent variable,

m is the slope of the line,
or the change in y for a 1 unit change in x,

and b is the intercept,
or value of y when x = 0
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Best fit lines

Customarily, in statistics, we write the equation of a line as:

y = β0 + β1x

where:

yi is the dependent variable

x is the independent variable,

β1 is a regression coefficient. It conveys the slope of the line,
or the change in y for a 1 unit change in x,

and β0 is the intercept,
or value of y when x = 0
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Best fit for fertility against education ratio

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

The above equation is the best fit line given by linear regression

The β̂’s are the estimated linear regression coefficients

F̂ertility is the fitted value, or model prediction,
of the level of Fertility given the EduRatio

Chris Adolph (UW) Relationships in Data 60 / 92



Intrepreting regression coefficients

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

Interpreting β̂1 = −0.10:

Increasing EduRatio by 1 unit lowers Fertility by 0.10 units.

Because EduRatio is measured in percentage points, this means a 10%
increase in female education (relative to males) will lower the number of
children a woman has over her lifetime by 1 on average.
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Intrepreting regression intercepts

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

Interpreting β̂0 = 12.59:

If EduRatio is 0, Fertility will be 12.59.

If there are no girls in primary or secondary education, then women are
expected to have 12.59 children on average over their lifetimes.

Can we trust this prediction?

No.
No country has 0 female education, so this is an extrapolation from the model.
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Using regression coefficients to predict specific cases

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

How many children do we expect women to have if girls get half the education
boys do?

If EduRatio is 50, Fertility will be 12.59− 0.10× 50 = 7.59.

How many children do we expect women to have if girls get the same
education boys do?

If EduRatio is 100, Fertility will be 12.59− 0.10× 100 = 2.59.
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Using regression coefficients to predict specific cases

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

If EduRatio is 100, Fertility will be 12.59− 0.10× 100 = 2.59.

Does this hold exactly for any country with education parity?

No. It holds on average. In any specific case i, there is some error between
the expected and actual levels of Fertility

Chris Adolph (UW) Relationships in Data 64 / 92



Using regression coefficients to predict specific cases

F̂ertility = β̂0 + β̂1EduRatio

F̂ertility = 12.59− 0.10× EduRatio

If EduRatio is 100, Fertility will be 12.59− 0.10× 100 = 2.59.

Does this hold exactly for any country with education parity?

No. It holds on average. In any specific case i, there is some error between
the expected and actual levels of Fertility

Chris Adolph (UW) Relationships in Data 64 / 92



What’s the difference between correlation coefficients and regression
coefficients

The correlation coefficient (r) measures the strength of relationship between X
and Y

Works in both directions

[−1, 1] scale (standardized)

The regression coefficient (β) measures the substance of the relationship

Tells us how much Y increases for a one-unit increase in X

Intrepretable in one direction, and can take on any real value
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Contrasting r and β

Low r between Fertility and Education Ratio, for example, would tell us that
many other random factors besides female education intervene in causing
Fertility in a particular case

High r would tell us that few stochastic factors intervene in any particular
case. (In this case, r = −0.75, which is “high” in absolute value)

Low β would tell us that it takes a lot of female education to lower Fertility, on
average

High β would tell us that a little bit of female education lowers Fertility a lot, on
average
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Tabular presentations of covariation

Scatterplots are great for showing the relationship between continuous
variables

But potentially misleading if variables are discrete

What if we can only order the categories of variables, but lack additive scales?

What if we don’t even know the order?

A table of one variable against another will help investigate even unordered
variables
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Example: Education & Partisan Identification

We have two variables from the General Social Survey:

Education Highest degree attained: No degree, High School diploma,
Associates Degree, Bachelors Degree, Graduate Degree

Party Identification Strong Democrat, Democrat, Leans Democratic,
Independent, Leans Republican, Republican, Strong
Republican, Other

We take these data from the 1990 and 2006 samples of the GSS

What is the level of measurement of these variables?

