
Burrows & Langford – Chapter 10 page 1
Learning Programming Using VISUAL BASIC .NET

CHAPTER 10
WORKING WITH ARRAYS AND COLLECTIONS

Imagine a mail-order company that sells products to customers from all 50 states in
the United States. This company is required to charge sales tax on sales to customers in
many states, and the sales tax rate varies from state to state. How do we represent these
sales tax rates in a program? If we store them in variables of the kind we have seen so far,
we will need 50 variables with names like NYTaxRate, NJTaxRate, and CATaxRate.
Then the program will require a Select…Case or If…Then…Else statement to identify a
customer’s state of residence and determine the corresponding tax rate variable to use in
the calculation of the sales tax. Because of the large number of variables, this statement
will be very long.

Storing a set of related values, such as 50 sales tax rates, in separate variables is
tedious at best. However, such situations are common. To resolve this problem, the VB
programming language provides another kind of variable called an array. An array is a
variable with a single symbolic name that represents many different data items. This
chapter describes how to declare arrays and how to use them to solve some common
processing tasks.

In additional to traditional arrays, Visual Basic .NET also provides a number of
classes that manage collections of objects. A collection of objects is like an array in
that one collection is associated with many objects. These classes “manage” the
objects in a number of different ways. These management techniques differentiate the
collection classes. This chapter covers three of these classes – the ArrayList, the
Hashtable, and the SortedList collections.
Objectives

After studying this chapter you should be able to
• Explain why arrays are needed to solve many types of problems.
• Construct an array to store multiple related data values.
• Use ArrayList, Hashtable, and SortedList collections to store and process data

values.
10.1 SOLVING PROBLEMS WITH ARRAYS

Since we are now introducing arrays, we need a term to describe the ordinary
variables we have used prior to this point. We will use the term simple variable to mean
a variable that can store only one value. We first examine a problem whose solution is
very inefficient when we use simple variables. We then show how arrays improve our
solution. As we solve the problem, we introduce the structure of arrays.
The Problem

A financial analyst has calculated last year’s rate of return1 for 10 different
companies and would like a program to display the names of those companies whose rate
of return exceeded the average of the group. What processing steps must we perform to
display this information?
The Solution Using Simple Variables

Using the programming techniques we’ve employed in earlier programs, we might
begin to solve this problem by writing the following pseudocode.

1 Rate of return is a measure of profitability.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 2
Learning Programming Using VISUAL BASIC .NET

Compute the average rate of return for the group of ten companies
Display the names of companies whose rate of return exceeds the average

We first have to compute the average. This requires accessing each individual company’s
rate of return and adding it to a cumulative total. We can refine the pseudocode for this
step as follows:

For each company
 get a rate of return and a company name
 add the rate of return to the sum
Next company
Compute the average by dividing the sum by the number of companies

Once we have the average, we must go back through the rates of return, comparing
each to the average. If a rate of return exceeds the average, we display the company
name. The pseudocode for this step might be

For each company
 If the company’s rate of return is greater than the average Then
 display the company’s name
 End If
Next company

This problem requires two passes through the data: one pass to compute the average and
a second to compare the average with each rate of return. There is no other way to solve
this problem.

Now think about how you would convert this pseudocode to actual code. You
would have to store each rate of return in a variable because each is used twice: first to
compute the sum, then later to compare to the average. If the company names are input
into the program at the same time as the rate of return values, then the company names
will also have to be stored in variables. Thus, if we had 10 companies, we’d need 20
variables.

Let’s look at some code, assuming that we have only three companies instead of
ten. The following code might be found in a Click event procedure for a button captioned
“Find Best Companies”.

Private Sub cmdFindBestCompanies_Click(…)
 Dim CompAReturn As Decimal, CompAName As String
 Dim CompBReturn As Decimal, CompBName As String
 Dim CompCReturn As Decimal, CompCName As String
 Dim Average As Decimal
 Dim Sum As Decimal
 CompAReturn = InputBox("Enter Rate of Return for Company A")
 CompAName = InputBox("Enter Company A Name")
 Sum = Sum + CompAReturn
 CompBReturn = InputBox("Enter Rate of Return for Company B")
 CompBName = InputBox("Enter Company B Name")
 Sum = Sum + CompBReturn
 CompCReturn = InputBox("Enter Rate of Return for Company C")
 CompCName = InputBox("Enter Company C Name")
 Sum = Sum + CompCReturn

3/15/02 Draft

Burrows & Langford – Chapter 10 page 3
Learning Programming Using VISUAL BASIC .NET

 Average = Sum / 3
 If CompAReturn > Average Then
 MsgBox CompAName & " exceeds the average rate of return"
 End If
 If CompBReturn > Average Then
 MsgBox CompBName & " exceeds the average rate of return"
 End If
 If CompCReturn > Average Then
 MsgBox CompCName & " exceeds the average rate of return"
 End If
End Sub

This solution approach works, but it is not a good general solution. Imagine if you had
30, or 300, or 30,000 companies. You would be writing code for the rest of your life.
There must be a better way.

You can spot two places in the code where statement blocks are “nearly repeated”
three times. We would like to use loops but are prevented from doing so because each
value is stored in a different variable and each variable has a different name. For
example, we’d like to have something like the following loop:

For K = 1 To 3
 CompAReturn = InputBox("Enter Rate of Return for Company A")
 CompAName = InputBox("Enter Company A Name")
 Sum = Sum + CompAReturn
Next K

Although the sum would be computed correctly, the problem with this loop is that
there is no way to store and preserve the individual rate of return and name for each
company. Each iteration of the loop updates the value in CompAReturn, destroying the
previous rate of return as it obtains the next value needed to accumulate the sum.
The Structure of an Array

What we need is a different kind of variable—one that has a single name but can
store more than a single value. This new kind of variable is known as an array. Figure
10.1 depicts an array named RateOfReturn that stores five values. Each element of an
array is like a simple variable. We can store a different company’s rate of return in each
element. The entire set of elements shares the name RateOfReturn.

<insert old figure 9.1 – start numbering at 0>
Figure 10.1 An array

The elements in an array are numbered, starting at zero, as shown in Figure 10.1. To
access an individual element, we append its number to the array name. For example, in
the array depicted in Figure 10.1, the third element is referred to as RateOfReturn(2)2, and
it currently holds the value 0.10. The element number is called the subscript. An
alternative term for an element number is the index value. For this reason, another
term that is sometimes used for an array is subscripted or indexed variable. The array
depicted in Figure 10.1 is a one-dimensional array because each element is referenced

2 Note that since the array numbering system starts at zero, when we speak of the nth element of the array, it
will be numbered (n-1), e.g., the 4th element of the array is element number 3.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 4
Learning Programming Using VISUAL BASIC .NET

using a single subscript value. You can also create two-, three-, and higher-
dimensional arrays, called multidimensional arrays.

The syntax for referencing a specific element in a one-dimensional array is
ArrayName(SubscriptValue)

where SubscriptValue is a numeric expression.
The Solution Using Arrays

If we store the rates of return in an array like the one shown in Figure 10.1, we can
design a better solution to the problem. A procedure can process the contents of an array
element just as it processes any other variable. For example, the following statement adds
the values in elements 0 and 1 of the array.

Sum = RateOfReturn(0) + RateOfReturn(1)
The result stored in the variable Sum is 0.20. However, using constants as subscripts this
way is almost never done. The reason is simple: using constants as subscripts in your
code is no different than using simple variables. That is, the constant fixes the reference
to a specific element just as the name of a simple variable refers to a specific storage
location.

If we don’t use constants as subscripts, then what do we use? The answer is a
numeric variable, or a numeric expression containing a variable. For example, the
following statement, in which K is an Integer variable, is typical of statements that refer to
array elements.

Sum = Sum + RateOfReturn(K)
Which element in the array does this refer to? You don’t know unless you know the value
of the subscript K. This is very important. If K holds the value 2, then the statement above
refers to the third element. If K holds 3, then the very same statement refers to the fourth
element. Thus, we can write a For…Next loop that processes each array element in turn
by using the loop’s counter variable as the array subscript, as follows:

For K = 0 To 4
 Sum = Sum + RateOfReturn(K)
Next K

Figure 10.2 illustrates the execution of this code.
If the array had 5000 elements instead of 5, what change would you have to make to

this code? You would simply have to change the For statement so that it starts at 0 and
ends at 4999.

For K = 0 To 4999
A drawback of our first solution to this problem was that the number of lines of code
would increase proportionately if the number of companies that we needed to analyze
increased. However, with the array approach shown in Figure 10.2, the number of lines of
code is independent of the number of companies.

