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Aside on mathematical notation

x ∼ Normal(µ, σ) We read this as “x is distributed Normally with mean
µ and standard devation σ”

Note: more advanced texts than ours use the vari-
ance σ2 in place of σ in the above statement
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Plan for today

We’ve talked about probability,

but how does it relate to social science?

Through random variables ,

which follow specific probability distributions ,

of which the best known is the Normal distribution
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Sample space for a coin flipping example

Suppose we toss a coin twice, and record the results.

We can use a set to record this complex event.

For example, we might see a head and a tail, or H,T.

The sample space, or universe of possible results is in this case a set of sets:

Ω = {{H,H}, {H,T}, {T,H}, {T,T}}

Note that our sample space has separate entries for every ordering of heads
or tails we could see.

Gets complicated fast
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Sample space for two dice

Now suppose that we roll two dice. The sample space is:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The sum of the dice rolls for each event:

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

Note that many sums repeat
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Sample spaces and complex events

The sum of the dice rolls for each event

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

What are the odds?

Outcome 2 3 4 5 6 7
Frequency
Probability

Outcome 8 9 10 11 12
Frequency
Probability
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Sample spaces and complex events

The sum of the dice rolls for each event

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

What are the odds?

Outcome 2 3 4 5 6 7
Frequency 1

36
2
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3
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4
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5
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6
36

Probability

Outcome 8 9 10 11 12
Frequency 5
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Probability
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Sample spaces and complex events

The sum of the dice rolls for each event

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

Each event (a, b) is equally likely. But each sum, a + b, is not.

Outcome 2 3 4 5 6 7
Frequency 1

36
2

36
3
36

4
36

5
36

6
36

Probability 0.028 0.056 0.115 0.111 0.139 0.167

Outcome 8 9 10 11 12
Frequency 5

36
4

36
3
36

2
36

1
36

Probability 0.139 0.111 0.083 0.056 0.028

Chris Adolph (UW) Random Variables 8 / 123



The trouble with sample spaces
For most processes we could study, the sample space of all events is huge:

Process Events in sample space is all combinations of:

coin flips each coin’s result

military casualties each soldier’s status
education outcomes each student’s passing status
presidential popularity each citizen’s opinion
. . . . . .

How can we reduce the space to something manageable?

→ map the sample space Ω to one or more random variables:
Ω for coin flips → X = # of heads
Ω for military casualties → D = # of deaths
Ω for education outcomes → Y = # of students passing
Ω for presidential popularity → S = # support pres

This mapping can produce discrete or continous variables,
and each will have a different distribution of probabilities
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Probability for random variables

Consider the random variable X = # of heads in M coin flips

Five things we’d like to know about the theoretical distribution of X:

Pr(X) How do we summarize the random distribution of X?

Pr(X = x) What is the probability X is some specific value like x = 1?

Pr(X ≤ x) What is the probability that X is at least equal to some specific
value, like x = 1?

E(X) What is the expected number of heads we will see on average?

sd(X) On average, how much do we expect a given random outcome
to differ from the expected result?
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Understanding distributions by random simulation

The easiest way to understand probability distributions is by simulation

1 Using a coin, deck of cards, or a computer, we generate random events

2 We repeat step 1 many times, and record each result

3 We look at the distribution of results across these simulations to
understand the underlying probability distribution of the random event
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Coin flipping simulation

Let’s create a simulation

We’ll imagine that in tomorrow morning’s section,
you each flip a coin, and your TA record the total sum of heads

This seems silly: coins aren’t social phenomena,
so why are we studying them in a social statistics class?
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Coins and (interesting) binary variables

Coins are just an example of a random binary variable

There are lots of interesting random binary variables:

whether you vote Democrat or Republican in November

whether you go to college

whether commit a crime

Each of these is a stochastic variable consisting of a random part and a
deterministic part

Understanding the random part well will help us isolate the deterministic part
and study it

Chris Adolph (UW) Random Variables 13 / 123



Coins and (interesting) binary variables

The sum of a binary variable across a group is often very interesting

We will look at the total number of students in your section who got “heads” in
your coin flip

In actual social science, we might look at:

the number of Democratic votes in a county

the number of people in a high school class that go to college

the number of people in a neighborhood who committed a crime
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First group of 30 coin flips

Number of total successes in this group
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and we see 20 heads

We record this in the
histogram at the left.
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experiment, and see
what we get this time
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First 2 groups of 30 coin flips

