
Guide To Data Modeling

StudentMajor

Advisor

Major = { MajorCode + Desc }

Student = { StudentNo + Name + Address }

Advisor = { StudentNo + MajorCode + Advisor }

Major Table Advisor Table
MajorCode Desc StudentNo MajorCode Advisor

BA Business 6634413 BA Franklin
ENG Engineering 6634413 PHY Leung
PHY Physics 8743232 BA Franklin

9659844 BA Adams
Student Table 9659844 ENG Quale
StudentNo Name Address 9659844 PHY Olsen
6634413 Burrows 123 Main
8743232 Brown 710 Terry
8851000 Welch 4610 17th
9243255 Jones 1701 46th
9659844 Smith 833 Talbert

William E. Burrows
Copyright ©1999 William E. Burrows

Guide To Data Modeling

Table of Contents

Entity-Relationship Diagrams
Entities and Attributes 1
Relationships 2
Cardinality 2

One-to-One 2
One-to-Many 3
Many-to-Many 4

Alternative ED Diagram Symbols 5
Example ER Diagram 6

Converting ER Diagrams to Relational Tables: Record Structure Diagrams
Relational Databases 8
Identifying Key Fields 9
Data Notation 12
ER Diagram With a One-to-One Relationship 12
ER Diagram With a One-to-Many Relationship 14
ER Diagram With a Many-to-Many Relationship 15

Correlation Tables 16
Associative Objects 17
Comparison of Correlation Tables and Associative Objects 18

RSD and Relational Databases 19
Example Conversion of An ER Diagram 20

Analyzing RSDs for Problems
Overview 22
Functional Dependencies 22

Full and Partial Dependencies 23
Transitive Dependencies 25

Repeating Fields 26
Summary 27
Example RSD With Problems 27

Problem Set 30

Problem-Set Solutions 39

Copyright ©1999 William E. Burrows

Entity-Relationship (ER) Diagrams

An Entity-Relationship (ER) diagram provides a graphical model of the things that the organiza-
tion deals with (entities) and how these things are related to one another (relationships). An ER
diagram is a high-level, logical model used by both end users and database designers to docu-
ment the data requirements of an organization. The model is classified as “high-level” because it
does not require detailed information about the data. It is called a “logical model” because it pro-
vides a conceptual understanding of the data and as opposed to actually defining the way the data
will be stored in a database (which is referred to as the “physical” model).

Entities and Attributes

Entities are things. They can be tangible things, like a classroom or a part, or they can be intan-
gible things, like a purchase or a meeting. Attributes (or fields) represent facts about an entity.
For example, an Employee entity might be described by social security number, name, and ad-
dress attributes.

Entities are described by at least two attributes. One attribute is a unique identifier (often
referred to as the key field). The value of this attribute must be unique for each occurrence of an
entity. For example, if there were dozens of employees, then there would be no duplicate values
of the key field for any of the employees. In addition to the key field, there must be at least one
other attribute that provides a fact about an entity. That is, an entity would never be described
solely by a key field.

As an example, we might have an entity called Customer. Attributes describing Customer
might include a customer number as the key field (to allow us to uniquely identify a customer)
plus other facts about a customer such as name, address, and age.

We use a rectangle enclosing the entity name to graphically represent an entity on an ER
diagram. Figure 1 shows three entities.

Figure 1
Entities are shown
as named rectan-
gles on an ER dia-
gram.

Customer Room Part

Note that the symbol shows only the name of the entity and does not include the attributes.
Some data modeling methodologies also include the names of attributes but we will not use that
convention here. Also be aware that an entity represents a many of the actual thing, e.g., Cus-
tomer represents many different actual customers (sometimes referred to as instances).

Relationships

Different entities can be related to one another. For example, in a university, the Student and the
Course entities are related because students “enroll in” courses. A database must store not only
information about the Student and Course entities, but it must also store the relationship between
Student and Course. For example, the user of the database should be able to ask for a list of
courses taken by a specific student or ask for a list of students currently enrolled in a specific
course.

The relationship between a Student and Course is called a binary relationship because it re-
lates to two entities. A relationship between three entities is called a ternary relationship; when

Page 2
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

four or more entities participate in a relationship, it is generally called an n-ary relationship. We
restrict our discussion here to binary relationships but you should be aware that more complex
relationships exist.

Cardinality

When performing data modeling in preparation for designing a database, knowing that two enti-
ties are related to each other is not sufficient. In addition to knowing that they are related, the
cardinality of the relationship must also be documented. Cardinality is the numerical mapping
between entities. This describes “how many” of one entity are related to “how many” of another
entity. For example, we can say that a Student entity is related to many Course entities and a
Course entity is related to many Student entities.

 Notice that cardinality has a “directional” meaning. That is, when we say that a Student en-
tity is related to many Course entities, we know nothing about the relationship in the other direc-
tion (Course to Student). For this reason, an ER diagram must document (and be read in) both
directions.

We will investigate three types of cardinality—one-to-one, one-to-many, and many-to-many.
Each is discussed in detail below.

One-to-One (1:1)

An example of a one-to-one relationship might be the relationship between a Company Car entity
and an Employee entity. An employee is assigned one company car and a company car is as-
signed to one employee. Note that this relationship might not be true in all companies, that is, in
some companies an employee might be assigned to several company cars and/or a company car
could be assigned to several employees. It is important to model whatever relationships and car-
dinality are true for the particular organization under study.

We show a one-to-one relationship on an ER diagram by connecting the two entities with a
straight line. Figure 2 shows an example for the Employee and Company Car relationship.

Page 3
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 2
A one-to-one rela-
tionship between
two entities.

Employee Company Car

You read this diagram in both directions. Starting with Employee, you say that “an Em-
ployee is related to one Company Car” and starting at Company Car, you say that “a Company
Car is related to one Employee.”

One-to-Many (1:N)

One-to-many relationships are very common. For example, we might have a relationship between
an Instructor entity and a Course entity. We might find that an instructor is related to (teaches)
several courses while each course has a single instructor. All that is necessary for the relationship
to be “many” is for an entity to be related to more than one of another entity.

Again note that this relationship—an instructor is related to several courses, while each
course has a single instructor—may not be true at all schools. For example, the relationship does
not support team teaching where several instructors teach a course. Again, the relationship that is
modeled should reflect the reality of the organization.

We show a one-to-many relationship on an ER diagram by connecting the two entities with a
straight line and place a “fork” at the “many” end. Figure 3 shows an example for the Instructor
and Course relationship.

Figure 3
A one-to-many
relationship be-
tween two entities.

Instructor Course

You read this diagram by starting at either entity and following the line to the other entity.
As you encounter your destination entity, you note the cardinality. Thus, starting at the Instructor
entity, you follow the line to the Course entity and note the “many” fork symbol. Thus you read:
“Instructor is related to many Courses”. Starting with the Course entity and going the other di-
rection, you encounter the Instructor entity and observe the lack of a fork (meaning “one”). You
read: “Course is related to one Instructor.”

As a standard convention in ER diagrams, always write the singular form of the entity and
let the relationship’s cardinality attach the plural interpretation if appropriate.

Page 4
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Many-to-Many (N:M)

Using the Instructor-Course example, what if we really wanted to model the situation where sev-
eral instructors taught a course? We would need to model a many-to-many relationship to do this.
Thus, a course could be taught by many instructors and an instructor could teach many courses.

Figure 4 shows how to construct the Instructor-Course many-to-many relationship on an ER
diagram.

Figure 4
A many-to-many
relationship be-
tween two entities.

Instructor Course

Regardless of which entity you start at, when you encounter your destination entity, you also
encounter a “many” fork symbol. Thus, you say that “an Instructor is related to many Courses”
and “a Course is related to many Instructors.”

Sometimes additional information exists that adds information about a many-to-many rela-
tionship. For example, consider the ER diagram in Figure 5.

Figure 5
A many-to-many
relationship be-
tween Student and
Course entities.