<insert old figure 10.2 – change indexes 0 to 4>
Figure 10.2 Summing the elements of an array using a For…Next loop

The number of lines of code you write should not have to be increased in proportion
to the number of items to be processed. If you find that this is happening, you probably
need to use an array instead of simple variables.

To make the loop
For K = 0 To 4

3/15/02 Draft

Burrows & Langford – Chapter 10 page 5
Learning Programming Using VISUAL BASIC .NET

 Sum = Sum + RateOfReturn(K)
Next K

even more useful, it would be a good idea to not restrict it to processing only five
elements. How can we remove this restriction? Consider the following:

For K = 0 To NumOfElements - 1
 Sum = Sum + RateOfReturn(K)
Next K

Now we can control the number of elements included in the summing process simply by
setting the value of the variable NumOfElements prior to the For statement. Again note
that since the subscripts start at zero, the largest subscript value will be one less than the
number of elements, e.g., if there are 10 elements, the range of the subscripts is 0…9.

Let’s return to our problem of finding the average rate of return and displaying the
company names that exceed the average. We’ll add one more array to store the company
names, as shown in Figure 10.3.

<insert of figure 9.3 – change subscripts 0…4>
Figure 10.3 Arrays for rate of return problem

Observe that the elements of the two arrays are coordinated. That is, the rate of
return in element number 0 of the RateOfReturn array corresponds to the company name
in element number 0 of the CompanyName array. This technique is often used when the
data types of the two arrays are different; in the present case, RateOfReturn holds
numeric data (Decimal, most likely) and CompanyName holds string data. When the data
types of the arrays are the same, an alternative approach is to use a two-dimensional
array, which we will discuss shortly.

Consider the following code segment for the rate of return problem. It assumes that
the two arrays already exist and the number of companies has already been stored in the
variable NumberOfCompanies.

For K = 1 To NumberOfCompanies - 1
 Sum = Sum + RateOfReturn(K)
Next K
Average = Sum / NumberOfCompanies
For K = 1 To NumberOfCompanies - 1
 If RateOfReturn(K) > Average Then
 MsgBox CompanyName(K) & " exceeds the average"
 End If
Next K

Convince yourself that this solution will work for any number of companies as long as
the arrays have been created and correctly initialized with values.
Storing Data in Arrays versus Databases

Could you solve this problem without arrays if the data were stored in a database? If
so, what is the advantage of using arrays?

Reading the data from a database is an option. If Rate of Return and Company
Name were two fields in a database table, then you could read every record from the table
and compute the sum of the rates of return. You could then compute the average. Finally,
you could move back to the first record of the table and read every record again to
compare each rate of return to the average.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 6
Learning Programming Using VISUAL BASIC .NET

Arrays are variables and, like all variables, they exist in random access memory

(RAM). Data stored in RAM are accessed quickly, typically in nanoseconds (billionths of
a second). But storage for arrays is limited because RAM is relatively expensive and is
needed for other uses such as storage of the operating system.

Databases are stored on disk. The computer must transfer database records to RAM
in order to process them and, as a result, access to database records is relatively slow—it
is typically measured in milliseconds (thousandths of a second). But storage for databases
is less constrained because disk storage is considerably less expensive and a computer
typically has much more disk storage than RAM storage.

When the same data items are accessed multiple times during processing, using
arrays can produce a superior program. The factors that must be considered when
deciding which approach to use include (1) execution speed, (2) the amount of data that
needs to be processed, and (3) the clarity of the code that accomplishes the task. If the
amount of data were very large (too large for RAM), then directly accessing the database
would be the only feasible solution even though it might execute more slowly. If the
amount of data is relatively small, then reading the data from the database and storing it
in an array for processing can improve execution speed. The speed advantage of the array
solution will be greater the more times the data are accessed during processing.

Finally, as RAM gets less expensive, the distinction between databases and arrays
gets less clear. Database technology tries to store as much of the data being processed in
RAM as it can so as RAM capacity increases, the database technology uses high-speed
RAM just as arrays do. If speed is a critical factor, you would store data in RAM
regardless of whether it is managed by a database management system or is stored in an
array.
Multidimensional Arrays

The number of dimensions an array has is called its dimensionality. A one-
dimensional array uses one subscript to refer to an element. The array RateOfReturn is a
one-dimensional array. One-dimensional arrays are useful when the data to be stored in
the array are similar to a list of numbers or a list of names.

A two-dimensional array uses two subscripts to refer to a single element and is
sometimes called a matrix or table. Figure 10.4 shows a two-dimensional array. All 12
elements are collectively referred to by the single name Quantity. Supplying the values of
the specific row and column, the subscripts, identifies an individual element. For
example, the reference Quantity(3, 1) refers to the element in row number 3 and column
number 1 (which holds the number 62 in this case). The first value between the
parentheses is the row number and the second is the column number. This is easy to get
mixed up; for example, does Quantity(1, 2) refer to the value 13 or the value 21? It is row
number 1, column number 2, not column number 1, row number 2 so it refers to the value
13.

The general syntax for referencing a specific element in a two-dimensional array is
ArrayName(RowSubscriptValue, ColumnSubscriptValue)

where RowSubscriptValue and ColumnSubscriptValue are numeric expressions.
For what purpose might we use a two-dimensional array like the one in Figure

10.4? Well, the rows might represent products (four products) and the columns might
represent warehouses (three warehouses). Then the values stored in the array could

3/15/02 Draft

Burrows & Langford – Chapter 10 page 7
Learning Programming Using VISUAL BASIC .NET

represent the inventory count of a particular product in a particular warehouse (the
quantity of product number 3 in warehouse number 1 is 62).

<insert old figure 9.4 – change the index values>
Figure 10.4 A two-dimensional array

You are not limited to two dimensions. You can create three, four, or more.
However, using subscripts slows down the execution of any program. The more
subscripts an array has, the slower the execution, so you should always use the minimum
number of subscripts necessary to solve the problem.
Exercise 10.1. Suppose you are writing a program that will continually retrieve and
update inventory counts for four products at three warehouses. Your program contains
three simple Integer variables named Stock, ProdNo, and WareNo. ProdNo currently holds
a valid product number (0, 1, 2, or 3) and WareNo currently holds a valid warehouse
number (0, 1, or 2). Assume you have the array depicted in Figure 10.4. Write the
statement that stores in the variable Stock the inventory count of the product specified by
ProdNo at the warehouse specified by WareNo.
10.2 DECLARING ARRAYS

Arrays can help you solve many kinds of problems like the one discussed in Section
10.1. As with simple variables, in order to use arrays in a program you must declare
them. In this section we examine how to declare arrays, and we discuss subscript bounds.

Arrays can store Integers, Strings, Decimal, or any other data type just as simple
variables can. However, every element of an array must have the same data type3. That is,
if an array is declared as type Integer, all of its elements store integers. You cannot create
an array that has some elements of type Integer and some elements of type Decimal.

Use the Dim (or the Static or Public) statement to declare arrays just as you do for
simple variables. But for an array, in addition to specifying the variable name and type,
you must also specify the number of subscripts (number of dimensions) and their
maximum values. The general syntax of the Dim statement for an array is

Dim ArrayName(subscripts) As Type
The subscripts portion of the definition is simply a constant for each dimension,

separated by commas if there is more than one dimension. These constants define the
maximum value of each subscript. For example, you can write

Dim RateOfReturn(100) As Decimal
Dim InventoryCount(3, 4) As Integer

to create the arrays depicted in Figure 10.5.
<insert old figure 9.5>

Figure 10.5 Array dimensions
The first Dim statement creates a one-dimensional array with 101 elements

numbered 0 through 100. The second Dim statement creates a two-dimensional array
with four rows and five columns (a total of 20 elements). Notice that the minimum value
for each subscript is zero (0). Some people find it odd that the first element number is 0,
not 1. After all, if you want to store information on 100 rates of return, it would make the
most sense to start at element 1 and end at element 100, not start at element 0 and end at

3 If an array is declared as type Object, then each cell can store different types, e.g., Strings and numbers.
This is because the type Object can include any other type.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 8
Learning Programming Using VISUAL BASIC .NET

element 99. But with Visual Basic .NET, as well as many other languages, the first
element is numbered zero.

Visual Basic .NET has a very nice feature: it will tell you when you use a subscript
value that is outside the range—called the subscript bounds—specified by the Dim
statement. For example, suppose the RateOfReturn array is declared with maximum
subscript value 100. Suppose also that K and NumberOfCompanies are simple variables of
type Integer. If the value stored in NumberOfCompanies is greater than 100, executing
the loop

For K = 0 To NumberOfCompanies
 Sum = Sum + RateOfReturn(K)
Next K

will cause a run time error—a System.IndexOutOfRangeException—when K equals 101.
Figure 10.6 shows the message that VISUAL BASIC .NET displays when your program
exceeds the bounds of an array. You can write a Try/Catch block to handle a situation
like this.