Number of total successes in each group
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First 3 groups of 30 coin flips
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First 4 groups of 30 coin flips
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First 5 groups of 30 coin flips

Number of total successes in each group
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First 6 groups of 30 coin flips

Number of total successes in each group
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First 7 groups of 30 coin flips

Number of total successes in each group
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First 8 groups of 30 coin flips

Number of total successes in each group
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First 9 groups of 30 coin flips

Number of total successes in each group
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First 10 groups of 30 coin flips

Number of total successes in each group
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First 11 groups of 30 coin flips

Number of total successes in each group
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First 12 groups of 30 coin flips

Number of total successes in each group
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First 13 groups of 30 coin flips

Number of total successes in each group
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First 14 groups of 30 coin flips

Number of total successes in each group
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First 15 groups of 30 coin flips

Number of total successes in each group
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First 16 groups of 30 coin flips

Number of total successes in each group
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First 17 groups of 30 coin flips

Number of total successes in each group
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First 18 groups of 30 coin flips

Number of total successes in each group
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First 19 groups of 30 coin flips

Number of total successes in each group
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First 20 groups of 30 coin flips

Number of total successes in each group
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First 21 groups of 30 coin flips

Number of total successes in each group
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Each person in your
section flips another
coin, and we see 13
heads:
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First 22 groups of 30 coin flips
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First 23 groups of 30 coin flips
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First 25 groups of 30 coin flips

Number of total successes in each group
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First 26 groups of 30 coin flips

Number of total successes in each group
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First 27 groups of 30 coin flips
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First 28 groups of 30 coin flips

Number of total successes in each group
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First 29 groups of 30 coin flips

Number of total successes in each group
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First 30 groups of 30 coin flips

Number of total successes in each group
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First 30 groups of 30 coin flips

Number of total successes in each group
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10 We’ve now spent the

whole section flipping
coins

A pattern is starting to
emerge, but we need
more samples
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First 50 groups of 30 coin flips

Number of total successes in each group
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We could spend the
next section flipping
coins, with the
following totals on each
flip:

17 20 15 13 17 20 11
17 14 13 8 15 17 16 17
15 17 16 13 14 15
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First 100 groups of 30 coin flips

Number of total successes in each group
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Or we could spend the
whole week

15 9 19 15 11 16 15 16
17 15 11 19 19 18 12
15 16 16 14 14 10 9 14
11 15 17 17 8 15 19 12
20 21 14 15 16 18 19
14 16 19 15 13 17 22
15 12 18 12 15 18
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First 200 groups of 30 coin flips

Number of total successes in each group
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18 11 15 17 17 11 21
18 15 15 12 17 12 16
15 12 17 13 14 13 17
13 19 12 16 11 17 12
14 13 19 18 18 15 13
14 13 19 12 17 8 14 13
16 13 13 16 15 15 12
17 17 17 16 15 14 14
19 15 13 17 17 17 16
17 14 13 17 12 18 13
14 18 17 15 15 13 15
17 16 19 16 13 19 10
16 10 15 16 17 13 18
12 13 17 14 15 12 17
12 16
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First 500 groups of 30 coin flips

Number of total successes in each group
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A month?

16 14 11 9 14 15 11 18
19 16 17 15 18 15 12
13 11 16 16 15 16 15
17 13 16 12 11 16 15
12 13 12 15 12 16 17
17 16 14 20 15 17 18
11 16 15 14 15 13 16
17 15 15 19 8 11 13 17
12 16 19 16 18 15 15
17 14 10 14 16 9 14 17
14 15 15 16 14 15 17
14 12 19 14 11 16 14
15 13 18 16 14 14 12
21 15 18 16 19 10 19
14 16 12 15 15 14 15
14 15 15 10 19 17 ...
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First 1000 groups of 30 coin flips

Number of total successes in each group
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Obviously, we’re not
really flipping coins

22 19 14 19 18 16 15
16 19 12 13 15 15 13
19 15 19 20 15 18 11
14 8 14 14 13 15 12 18
17 9 11 16 16 13 14 16
18 16 17 10 13 17 19
17 14 15 14 13 11 14
15 16 16 17 13 14 18
20 10 14 15 16 10 13
23 16 12 17 16 21 18
17 19 13 19 16...
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First 2000 groups of 30 coin flips

Number of total successes in each group
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Instead, a computer
program is “simulating”
the process of flipping
180 coins, over and
over