Student Course

Here the Student entity is related to many Course entities and vice versa. What if we wanted to
store the grade a student received on each course? Where would we store this attribute? It is not
really a fact about a student. If I told you the student’s name and asked you for the grade, you
would ask me to tell you the course identifier for the course I was interested in. For the same rea-
son, the grade is not a fact about a course. If I told you the course identifier, you would ask me
which student I was talking about.

The grade is a fact about the relationship of a student completing a course. That is, it re-
quires information on both a specific student and a specific course. This type of situation can
only occur in the context of a many-to-many relationship. It results in a new entity called an “as-
sociative object.”* If an associative object exits, it occurs between two entities that are in a
many-to-many relationship. It is shown on an ER diagram as an entity connected between the
two entities in the many-to-many relationship as depicted in Figure 6.

* Shlaer and Mellor, Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon Press,
1988.

Page 5
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 6
A more complex
many-to-many
relationship
showing an asso-
ciative object.

Student Course

Transcript

In this example, Transcript is an associative object entity. It would include an identifier of
the student (the student key field), an identifier of the course (the course key field), and the grade
for a specific student and course. If the student could repeat a course more than once with a dif-
ferent grade for each occurrence, then the Transcript associative object would also include the
quarter the student took the course. This additional field would be necessary because of the re-
quirement that each entity have a unique key.

Associative objects are somewhat abstract and conceptually difficult for some. We will cover
the topic of associative objects in more detail later when we introduce Record Structure Dia-
grams.

Alternative ER Diagram Symbols

There are a number of different conventions used for ER diagram symbols. The symbols used in
this document represent a simplified version of symbols first used by Peter Chen in 1976. You
may encounter different symbols in later database classes or in an organization that uses a meth-
odology other that the Chen methodology. However, the basic ideas are still the same regardless
of the symbols used in the diagrams.

In addition, some ER diagramming methodologies refine the cardinality rules to include
“zero or one” and “zero or more” (both of these mean optional). For example, in a personnel
system, an Employee entity could be related to zero or one Spouse entity. These refinements add
to the accuracy of the relationships and are important in large-scale database analyses. However,
their implications are beyond the scope of this introductory-level guide.

Page 6
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Example ER Diagram

The following narrative describes an architectural firm. Study the narrative as if an analyst had
interviewed people in the firm to see how it functions.

“An architectural design firm has a number of design projects underway at any point in time.
Each of these projects is identified by a unique project identification code. Additional data stored for
each project includes a description, a target completion date, and a dollar budget amount.

Design associates staff these projects. These associates include architects, engineers, and com-
puter CAD (Computer-Aided Design) specialists. Each associate is identified by a unique code. Other
information about associates includes a field for their name and a field for their specialty. A team of as-
sociates who are assembled to provide a unique, competitive group for each specific project staffs proj-
ects. It is also common to find any particular associate assigned to several projects. This is particularly
true when projects are small. The firm likes to keep track of each of the associate’s commitment to a
project and they do this by recording the percentage of an associate’s time that is allocated to a specific
project.

The firm has three partners who manage the projects the firm has under contract. Information
about partners includes a unique partner identifier, a field for their name, and a field for their phone
number. Since there are only three partners, they each have several projects for which they have re-
sponsibility. However, to maintain accountability, each project is managed by a single partner.”

Using this information, we want to construct an ER diagram. Thus we need to identify the
entities and the relationships that exist between them. The first entity we see is Project. It meets
the minimum conditions for an entity because it has a unique identifier (project identification
code) and there are additional facts (description, target completion date, and budget) that need to
be stored about the entity.

Another entity is Design Associate. It too can be uniquely identified and there are additional
facts that need to be stored about it.

There is a clear “staffing” relationship that exists between the Project entity and the Design
Associate entity (“Projects are staffed by a team of associates…”). That is, a Project can have
many Design Associates. The narrative also states that “It is also common to find any particular
associate assigned to several projects.” Thus we have a many-to-many relationship between the
two entities, Project and Design Associate.

Any time we have a many-to-many relationship, we need to consider whether an associative
object is used to support the many-to-many relationship. That is, are there additional facts we
need to store that describe the relationship between the Design Associate entity and the Project
entity? Consider the following statement: “The firm likes to keep track of each of the associate’s
commitment to a project and they do this by recording the percentage of an associate’s time that
is allocated to a specific project”. Where do we store this percentage figure? We cannot store it
with the Project entity because there are many different percentage values (one for each associ-
ate). Similarly, we cannot store this fact with the Design Associate entity because there are also
many values (one for each project an associate is assigned to). This percentage figure is a fact
about the particular association of a Project entity and a Design Associate entity, and thus, it is
an associative object. We will call this associative object “Assignment”. The ER diagram for
these entities and the relationships is shown in Figure 7.

Figure 7
N-M relationship
between Project
and Design Asso-
ciate supported by
the “Assignment”
associative object.

Project Design
Associate

Assignment

Page 7
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

This completes the relationship that exists between the Project entity and the Design Associ-
ate entity. We now turn to the Project and Partner entities. We see that a relationship exists be-
cause “The firm has three partners who manage the projects…” What is the cardinality of the re-
lationship? A Partner entity is related to many Project entities as indicated by the fact that “they
each have several projects for which they have responsibility.” On the other hand, a Project entity
is related to only one Partner entity because “each project is managed by a single partner.” So we
have a one-to-many relationship between partners and projects. Since our original ER diagram
already shows the Project entity, we simply add this new information as shown in Figure 8.

Figure 8
Final ER diagram.

Project Design

Associate

Assignment

Partner

Page 8
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Converting ER Diagrams to Relational Tables:
Record Structure Diagrams (RSD)

The ER diagram is an abstract, logical model of the entities and relationships that are of interest
to an organization. This model is independent of the specific details associated with designing a
database. However, if one is to build a database, one must be able to somehow convert the in-
formation contained in the ER diagram into a specific database design. This section describes the
process of converting an ER diagram into a relational database using a tool called a Record
Structure Diagram.

Relational Databases

A relational database is made up of a set of tables (files). For example, Figure 9 shows three ta-
bles from a hypothetical relational database that supports a many-to-many relationship between
students and courses.

Figure 9
Tables in a rela-
tional database.

Student Table Transcript Table
StudentNo Name Address StudentNo CourseNo Grade
6634413 Burrows 123 Main 6634413 BA 301 3.2
8743232 Brown 710 Terry 6634413 BA 400 3.3
8851000 Welch 4610 17th 8851000 BA 301 3.5
9243255 Jones 1701 46th 9243255 FIN 350 2.9
9659844 Brown 833 Talbert 9659844 BA 400 3.6

9659844 FIN 350 3.9
Course Table
CourseNo Desc
BA 301 Intro to Info Sys
BA 400 Marketing
FIN 350 Intro to Finance

Each table is made up of a series of rows (records) and attributes (fields). Key fields, whose
values are unique from one row to another, are underlined in the figure.

Notice that there are common attributes in the tables. These attributes are used by the rela-
tional database management system (RDBMS) to link or associate the rows from the various ta-
bles. For example, assume you wanted to see a list of students and the grades for courses they
completed, and you wanted this list to include the student number, student name, course number,
course description, and grade attributes. To provide this information, the RDBMS would com-
bine (join) the Student and Transcript tables using the student number attribute which is common
to the two tables. The RDBMS would then join the result of the first join to the Course table us-
ing the common course number attribute. The appropriate attributes would then be displayed
from the resulting combination of the three joined tables.

When converting an ER diagram into a relational database, each entity becomes a separate
table. In addition, attributes must be added to the tables and new tables must be created so that
the sets of relationships inherent in the ER diagram are maintained. Finally, a key field must be
defined for each table.

Page 9
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Identifying Key Fields

An important step in the process of designing a relational database involves the identification of
a key field for each table. Sometimes the key field is easy to identify and other times it can be
difficult. The following discussion attempts to clarify the process.