How can we ascertain the relationship between them?
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Monotonicity

Monotonic relationships are those which either consistently move in the same
direction, or at least “stay still”:

If adding years of education always increases the expected probability
one is Republican, or at least never lowers it, then Republican ID is
monotonically increasing in Education

If adding years of education always decreases the expected probability
one is Republican, or at least never raises it, then Republican ID is
monotonically decreasing in Education

If adding years of education at first raises the expected probability of
Republican ID, but then lowers it (or vice versa), the relationship is
non-monotonic
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Constructing a contingency table

The simplest way to explore the relationship between two discrete variables is
a contingency table:

1 We consider every possible combination of education and party ID

2 Total up all subjects with that combination

3 Enter the sum in a cross-tabulation, with one variable’s categories as the
columns, and the other variable’s categories as the rows

4 Customarily, the “dependent variable” (to the extent we believe one
variable depends on the other) is the row variable
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2006 General Social Survey: Partisanship & Education

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Str. Dem. 97 347 54 110 91 699
Dem. 115 384 52 116 69 736
Lean Dem. 67 265 50 87 58 527
Indep. 263 503 86 92 53 997
Lean Rep. 39 168 28 60 32 327
Rep. 56 307 64 158 52 637
Str. Rep. 40 256 37 118 44 495
Other 9 32 3 18 3 65

Sum 686 2262 374 759 402 4483

The above is a contingency table or cross-tabulation.

Powerful way to get the data. Can be tweaked to be more informative.
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2006 GSS: Collapse partisans, treat leaners as independent

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 212 731 106 226 160 1435
Independent 369 936 164 239 143 1851
Republican 96 563 101 276 96 1132
Other 9 32 3 18 3 65

Sum 686 2262 374 759 402 4483

The first thing we will do is collapse some similar categories

Create Democrat out of the old “Strong Democrat” and “Democrat”

Create Indepedent out of the old “Leans Democratic”, “Independent”, and
“Leans Republican”

Create Republican out of the old “Strong Republican” and “Republican”
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2006 GSS: Collapse partisans, treat leaners as independent

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 212 731 106 226 160 1435
Independent 369 936 164 239 143 1851
Republican 96 563 101 276 96 1132
Other 9 32 3 18 3 65

Sum 686 2262 374 759 402 4483

Consolidation of categories reduces noise in each cell, but at a price:
we’ve lost some of the fine-grained nature of our data

Introduces a trade-off between borrowing strength by pooling cells and
informative measuremnt

Tabular methods pose this dilemma when applied to detailed ordered
variables
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2006 GSS: Collapse partisans, treat leaners as independent

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 212 731 106 226 160 1435
Independent 369 936 164 239 143 1851
Republican 96 563 101 276 96 1132
Other 9 32 3 18 3 65

Sum 686 2262 374 759 402 4483

Collapsing Party ID has simplified our table, but it’s still hard to see the
relationship between the variables

What could we do?

Perhaps percentages would be easier?

Let’s divide by N = 4483, the total number of observations
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2006 GSS: Percent of N

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 4.7% 16.3% 2.4% 5.0% 3.6% 32.0%
Independent 8.2 20.9 3.7 5.3 3.2 41.3
Republican 2.1 12.6 2.3 6.2 2.1 25.3
Other 0.2 0.7 0.1 0.4 0.1 1.4

Sum 15.3 50.5 8.3 16.9 9.0 100.0

Does this help?

Not really. It’s still hard to see the effects of each variable separately

We see that the combination of Democrat and High School is common, and
Republican and College is rare, but does that mean there is an association?

That is, does being College educated make one less likely to be Republican?
Or is it just that there are more High School grads than College grads?
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2006 GSS: Percent of N

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 4.7% 16.3% 2.4% 5.0% 3.6% 32.0%
Independent 8.2 20.9 3.7 5.3 3.2 41.3
Republican 2.1 12.6 2.3 6.2 2.1 25.3
Other 0.2 0.7 0.1 0.4 0.1 1.4

Sum 15.3 50.5 8.3 16.9 9.0 100.0

What can we do to zero in on the likelihood that one is Republican given that
one has a College Degree?

That is, how do we estimate the conditional probability Pr(Republican|College)?

How about the percentage of College grads that vote Republican in the
sample?
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%
Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

How about the percentage of College grads that vote Republican in the
sample?

That is, what if we divide each column by its sum, to see how people with a
given level of the column variable Education get distributed on the row
variable, Partisan ID?

This is called showing “column percentages.”
Most useful presentation of a cross-tab
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%
Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

Notice that with column percentages, each column sums to 100%

The interesting comparisons appear when we look across each row

For each row, higher values show positive relationships between that column
category and the current row.