Figure 10.6 Error message for illegal subscript value

Finally, variable scope is the same for arrays as for simple variables.
Exercise 10.2. For each of the following cases, write the declaration statement that
creates the specified array.
1. A one-dimensional array of type String named Cities, with 500 elements.
2. A one-dimensional of type Decimal named Price, with a maximum subscript value

98910.
3. A two-dimensional array of type Decimal named Sales, with twenty rows and six

columns.
Exercise 10.3. When the user clicks on the button named btnArrayQuiz, the following
code displays three message boxes. Hand-check this code, and show the numbers that
appear in each message box.
 Dim A(6) As Integer

 Private Sub btnArrayQuiz_Click(…) Handles btnArrayQuiz.Click
 Dim J As Integer
 A(0) = 10
 A(1) = 7
 A(2) = -3

3/15/02 Draft

Burrows & Langford – Chapter 10 page 9
Learning Programming Using VISUAL BASIC .NET

 A(3) = 4
 A(4) = 1
 A(5) = -4
 A(6) = 2
 DisplayArray()
 A(3) = A(2)
 A(2) = A(3)
 A(6) = A(5)
 A(5) = A(4)
 A(0) = A(1)
 DisplayArray()
 For J = 1 To 6
 A(J - 1) = A(J)
 Next J
 DisplayArray()
 End Sub

 Private Sub DisplayArray()
 Dim K As Integer
 Dim Message As String
 For K = 0 To 6
 Message = Message & " " & A(K)
 Next K
 MsgBox(Message)
 End Sub
Example 10.1 Populating An Array From a Database

Arrays are capable of holding large quantities of data, and it is unlikely that the user
will be willing (or able) to type in a large amount of data every time a program is
executed. In actual business applications the data for populating an array are typically
obtained from a database instead of from the user.

In this example, the Form_Load event procedure performs the task of populating
two class-level arrays named CompanyName and RateOfReturn. There is a third class-level
variable named NumRows that stores the number of rows in the DataSet. A DataSet named
DsCompInfo1 and OleDataBaseAdapter named odaCompInfo establishes a connection to
a table named CompInfo in the Access database named Comp.mdb(remember to use the
Server Explorer to make the connection to the Comp.mdb database). The two fields in the
table are named CompName and RateOfReturn. The code for this example is in Figure
10.7. Figure 10.8 shows the user interface after the user has clicked the Review Array
Contents button.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 10
Learning Programming Using VISUAL BASIC .NET

Figure 10.7 Code for Example 10.1

Figure 10.8 Array contents displayed when the user clicks on Review Array

Contents button

3/15/02 Draft

Burrows & Langford – Chapter 10 page 11
Learning Programming Using VISUAL BASIC .NET

Note that the arrays have fixed upper bounds: the Dim statements fix the maximum

subscript value at 99 (100 total values). Since the database table could conceivably have
more than 100 records, in Form1_Load the value for the number of rows is checked and,
if it is too large, the user is informed and the number of rows is adjusted to the array
maximum. We will show how to overcome this fixed-size restriction later in the chapter
when we introduce collections.

Within the Form1_Load event, we see the loop that actually transfers the data from
the DataSet into the arrays. This loop includes the following code:
 For Row = 0 To NumRows - 1 ' fill the array
 CompName(Row) = DsCompInfo1.CompInfo.Rows.Item(Row).Item("CompName")
 RateOfReturn(Row) = DsCompInfo1.CompInfo.Rows.Item(Row).Item("RateOfReturn")
 Next
Here we see how to access a specific value within a given row and column in the
DataSet. We start by getting the DataTable associated with the DataSet
(DsCompInfo1.CompInfo). Using this, we get a specific row from the Rows collection
(Rows.Item(Row)). Now that we have a row, we need to get the specific value from one
of the valid columns in each row (Item("CompName") or Item("RateOfReturn")). This is
a long statement but you can clearly see how the various objects are used in the
decomposition of the DataSet. Once the value from the DataSet is identified, it is stored
in the array in the element indicated by the variable Row.

Exercise 10.4. Modify Example 10.1 so that it computes the sum of the rates of return for
all companies and then displays the average (sum/count) rate of return using a MsgBox.
Exercise 10.5. Modify Example 10.1 so that it displays the name of the company with the
largest rate of return value.
Example 10.2 Sequentially Searching An Unordered Array

Searching an array involves checking the values of the array’s elements to see if a
certain value, called the target, exists within the array. The way we go through the
elements, that is, the order in which they are searched, determines the type of the search.

A Sequential search works by examining each element of the array individually
and in turn. The search begins at the first element, proceeds to the second element, then
the third, and so on, continuing until the program finds the target or comes to the end of
the array. Sequential search is sometimes also called linear search.

 For this sequential search example we use the two-dimensional array created by
the following statement:

Dim PriceTable(4,1) As Decimal
We populate the array with the values shown in Figure 10.9 in the form’s load

event. The values in the first column represent unique item numbers, and the values in the
second column represent corresponding prices. Thus, we interpret the values in row 0 to
mean that item number 324 has a price of $2.34.

 Let us use our search procedure in the following way: given an item number, we
want to know the corresponding price. The target for our search will be an item number,
and once we locate the target we can easily retrieve its price.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 12
Learning Programming Using VISUAL BASIC .NET

When the values in an array are in ascending (smallest to largest) or

descending (largest to smallest) order, we say the array is ordered. Otherwise, we say
the array is unordered. The values in Figure 10.9 are unordered.

<insert old figure 9.14 – adjust index values to 0>
Figure 10.9 A two-dimensional array for testing search techniques

Our sequential search uses a simple loop.
For rows 0 To the last row
 If the item number in column zero of the current row equals the target Then
 we found a match; remember the row number and exit the loop
 Else
 do nothing; let loop continue with next iteration
 End If
Next row
If we reached the end of the array Then
 conclude that the item we are searching for does not exist
End If

We write our solution in the form of click event. The search begins in row 0 of the
array. If it finds the target, it sets FoundLoc equal to the row number where the target is
located; if the target does not exist, FoundLoc will still be equal to its initial value -1.

Figure 10.10 shows the code for the form’s load event and the button’s click event.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 13
Learning Programming Using VISUAL BASIC .NET

Figure 10.10 Code for the sequential search in Example 10.2

Finally, it is possible to define and initialize an array just as one can do with simple

variables. For example, consider the following two Visual Basic .NET statements:
 Dim a() As Integer = {1, 2, 3, 4, 5}

 Dim b(,) As Integer = {{1, 2}, {3, 4}, {5, 6}}
In the first statement, the array “a” is declared as an Integer type and stores the five
values shown in the braces. The array’s legal index values range from a(0) to a(4) (a total
of 5 values.) In the second statement, a two-dimensional array is declared and initialized
to the values shown in the braces. The inner set of braces each represents a new row in
the array “b”. Thus the array has three rows and two columns. Sample values from this
array include b(0,0) = 1, b(1,1) = 4, and b(2,0) = 5. Note that in both examples, the actual
size of the array is determined by the number of values shown after the equal sign. It is
not possible to use this technique to declare an array that has more cells than the number
of given values.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 14
Learning Programming Using VISUAL BASIC .NET

As you can see, arrays provide a powerful way of representing data. There are

numerous algorithms that can be programmed using arrays including more complex (and
faster) searches, and sorting data into ascending or descending order. In the past the
developer would often write this complex and hard to debug code. However, Visual
Basic .NET provides a number of specialized classes that make the job of working with
array-like structures much easier and more effective for the typical developer.

In the sections that follow we look at three of these classes, called collection
classes, because they are all members of the System.Collections namespace. We will
cover the ArrayList, SortedList, and Hashtable collections. In addition to these three
classes, there are a number of additional collection classes available within Visual Basic
.NET.
Exercise 10.6. Modify the data in Example 10.2 so that they are stored in the array in
order by product number. Then, using this new ordered data, modify the search so that it
will be more efficient if the user enters a nonexistent product number. By “more
efficient”, we mean it potentially goes through the loop fewer times.
10.3 THE ARRAYLIST COLLECTION

The ArrayList collection class is like a one-dimensional array in that it is
indexed using a zero-based indexing system. You can reference individual elements by
using a subscript just like with an array. What is different is the capacity of the ArrayList
– it provides a dynamic resizing ability. Its capacity (size) grows automatically as items
are added. Although it is limited to one dimension, each element can store references to
other objects so you could, for example, store a reference to another ArrayList object in
each element. This would give you the ability to simulation a multidimensional array.
Properties

The most common properties available to objects of the ArrayList class are shown
in Table 10.1

Table 10.1 Common Properties of the ArrayList Class
Property Action
Capacity Gets or sets the number of elements that the ArrayList can contain.
Count Gets the number of elements actually contained in the ArrayList.
Item Gets or sets the element at the specified index.