Recall that the values of a key field must be unique across all the records in a table. Another
way to think about this is to observe that if we specify a value for the key field, then we will find
at most one record in the table with a matching value. For example, look at the Student table in
Figure 9. If you searched the records of this table trying to find a student number equal to
6634413, then you would find at most one match. If you found more than one match, then the
student number field could not be called the key field. If you found no matches, this simply
means that the student you were searching for did not exist in the table.

Looking at the Student table in Figure 9 again, search the student name field for the name
“Brown”. How many matches did you find? Since you found two matches, the student name field
could not be considered the key field. Even if you did not find two names that matched, the fact
that you might have found two that matched would be sufficient to eliminate the student name
field from key field status.

Sometimes there are two or more fields in a table that would be unique. In this case, you
could choose any one of them. However, try to select one from the set where its values do not
change over time and it always has a value (not empty). For example, considering student num-
ber as a potential choice for the key, it is likely that all students would have a student number,
and it is unlikely that a university would change a student’s student number after it was assigned.
Any field that fails to satisfy these conditions would not make a good key field.

Sometimes none of the individual fields by themselves would be unique. For example, con-
sider the Transcript table in Figure 9. Notice that the student number field is duplicated for each
course that a student completed. Similarly, the course number field is duplicated for each student
who completed that particular course. However, if we assume that a student does not repeat a
course, or, if the course is repeated, only the grade is changed, then we can combine the student
number and course number fields and consider them together as the key field. In this case we
would have a compound key.

Every table must have a key field, which may be a single attribute or a group of attributes
(compound key). What if the assumption that a student does not repeat a course is false? That is,
assume that we actually want to keep track of each course a student takes even if it is a repeat.
We cannot do this with the data as defined in the Transcript table in Figure 9 because we cannot
identify a key field. What is needed is an additional field added to the table so that uniqueness
can be achieved. For example, we might add the quarter the course was completed. We would
also have to include this field as part of the compound key. Figure 10 shows a revised Transcript
table with this additional field.

Figure 10
Transcript table
with an additional
field and a new
key field.

Transcript Table
StudentNo CourseNo Quarter Grade
6634413 BA 301 Aut95 2.4
6634413 BA 400 Aut95 3.3
6634413 BA 301 Win96 3.4
8851000 BA 301 Aut96 3.5
9243255 FIN 350 Spr96 2.9
9659844 BA 400 Aut96 3.6
9659844 FIN 350 Aut96 3.9

Page 10
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

If you have difficulty identifying a table’s key, then try to image the table with several rows
of actual data stored in it. Try combinations of data that do not violate any assumptions as you
attempt to find a field or set of fields that are guaranteed to be unique. For example, consider the
table in Figure 11. Only the first row of data has been supplied.

Figure 11
A table without the
key field identified.

Skill Table
EmployeeNo MachineNo SkillLevel

123 23 4

Page 11
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Each of the following assumptions results in a different key field for the same table. Using a
pencil and eraser, fill in some data using each assumption to verify that the key field identified in
the assumption is correct.

1. An employee does not operate more than one machine and has a single skill level as-
sociated with the operation of that machine. That is, once you enter a row of data for a
specific employee, you’ll never enter another row for that same employee. The key field
in this case would be the employee number.

2. An employee can operate several machines but only one employee operates each ma-
chine. Also, the employee has a single skill level for any particular machine. That is,
once you enter a row of data for a specific machine, you’ll never enter another row for
the same machine. The key field would be the machine number.

3. An employee can operate several machines and several employees can operate a ma-
chine. The employee has a single skill level for any particular machine. That is, the
employee number can duplicate (with different machine numbers) and the machine
numbers can duplicate (with different employees). However, a specific combination of
employee number and machine number will never duplicate because no new information
would be communicated if it did. That is, if the same machine number and employee
number combination were entered into the table, the third attribute (the skill level)
would have to be the same as the original row with the same combination of employee
number and machine number. The key field in this case would be the compound key
consisting of the employee number and machine number.

4. An employee can operate several machines and several employees can operate a ma-
chine. The employee has several skill levels for any particular machine. Not only can
the employee number and machine number repeat (as in 3 above), but also the same
combination of employee and machine number can duplicate with different skill levels.
This might be necessary if the company wanted to keep a record of various skill levels
an employee attained over time. The key field in this case would be the compound key
consisting of the employee number, machine number, and skill level.

Page 12
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Data Notation

In the following discussions, we will use a symbolic notation for defining a table. In this nota-
tion, the table name will be followed by an equal sign (read as “is defined as”) and a set of at-
tributes enclosed in braces and separated by plus signs (read as “and”). The key field will be un-
derlined. For example, the three tables from Figure 9 would be defined as:

Student = { StudentNo + Name + Address }
Transcript = { StudentNo + CourseNo + Grade }
Course = { CourseNo + Desc }

The first table definition is read “The Student table is defined as the StudentNo key field and
the Name field and the Address field.” Notice the compound key in the Transcript table.

The following discussion gives a set of rules for converting an ER diagram into a Record
Structure Diagram. The rules are straightforward and the only potential complication is the iden-
tification of the key field.

ER Diagram With a One-to-One Relationship

Assume that you have the one-to-one relationship shown in the ER diagram in Figure 12.

Figure 12
ER diagram shows
that an employee
has one office and
an office has one
employee.

Employee Office

Here we assume that each employee has a single office and each office has only one em-
ployee. Recall that our definition of an entity requires it to have a unique identifier and at least
one additional field. Thus, we know that the Employee entity must have a key field such as em-
ployee number and the Office entity must also have a key field such as office number. Each entity
also needs additional attributes that provide facts about the entity. With these considerations in
mind, we will assume the following definitions exist for the Employee and Office entities:

Employee = { EmployeeNo + Name + Title }
Office = { OfficeNo + SqFt + TelephoneNo }

Now that we have defined the entities, we need to set up the relationship. To do this in a
one-to-one relationship, take the key field from one (either one) of the entities and make it a non-
key field in the other. A field that is not by itself the key field of a table, but is the key field in
another table, is called a foreign key. In this example, we can take the key field from the Office
entity and make it a nonkey field (foreign key) in the Employee entity as:

Employee = { EmployeeNo + Name + Title + OfficeNo }

We graphically represent these two tables in the form of a Record Structure Diagram as
shown in Figure 13.

Page 13
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 13
RSD showing the
relationship be-
tween the two da-
tabase tables.

 Employee = { EmployeeNo + Name + Title + OfficeNo }

Office = { OfficeNo + SqFt + TelephoneNo }

The single arrows at each end of the connecting line mean that you should be able to find one
matching record in the corresponding tables using these fields. Look at the sample data in Figure
14.

Figure 14
Sample data
shows the exis-
tence of the Offi-
ceNo attribute in
each of the two
tables.

Office Table
OfficeNo SqFt TelephoneNo

148 300 543-7122
324 200 543-4474
270 250 543-6566

Employee Table
EmployeeNo Name Title OfficeNo

12106 Burrows Sr. Lecturer 148
19460 Brown Chairman 324
87621 Welch Professor 270

If we look at row 1 in the Employee table, we find an employee who is assigned to office
number 148. Using this information, we would expect to find only one row to match office num-
ber 148 in the Office table. Using the OfficeNo attribute, you should verify that each row in the
Employee table is related to only one row in the Office table and vice versa.

Note that an alternative solution would have been to take the key from the Employee table
(EmployeeNo) and make it a nonkey attribute (foreign key) in the Office table.

Page 14
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

ER Diagram With a One-to-Many Relationship

One-to-many relationships are created in relational tables using foreign keys similar to one-to-
one relationships. Consider the ER diagram in Figure 15.

Figure 15
ER diagram
showing a Student
entity associated
with one Major
entity and a Major
entity associated
with many Student
entities.