Low values within the row show negative relationships between the column
category and the current row.
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%
Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

In this example, Pr(Democrat) is higher for those without high school diplomas
or with graduate degrees, but lower for those with college degrees

Republicans do best among College degree holders, and worse at the ends of
the Education spectrum

That is, support for either party seems to be a non-monotonic function of
Education
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%
Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

Notice that comparisons across rows in the column percentage cross-tab
mean something different from comparisons across rows

For instance, Democrats do almost as well as Republicans in the strongest
Republican category, College.

Why? College grads are more likely to be Republicans than any other
education group. But more people on average are Dems, so even in this
relatively weak category, Dems are fairly strong
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2006 GSS: Column percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 30.9% 32.3% 28.3% 29.8% 39.8% 32.0%
Independent 53.8 41.4 43.9 31.5 35.6 41.3
Republican 14.0 24.9 27.0 36.4 23.9 25.3
Other 1.3 1.4 0.8 2.4 0.7 1.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0

What if you encounter a cross-tab “in the field”?

Check if it’s in column percentages, then start looking for patterns in each row

Remember this mantra: Sum Down, Compare Across
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2006 GSS: Row percentages

Highest Degree Attained
None HS Assoc College Grad Sum

Party ID

Democrat 14.8% 50.9% 7.4% 15.7% 11.1% 100.0%
Independent 19.9 50.6 8.9 12.9 7.7 100.0
Republican 8.5 49.7 8.9 24.4 8.5 100.0
Other 13.8 49.2 4.6 27.7 4.6 100.0

Sum 15.3 50.5 8.3 16.9 9.0 100.0

Why don’t we use row percentages?
Because they show the conditioning of the columns on the rows, and we
normally put the “dependent variable” in the rows
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Visualizing Tabular Data

Just because our data come in a table doesn’t mean we have to leave them
there

A picture is often easier to sort out

But we need to plot the right numbers

What happens if we plot the column percentages from our tables?
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The table as a graph
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Exploring model sensitivity

We made several assumptions in tabulating and analyzing our data

Categorizing Leaners We grouped leaners with other Independents. But
many political scientists think they are actually intense partisans

Is 2006 special? We looked at just one year in American politics. Do our
findings hold in other years? Is there interesting variation over
time?

We could make more tables categorizing the leaners as partisans, or using
data from, say 1990.

But who wants to pore over 4 cross-tabs?
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Multidimensional Tables

If we want to consider possible confounders,
we need more than two dimensions to our table

That is, we need one dimension for every independent variable, plus one for
our dependent variable

This gets tricky fast: hard to visualize, or do our column percents trick

But important to consider: if we don’t include confounders, we can make very
incorrect inferences about relationships
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Discrimination?

Suppose the (fictional) University of Tlon is sued for discriminatory hiring

Both sides stipulate that

the best candidate can be determined uniquely

should always be hired

is equally likely to be male or female

The case turns on whether the University hired male and female candidates at
the same rate
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Discrimination?

Here is the data for the university’s “eclectic” departments

Hiring data for Tlon University’s “eclectic” departments

Men Women
Departments Hired Applied Hired Applied

Ancient Egyptian Algebra 2 8 1 5
Navajo Cryptography 4 5 6 8

The plaintiffs point out that in each dept, a greater % of men were hired:

Departments Men Women
Ancient Egyptian Algebra 25% > 20%
Navajo Cryptography 80% > 75%
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Discrimination?
“But wait!” says the defense. “Look at the totals”

Men Women
Departments Hired Applied Hired Applied
Ancient Egyptian Algebra 2 8 1 5
Navajo Cryptography 4 5 6 8

Total 6 13 7 13

“We actually hired more women at a higher rate than men!”

The plaintiffs in a lawsuit point out that in each dept, a greater % of men were
hired:

Departments Men Women
Ancient Egyptian Algebra 25% > 20%
Navajo Cryptography 80% > 75%
Both departments 46% < 54%

What’s going on here?
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Simpson’s Paradox

The Departments are different. Perhaps AEA has much less funding that NC,
and can make fewer offers.

Women, either by chance or by design, more often apply to Navajo
Cryptography

When we look at the dept totals, we “control” for this difference in hiring
difficulty

When we look at the grand total, we are omitting department-level variables

But these department level variables are confounders: correlated with the
outcome and with our explanatory variable

Omitting them leads to this confusion, known as Simpson’s Paradox
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