It is generally a good idea to leave the Capacity property alone. The ArrayList

object can manage this property very well and probably better than the developer. The
Count property tells you how many elements are actually being used in the ArrayList.
Because the indexing starts at zero, the legal index values are 0 … (Count-1). The Item
property is used to reference a specific element. For example, if you have an ArrayList
named CityName, you would reference element numbered 2 by saying:
 CityName.Item(2)
Methods

The most common methods available to objects of the ArrayList class are shown in
Table 10.2.

Table 10.2 Common Methods of the ArrayList Class
Method Behavior

3/15/02 Draft

Burrows & Langford – Chapter 10 page 15
Learning Programming Using VISUAL BASIC .NET

Add Adds an object to the end of the ArrayList.
BinarySearch Uses a binary search algorithm to locate a specific element in the

sorted ArrayList.
Clear Removes all elements from the ArrayList.
Contains Determines whether an element is in the ArrayList. Returns True or

False.
IndexOf Returns the zero-based index of the first occurrence of a value in the

ArrayList.
Insert Inserts an element into the ArrayList at the specified index.
Remove Removes the first occurrence of a specific object from the ArrayList.
RemoveAt Removes the element at the specified index of the ArrayList.
Reverse Reverses the order of the elements in the ArrayList.
Sort Sorts the elements in the ArrayList.
ToArray Copies the elements of the ArrayList to a new array.
TrimToSize Sets the capacity to the actual number of elements in the ArrayList.

The Add and Insert method are used to place new values into the ArrayList. Add

places elements at the end of the ArrayList while Insert places a new element at a specific
index value. When inserting, the element at the current index location and the elements
after this one are shifted down one location to make room for the inserted element.

Remove and RemoveAt remove elements from the ArrayList. RemoveAt takes an
index value and removes the element at that index location. Remove takes an object and
removes the first element storing that object. In Figure 10.11 you see a sample ArrayList
named Words. If you say Words.Remove(“Hello”), then the value at item 3 (“Hello”) would
be removed. Using the RemoveAt method, you would say Words.RemoveAt(3).

ArrayList Words

Item Value
0 "Good"
1 "Bad"
2 "Ugly"
3 "Hello"
4 "Goodbye"
5 "Candy"

Figure 10.11 A sample ArrayList named Words

Contains and IndexOf are similar to Remove and RemoveAt. Contains searches for
an occurrence of a value. Words.Contains(“Hello”) would return True. IndexOf returns the
actual index value. Words.IndexOf(“Hello”) returns 3.

The BinarySearch method performs a search of the ArrayList (that must first be
sorted using the Sort method). A binary search is a very fast search method (much
faster than the sequential search we saw in the previous section). In a binary search, you
start your search by checking the middle value (if you had 11 values, you would start by

3/15/02 Draft

Burrows & Langford – Chapter 10 page 16
Learning Programming Using VISUAL BASIC .NET

checking element 5 assuming the first element is numbered zero). If you find what you
are looking for you are done. However, if you do not find what you are looking for you
only need to search the top or bottom half of the ArrayList. This is because the data are
sorted. If your values are integers and they are sorted, and you are looking for the value
104, if you find the value 110 at location 5, you know that all values after location 5 are
greater than 110. Thus, the value you are searching for cannot be in locations 6 through
10 and you would eliminate those elements from any further searching. In the remaining
locations (0 through 4), you would again try the middle value and so on. The approach is
called a binary search because you keep reducing the search space by one half. This gets
you very quickly to the target location. If you have 1000 values, numbered 1 … 1000, the
locations you would search might be: 500, 250, 125, 62, 31, 15, etc. Note that after only 6
tries, you have limited the search area to only 7 locations out of 1,000.
Exercise 10.7. Explain why a binary search requires the data to be ordered (sorted) for it
to work?
Exercise 10.8. You are given the following list of numbers: 10, 20, 22, 34, 45, 46, 50, 66,
70, 78, 79, 80, 85, 92, and 98. Show how a binary search would work if you were
searching for the value 80. Show how a binary search would work if you were searching
for the value 21. How can you determine when to stop a binary search?
Example 10.3 Populating An ArrayList From a Database

In this example, we redo Example 10.1 except we use two ArrayLists instead of
arrays to store the data from the database table. This example demonstrates the dynamic
nature of the length of the ArrayList. Figure 10.12 shows the code for this example.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 17
Learning Programming Using VISUAL BASIC .NET

Figure 10.12 Code for Example 10.3

If you compare Figure 10.7 with Figure 10.12, you can first see that the variables
CompName and RateOfReturn are declared as new ArrayList objects in Figure 10.12.
Then, in Form1’s Load event, you see no need to check on the number of rows because
the capacity of the ArrayList is dynamic and will grow as needed. You also see the use of
the ArrayList’s Add method used within the loop that processes rows of the DataSet.

In the btnReviewArrayContents’s click event, you see that use of the Item property
to get access to the values stored within the ArrayList so that they may be transferred to
the ListBox component.
Example 10.4 Performing a Binary Search

As discussed previously, the binary search is a very fast search method, especially
when the number of items to be searched is large. In this example, we fill an ArrayList
with an unordered set of fruit names and then provide a search function. Figure 10.13
shows the application at run time. Notice that the original values displayed in the ListBox
component are not ordered, that the “Sort” button is enabled, and that the “Search” button
is not enabled. Since the binary search only works on an ordered list, the “Sort” button
must first be clicked, which causes the items in the ArrayList to be sorted and then used
to refill the ListBox. In addition, the Search button is enabled. Finally, as you can see in
the figure, a successful search indicates where the item was found (remember that we
start at item number zero).

<combine into one figure>

3/15/02 Draft

Burrows & Langford – Chapter 10 page 18
Learning Programming Using VISUAL BASIC .NET

Figure 10.13 Example 10.4 at run time

The code for the form’s Load event is shown in Figure 10.14. In this code, we fill
the ArrayList by just entering some fruit names. In reality the data would more likely
come from a database. Once the ArrayList is filled, the ListBox component is filled.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 19
Learning Programming Using VISUAL BASIC .NET

Figure 10.14 The form’s Load event for Example 10.4

The code for the sort is very simple. The Sort method for the ListArray is executed,
the ListBox is cleared and then refilled from the now sorted ArrayList, and the Search
button is enabled. The search code is also very straightforward. The BinarySearch
method is executed and returns an integer value indicating where it found the target
value. If this return value is less than zero, the search failed (the actual value that is
returned changes but a failed search will always return a negative number). Figure 10.15
shows the code for these two click events.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 20
Learning Programming Using VISUAL BASIC .NET

Figure 10.15 The click event code for Example 10.4

Exercise 10.9. Modify Example 10.4 so that the user can perform a search without first
sorting the array. What happens when you do this?
Example 10.5 Performing Multiple Result Search

In this example, we use the IndexOf method to find and count the number of times a
specific word exists in an ArrayList of words. Figure 10.16 shows the example at run
time.

Figure 10.16 Example 10.5 at run time

3/15/02 Draft

Burrows & Langford – Chapter 10 page 21
Learning Programming Using VISUAL BASIC .NET

The ArrayList is filled and then used to fill the ListBox component in the form’s

Load event like the previous examples. The code for the “Search” button is shown in
Figure 10.17. This code uses the IndexOf method very much like you might use the
InStr() function. It begins by searching for the target word starting in item zero. If this
search fails, it returns a value of –1. The searching continues as long as it succeeds
(return values >= 0). Each new search starts in the next item after where the previous
search succeeded.

Figure 10.17 The search code for Example 10.5

10.4 THE HASHTABLE COLLECTION

A Hashtable is a data structure that supports very fast access to information
based on a key field. For example, if you want to store information on students, you
could use the student number as the key field. Later, when you wanted to find
information on a particular student, you would specify the specific student number and
the Hashtable would find the corresponding information based on the value of the student
number.

The details of how a Hashtable works are rather complex and beyond the scope of
this text. However, the general concepts are fairly easy and worth discussing because
they help explain when a Hashtable makes sense to use and when it does not make sense.
The secret behind a Hashtable is something called the hash function. The hash function
takes a unique key field (part number, student number, social security number, etc.)
and transforms it into a new value called a bucket number. We can describe this
symbolically as:

 f(keyField) bucketNo
where f represents the hash function. There are a number of different hash functions but a
commonly used one uses the modulus (remainder) function. In this case, the key field is
divided by a constant and the remainder becomes the bucket number.