StudentMajor

In this diagram, the Student entity is related to only one major (no double majors) while the
Major entity is related to many students. Assume that each entity is defined as:

Student = { StudentNo + Name + Address }
Major = { MajorCode + Desc }

The rule for a one-to-many relationship says to take the key field from the “one” entity and
make it a nonkey field (foreign key) in the “many” entity. Applying this rule we take the key field
from the Major entity (the “one” in the ER diagram) and make it a nonkey field in the Student
entity (the “many” entity in the ER diagram).

Student = { StudentNo + Name + Address + MajorCode }

The corresponding Record Structure Diagram is shown in Figure 16.

Figure 16
RSD showing that
a major can be
related to many
students.

Major = { MajorCode + Desc }

Student = { StudentNo + Name + Address + MajorCode }

The two arrows pointing to MajorCode in the Student table mean that you expect to find many
(more than one) matching records in that table given a specific MajorCode value. Looking at a
small set of sample data in Figure 17 demonstrates this.

Page 15
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 17
Data records that
show the duplica-
tion of MajorCode
values in the Stu-
dent table.

Major Table
MajorCode Desc

BA Business
ENG Engineering
PHY Physics

Student Table
StudentNo Name Address MajorCode
6634413 Burrows 123 Main BA
8743232 Brown 710 Terry ENG
8851000 Welch 4610 17th ENG
9243255 Jones 1701 46th ENG
9659844 Smith 833 Talbert PHY

If you start at MajorCode “ENG” in the Major table (row 2) and search the Student table,
you find three matching rows. On the other hand, if you start at StudentNo 8851000 in the Stu-
dent table, find that student’s MajorCode, and then search the Major table using this MajorCode,
you find only one matching row.

In a Record Structure Diagram, whenever you point to the entire key field (like MajorCode
in the Major table in Figure 16), you will always have a single arrow. Why is this true? Since the
values of the key field are unique from row to row, you would never expect to find two or more
rows that had the same value for the key field. However, foreign keys are not key fields and can
easily be duplicated in two or more rows.

ER Diagram With a Many-to-Many Relationship

Many-to-many relationships are more complex than either one-to-one or one-to-many. Many-to-
many relationships do not add foreign keys to an existing table but add new tables to the data-
base instead. There are two different (but related) types of tables—correlation tables and asso-
ciative objects.

Page 16
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Correlation Tables

Whenever you need to build a relational database to support a many-to-many relationship, you
will need to create a new table. Consider the many-to-many relationship in Figure 18.

Figure 18
ER diagram
showing a student
related to many
majors.

StudentMajor

In this situation, we have relaxed the constraint that a student can have only one major.
Again, assume that the Student and Major entities are defined as:

Student = { StudentNo + Name + Address }
Major = { MajorCode + Desc }

To create a many-to-many relationship, take the key field from each of the two entities and create
a new table composed of these fields. Typically these two fields together are used to create a
compound key. However, there are situations where only one of them is sufficient to be the key.

In this example we need both fields to produce a unique key, so we take StudentNo and
MajorCode and create a new table with the compound key of StudentNo and MajorCode. We
now have a new table as:

NewTable = { StudentNo + MajorCode }

This new table is called a “correlation table”. It provides a correlation between the original
two tables. The Record Structure Diagram corresponding to this is shown in Figure 19.

Figure 19
RSD showing the
correlation table
used to support
the N-M relation-
ship.

Major = { MajorCode + Desc }

Student = { StudentNo + Name + Address }

Correlation Table = { StudentNo + MajorCode }

The double (many) arrows point to subsets of the compound key—that is why they can re-
peat. Again look at some sample data in Figure 20.

Page 17
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 20
Data showing how
the correlation
table is used to go
between the Stu-
dent and Major
tables.

Major Table Correlation Table
MajorCode Desc StudentNo MajorCode

BA Business 6634413 BA
ENG Engineering 6634413 PHY
PHY Physics 8743232 BA

9659844 BA
Student Table 9659844 ENG
StudentNo Name Address 9659844 PHY
6634413 Burrows 123 Main
8743232 Brown 710 Terry
8851000 Welch 4610 17th
9243255 Jones 1701 46th
9659844 Smith 833 Talbert

If you start with StudentNo 6634413 in the Student table, and search the Correlation table
for matches of that student number, you will find two matches (rows 1 and 2). The first match
has a MajorCode “BA” which has one match in the Major table. The second match has a Major-
Code “PHY” which also has one match in the Major table. Through this indirect process, Stu-
dentNo 6634413 has been associated with two rows in the Major table (Student has many Ma-
jors). Starting with a specific row in the Major table and going through the Correlation table
would generate several matches in the Student table (a Major can have many Students).

Notice that all the values of the compound key in the correlation table are unique, e.g., there
is only one entry for “6634413 + BA”. However, subsets of the compound key, such as Stu-
dentNo 6634413, are not unique in the correlation table.

Also note that the correlation table is not shown in Figure 18. Correlation tables are never
shown on an ER Diagram because they provide no new information. That is, a correlation table
always supports a many-to-many relationship.

Associative Objects

An associative object starts out as a correlation table. That is, it supports a many-to-many rela-
tionship between two entities and includes the two key fields of those entities.

However, an associative object also includes at least one additional field beyond the two
keys. This additional field may or may not be part of the key of the new table.

Assume there is a many-to-many relationship between the Student and Course entities. We
now know that this relationship would be supported with a correlation table that consisted of the
keys for the Student and Course tables as follows:

Student/Course Correlation Table = { StudNo + CourseNo }

However, if we want to record a grade for a specific student/course combination, we would
add the Grade field to this table changing it from a correlation table to an associative object:

Student/Course Associative Obj = { StudNo + CourseNo + Grade }

Here we see that the additional field is not part of the key.
If we want to allow a student to repeat a course and we want to record a separate grade for

each repetition, then we would need to add an additional field such as the quarter the course was
taken:

Page 18
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Student/Course Assoc Obj = { StudNo + CourseNo + Qtr + Grade }

Note that in this case, we need to include the quarter as part of the key. Regardless of
whether the addition field(s) are part of the key or not, their existence causes a correlation table
to become an associative object.

As a reminder, recall that correlation tables are not shown on the ER diagram while associa-
tive objects are shown. This is because an associative object is a correlation table plus additional
fields. All many-to-many relationships need correlation tables or the “correlation part” of an as-
sociative object. This is why they are not shown on the ER diagram—they are always present.
However, associative objects are always shown on the ER diagram to tell the reader that addi-
tional fields beside the keys of the two entities need to be modeled and represented in the data-
base. See Figures 6, 7, and 8 for examples of ER diagrams with associative objects.

Comparison of Correlation Tables and Associative Objects

Let us return to the ER diagram in Figure 18, except now we want to store the name of the stu-
dent’s advisor for each major. We assume that a student may have a different advisor for each
major. The modified ER diagram is shown in Figure 21.

Page 19
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 21
ER diagram
showing the stu-
dent/major rela-
tionship with data
stored on the ad-
visor.

StudentMajor

Advisor

The resulting Record Structure Diagram is shown in Figure 22. Contrast this with the Rec-
ord Structure Diagram in Figure 19.

Figure 22
RSD showing the
Advisor associa-
tive object used to
support the N-M
relationship.

Major = { MajorCode + Desc }

Student = { StudentNo + Name + Address }

Advisor = { StudentNo + MajorCode + Advisor }

RSD and Relational Databases

The Record Structure Diagram provides the basis for an exact definition of a relational data-
base. Each record definition becomes a table in the database. This includes each entity table plus
any correlation tables and associative objects. The foreign keys, correlation tables, and associa-
tive objects of the RSD provide the links between tables that support the relationships from the
original ER diagram.

Figure 23 shows the relational tables and some sample data for the RSD defined previously
in Figure 22. The tables shown in Figure 23 are exactly what you would have to define if you
implemented the database using a relational system such as Microsoft Access.

Page 20
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 23
Database tables
from the RSD
shown in Figure
22.

