PHYSICS TEXTBOOK

Samuel S.M. Wong #WILEY-VCH

Introductory
Nuclear Physics

Second Edition




Introductory Nuclear Physics

SECOND EDITION

SAMUEL S.M. WONG
University of Toronto

&)

Wiley-VCH Verlag GmbH & Co. KGaA



This pageisintentionaly left blank



Introductory Nuclear Physics



This pageisintentionaly left blank



Introductory Nuclear Physics

SECOND EDITION

SAMUEL S.M. WONG
University of Toronto

&)

Wiley-VCH Verlag GmbH & Co. KGaA



All books published by Wiley-VCH are carefully produced.

Nevertheless, authors, editors, and publisher do not warrant the information
contained in these books, including this book, to be free of errors.

Readers are advised to keep in mind that statements, data, illustrations,
procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:
Applied for

British Library Cataloging-in-Publication Data:
A catalogue record for this book is available from the British Library

Bibliographic information published by

Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 1998 by John Wiley & Sons, Inc.
© 2004 WILEY-VCH Verlag Gmbll & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages).

No part of this book may be reproduced in any form — nor transmitted or translated
into machine language without written permission from the publishers.

Registered names, trademarks, etc. used in this book, even when not specifically
marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Printing Strauss GmbH, Mérlenbach
Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim

ISBN-13: 978-0-471-23973-4
ISBN-10: 0-471-23973-9



Contents

Useful Constants

Preface to the Second Edition

Preface to the First Edition

1 Introduction

2

1-1
1-2
1-3
1-4

Brief Early History of Nuclear Physics
What Is Nuclear Physics?

General Properties of Nuclei
Commonly Used Urits and Constants

Problems

Nucleon Structure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

Quarks and Leptons

Quarks, the Basic Building Block of Hadrons
Isospin

Isospin of Antiparticles

Isospin of Quarks

Strangeness and Other Quantum Numbers
Static Quark Model of Hadrons

Magnetic Dipole Moment of the Baryon Octet
Hadron Mass and Quark-Quark Interaction

Problems

Nuclear Force and Two-Nucleon Systems

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

The Deuteron

Deuteron Magnetic Dipole Moment
Deuteron Electric Quadrupole Moment
Tensor Force and the Deuteron D-state
Symmetry and Nuclear Force

Yukawa Theory of Nuclear Interaction
Nucleon-Nucleon Scattering Phase Shifts
Low-Energy Scattering Parameters

The Nuclear Potential

Problems

viii
ix

xi

00 =J W =t e

102



vi

Contents

Bulk Properties of Nuclei 106
4-1 FElectron Scattering Form Factor 105
4-2 Charge Radius and Charge Density 109
4-3 Nucleon Form Factor 113
4-4 High-Energy Lepton Scattering 115
4-5 Matter Density and Charge Density 119
4-6 Nuclear Shape and Electromagnetic Moments 124
4-7 Magnetic Dipole Moment of Odd Nuclei 129
4-8 Ground State Spin and Isospin 132
4-9 Semi-Empirical Mass Formulas 139
4-10 Alpha-Particle Decay 143
4-11 Nuclear Fission 150
4-12 Infinite Nuclear Matter 154
Problems 158
Electromagnetic and Weak Interaction 161
5-1 Nuclear Transition Matrix Element 161
5-2 Transition Probability in Time-Dependent Perturbation Theory 165
5-3 Electromagnetic Transition 168
5-4 Single-Particle Value 178
5-5 Weak Interaction and Beta Decay 181
5-6 Nuclear Beta Decay 189
Problems 204
Nuclear Collective Motion 205
6-1 Vibrational Model 205
6-2 Giant Resonance 212
6-3 Rotational Model 218
6-4 Interacting Boson Approximation 229
Problems 233
Microscopic Models of Nuclear Structure 235
7-1 Many-Body Basis States 235
7-2 Magic Number and Single-Particle Energy 238
7-3 Hartree-Fock Single-Particle Hamiltonian 246
7-4 Deformed Single-Particle States 250
7-5 Spherical Shell Model 256
7-6 Other Models 271
Problems 273
Nuclear Reactions 275
8-1 Coulomb Excitation 275
8-2 Compound Nucleus Formation 280
8-3 Direct Reaction 286
8-4 The Optical Model 291
8-5 Intermediate-Energy Nucleon Scattering 303