Once a bucket number is generated, the information related to the key field (like
student name, address, etc.) is stored in that bucket. Later, when you want to get the
information related to the key, you specify the key field, it is transformed into a bucket
number, and then you go to that bucket to find the information. Figure 10.18 shows
information on six students including their student numbers and names. The student
numbers are the key fields. The bucket number is calculated by dividing the student

3/15/02 Draft

Burrows & Langford – Chapter 10 page 22
Learning Programming Using VISUAL BASIC .NET

9

number by 11 and using the remainder. Note that if you divide a number by 11, the
remainders range from 0 to 10.

Student No Bucket No
(key) (key mod 11) Name
3243 9 Bill
1244 1 Sue
4362 6 Joe
8741 7 Jill
2351 8 Jose
9334 6 Alice

0 6 Alice 8
Joe Jose

1 7
Sue Jill Bill

…
Buckets

Figure 10.18 An example of hashing 6 students into buckets

You can see from Figure 10.18 that the values “hash” into buckets in a random
fashion. That is, there is no relationship between the order in the buckets and either the
original order of the student records or the value of the student numbers. This is an
important characteristic of the hashing process – it results in storing information in a
random order. Also note that two different keys can end up being hashed to the same
bucket (see bucket 6). The Hashtable has the ability to handle this.

Once the values are “hashed” to their buckets, performing the hashing process again
later provides accesses to the information. If you want to know the name of student
number 2351, you would apply the hash function to 2351, get bucket number 8, and go
directly to bucket 8 to find the name. Unlike search methods such as the binary search,
hashing can generally find the correct value in one or two tries.

As developers, we can use the Hashtable class available in Visual Basic .NET that
handles all the details for us. The important things we need to remember regarding the
use of Hashtables are:

* They support very fast access to a record given the key field.
* They store the records randomly in the buckets.
* It is difficult to access the entire set of records one after the other.
* You must use the exact key to access the value as you used when the value

was first stored. This means that searches for partial key matches, such as all
names that start with “Smi”, are not possible.

The last point above is a result of the randomization process. You can go through
the buckets sequentially but if you do, the order of the records will be random. For
example, the order of the records (by name) using the data in Figure 2.18 would be Sue,
Alice, Joe, Jill, Jose, and Bill.

Now that we have some understanding of the Hashtable and its operation, we turn
our attention to the common properties and methods.
Properties

3/15/02 Draft

Burrows & Langford – Chapter 10 page 23
Learning Programming Using VISUAL BASIC .NET

Recall that a Hashtable is based on the key field and value(s) associated with it.

Microsoft calls this the key/value pair. You can see the most common properties of the
Hashtable class in Table 10.3.

Table 10.3 Common Properties of the Hashtable Class
Property Action
Count Gets the number of key/value pairs contained in the Hashtable.
Item Gets or sets the value associated with the specified key.
Keys Gets a collection containing the keys in the Hashtable.
Values Gets a collection containing the values in the Hashtable.

The most commonly used property is the Item property. This property gets the

value associated with a key. Its syntax is:
 .Item(key)

For example, if you had a Hashtable named Students, and you wanted to get the value
associated with student number 1234, you would say:
 String Name = Students.Item(“1234”)
If there is a record in the Hashtable with a key matching “1234”, then the student’s name
would be returned (assuming that is what was stored in the first place). If there was no
record associated with the key “1234”, then the special value Nothing would be returned.
Typically you follow a reference to the Items property with an If statement to see what
happened as follows:
 String Name = Students.Item(“1234”)
 If Name = Nothing Then
 ‘ no match
 Else
 ‘ match
 End If
Methods

The common methods associated with the Hashtable class are described in Table
10.4.

Table 10.4 Common Methods of the Hashtable Class
Method Behavior
Add Adds an element with the specified key and value into the Hashtable.
Clear Removes all elements from the Hashtable.
Contains Determines whether the Hashtable contains a specific key. Returns

True or False
ContainsKey Determines whether the Hashtable contains a specific key. Returns

True or False
ContainsValue Determines whether the Hashtable contains a specific value. Returns

True or False
GetEnumerator Returns an enumerator that can iterate through the Hashtable.
Remove Removes the element with the specified key from the Hashtable.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 24
Learning Programming Using VISUAL BASIC .NET

The syntax of the Add method is:
 MyHashtable.Add(key, value)

where key is used in the hash function to find the bucket number and value is what you
want to associate with the key. The key cannot be anything – it must be from a class that
implements a method called the GetHashCode. Fortunately the String class implements
this method so we can use Strings for keys. Like the ArrayList, the capacity of the
Hashtable is dynamic – its capacity grows as needed as new elements are added.

If you want to get all the values from a Hashtable, you must use the GetEnumerator
method. This method returns an IDictionaryEnumerator object. The term “to enumerate”
can be defined as “to specify one after another”. An enumeration therefore is a list of
items one after the other. The IDictionaryEnumerator object is a list of all values one
after the other. The IDictionaryEnumerator class has a method called MoveNext. When
the enumeration is first created, the “current” item is pointing before the first item so you
have to execute the MoveNext once to get to the first item. After that, MoveNext moves
to the next items one after the other. The MoveNext method returns a Boolean value True
if the process of moving next finds a next record. It returns a Boolean value false if the
processing of moving next comes to the end of the list.

The IDictionaryEnumerator class has two properties, Key and Value that store the
key and the value of the current item. Assuming you have a Hashtable named Students,
you could get and process an enumeration with the following code:

 Dim AnEnumerator As IDictionaryEnumerator = Students.GetEnumerator
 While AnEnumerator.MoveNext
 ‘ here you could reference AnEnumerator.Key and AnEnumerator.Value
 End While
We now turn our attention to two examples that work with Hashtables.

Exercise 10.10. You are given the following set of student numbers: 2132, 4365,
3864,1649, 9342, 5477, 1992, 1032, 7493, and 2299. Create a set of buckets numbered 0
to 10 and store the student numbers into their proper bucket using the modulus-11
method (bucket number = remainder after dividing by 11). Then, using the value 5477,
show how you would find the student number in the set of buckets.
Example 10.6 Populating a Hashtable From a Database Table

We again return to our example that processes a database table and stores the
records in a Hashtable. The example also creates and displays an enumeration from the
Hashtable. Figure 10.19 shows Example 10.6 at run time. Note that the original order of
the records is different that the order shown in the enumeration. This should not surprise
you because of the randomization process associated with converting the key values into
bucket numbers.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 25
Learning Programming Using VISUAL BASIC .NET

Figure 10.19 Example 10.6 at run time

The code for the example is shown in Figure 10.20. In the Form’s Load event, you
can see the Add method using the company name as the key and rate of return as the
value. The loop that processes the DataSet also adds items to the ListBox lstOriginal. This
list box shows the items in the order they were stored in the DataSet.

Figure 10.20 Code for Example 10.6

The click event creates an enumerator and then goes through it item by item,
accessing the enumerator’s Key and Value properties to get and display the company
name (key) and rate of return (value).

3/15/02 Draft

Burrows & Langford – Chapter 10 page 26
Learning Programming Using VISUAL BASIC .NET

Exercise 10.11. Modify the code in Example 10.6 so that the values for the enumeration
are shown in alphabetic order based on the company name. The ListBox component
should just show the company names, not the rates of return. Consider using an ArrayList
object in your solution.
__
Example 10.7 Searching a Hashtable

The primary value of the Hashtable is its ability to find a record quickly given a key
value. This example demonstrates this feature. Figure 10.21 shows the example at run
time.

Figure 10.21 Example 10.7 at run time

The code for the click event for this example is shown in Figure 10.22 (the Form’s
Load event is the same as that in Example 10.6). You can see that this event gets the
value entered by the user in the TextBox component and uses this to access the Item
property to get the value associated with the key. The value returned is tested to see if it
is equal to “Nothing” to determine if the value entered by the user exists as a key in the
Hashtable.

Figure 10.22 Code for the click event for Example 10.7

__
Exercise 10.12. Modify Example 10.7 so that it computes the average rate of return (sum
of rates of return divided by the number of rates of return). Place this code in a new
Button’s click event.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 27
Learning Programming Using VISUAL BASIC .NET

Exercise 10.13. Modify Example 10.7 so that it finds and prints the company name for
the company with the largest rate of return. Place this code in a new Button’s click event.
ArrayList versus Hashtable

It is important to understand the main differences between the ArrayList and the
Hashtable. The ArrayList is an indexed-based data structure, that is, it uses indices
(subscripts) to access information it holds (just like a regular array). On the other
hand, the Hashtable is not index based; it stores information based on the value of a key
field.