Major Table Advisor Table
MajorCode Desc StudentNo MajorCode Advisor

BA Business 6634413 BA Franklin
ENG Engineering 6634413 PHY Leung
PHY Physics 8743232 BA Franklin

9659844 BA Adams
Student Table 9659844 ENG Quale
StudentNo Name Address 9659844 PHY Olsen
6634413 Burrows 123 Main
8743232 Brown 710 Terry
8851000 Welch 4610 17th
9243255 Jones 1701 46th
9659844 Smith 833 Talbert

Example Conversion of An ER Diagram

We will now convert the ER diagram relating to the architectural design firm example we created
earlier into a Record Structure Diagram. The ER diagram is repeated in Figure 24 below.

Figure 24
ER diagram from
Figure 8.

Project Design

Associate

Assignment

Partner

If we review the narrative given earlier, we can define the fields that exist for the Partner,
Project, and Design Associate as follows:

Partner = { PartnerId + Name + PhoneNo }
Project = { ProjectId + Desc + CompleteDate + Budget }
Design Associate = { AssociateId + Name + Specialty }

These definitions store all the attributes but do not store or support the relationships. We
need to use the rules for constructing a Record Structure Diagram to set up the relationships.

We begin with the one-to-many relationship between the Partner and Project entities. Recall
that the rule says to “take the key field from the ‘one’ entity and make it a nonkey field in the
‘many’ entity.” That is, take the PartnerId field from the Partner entity and make it a nonkey field
in the Project entity. The result is:

Project = { ProjectId + Desc + CompleteDate + Budget + PartnerId }

The many-to-many relationship between the Project and Design Associate entities requires
the creation of a new correlation table that combines the key fields from the Project and Design
Associate entities. Since we’ve already determined that we also want to store the percentage of
time each design associate is assigned to a project, we store this field along with the keys in the

Page 21
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

correlation table. Adding this additional field changes the correlation table into an associative
object. The definition of the Assignment associative object is:

Assignment = { ProjectId + AssociateId + PercentTime }

Combining the Partner, Project, Design Associate, and Assignment tables in one diagram
with appropriate arrows creates the resulting Record Structure Diagram. This diagram is shown
in Figure 25.

Figure 25
RSD for the ar-
chitectural firm’s
project data.

Partner = { PartnerId + Name + PhoneNo }

Project = { ProjectId + Desc + CompleteDate + Budget + PartnerId }

Assignment = { ProjectId + AssociateId + PercentTime }

Design Associate = { AssociateId + Name + Specialty }

Page 22
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Analyzing RSDs for Problems

Overview

The rules given earlier for converting an ER diagram into a Record Structure Diagram show how
to set up the relationships between entities in a relational database. However, it is possible to
generate an incorrect relational database even if you use the rules correctly.

The problem relates to the fact that an entity, as defined by the analyst or user, might actually
include data on more than one entity. Recall that we said each entity should end up as a separate
table in the relational database. If we identify an entity and but it actually contains data on two or
more things, then the database will have problems.

Therefore, after the first draft of the Record Structure Diagram has been created, it is impor-
tant to analyze it for potential problems. If any problems are found, this means that the ER dia-
gram that created the RSD might also be in error. You may to have go back and possibly correct
the ER diagram and then derive a new RSD from the revised ER diagram.

The following introduces the concept of functional dependencies between the attributes in a
table. The existence of some types of functional dependencies, specifically partial and transitive
dependencies, indicates that there is a problem in the relational database design. You need to
know how to find and eliminate these types of functional dependencies.

Functional Dependencies

A functional dependency exists between two attributes in a table when the value of one attribute
implies or determines the value of another attribute. For example, if I tell you the value of a So-
cial Security Number (SSN), you should be able to identify the name of the person who is as-
signed that SSN. This is because there is a functional dependency between the value of the SSN
attribute and the value of the Name attribute. We can document this dependency using the nota-
tion SSN _ Name. We say that “SSN determines Name” or “Name is dependent on SSN.”

Does Name _ SSN? That is, if I tell you a name, can you tell me the person’s SSN? Since
many people have the same name, knowing a name does not give you enough information to
guarantee that you know the SSN. If the values of a specific attribute in a table are not unique
from row to row (like names), then other attributes cannot be dependent on that attribute (it can-
not determine them).

Page 23
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Full and Partial Dependencies

If a table has a compound key and at least one nonkey field, then you must analyze it for the pos-
sible existence of full and partial dependencies. A full dependency exists if all the fields of the
compound key determine a nonkey field in the table. For example, consider the following Tran-
script table:

Transcript = { StudNo + CourseNo + Qtr + Grade }

This table has a compound key and one nonkey field. In this case, you must know the value
all three attributes in the compound key in order to determine the value of the Grade attribute.
That is, you must know who you are referring to (StudNo), the course they took (CourseNo), and,
assuming that they could take the course more than once, the quarter they took the course (Qtr).
This is an example of a full dependency—the entire (full) compound key determines the nonkey
Grade field. The existence of a full dependency is a sign of good data design.

Consider the following variation on the transcript example:

Transcript = { StudNo + CourseNo + Qtr + CourseDesc + Grade }

When there is more than one nonkey field, then each one must be evaluated independently for full
dependency. Since we’ve already evaluated the Grade attribute, we’ll now look at the
CourseDesc attribute.

If we assume that course descriptions do not change over time, then all we need to know to
determine course description is the course number, that is, CourseNo _ CourseDesc. On the
other hand, if we assume that a course description might change from quarter to quarter, then we
would need to know both the course number and quarter, that is, CourseNo + Qtr _
CourseDesc. In either case, we do not need to know the value of the StudNo attribute.

This is a partial dependency, when a nonkey attribute is determined by less than all (part of)
the fields of the compound key. Partial dependencies are a sign that there is a problem in the da-
tabase design.

Let’s look at the example in more detail and make the assumption that course descriptions
do not change over time, that is, we’ll assume that CourseNo _ CourseDesc. We know that the
attribute CourseNo must have unique values or else it would not have worked as part of the
compound key in the original definition. This means that we have an attribute that uniquely
identifies a course (a key field) and an additional attribute describing a fact about the course (its
description). What we have here is an entity (a Course entity).

You cannot combine two entities in the same table in a properly formed relational database.
Thus, you must fix the problem. The way to do this is to remove the partial dependency from the
original table and create a separate table with the key(s) that determined the partial dependency
plus the nonkey(s) determined by them. You keep the original table with its compound key and
any attributes that are fully dependent on that compound key.

In this example, we would break the original table into two tables as follows:

Transcript = { StudNo + CourseNo + Qtr + Grade }
Course = { CourseNo + CourseDesc }

The original compound key and the fully dependent Grade attribute go into one table and the
partial dependency, CourseNo _ CourseDesc, goes into a separate table called Course.

Notice that Course-No remains in the Transcript table and is also the key in the Course ta-
ble. In the Transcript table, it is part of the compound key and also a foreign key supporting the
relationship with the Course table.

Page 24
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

You should then go back to the ER diagram that was used to generate the original Transcript
table and see what is wrong there. That is, the ER diagram should have shown the Course entity.
You would need to go back and fix this problem.

Let’s look at another example of a partial dependency. Assume you have an ER diagram that
generates the following table:

Client Assignment = { ClientNo + SalespersonNo + SalespersonName }

We assume that a client can be serviced by several salespersons and a salesperson can provide
service to many clients.

Since we have the necessary conditions for a partial dependency (a compound key and at
least one nonkey field), we need to analyze the table to see if one exists. Do we need to know the
client number (part of the compound key) to determine the salesperson name or is the salesperson
number sufficient? All we need to know is the salesperson number so we have a partial depend-
ency, SalespersonNo _ SalespersonName.

To solve the problem, we break the original Client table into two tables:

Client Assignment = { ClientNo + SalespersonNo }
Sales Person = { SalespersonNo + SalespersonName }

We kept the original table with its compound key and any attributes that were fully depend-
ent on the compound key. In this case, there were no attributes fully dependent on the compound
key. We also created a separate table consisting of the attribute that determined the partial de-
pendency plus the nonkey attribute determined by it.