8-6 Meson-Nucleus Reactions 308



Contents

vii

Problems

9 Nuclei under Extreme Conditions
9-1 Overview of Heavy-Ion Reactions
9-2 High-Spin States in Nuclei
9-3 Phase Transition and Quark-Gluon Plasma
Problems

10 Nuclear Astrophysics
10-1 Brief Overview of Stellar Evolution
10-2 Rate for Nonresonant Reactions
10-3 Conversion of Proton into Helium
10-4 Solar Neutrino Problem
10-5 Helium Burning and Beyond
10-6 Supernova and Synthesis of Heavy Nuclei
Problems

11 Nuclear Physics: Present and Future

Appendix A: Parity and Angular Momentum
A-1 Parity Transformation
A-2 Spherical Tensor and Rotation Matrix
A-3 Angular Momentum Recoupling Coefficients
A-4 Racah Coefficient and 9j-Symbol
A-5 Wigner-Eckart Theorem
A-6 Landé Formula

Appendix B: Scattering by a Central Potential
B-1 Scattering Amplitude and Cross Section
B-2 Partial Waves and Phase Shifts
B-3 Effective Range Analysis
B-4 Scattering from a Complex Potential
B-5 Coulomb Scattering
B-6 Formal Solution to the Scattering Equation

Bibliography

Index

315

317
317
326
340
353

355
355
361
363
366
373
381
387

389

397
397
399
402
405
406
407

409
409
412
419
422
426
429

435

445



Useful Constants

Quantity Symbol Value
Universal constants: )
fine structure constant a = [Tw%—]_ﬁ-:: 1/137.0359895(61)
()
Planck’s constant h X 6.6260755(40) x 10~3¢  J.s 4.135669 x 10~ MeV-s
(reduced) h= - 105457266(63) x 1073 J-s 65821220 x 10-%2 MeV-s
he 197.327053(59) MeV-fin
speed of light c 299792458 m/s
unit of charge e 1.60217733(49) x 10~ C  4.8032068 x 10~1° esu
Conversion of units:
area harn 10-28 m?
charge ¢ 2.99792458 x 10° esu
energy eV 1.60217733(49) x 10-1° J
length fin 10718 m
mass eV/c?  1.78266270(54) x 1038 kg
u 1.6605402(10) x 1027 kg 931.49432(28) MeV/c?
Masses:
electron m, 9.1093897 x 10~3! kg 0.51099906(15) MeV/c?
muon my 1.8835327 x 10~ kg 105.65839(6) MeV/c?
pions T 2.4880187 x 10~28 kg 139.56755(33) MeV/c?
m? 2.406120 x 10-28 kg 134.9734(25) MeV/c2
proton M, 1.6726231 x 10-%7 kg 938.27231(28) MeV/c?
1.007276470(12) u
neutron M, 1.6749286 x 1027 kg 939.56563(28) MeV/c?
1.008664898(12) u
Lengths:
Bohr radius ap = {ﬁ 5.29177249(24) x 1071 m
classical electron radius r, = — 2.81794002(38) x 10™1% m
Compton wavelength f
electron ACe = n:‘c 2.426310585(22) x 1072 m
proton Acp = 7\% 1.32141 x 10~ m
»
Others:
Avogadre number Na 6.0221367(36) x 10 mol~!
h
Bohr magneton g = ;m[C]C 5.78838263(52) x 10~! MeV/T
Boltzmann constant k 1.380658 x 10-23 J/K 8.617385(73) x 10-1!  MeV/K
Fermi coupling constant (f:TF)a 1.43584(3) x 10752 J.m? 1.16637(2) x 10~8 GeV-?
Gamow-Teller to Fermi
coupling constants G—A- —1.259(4)
v
magnetic dipale moment:
electron e 1.001159652193(10) 1B
proton Up 2.792847386(63) UN
neutron fn —~1.91304275(45) BN
hlc
nuclear magneton pN = %7}% 3.15245166(28) x 10714 MeV/T
r
permeability, free space 9 47 x 1077 N/A2 €opto = ¢~ 2
permittivity, free space ¢g  8.854187817 x 10~!2 C?/Nm?
Rydberg energy Ry = {m.ca? 13.6056981(40) eV
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Preface to the Second Edition