18 13 19 13 9 16 13 14
15 13 12 14 17 15 18
17 16 15 13 16 12 14
15 14 16 13 11 15 18
15 12 16 16 19 18 16
17 16 18 17 14 18 20
11 12 17 18 17 16 14
21 16 14 15 14 13 18
13 17 21 16 18 11 14
15 11 17 18 20 19 11
16 13 17 13 11 20 10...
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First 5000 groups of 30 coin flips

Number of total successes in each group
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We’re going up to
100,000 coin flips, to
see if a pattern clarifies
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First 10000 groups of 30 coin flips

Number of total successes in each group
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A computer can do this
in less than 1 second

Chris Adolph (UW) Random Variables 55 / 123



First 20000 groups of 30 coin flips

Number of total successes in each group
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Notice a bell shape
has emerged
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First 50000 groups of 30 coin flips

Number of total successes in each group
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Or as close to a bell as
we can get with only
30 possible outcomes
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First 100000 groups of 30 coin flips

Number of total successes in each group
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0 No matter how many
more trials we add, the
distribution of 30 coin
flips will always
converge to the pattern
at the left

So what if we divide
the frequency of each
outcome by the total
trials?
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First 100000 groups of 30 coin flips

Number of total successes in this group
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Now we have each
total of heads as a
proportion of the total
trials

Based on this large
sample, we can
conclude these are the
true probabilities of
each sum from a
random flip of 30 coins

So the pattern at the
left is the theoretical
probability distribution
of 30 coin flips
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First 100000 groups of 30 coin flips

Number of total successes in this group
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This probability
distribution is known as
a binomial.

It represents the
probability of the sum
of a finite number of
binary variables

We won’t go much
further with the
binomial, but it will help
us understand another
distribution
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First group of 180 coin flips

Number of total successes in this group
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Suppose we ran our
experiment in our
lecture, so that there
180 coins to flip in
each trial

On our first flip we
might get 94 heads out
of 180 trials

This time, let’s skip
ahead
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First 100 groups of 180 coin flips

Number of total successes in each group
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Here is our distribution
after 100 flips...
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First 1000 groups of 180 coin flips

Number of total successes in each group
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Here is our distribution
after 1000 flips...
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First 10000 groups of 180 coin flips

Number of total successes in each group

H
ow

 m
an

y 
tim

es
 w

e'
ve

 s
ee

n 
ea

ch
 to

ta
l

0 50 100 150

0
20

0
40

0
60

0

Here is our distribution
after 10,000 flips...
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First 100000 groups of 180 coin flips

Number of total successes in each group

H
ow

 m
an

y 
tim

es
 w

e'
ve

 s
ee

n 
ea

ch
 to

ta
l

0 50 100 150

0
20

00
40

00
60

00

Here is our distribution
after 100,000 flips...
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First 100000 groups of 180 coin flips

Number of total successes in this group
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Once again, we can
divide by the total
number of simulation
runs to get probabilities

Notice that extreme
values are vanishingly
rare

And that the bell is
smoothly traced out by
the histogram’s bars
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First 100000 groups of 180 coin flips

Number of total successes in this group
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If we trace out this
smooth curve, we get
the density in red

We’ve discovered
something
fundamental: if you
add together many
independent random
variables, even as
simple as coin flips,
their sum approximates
a bell curve
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First 100000 groups of 180 coin flips

Number of total successes in this group
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Central Limit Theorem
The more independent
random variables we
sum together, the more
closely their sum
approximates a Normal
distribution.

Example: if we ask
everyone in America if
they have a job, and
add their responses
together, we get the
unemployment rate.
The unemployment
rate may be
approximately
Normally distributed
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First 100000 groups of 180 coin flips

Number of total successes in this group
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Central Limit Theorem
The more independent
random variables we
sum together, the more
closely their sum
approximates a Normal
distribution.

Notice that the Normal
distribution only holds
in this special case
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First 100000 groups of 180 coin flips

Number of total successes in this group
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Central Limit Theorem
The more independent
random variables we
sum together, the more
closely their sum
approximates a Normal
distribution.

It is a distribution
named Normal, not the
“normal” distribution
you see in the world
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First 100000 groups of 180 coin flips

Number of total successes in this group
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Central Limit Theorem
The more independent
random variables we
sum together, the more
closely their sum
approximates a Normal
distribution.