Like the previous example, we would have to go back to the ER diagram that was used to
create the original table and fix it to reflect the fact that two entities (Client and Sales Person)
need to be shown. Note also that the original Client table was an associative object but the cor-
rection has reduced it to a correlation table. This would also have to be corrected on the ER dia-
gram.

Page 25
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Transitive Dependencies

A transitive dependency occurs when the value of a nonkey attribute is functionally dependent on
the value of another nonkey attribute. In order for a transitive dependency to exist, a table must
have at least two nonkey attributes.

Consider the following table (FareCode is a code like “C” for “Coach” or “FC” for “First
Class”):

Passenger = { PassengerId + Name + FareCode + FarePrice }

Here we have three nonkey attributes so we might have a transitive dependency.
We need to examine the nonkey attributes to see if any functional dependencies exist. Start

with passenger name and fare code. If we know a passenger’s name, do we know the fare code?
If the answer is yes, we have found a transitive dependency. However, in this case the answer is
no. There might be two people on a plane with the same name but one is flying first class and the
other is flying coach. The specific value of FareCode is dependent on the unique identifier of
Passenger (PassengerId).

Next we’ll check fare code and fare price. If we know the fare code, do we know the fare
price? Assuming that there is only one price for each code, then the answer is yes. That is, Fare-
Code _ FarePrice. This is an example of a transitive dependency.

We correct this problem by splitting the original table into two tables. The first is a table
with the original key and all values determined directly by it. A separate table is created with the
transitive dependency. For our example, we have:

Passenger = { PassengerId + Name + FareCode }
Fare = { FareCode + FarePrice }

As we did with partial dependencies, we have to go back to the ER diagram that was used to
create the original table and correct it to show two entities instead of just one.

Also be aware that the correction would have to be reflected in the RSD. The correct ER
diagram and the segment of the RSD that reflects the database design without the transitive de-
pendency is shown in Figure 26.

Figure 26
ER diagram and
RSD segment for
the database with-
out the transitive
dependency.

PassengerFare

Fare = { FareCode + FarePrice }

Passenger = { PassengerId + Name + FareCode }

You might wonder why the relationship is one-to-many and not one-to-one since both of
these cardinality types are supported with foreign keys. The answer is based on common business
logic. A one-to-one relationship would mean that a specific fare code could only be associated
with one passenger. That is, FC (First Class) could only be associated with one passenger. This
does not make business sense.

Page 26
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Transitive dependencies always indicate that there is a problem in the data design. Whenever
you have a table with more than one nonkey attribute, you should perform an analysis to deter-
mine if any transitive dependencies exist.

Let’s look at a second example. Consider the following table definition:

Employee = { EmplNo + Name + ProjectNo + ProjCompleteDate }

Here we have an employee and the project he or she is assigned to. We also have the project’s
completion date.

Does a transitive dependency exist between any of the nonkey attributes? Does name deter-
mine project number? That is, if we know an employee’s name, do we know the project they are
assigned to? As we have seen before, two employees might have the same name so we do not
necessarily know the project number if we know an employee’s name.

What do we need to know to determine the project completion date? If we know the project
number do we know the project completion date? The answer is probably yes. Project numbers
would likely be unique so we know which project we are referring to if we know the project
number. Thus, we would know the project completion date. We can conclude that ProjectNo de-
termines ProjCompleteDate.

To remove this transitive dependency, we break the original table into two tables with the
original table and all the attributes dependent on the key (EmplNo) and a new table with the
transitive dependency. The solution follows:

Employee = { EmplNo + Name + ProjectNo }
Project = { ProjectNo + ProjCompleteDate }

Notice that the ProjectNo attribute stays in the original table. This foreign key provides the
link in the database that allows the employee and project information to be joined as needed.
Since ProjectNo is a foreign key in the Employee table, the relationship between Project and
Employee might be one-to-one or one-to-many. Can you determine which one it is in this case?
To answer the question, you need to evaluate the business logic of each alternative. A one-to-one
relationship would mean that a specific project could only have one employee. This does not
seem to make sense so the relationship is most likely one-to-many.

Repeating Fields

There is an additional potential problem area that might be found in an RSD. Consider the fol-
lowing that defines a student and the courses she has completed:

Student = { StNo + Name + CourseId1 + CourseId2 + CourseId3 }

There are no problems with partial or transitive dependencies, but the definition still has a
serious problem—it limits the number of courses to three. This is an example of trying to place
fields that repeat for a single entity, e.g., courses, into one row of a table.

If you think about what is actually represented in the table, you’ll see that it hides a relation-
ship between Student and Course. Thus there should be at least two tables. One table would de-
fine a student as:

Student = { StNo + Name }

A second table would store the relationship between a student and course and might be de-
fined as:

Page 27
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

{ StNo + CourseId }

There would likely be a third table that defined non-repeating fields associated with a course
such as:

Course = { CourseId + OtherCourseFields }

These three tables represent a many-to-many relationship between Student and Course.

Summary

After you have constructed an RSD from an ER diagram, you should analyze every table for the
possibility of partial and/or transitive dependencies.

Partial dependencies might exist if a table has a compound key and at least one nonkey at-
tribute. Transitive dependencies might exist if a table has two or more nonkey attributes. Both
partial and transitive dependencies indicate that the table represents information on more than a
single entity and should be separated into two or more tables. In addition, the ER diagram that
was used to create the RSD should be reviewed to see if it reflects the new entities identified as a
result of finding partial or transitive dependencies.

Your goal is to have all the tables in the database satisfy the following simple rule: “In each
table, every nonkey field should depend on the key field, the whole field, and nothing but the key
field”. This is another way of saying that no partial or transitive dependencies should exist in the
final form of a relational database.

Example RSD With Problems

Figure 27 shows an ER diagram and a RSD that was derived from the ER diagram and other
facts. These data are used by an insurance company to keep track of automobile insurance poli-
cies and claims made as a result of accidents.

Page 28
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Figure 27
ER diagram and
RSD for insurance
company accident
reporting data-
base.

Policy Accident

Claim

Policy = { PolicyNo + ExpireDate + Coverage + CustNo + CustName }

Claim = { PolicyNo + AccidentNo + DamageAmt + RoadCondition }

Accident = { AccidentNo + Date }

Each of the three tables needs to be analyzed for the existence of partial and/or transitive de-
pendencies. We begin by analyzing the Policy table. Since this table does not have a compound
key, then there cannot be partial dependencies. However, it has four nonkey fields so transitive
dependencies might exist.

If we know policy expiration date, do we know the coverage amount? Not likely. Does the
policy expiration date tell us the customer number or customer name? If it did, then our insurance
company might be limited to 365 customers! (Do you see why this is true?)

If we know the coverage amount, do we know the customer number and name? If so, we
could only have one customer with a given amount of coverage, which is not reasonable.

If we know the customer number do we know the customer name? The answer is yes and
we’ve just found a transitive dependency. To remove this, we need to break the table into two ta-
bles as follows:

Policy = { PolicyNo + ExpireDate + Coverage + CustNo }
Customer = { CustNo + CustName }

We also need to add the Customer entity to the ER diagram and the RSD (which we’ll do
shortly).

Now let’s look at the Claim table. Since this table has a compound key and at least one non-
key attribute, it might contain a partial dependency. To analyze this possibility, we’ll look at
each nonkey attribute to see if the whole compound key is needed to determine it. Let’s start with
the damage amount attribute. It does not seem that we need to know the policy number to deter-
mine the damage amount since accident numbers are unique (we know this from the key of the
Accident table). That is, if we know the unique accident number, this should be sufficient for us
to know the damage amount. Thus we have a partial dependency.

The same argument applies to the road condition at the time of the accident. Knowing the
accident number is sufficient to determine the road condition. We have another partial depend-
ency.