In the half dozen years or so since the first publication of Introductory Nuclear Physics,
there have been several new developments and changes in the emphasis in the field.
This, together with the enthusiastic feedback from colleagues and students, makes it
imperative to publish a new edition.

For an active topic of research, a textbook cannot stay static. There are large areas
that are basic and well established. These form the core of the first edition and they
have stayed more or less the same. At the same time, the students should be made
aware of certain new trends, such as superdeformation, relativistic heavy-ion reactions,
nuclear astrophysics, and radioactive beams. At the same time, the preparation of
students taking a course on nuclear physics is changing as well. Assumptions of a
good working knowledge of angular momentum algebra and basic methods of quantum
mechanics may no longer be correct for many. For this reason, some parts of the core
of nuclear physics have been rewritten to make it more accessible.

The main changes in the second edition are the addition of two new chapters.
Heavy-ion reactions, from high-spin states to ultra-relativistic collisions, are now in a
totally new chapter. The same approach is also taken on nuclear astrophysics. To keep
the bock from getting too big, a few of the appendices in the first edition are either
incorporated into the main text or taken out. In addition, some material that is no
longer in the forefront of nuclear physics research is shortened or removed altogether.

The Internet has increasingly become the means of providing up-to-date informa-
tion. From the latest description of major projects to comprehensive data bases, the
World Wide Web is now the source of choice. For this reason, Uniform Source Locators
(URL) are given as the “reference” for such topics as nuclear binding energies. Unfor-
tunately, changes are frequently made to these electronic addresses and the reader may
have to do some search to find the latest one if a particular URL is moved to a new
location.

S.S. M. Wong



This pageisintentionaly left blank



Preface to the First Edition

Nuclear physics is a subject basic to the curriculum of modern physics. There are
severa] good reasons for this to be so. First and foremost is the intrinsic interest of
the subject itself: The study of atomic nuclei has historically given us many of the
first insights into modern physics. Furthermore, the potential of future discoveries
remains very promising. Second, nuclear physics is closely associated with several
other active branches of research: particle physics, in terms of the large overlap of
interests in fundamental interactions and symmetries, and condensed matter physics,
through the many-body nature of the problems involved. Third, nuclear physics may
be usefully applied to other fields: chronology in geophysics and archaeology, tracer
element techniques, and nuclear medicine, just to name a few.

The diversity of interest in nuclear physics also makes it very difficult to cover the
entire subject in any satisfactory manner; some philosophy and guiding principles had
to be adopted in selecting the material to be presented. The basic principle used for
this book was to include what I believe every serious student of physics should know
about the atomic nucleus. It was not always possible to live up to this principle. First,
an appreciation of nuclear physics today will require not only a good knowledge of
quantum mechanics and many-body theory but also quantum field theory. This, in
general, is too much to expect for the average reader and some sacrifice must be made.
Second, there are many interesting techniques, both experimental and theoretical, that
form a part of the subject itself. Any reasonable coverage of these technical aspects
will greatly expand the size of the book and make it useless in practice.