It’s also called the
Gaussian distribution,
and is just one
possible distributions
out of thousands
known to statisticians

But it’s very useful in
intro statistics!
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The Normal distribution

The Normal distribution describes the way some variables randomly vary

If a variable is Normally distributed, then its theoretical distribution can be
summarized in just two numbers: its mean and standard deviation

In our coin flip example with 180 flips in each trial,
we observed a mean of 89.997 and a standard deviation of 6.68.

If the coin flips were Normally distributed,
we would say they followed a Normal(89.997, 6.68) distribution
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The 68-95-99.7 Rule for Normal Random Variables
If a variable is Normal, then:

68% of observed cases will have values inside the mean ±1 s.d.

In our coin example, 68% of heads totals will lie in:

89.997± 6.68 = [83.32, 96.68]

95% of observed cases will have values inside the mean ±2 s.d.

In our coin example, 95% of heads totals will lie in:

89.997± 2× 6.68 = [76.64, 103.36]

99.7% of observed cases will have values inside the mean ±3 s.d.

In our coin example, 99.7% of heads totals will lie in:

89.997± 3× 6.68 = [69.96, 110.04]

Of course, our coin flips are only approximately Normal, and this holds only
approximately here
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The 68-95-99.7 Rule for Normal Random Variables

If a random variable follows the standard Normal distribution, a predictable
amount of its values lie in each of these intervals
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Continuous Random Variables

Technically, a sum of coin flips is a discrete variable (it only takes integer
values)

But what about continuous random variables like:
1 Height of a child. We can measure height really precisely with the right

equipment.
2 Time until the next bus. We can split a second finer and finer.
3 Exchange rate. How much the dollar is worth in euros.
4 Gross Domestic Product. Total value of all goods and services.

We can’t even list all the outcomes of these variable, so we can’t list the
probability of each outcome.

In general, we won’t see repitition of the same exact value ever. All
frequencies are 0 or 1.
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Example: Waiting for the train

Suppose your city has a subway that runs very regularly.
Every ten minutes there is a train.

Like most subway riders, you show up at the subway unaware of the
scheduled time for the next train.

How long will your wait for the next train be in minutes?

Call your wait X:

X is continuous; you can chop it into tiny fractions of a second.

X is also rigidly bounded. It can’t be less than 0, or more than 10.
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Example: Waiting for the train

X lies somewhere between 0 and 10 minutes.

What is the probability that X is some particular value?

For exmaple, what is the probability that the train will arrive in exactly 3
minutes 25.00000000. . . seconds?

Zero. That is,

P(X = 3 : 25.0000000 . . .) ≈ 0
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Example: Waiting for the train

Why? There is an uncountable infinity of possible arrival times between 0 and
10 minutes.

If we split the total probability of train arrival (= 1) into an infinite number of
pieces, each piece will be about 0.

In general, the probability that a continuous variable will take on an exact
value is always 0.

(Note that we now refer to P(X) instead of Pr(X). We use a different notation
for the probability of continuous variables.)

Chris Adolph (UW) Random Variables 78 / 123



Example: Waiting for the train

We cannot talk about the probability of specific values of continuous
distribution

Instead, focus on the probability that X lies in a specific interval.

For example, what is the probability that the train will arrive at or after 1 minute
has passed, but before 5 minutes?

P(1 ≤ X < 5) > 0

Probabilities over intervals of continuous variables are positive, so we can
calculate this. But we need to think a bit about the shape of the distribution
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The Uniform Distribution

In the train example, there is no reason to consider the train more likely to
arrive at any particular moment.

This is a rare case where all of the possible outcomes of a continuous variable
are equally, or Uniformly, likely:
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The Uniform Distribution

In our example, the probability the train will arrive between minute 1 and
minute 5 is

P(1 ≤ X < 5) =
5− 1
10− 0

= 0.4

Because the uniform distribution is a rectangle, it’s easy to calculate the areas
that correspond to probabilities for an interval of X
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Calculating probabilities for continuous distributions

But most continuous distributions follow complex curves

We will need a computer to compute areas under these curves,
or a table to look them up

But to use a table to look up the area under the curve,
we still need to think about what quantity we want to calculate

Three rules will help

And remember that the area under a probability density always totals 1
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We can often use one
tail to calculate the
other tail

Suppose we wanted to
know P(X > −1.3), but
all we knew was
P(X < −1.3) = 0.097,
or the area in gray
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Rule 1:
P(X > a) = 1−P(X ≤ a)

So P(X > −1.3) =
1− 0.097 = 0.903, or
the new area in gray
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What if we wanted to
know an area in the
middle of the curve?