To remove these two partial dependencies, we keep the original table with its compound key
and include all nonkey attributes that are determined by the compound key. In this case, there are
none. We also take the partial dependencies and place them in a table of their own. In this case,
we take DamageAmt and RoadCondition and place them in a table with AccidentNo as the key

Page 29
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

field. However, we already have the Accident table with AccidentNo as its key so we just add
these attributes to the Accident table. The revised tables are:

Claim = { PolicyNo + AccidentNo }
Accident = { AccidentNo + Date + DamageAmt + RoadCondition }

Notice that the Claim table has been changed from an associative object to a correlation ta-
ble. Since correlation tables are not shown on ER diagrams, this will require an additional modi-
fication to the original ER diagram.

Finally we need to analyze the (revised) Accident table. It does not have a compound key so
we don’t need to worry about partial dependencies. Also, we already know from our earlier
analysis of the Claim table that the key field (AccidentNo) determines the damage amount and
road condition attributes. The only possible problem that could remain would be a transitive de-
pendency between date and damage amount or road condition.

It would be hard to argue that by knowing the date, you know the damage amount. If this
were true, then every accident that occurred on a given day would result in the same damage
amount. If you know the date, do you know the road condition? In a small geographic area this
might be true. However, it could rain in the morning and be snowing in the afternoon on the
same day. Or it could rain in Seattle and be sunny in Tacoma on the same day. Thus, there is no
transitive dependency between the date and the road condition.

Our corrected ER diagram and RSD are shown in Figure 28.

Figure 28
Corrected ER dia-
gram and RSD
after removing
partial and transi-
tive dependencies.

Policy AccidentCustomer

Policy = { PolicyNo + ExpireDate + Coverage + CustNo }

 { PolicyNo + AccidentNo }

Accident = { AccidentNo + Date + DamageAmt + RoadCondition }

Customer = { CustNo + CustName }

Finding and correcting errors like these is a difficult but important part of designing a data-
base. Just remember that each entity needs to be related to a single thing.

Page 30
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem Set

Problem 1

A recent MBA graduate went to work in his family’s business. As his first job, he was
placed in charge of the shoe department at one of the larger stores owned by the family. He im-
mediately found that the information about sales and inventory, which was manually recorded,
was inaccurate and out of date. He decided to build a small database to improve the quality of
information available within the department. Using the following description, construct an ER
diagram that provides an accurate overview of the department’s data.

Shoes are identified by a unique product code. Each shoe style/size/color combination is
considered unique. For example, a pair of women’s size 6 black Espirit shoes has product code
56756-6. Size 7 of the same style/color has a different product code. For each shoe
(style/size/color), the department stocks several identical pairs. Thus, it must keep track of the
quantity of each specific shoe in stock.

Shoes are supplied by a variety of suppliers. However, a specific shoe (style/size/color) will
be purchased from a single supplier. Suppliers are identified by a unique supplier code. It is not
uncommon for a particular supplier to supply many different types of shoes to the store.

There is a need to keep track of customer sales regardless of the type of transaction (cash,
credit, etc.). A unique customer number identifies each customer. Additional information, such as
name, address, and phone number is also stored for each customer.

Different customers have different buying habits. Some customers purchase only a single
pair of shoes. Others purchase many different pairs while still others purchase several pair of the
identical shoe. All of these types of purchases must be recorded. Additional information about a
purchase includes the date of purchase and the quantity purchased.

A unique employee number identifies each salesperson. Each sale is credited to a single
salesperson. This information is necessary because part of the salesperson’s compensation is
based on a sales commission and the degree to which the salesperson met their sales quota.

Page 31
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 2

Using the following description, construct an ER diagram.

Information needs to be stored about books. Its ISBN (International Standard Book Num-
ber) uniquely identifies each book. Other information about a book includes its title and publica-
tion date. In addition to book information, there is also information stored about the book’s pub-
lisher. This includes a unique publisher identifier, publisher name, and publisher address. A sin-
gle publisher can only publish a book.

Information on the authors of a book is also stored. This information includes the author’s
social security number, name, and address. Either a single author or several authors can write any
single book.

When the book is printed, it is sent to a printer. Information about the printer includes a
unique printer identifier, printer name, and address. A contract is written that indicates the num-
ber of books the printer will print and the printing deadline the printer needs to meet. At times, a
single book might be contracted to several printers if the quantity required to be printed exceeds
the printer’s production capacity.

Problem 3

Use the following scenario to construct an ER diagram and then convert the ER diagram into
a Record Structure Diagram.

A local social services organization acts as an agent to help female clients in a variety of
ways. The organization stores information for each client which includes their social security
number, name, address, and phone number. In addition, because some of the services provided to
clients deals with the client’s dependents, information on dependents is also stored. This includes
the dependent’s social security number, name, and age.

Clients are provided services that are in turn provided by various service providers. For ex-
ample, a client might be provided job training (a service) that is provided by an agency in state
government (the actual service provider). The organization helps match clients with available
services. It is not unusual for a single client to be eligible for several services. Information about
services includes a unique service identifier and a description. When a client is provided with a
service, the date that this happens also needs to be recorded.

Information on service providers includes a unique provider identifier, name, address, and
contact phone number. It is the policy of this organization to deal with as many service providers
as possible for a single service. For example, even though they use a state agency to provide job
training, they might also use a different private agency for job training.

Problem 4

Use the following scenario to construct an ER diagram.

Customers of the video store are assigned a unique customer number when they make their
first rental. In additional to the customer number, other information such as name and address is
also collected. Each videocassette that the store owns is identified by a unique code. Thus, if the
store owns several copies of the same video, each copy has a unique identification code. Other
information about a video includes the date of purchase and number of times the video was
rented

Page 32
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

When a customer selects a video to rent, the store needs to record this transaction including
the date and time the video was rented. It is not unusual for a customer to rent several videos
when they visit the store.

The store assigns a unique identifier to each movie title. For example, the James Bond movie
“Goldfinger” is assigned the identifier ADV234. The store may have several cassettes for this
movie title. Other information on movies includes a title and year made.

Each movie title is associated with a list of actors and one or more directors. The store has a
unique internal code they use to identify each actor. In addition, the store has a different set of
internal codes it uses to identify each director. In addition to the actor and director identification
codes, other biographic information on actors and directors is stored. Using this information, the
store can easily find out all the movies a specific actor has appeared in. Similar information is
available for directors.

Problem 5

The following ER diagram documents entities and relationships that exist in an automobile
repair shop:

MechanicCustomer

Job
AssignmentJob

Car

Customers are identified by a unique Cust-No, cars are identified by a unique Vehicle-ID,
mechanics are identified by a unique Empl-No, and jobs are identified by a unique Job-Code.

A “Job-Assignment” includes a date field that is necessary in case the same mechanic and
car get assigned on different trips to the repair shop. It is also possible that a given mechanic
might be assigned to the same car on the same day to do more than one job, e.g., do a lubrication
and a tune up.

Using this ER diagram and the additional information above, create a RSD. Explicitly show
the key fields described above and any foreign keys and other required fields. Show non-key and
other unimportant fields using the general term “other fields”.

Problem 6

You are given the following ER diagram (note that the ER diagram assumes that products
ordered on the same order may be shipped by different shippers):

Page 33
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Customer

Order

Shipment

Product

Shipper

Convert this ER diagram into a RSD. Explicitly show key fields and foreign keys (make up
the names yourself). Show other necessary fields using the general term “other”.

Page 34
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 7

You are given the following ER diagram:

Certification

Employee

Training
Course

Job Class

Instructor

Convert this ER diagram into a RSD. Explicitly show key fields and foreign keys (make up
the names yourself). Show other necessary fields using the general term “other”.

Problem 8

You are given the following ER diagram that documents projects and their relationship to
clients and budget categories.