With index-based data structures the developer has control of the order in which the
information is stored. It is also possible to go directly to an item based on the subscript
value. For example, you can go directly to item 10. The difficulty is you cannot go
directly to the item that stores information on product 3000 (unless product 3000 is stored
in element number 3000). This is why the ArrayList class includes the BinarySearch
method. You can, however, access items one after the other by using index values such as
0, 1, 2, ….

The key-based data structures like the Hashtable provide fast access to
information based on the key value. However, the developer has no control over the
order in which the values are stored. In addition, one must use an enumerator to access all
the values one after the other.

You need to keep these factors in mind when deciding what type of collection you
should use for your applications.

We now turn our attention to a third type of collection known as the SortedList. As
you will see, this data structure provides some of the advantages of both the index- and
key-based data structures.
10.5 THE SORTEDLIST COLLECTION

A SortedList is a hybrid between a Hashtable and an Array. When an element
is accessed by its key using the Item property, it behaves like a Hashtable. When an
element is accessed by its index using GetByIndex or SetByIndex, it behaves like an
Array.

A SortedList internally maintains two arrays to store the elements of the list; that is,
one array for the keys and another array for the associated values.

The elements of a SortedList are ordered by the value of the keys. A SortedList
does not allow duplicate keys. It is also not possible to sort the items of a SortedList by
its values.

Operations on a SortedList tend to be slower than operations on a Hashtable
because of the sorting. However, the SortedList offers more flexibility by allowing access
to the values either through the associated keys or through the indexes.
Properties

The common properties of the SortedList class are shown in Table 10.5.
Table 10.5 Common Properties of the SortedList Class

Property Action
Count Gets the number of elements contained in the SortedList.
Item Gets and sets the value associated with a specific key in the SortedList.
Keys Gets the keys in the SortedList as an ICollection.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 28
Learning Programming Using VISUAL BASIC .NET

Values Gets the values in the SortedList as an ICollection.

As with the Hashtable, the Item property can be used to get a specific value based

on value of the key. The syntax is
 .Item(key)

If there is an item matching the key, the value associated with that item is returned,
otherwise Nothing is returned.
Methods

The commonly used methods of the SortedList class are shown in Table 10.6.
Table 10.6 Common Methods of the SortedList Class

Method Behavior
Add Adds an element with the specified key and value to the SortedList.
Clear Removes all elements from the SortedList.
ContainsKey Determines whether the SortedList contains a specific key.
ContainsValue Determines whether the SortedList contains a specific value.
GetByIndex Gets the value at the specified index of the SortedList.
GetEnumerator Returns an IDictionaryEnumerator that can iterate through the

SortedList.
GetKey Gets the key at the specified index of the SortedList.
IndexOfKey Returns the zero-based index of the specified key in the SortedList.
IndexOfValue Returns the zero-based index of the first occurrence of the specified

value in the SortedList.
Remove Removes the element with the specified key from SortedList.
RemoveAt Removes the element at the specified index of SortedList.
SetByIndex Replaces the value at a specific index in the SortedList.
TrimToSize Sets the capacity to the actual number of elements in the SortedList.

As you can see from the list of methods, there are some that are index-based, like

those found in Table 10.2 for the ArrayList and others that are key-based, like those
found in Table 10.4 for the Hashtable. This reinforces the idea that the SortedList is both
an index- and key-based data structure.

The GetKey and GetByIndex are the primary methods used to get the key and value
at a particular index location. Both require you to supply an index value.

The Add method is similar to the Hashtable’s Add method, using both a key and a
value. However, unlike the Hashtable’s Add method, the key does not have to belong to a
class that implements the GetHashCode method. This means that it is somewhat more
flexible as far as keys are concerned. Like both the ArrayList and Hashtable, the capacity
of the SortedList is dynamic and grows as new elements are added.

The SortedList class also includes a GetEnumerator method. Once you get the
enumeration, you process it like was described in Section 10.4.
Example 10.8 Populating a SortedList From a Database Table

3/15/02 Draft

Burrows & Langford – Chapter 10 page 29
Learning Programming Using VISUAL BASIC .NET

We return a final time to our example that populates a collection; in this case we

populate a SortedList. Figure 10.23 shows the example at run time. You can see that in
addition to populating the SortedList, an enumeration is created and displayed and the
SortedList is displayed by index. You can see that both enumeration and indexed display
are ordered by the key, which is the company name in this case.

Figure 10.23 Example 10.8 at run time

The code for the Form Load event is shown in Figure 10.24. Except for the
declaration of the SortedList:

 Dim ROR As New SortedList()
this code is identical to the Form Load event for the Hashtable in Example 10.6. That is,
the Add method looks the same; it is only different in its internal operation.

Figure 10.24 Code for Example 10.8’s Form Load event

The code for the two “display” methods is shown in Figure 10.25. The code that
shows the enumeration is unchanged from the Hashtable example. This is because both
are based on an enumerator and once you have an enumerator, it is processed the same
way regardless of where it came from. The only difference is the order of the items in the
enumerator due to the random nature of the Hashtable and sorted nature of the SortedList.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 30
Learning Programming Using VISUAL BASIC .NET

Figure 10.25 Code for the two click events in Example 10.8

In Figure 10.25, the ShowByIndex code uses an index r to go through the
SortedList based on the index value. This code uses GetKey(r) and GetByIndex(r)
methods to access the key and value pair for element r.

Example 10.9 Finding Average Rate of Return

In this example we read the company rate of return data from the database and store
it into a SortedList. We then go through the SortedList and compute the average rate of
return. Finally we go back through the SortedList and place the company names of the
companyies whose rate of return exceeds the average into a ListBox. Figure 10.26 shows
Example 10.9 at run time.

Figure 10.26 Example 10.9 at run time

The Form’s Load event is identical to that in Example 10.8. The click event that
computes the average and fills the list box is shown in Figure 10.27. Note that this code
implements the pseudocode discussed in Section 10.1. It first goes through the SortedList
and finds the sum of the ROR values. It then calculates the average ROR. Finally, it goes
through the SortedList a second time comparing each company’s ROR with the average
and adding the company name to a ListBox for those whose ROR exceeds the average.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 31
Learning Programming Using VISUAL BASIC .NET

Figure 10.27 Code for the Example 10.9’s click event

Exercise 10.14. Modify Example 10.9 so that it finds and prints the company name for
the company with the largest rate of return. Place this code in a new Button’s click event.
10.6 PROJECT 11: ORDER ENTRY APPLICATION
Description of the Application

Note: In addition to using arrays, this project also introduces additional features
associated with the DataSet and DataGrid controls.

This project simulates an order entry system. It displays a list of products and
provides the user with the ability to build an order by choosing products from the list.
The user can display the contents of their order at any time.

The main user interface for the project is shown in Figure 10.28. The form shows a
list of products. The user may select any product in this list and then click on the Buy
button to add the product to the order.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 32
Learning Programming Using VISUAL BASIC .NET

Figure 10.28 Main form for Project 11

When the user clicks on the Buy button, a new dialog box is displayed that asks the
user for a quantity. This dialog box is shown in Figure 10.29. The user must enter a value
number for the quantity. If they do not do this, then an error dialog is displayed. This
error dialog is also shown in Figure 10.29.

<combine into one figure>

Figure 10.29 Purchase dialog box and error dialog if an invalid quantity value

entered by user
In this version of the project (there is a more complex version in the Comprehensive

Projects Section), the user cannot order the same product more than one time. If they try
to do so, an error message, shown in Figure 10.30, is displayed.

Figure 10.30 Error dialog if a product is already in the order

The user can click on the “Show Order” button at any time. When clicked, the
current products that have been ordered are displayed. Figure 10.31 shows an example of
this display.

Figure 10.31 The order details dialog box

Design of the Application

3/15/02 Draft

Burrows & Langford – Chapter 10 page 33
Learning Programming Using VISUAL BASIC .NET

This is a challenging project because it incorporates material from Chapter 7 and 8

as well as some new material. References to relevant material in prior chapters are made
throughout the following discussion. It is likely that you will have to review that material.

The overall design of this project involves a database containing product
information that is used to populate the DataGrid component on the main form. When the
“Buy” button is clicked, there needs to be a way of recording the product and its quantity.
This is necessary because the product information for ordered products must be saved for
display purposes on the Order Details dialog box. The information on this dialog box is
displayed using a ListView component.

The database for this project is an Access database named Proj11.mdb. This
database contains a single table named Product. The design information for this table is
shown in Figure 10.32.

Figure 10.32 The Product table in the Proj11.mdb database

This table is used to populate the DataGrid component. A connection, data adaptor,
and dataset must be created in order to do this. The actual code should be placed in the
Form’s Load event so that the product information is displayed when the application first
starts.