That is, what if we
wanted to know
P(a ≤ X < b), or in this
case,
P(−1.5 < X ≤ 0.5)?
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ity Rule 2: P(a < X ≤ b) =
P(X ≤ b)− P(X ≤ a)

That is, start with the
whole area from −∞ to
b. . .

Chris Adolph (UW) Random Variables 86 / 123



−4 −3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

Value of X

P
ro

ba
bi

lit
y 

de
ns

ity

and subtract off the
area from −∞ to a

Chris Adolph (UW) Random Variables 87 / 123



−4 −3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

Value of X

P
ro

ba
bi

lit
y 

de
ns

ity

leaving just the part we
want!

P(−1.5 < X ≤ 0.5)
P(X ≤ 0.5)− P(X ≤ −0.5)
0.691− 0.067
0.625
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The above rules
always work. For
symmetric
distributions, we have
a third rule as well

Here we have
P(X ≤ −1.3) and
P(X ≥ 1.3)

The two areas at left
are the same, and so
must these
probabilities be
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Rule 3: P(X ≤ µ− d) =
P(X ≥ µ+ d)

For any symmetric
distribution, tails
equally far from the
mean have the same
area, and hence
values as extreme as
µ± d are equally likely

Chris Adolph (UW) Random Variables 90 / 123



Comparing distributions with different moments

Normally distributed variables can have widely varying means µ and
variances σ2

This raises a question: if we compare two values from two different Normal
distributions, how do we decide which is “more extreme”?

For example, which is more impressive?
1 A 90% on a test with a mean of 80% and a standard deviation of 6%

2 A 65% on a test with a mean of 30% and a standard deviation of 25%
3 A 38% on a test with a mean of 25% and a standard deviation of 5%
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z-scores

To solve this sort of problem, it helps to standardize a normal variable to have
the same mean and variance

That is, we convert each score to a common metric, called a z-score, in which
the mean is 0, and each unit is a standard deviation move away from zero

For random variable x with mean µ and variance σ2, the z-score is:

z =
x− µ
σ

Notice that while the original variable X ∼ Normal(µ, σ),

the z-score is Z ∼ Normal(0, 1)
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z-scores: Example
So, which is more impressive?

1 A 90% on a test with a mean of 80% and a standard deviation of 6%

z =
x− µ
σ

=
0.9− 0.8

0.06
= 1.67

2 A 65% on a test with a mean of 30% and a standard deviation of 25%

z =
x− µ
σ

=
0.65− 0.3

0.25
= 1.4

3 A 38% on a test with a mean of 25% and a standard deviation of 5%

z =
x− µ
σ

=
0.38− 0.25

0.05
= 2.6

All three scores are impressive.
But the student with the 38% should be proudest.
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z-scores and percentiles

What are the (theoretical) percentiles of the three test scores?

That is, what percentage of test-takers did student 1 beat?
student 2? student 3?

We can easily look up the percentile of a z-score (using Table A in your text)

For our example, for grade x

µ σ x z percentile

0.80 0.06 0.90 1.67 95th
0.30 0.25 0.65 1.40 92nd
0.25 0.05 0.38 2.60 99th

So all of these scores are actually As.
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z-scores and critical values

If we can go from z-scores to percentiles, we can also go from percentiles to
z-scores

Suppose you took the third exam, with the mean of 25% and the standard
deviation of 5%.

How well would you have to score to be in the top 20% of the class?

To answer this, we first need to find the z∗, or critical value, which marks the
80th percentile.
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z-scores and critical values

we first need to find the z∗, or critical value, which marks the 80th percentile.

If we look this up in Table A, we find the desired z∗ ≈ 0.84

What actual test score does this correspond to?

Note that if z = (x− µ)/σ, then

x∗ = z∗σ + µ

= 0.84× 0.05 + 0.25
= 29.2%

Upshot: if we know the theoretical distribution of a Normal variable,
we can freely convert between the variable, z-scores, and percentiles
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 1
critical value = −2.326
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 1% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 5
critical value = −1.645
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 5% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 10
critical value = −1.282
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 10% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 25
critical value = −0.674
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 25% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 50
critical value = 0
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 50% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 75
critical value = 0.674
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 75% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 90
critical value = 1.282
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 90% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 95
critical value = 1.645

−4 −3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

Value of X

P
ro

ba
bi

lit
y 

de
ns

ity

Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 95% of
the distribution
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Assuming x is 
 Normal(0,1) 
 distributed

percentile of Normal = 99
critical value = 2.326
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Let’s take a quick
survey of the
percentiles and critical
values of the standard
Normal

Here is the first 99% of
the distribution
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Unemployment example

Let’s apply this framework to a real world variable.