Project

Budget
Category

Client

Budget

Assume that data for each project requires 200 bytes of storage which includes a 10–byte
key field, data for each Client requires 100 bytes of storage which includes a 10–byte key field,
and data for each Budget Category requires 50 bytes of storage which includes a 5-byte key field.

A “budget category” defines an activity that requires funding and expenditures. Examples
include travel, outside services, maintenance, etc. For control purposes, each budget category for
a specific project is assigned an upper limit. In addition, an actual amount spent is also recorded
(a project is within budget if the amount spent is less than the upper limit). These two attributes
require 6 bytes of storage each.

Assume that there are 750 projects that the firm needs to store data about. The firm has 500
clients and 35 different budget categories. An average project will be assigned 25 of the 35
budget categories.

Given this information, estimate the database size. Show every table that would be in the
database and estimate its total size. Do not add any additional storage for factors such as over-
head or potential growth. Do not assume that the sizes given above include foreign keys.

Problem 9

Page 35
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

You are given the following ER diagram that documents infants in an intensive care nursing
facility:

Critical
Code Baby

Room

Assignment

Nurse

You are also given the following estimates regarding the size (in bytes) and the number of
entities:

Number of
Entity Size of Key Size of "other" Total Size* Entities

Critical Code 5 95 100 50
Baby 10 90 100 80
Room 5 45 50 4
Nurse 10 140 150 20

*Does not include foreign keys

Assume that when a nurse is assigned to a baby for care, there is a need to store a 6-byte
date field and a 4-byte shift field (1st shift, 2nd shift, etc.).

Assuming that each nurse is assigned on average 5 babies to care for, compute the size (in
bytes) of the database. Show your calculations for each entity. Do not make any other assump-
tions (such as growth projections).

Page 36
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 10

Convert the ER diagram in Problem 8 into a RSD. Create your own names for the key fields.
Show all key fields and foreign keys. Use the term “other” for any other fields that are necessary
in a table.

Problem 11

Convert the ER diagram in Problem 9 into a RSD. Create your own names for the key fields.
Show all key fields and foreign keys. Use the term “other” for any other fields that are necessary
in a table.

Problem 12

The following ER diagram and RSD describe information stored about people applying to a
graduate school:

Applicant Referral

Prior
School

Prior School = { ApplicantNo + PriorSchoolId + PriorSchoolName + GPA }

Applicant = { ApplicantNo + Name + Address }

Referral = { ApplicantNo + ReferenceId + ReferenceName + ReferenceStatement }

Assume that an applicant can only have one GPA at a prior school and a reference can write
only one reference statement per applicant.

 Given this information, analyze the ER diagram and RSD for problems. Identify the prob-
lems and then correct the ER diagram and RSD.

Page 37
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 13

The following ER diagram and RSD describe information about departments, their manag-
ers, and employees assigned to the departments.

Department Employee

Department = { DeptNo + DeptName + MgrNo + MgrName }

Employee = { EmpNo + DeptNo + EmpName + JobClassCode + JobClassDesc }

Assume that a department has only one manager, a manager manages only one department,
and many employees can share the same job class.

 Given this information, analyze the ER diagram and RSD for problems. Identify the prob-
lems and then correct the ER diagram and RSD.

Problem 14

The following ER diagram and RSD define rental agreement data that might be collected by
a company that rents items to its customers.

Agreement Rental

Agreement = { AgreeNo + Date + CustNo + CustName }

Rental = { AgreeNo + ItemNo + ItemDesc + NumHours }

Assume that an agreement can include several items and a customer can execute many
agreements.

 Given this information, analyze the ER diagram and RSD for problems. Identify the prob-
lems and then correct the ER diagram and RSD.

Page 38
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 15

You are given the following RSD:

Customer = { CustNo + Name + Addr }

Order = { OrderNo + Date + CustNo }

Line Item = { OrderNo + ProdNo + ShipperId + ShipDate + ShipQty }

Product = { ProdNo + Desc + Price } Shipper = { ShipperId + Name }

Convert this RSD into an equivalent ER diagram.

Page 39
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem-Set Solutions

Problem 1

Supplier Shoe

Customer

Purchase SalesPerson

Problem 2

Printer

Contract

Book

Publisher

Author

Problem 3

Client

Dependent

Service Provider

Service
Date

RSD on next page

Page 40
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 3 continued

Dependent = { DepSSN + Name + Age + ClientSSN }

Client + { ClientSSN + Name + Address + Phone }

Service Date = { ClientSSN + ServiceId + Date }

Service = { ServiceId + Desc }

Provider = { ProviderId + Name + Address + ContactPhone }

Service/Provider Correlation Table = { ServiceId + ProviderId }

Problem 4

Customer

Rental

Cassette

Actor Movie Director

Page 41
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 5

Customer = { CustNo + other }

Car = { VehicleId + other + CustNo }

Job Assignment = { VehicleId + EmplNo + Date + JobCode }

Mechanic = { EmplNo + other }

Job = { JobCode + other }

Problem 6

Customer = { CustNo + other }

Order = { OrderNo + other + CustNo }

Shipment = { OrderNo + ProdNo + ShipperId + other }

Product = { ProdNo + other } Shipper = { ShipperId + other }

Page 42
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 7

Job Class = { JobClassKey + other }

Employee = { EmplNo + other + JobClassKey }

Certification = { EmplNo + CourseKey + other }

Course = { CourseKey + other }

Course/Instructore Correlation Table = { CourseKey + InstructorId }

Instructor = { InstructorId + other }

Problem 8

Client: 500 records x 100 bytes/rec = 50,000 bytes
Project: 750 records x 210 bytes/rec = 157,500 bytes
Budget Category: 35 records x 50 bytes/rec = 1,750 bytes
Budget: 750 projects x 25 records/project = 18,750 records

18,750 records x (10+5+6+6) bytes/rec = 506,250 bytes

Problem 9

Critical Code: 100 bytes/code x 50 codes = 5,000 bytes
Room: 50 bytes/room x 4 rooms = 200 bytes
Nurse: 150 bytes/nurse x 20 nurses = 3,000 bytes
Baby: 100 bytes for baby plus 5 bytes (critical code foreign

key) + 5 bytes (room foreign key) = 110 bytes/baby x
80 babies = 8,800 bytes

Assignment: 10 bytes (baby key) + 10 bytes (nurse key) 6 bytes (date)
+ 4 bytes (shift) = 30 bytes/assignment.

20 nurses x 5 assignments per nurse = 100 assignments
30 bytes/assignment x 100 assignments = 3,000 bytes

Page 43
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 10

Client = { ClientId + other }

Project = { ProjectId + other + ClientId }

Budget = { ProjectId + BudgetCat + other }

Budget Category = { BudgetCat + other }

Problem 11

Nurse = { NurseId + other }

Assignment = { NurseId + BabyId + other }

Baby = { BabyId + RoomNo + CritCodeNo + other }

Room = { RoomNo + other }

Critical Code = { CritCodeNo + other }

Page 44
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 12

Prior
School

Performance

Applicant

Referral

Reference

Prior School = { PriorSchoolId + PriorSchoolName }

Performance = { ApplicantNo + PriorSchoolId + GPA }

Applicant = { ApplicantNo + Name + Address }

Referral = { ApplicantNo + ReferenceId + ReferenceStatement }

Reference = { ReferenceId + ReferenceName }

Problem 13

Manager Dept Employee

Job
Class

Page 45
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Manager = { MgrNo + MgrName }

Dept = { DeptNo + DeptName + MgrNo }

Employee = { EmpNo + EmpName + DeptNo + JobClassCode }

Job Class = { JobClassCode + JobClassDesc }

Problem 14

Customer Agreement

Rental

Item

Customer = { CustNo + CustName }

Agreement = { AgreeNo + Date + CustNo }

Rental = { AgreeNo + ItemNo + NumHours }

Item = { ItemNo + ItemDesc }

Page 46
✜✜✜

Guide to Data Modeling – Copyright ©1999 William E. Burrows

Problem 15

Customer

Order

Line Item

Product

Shipper