On the other hand, it is not possible to give a true flavor of nuclear physics without
some background in quantum mechanics. In preparing this volume I have assumed
that the student has the equivalent of a one-year undergraduate course in quantum
mechanics or is taking concurrently an advanced quantum mechanics course at the
level of one of the textbooks listed as general reference at the end. A basic knowledge
of electromagnetic theory is also assumed; it is, however, unlikely that the background
required here will be a problem to most students.

Some effort has been devoted to make the book as self-contained as possible. For
this purpose, references to the literature are kept to a minimum. A specific paper
published in scientific journals is mentioned only if a direct quotation is taken from it
or if there is some historical interest associated with it. If references are needed, the
fizst preference has been given to books that are readily available. However, this is
not always possible. As a second choice, review articles are cited because a student
starting out in the field may better comprehend this type of article than the original
paper. Conference proceedings are used only as a last resort since it is difficult to expect
standard libraries to be stocked with the multitude of proceedings published every year.

X1



xii Preface to the First Edition

One result of adhering to this philosophy is that very few of the excellent papers of
my colleagues have been cited. I have also had some difficulty in selecting standard
textbooks for reference in subjects such as quantum mechanics, classical mechanics,
electromagnetism, and statistical mechanics. Here, I have relied purely on my own
biases without guidance from a general philosophy, as I have done with papers.

One decision that had to be made concerns the system of units used for equations
involving electromagnetism. The Systéme International (SI) or meter-kilogram-second
(mks) system would have been the more correct choice since essentially all students
have been exposed to it and are more likely to be familiar with it. However, many of
the advanced treatments on the subject, and nearly all the standard references on the
topic in subatomic physics, are written using centimeter-gram-second (cgs) units, It is
therefore more practical to use the latter system here so that it is easier for a reader to
make use of other references. For the convenience of those who are more comfortable
with SI units, most of the equations (except those in §V.2) have the necessary additional
factor enclosed in large square brackets to convert the expressions to SI units. In
most cases, it is possible to write the equations involving electromagnetism in a form
independent of the system of units by making use of the fine structure constant o and
by measuring charge in units of e, the absolute value of charge carried by an electron,
and magnetic dipole moment in units of yy, the nuclear magneton.

The book is aimed at physics students in their final year of undergraduate or first
year of graduate studies in nuclear physics. There is enough material for a one-year
course though it could be used for a one-semester course by leaving out some of the detail
and peripheral topics. The selection of material is guided in part by current interests
in the field; no attempt has been made to give a complete account of everything that
is known in nuclear physics. However, sufficient knowledge is provided here so that a
student may then go to the library and obtain information on a particular nucleus or
a special aspect of a topic.

S.S. M. Wong



Chapter 1

Introduction

Nuclear physics is the study of atomic nuclei. From deuteron to uranium, there are
almost 1700 species that occur naturally on earth. In addition, large numbers of others
are created in the laboratory and in the interior of stars. The main force responsible for
nuclear properties comes from strong interaction. However, both weak and electromag-
netic interactions also play important roles. For these reasons, nuclear physics serves
as an important platform where basic properties of subatomic matter can be examined
and fundamental laws of physics can be studied. We shall in this chapter give a brief
history of the subject, its role in modern physics, and some of the general properties of
nuclei we wish to study before going on into more detailed examinations in subsequent
chapters.

1-1 Brief Early History of Nuclear Physics

The beginning of nuclear physics may be traced to the discovery of radioactivity in 1896
by Becquerel. Almost by accident, he noticed that well-wrapped photographic plates
were blackened when placed near certain minerals. To appreciate the significance of this
discovery, it is useful to recall that the time was before the era of quantum mechanics.
The only known fundamental interactions were gravity and electromagunetism. In fact,
just before the end of the nineteenth century, most of the observed physical phenomena
were considered to be well understood in terms of what we now refer to as classical
physics. Radioactivity was one of the few examples of unsolved preblems. It was
through the desire to understand these “exceptions” to otherwise well-established set
of physical laws that gave birth to modern physics.