When the user clicks on the “Buy” button, there must be a way to determine which
product was selected at that time. This can be done by first finding the row number of the
current cell and then using that information to get the value of the Product Number for
the product in this row. You can find the current row by using the DataGrid’s CurrentCell
and RowNumber properties. Assuming you have a DataGrid named grdProducts, the
code would be:
 Dim Row As Integer = grdProducts.CurrentCell.RowNumber

Once you have the row number of the current row, you can get the value of any cell
within that row using the DataGrid’s Item property. Since the Product Number is in the
first column of the DataGrid, its column number is zero. The code to get the value out of
the row identified by the variable Row, column zero, is:

Dim ProdNo As String = grdProducts.Item(Row, 0)
At this point the user needs to be asked for the quantity of the product he wants to

order. A new form must be displayed to do this (see Figure 10.29). Before the form is
displayed, the Product Number must be stored in a Label component on the “Buy” form.
This can be done by creating a new method in the “Buy” form named something like
SetProdNo, which stores a String value into the label. The following is a sample of what
might be created:

 Public Sub SetProdNo(ByVal ProdNo As String)
 lblProdNo.Text = ProdNo

3/15/02 Draft

Burrows & Langford – Chapter 10 page 34
Learning Programming Using VISUAL BASIC .NET

End Sub

This method can first be called, and then the “Buy” form can be shown using the
ShowDialog method. This should be done from the main form code using statements
such as:

objBuyForm.SetProdNo(ProdNo)
 objBuyForm.ShowDialog()
Within the “Buy” dialog box, code must be written that provides access to the

quantity the user entered as well as which button, OK or Cancel, was pressed. You should
review Project 9 where this type of communication is discussed in detail.

When the OK button on the “Buy” dialog box is clicked, the Product Number and
Quantity Ordered should be known. The question to address is how to store this
information for later use when the user wants to show the current order details. There are
several options. One option would be to write the information to a database table (not the
Product table in the Proj11 database). Another option would be to add the information to
an array. The later option is the one we will use here.

The next questions are: what should be stored in that array and what type of array
should be used? To answer the first question, we will just store the Product Number and
Quantity in the array. If we have the Product Number, we can go to the database and get
the other information (Description and Price). This will simplify what needs to be stored
in the array. We have several choices for the type of array to use. One choice is a two-
dimensional array such as the one shown in Figure 10.33. This array has two columns;
the first column stores the Product Number and the second column stores the Quantity.
The problem with this option is determining how many rows to dimension. If we create
too many, we waste storage because many rows will be unused. On the other hand, if we
create too few, then the user will be limited on the number of products that can be
ordered. This is certainly not good.

"Order" array
ProdNo Qty

0 1
0 10101 3
1 22222 2
2 47750 5
3
.
.
.
N

Figure 10.33 Using a traditional two-dimensional array

An alternative is to use one of the array collection classes. The advantage of this is
the fact that their capacity is unbounded and can be as large as needed. For this project
we will use a SortedList collection. This allows us to use the Product Number as the key
and Quantity as the data item or value. We will be able to access an entry in the
SortedList by using either the Product Number or by index. In this way we can access by

3/15/02 Draft

Burrows & Langford – Chapter 10 page 35
Learning Programming Using VISUAL BASIC .NET

index to get each value, one at a time. Later, if we need to access a specific product, for
example, to update a quantity value, we can use key access.

Assume we have a SortedList named ShoppingCart. Once the user has finished
entering the quantity value in the “Buy” dialog box, we can first check to see if the OK
button was clicked and, if it was, add a new entry to the SortedList that includes the
Product Number and Quantity. The code below shows how this might be done.

 If objBuyForm.GetBtnStatus = objBuyForm.OK Then
 Qty = objBuyForm.GetQty
 ShoppingCart.Add(ProdNo, Qty)
 Else
 Exit Sub

 End If
This code makes a reference to the symbolic constant objBuyForm.OK. This symbolic
constant is defined in the “Buy” form using a Public statement:
 Public Const OK = 1

Since we are using a SortedList, we cannot add more than one entry that has a
specific Product Number. As we saw earlier, the code needs to detect this and handle the
exception that would be thrown if one tried to add a duplicate Product Number.

We turn our attention to displaying the current order status. A separate form is used
to display the information (see Figure 10.31). This form includes a ListView component
that must be populated. The easiest way to do this is to do it from the main form since the
main form has access to both the shopping cart SortedList as well as the DataSet
component. The code segment below shows code for the “Show Order” button:
 Dim objOrderForm As New frmOrder()
 populateOrderFormListView(objOrderForm)
 objOrderForm.ShowDialog()
 objOrderForm.Close()
The populateOrderFormListView method is part of the main form’s code. It uses the
ShoppingCart collection, plus information from the Product table in the DataSet, to add
new rows to the ListView component that is stored on the order form.

The populateOrderFormListView method needs to perform the following steps:
1. Set up the ListView (see Chapter 7).

a. Set the view type.
b. Get the ColumnHeaderCollection.
c. Set up the column headings.

2. Perform the steps below for each item in the ShoppingCart collection (For N = 0
To ShoppingCart.Count – 1).

a. Get the product number from location N of the ShoppingCart
collection.

b. Add a new row with the current product number in the first cell to the
ListView component on the order form.

c. Get the row from the DataSet that matches the current product number.
d. Extract the description and price from the row retrieved in step c.
e. Add subitems to the current ListView row including the description,

price, and quantity (from the ShoppingCart).

3/15/02 Draft

Burrows & Langford – Chapter 10 page 36
Learning Programming Using VISUAL BASIC .NET

Step 1 above should be fairly straightforward – review the material in Section 7.7

on the ListView component.
Step 2 needs some explanation. Getting the product number for item N of the

ShoppingCart is done using the GetKey method. Using this value to add a new row to the
ListView component is done using the Add method for the ListView component’s Items
property. Remember that if you want to access a component on another form, you need to
prefix the component’s name with the form name such as:

 Row = objfrmOrder.lvwOrder.Items.Add(ProdNo)
where Row is declared as a ListViewItem object.

Step c requires accessing the row from the DataSet component that matches the
current product number. The DataSet class’s Table property has a Select method. The
Select method selects a specific record or records based on a “filter”, which defines the
condition that must be met to choose a row. The following code segment shows how
this is done.
 Dim Filter As String = "ProductNo = " & ShoppingCart.GetKey(N)
 Dim DBRow As DataRow() = DsProducts.Tables("Product").Select(Filter)

Since product numbers are unique in the DataSet, there will only be one row (row
number 0) returned in this case. Step d says to extract a value from the row. This can be
done using Item property of the DataRow class.

Dim Desc As String = DBRow(0).Item("Description")
Finally the values from the DataRow, as well as the quantity from the

ShoppingCart, must be added as subitems to the row of the ListView using the Add
method for the SubItems class.

Row.SubItems.Add(Desc)
Construction of the Application

After creating a new Windows Application, you need to add two new forms – one
for obtaining the quantity the user wants to buy and another to display the current order
status. A connection to the Access database needs to be set up using the Server Explorer.
An OleDbDataAdapter with access to all the records in the Product table needs to be
added to the main form. A DataSet also needs to be added to the main form. Once this is
done, a DataGrid can be added to the main form and connected to the data adapter and
data set.

The properties that should be set for the DataGrid (besides the DataSource and
DataMember properties) include setting ReadOnly to True and Changing
PreferredColumnWidth and PreferredHeaderWidth to appropriate values. The sample
solution shown here used 111 and 30 respectively.

In Figure 10.28 you can see that the DataGrid is formatted with a variety of colors
and fonts. The DataGrid provides an Auto Format feature that gives you some predefined
options. Figure 10.34 shows where this feature is located in the Properties Window

3/15/02 Draft

Burrows & Langford – Chapter 10 page 37
Learning Programming Using VISUAL BASIC .NET

t

W
Figure

T
comm
needs
Auto Forma

Figure 10.34 The Auto Format link in the Properties Window

hen you click on this link, an Add Format dialog box like the one shown in
 10.35 is displayed. The solution shown here used the “Colorful 4” format.

Figure 10.35 The Formats defined for the DataGrid

here is not much left besides the code. Remember that the main form needs to
unicate with both the “Buy” form and the “Order Details” form. The main form
to tell the Buy form the product number and the Buy form needs to make available

3/15/02 Draft

Burrows & Langford – Chapter 10 page 38
Learning Programming Using VISUAL BASIC .NET

to the main form the quantity entered and the button clicked. The main form has to tell
the Order Details form the products ordered (ShoppingCart) so that it knows what to add
to the ListView component. Project 9 includes details on this type of communication.
Chapter Summary
1. An array is a variable that stores more than a single value. Arrays make it possible

to solve many problems that cannot be solved with simple variables.
2. Like simple variables, arrays need to be declared using a Dim, Static, or Public

statement. However, in addition to establishing the variable’s name, type, and
scope, for arrays the declaration statement also establishes the number of
dimensions (the dimensionality) and the upper limits on the subscript for each
dimension.