Unemployment in the US in 2010 was 9.6%, but varied across states

Suppose that the average state had 9.6% unemployment, but that the
standard deviation across states is 2.2.

If we suppose unemployment is Normally distributed,
this leads to a Normal(9.6, 2.2) distribution
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 5

critical value of Unemployment = 5.98%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

That is, I look up z∗ at
the requested
percentile, then
calculate z∗σ + µ
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 5

critical value of Unemployment = 5.98%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 5% of states
should be below 5.98%
unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 10

critical value of Unemployment = 6.78%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 10% of
states should be below
6.78% unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 25

critical value of Unemployment = 8.12%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 25% of
states should be below
8.12% unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 50

critical value of Unemployment = 9.6%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 50% of
states should be below
9.6% unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 75

critical value of Unemployment = 11.08%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 75% of
states should be below
11.08% unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 90

critical value of Unemployment = 12.42%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 90% of
states should be below
12.42% unemployment
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

percentile of Normal = 95

critical value of Unemployment = 13.22%
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Using the given
distribution, I have
calculated, using Table
A, the critical values for
various percentiles

I find that 95% of
states should be below
13.22% unemployment
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z-scores and probability intervals

Suppose you wanted to summarize the range of most probable outcomes for
a theoretical Normal distribution.

For example, if the mean male height in the US is 5 ft 10 in, and the standard
deviation is 3 in, and height is Normally distributed,

1 What critical values of height bound two-third of all men?

2 What critical values of height bound 95% of all men?

3 What critical values of height bound 99% of all men?
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z-scores and probability intervals

What critical values of height bound 95% of all men?

Slightly tricky:

We need the critical values for the 2.5th and 97.5th percentiles (Why?)
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Assuming x is 
 Normal(0,1) 
 distributed

critical values = +/−0.967

percent of Normal inside critical values = 67%
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The critical values for
the 67%, 95%, and
99% intervals are
memorable

Two-thirds of a Normal
distribution lies within
≈ 1 standard deviation
of the mean

(Remember: z-scores
are in standard
deviation units!)
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Assuming x is 
 Normal(0,1) 
 distributed

critical values = +/−1.96

percent of Normal inside critical values = 95%
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The critical values for
the 67%, 95%, and
99% intervals are
memorable

Two-thirds of a Normal
distribution lies within
≈ 2 standard deviation
of the mean

(Remember: z-scores
are in standard
deviation units!)
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Assuming x is 
 Normal(0,1) 
 distributed

critical values = +/−2.576

percent of Normal inside critical values = 99%
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The critical values for
the 67%, 95%, and
99% intervals are
memorable

Two-thirds of a Normal
distribution lies within
≈ 2.5 standard
deviation of the mean

(Remember: z-scores
are in standard
deviation units!)

Chris Adolph (UW) Random Variables 119 / 123



If the mean male height in the US is 5 ft 10 in, and the standard deviation is 3
in, and height is Normally distributed,

1 What critical values of height bound two-third of all men?
70 inches ± 3 inches × 0.967 ≈ 5 ft 7 to 6 ft 1.

2 What critical values of height bound 95% of all men?
70 inches ± 3 inches × 1.96 ≈ 5 ft 4 to 6 ft 4

3 What critical values of height bound 99% of all men?
70 inches ± 3 inches × 2.576 ≈ 5 ft 2 in to 6 ft 6 in

Warning! These statements hold only for variables that really are Normal.
Not for all data.
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

critical values = [7.5, 11.7]

percent of Normal inside critical values = 67%
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We can apply the
same logic to the
unemployment
example

At left is the 67%
interval
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

critical values = [5.3, 13.9]

percent of Normal inside critical values = 95%
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We can apply the
same logic to the
unemployment
example

At left is the 95%
interval
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Assuming Unemployment is 
 Normal(9.6,2.2) 

 distributed

critical values = [3.9, 15.3]

percent of Normal inside critical values = 99%
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We can apply the
same logic to the
unemployment
example

At left is the 99%
interval
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