3. To access an element of an array, the programmer specifies both the array name and
specific subscript values. Typically, subscripts are specified using variables or more
complex expressions containing variables. For example, in the reference PayRate(K)
the current value of K determines which element of the array PayRate is being
accessed.

4. As with simple variables, the declaration statement that creates an array initializes
all of its elements to zero or the zero-length string. Thus, it is typical for a program
to first store data in an array, and then use the array to process the data. Storing data
in an array is referred to as populating the array. Business applications typically
obtain the data to populate an array from a database. The data sometimes come
from another, previously populated array.

5. An ArrayList collection is an index-based data structure like an array. However, it
does not have a fixed capacity. The capacity of an ArrayList is dynamic and grows
as new items are added. The ArrayList class includes methods to sort the elements
of the ArrayList (Sort) and search for a specific element (BinarySearch).

6. A Hashtable collection is a key-based data structure that, unlike an array, uses a key
field to store and retrieve elements. This provides the ability to access a specific
element very quickly without having to do a slow search operation. To access all
the elements of the Hashtable, the class provides a method to generate an
enumeration. The enumeration allows processing of the element one by one but the
order of the elements is random (due to the randomizing effect of hashing).

7. A SortedList provides both index-based and key-based access to its elements. Thus,
it shares the characteristics of both the ArrayList and Hashtable. Accessing an
element via an index requires use of the GetByIndex method. Accessing an element
by key is done using the Item property. The sorted list also provides a method to
generate an enumeration. The order of the elements in the enumeration is based on
the sorted order of the key.

3/15/02 Draft

Burrows & Langford – Chapter 10 page 39
Learning Programming Using VISUAL BASIC .NET

Key Terms
array Hashtable sequential search
ArrayList index value simple variable
binary search indexed variable SortedList
collection indexed-based data structure subscript
dimensionality key-based data structure subscript bounds
element linear search subscripted variable
enumeration matrix table
filter multidimensional array unordered array
hash function one-dimensional array
hashing process ordered array

End-of-Chapter Problems
1. Why would an array be used instead of a database? When is it better to use a

database than an array? Can they be used together? Why?
2. Explain the difference between an array and a collection. Which structures can hold

references to other objects: an array, a collection, or both?
3. What are the advantages of using an array, an ArrayList, or a SortedList? Which of

the three types are index-based data structures, key-based data structures, or both?
Give an example where each array type (an array, an ArrayList, and a SortedList)
would best be used to solve a problem.

4. What is the purpose of a hash table? If you wanted to step through a hash table one
element at a time, how would you do it?

5. If a multi-dimensional array was defined with the "Dim myArray(2,30) As Integer"
statement, how many total elements would the array contain? How many rows?
How many columns? What are the index numbers of the first row and the first
column of this array?

6. If you had to store the ordering information for football jerseys (price, jersey
number, and player position), how could three arrays be coordinated to solve the
problem? Why not use one array?

7. Describe how a binary search can be used on an ArrayList to locate a value. Why is
using a binary search must faster than using index numbers to move through the list
testing one element at a time?

8. How are new values added to an existing ArrayList? Provide an example of adding
an item to an ArrayList and one of inserting an item before the first element. How
can you determine the number of elements in an ArrayList?

9. In an ArrayList, SortedList, or Hashtable, can you use the available search functions
to locate a partial string such as all of the string values ending with the ".edu"
suffix? Can a database be searched to look for a partial value in a field?

10. What is the function of a database filter? How is a filter used with a database? Is
there a SQL language statement that you learned in chapter 8 that could perform a
similar function?

Programming Problems
1. Write an application that creates a one dimensional array and then copies the items

contained in the array into a SortedList object and a Hashtable. Start by placing

3/15/02 Draft

Burrows & Langford – Chapter 10 page 40
Learning Programming Using VISUAL BASIC .NET

three list boxes to display the primary array, the ArrayList, and the Hashtable. Then
create two buttons: one that fills the list boxes with the current contents of the
arrays and the second to copy the items from the first array into the second two.

The form load event should populate a list of items (such as states, names,
foreign language terms, etc.) into the primary array. Transfer all of the values from
the array into both the SortedList and the Hashtable.

2. Each telephone keypad has letters that correspond to the various numbers. While
advertisers use these letters extensively, you can use an array to enter text to figure
out a when you're getting a new phone number. Create an application that converts
a text string input in a text box into a telephone number. Define two arrays: a
letterArray (as an ArrayList so you can use the IndexOf() function) to hold the
twenty-four letters on the phone (the letters 'Q' and 'Z' aren't included) and a
numberArray that relates the keypad number to each element in the letterArray. Use
a TextBox for input, a convert button to activate the conversion, and a label to
receive the converted number. For the conversion algorithm you will need to use
the Mid() function to retrieve the individual letters from the string and the
IndexOf() function on the ArrayList to determine which element that letter
represents. Use the following keypad table as a reference for defining the
letter/number relation in your arrays:

Letters Number
ABC 2
DEF 3
GHI 4
JKL 5
MNO 6
PRS 7
TUV 8
WXY 9

3. In this chapter, you learned how to use the Filter option on a DataSet to return just

the data that you want. Create an application that uses a filter to access the stores
table of the pubs database and select only the stores that are located in Washington
(Dim Filter As String = "state = 'WA'"). Fill a ListBox using the DataRow object
with the 'stor_name' field of all the stores that match the filter criteria.

4. One of the common uses of multi-dimensional arrays in a program is for internal
calculation to perform the same types of functions needed in spreadsheets.
Tabulating rows and columns of figures is simple and fast using arrays to store the
data. Create an application that generates two simple reports: Total education
spending by year (in thousands) and Average education spending by year (in
thousands). You will need to define a two-dimension array (4 x 11) to hold the
figures shown in the table below. They are the educational budget amounts from the
U.S. Office of Management and Budget for the even years of the 1980s. The figures
are broken down into 11 divisions. Provide the users with two ComboBox controls
so they may select the year and the report to be displayed. Then allow the user to
click a button that will run the computations and display the results in a label. You

3/15/02 Draft

Burrows & Langford – Chapter 10 page 41
Learning Programming Using VISUAL BASIC .NET

can use the SelectedIndex of the year ComboBox to select the correct column in the
array.

 1980 1982 1984 1986
Elementary and
secondary

$4,239,022 $3,802,234 $4,294,269 $4,447,153

School
assistance

$812,873 $457,227 $608,791 $677,055

Handicapped
education

$1,555,253 $2,023,536 $2,416,799 $2,573,399

Vocational/adult
programs

$1,153,743 $751,118 $954,320 $1,016,302

Postsecondary
assistance

$5,108,534 $6,584,012 $7,478,401 $8,932,803

Direct
postsecondary
aid

$277,068 $284,467 $311,221 $294,681

Higher
education
facilities

$268,493 $449,191 $216,893 $206,017

Other higher
education
programs

$34,927 $38,226 $82,410 $64,032

Public library
services

$101,218 $80,074 $107,895 $117,998

Special
institutions

$273,860 $251,570 $249,610 $255,297

Department
accounts

$277,174 $347,943 $352,089 $355,944

5. One of the important features of arrays is their ability to store lists of other objects.

As mentioned in the chapter, these objects can even be other arrays. Create three
ArrayList objects each that contain three elements for a total of nine items (Orange,
Apple, Peach, Beef, Fish, Chicken, Water, Milk, and Soda). Create a summary
ArrayList with three elements: the three other ArrayLists. Make an application that
uses a loop to move through the summary ArrayList and a nested loop to place all
of the text of the individual array items from the secondary array to display to a list
box. Hint: It is probably easiest to create a temporary ArrayList inside the main
loop that holds the current array and is used by the nested loop (tempArray =
myALSummary(i)).

6. Create an application with a hash table of a list of individuals (social security
number and name). Use the string containing social security numbers as the key
fields. Allow the user to enter a key field and click the search button. If the entered
value is found, display the name of the user with that SSN. Otherwise, show a
display that the key field was not found. Hint: You can use the Masked Edit control
to enforce the standard SSN format to prevent entry errors. The control is available

3/15/02 Draft

Burrows & Langford – Chapter 10 page 42
Learning Programming Using VISUAL BASIC .NET

3/15/02 Draft

by right-clicking the Toolbox, selecting the Customized Toolbox option, and adding
the Microsoft Masked Edit Control.

	Property
	Action
	Behavior