Two years after Bacquerel’s discovery, Pierre and Marie Curie succeeded in sepa-
rating a naturally occurring radioactive element, radium (Z = 88), from the ore (pitch-
blende). Soon afterward, it was realized that the chemical properties of an element were
changed by such activities. When a source was placed in a magnetic field, it was found
that there were three different possible types of activity, as the trajectories of some of
the “rays” emitted were deflected to one direction, some to the opposite direction, and
some not affected at all. These were named a-, 8-, and v-rays, as nothing more was
known about them until much later. Subsequently, it was found that a-rays consist of
positively charged *He nuclei, §-rays are made of electrons or positrons, and y-rays are
nothing but electromagnetic radiation that carries no net charge.
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The existence of the nucleus as the small central part of an atom was first proposed
by Rutherford in 1911. Later, in 1920, the radii of a few heavy nuclei were measured by
Chadwick and were found to be of the order of 10~ m, much smaller than the order
of 1071 m for atomic radii. The experiments involve scattering a-particles, obtained
from radicactive clements, off such heavy elements as copper, silver, and gold, and
the measured cross sections were found to be different from values expected of the
Rutherford formula for Coulomb scattering off point charges.

The building blocks of niuclei are neutrons and protons, two aspects, or quantum
states, of the same particle, the nucleon. Since a neutron does not carry any net
electric charge and is unstable as an isolated particle, it was not discovered until 1932
by Chadwick, Curie, and Joliot. The only charged particles inside a nucleus are protons,
each of which carries a positive charge of the same magnitude, but opposite in sign, as
an electron, Since only positive charges are present, the electromagnetic force inside a
nucleus is repulsive and the nucleons cannot be held together unless there is another
source of force that is attractive and stronger than Coulomb. Here we have our first
encounter with strong interaction.

Both gravitational and electromagnetic forces are infinite in range and their inter-
action strengths diminish with the square of the distance of separation. Clearly, nuclear
force cannot follow the same radial dependence, else nucleons in one atom would have
felt the attraction of those in nearby atoms. Being much stronger, it would have pulled
the nucleons in different nuclei together into a single unit and destroy all the atomic
structure we are familiar with. In fact, nuclear force has a very short range, not much
beyond the confine of the nucleus itself, in marked contrast to the fundamental forces
that were familiar at the time.

In 1935, Yukawa proposed that the force between nucleons arises from meson ex-
change. This was the start of the concept of field quantum as the mediator of funda-
mental forces. The reason that nuclear force has a finite range comes from the nonzero
rest mass of the mesons exchanged. In contrast, the field quantum for electromagnetic
force is the massless photon and, for gravitational force, the graviton. With the in-
troduction of quantum chromodynamics, we come to realize that the Yukawa picture
of meson exchange is only an effective theory for the force between nucleons. The
fundamental force responsible for nuclear properties is the strong interaction between
quarks. Most of this interaction is restricted to between the quarks inside a nucleon
with gluons as the field quanta. However, some small "residue” goes outside and gives
us the interaction between nucleons. This is very similar to chemical interactions. Even
though atoms and molecules are electrically neutral, small remanents are found in the
electromagnetic force between the atomic nucleus and its surrounding electrons, and
these give rise to the wide diversity of chemistry around us.

For the nucleons inside a nucleus, nuclear force is far stronger than that due to elec-
tromagnetic interaction, as can be seen from the comparisons of the relative strengths,
or coupling constants, made in Table 1-1. This presented some difficulties in under-
standing spontaneous q-particle decay of some heavy nuclei in the early part of the
twentieth century. If the interaction is strong, how can a-decays have such long life-
times? For example, nuclei such as 28U (ry/, = 4.47 x 10° years) were created before
the solar system was born and must have half-lives comparable to or longer than the
age of the earth or else it cannot be found as ores taday. The solution of the puzzle is
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Table 1-1: Fundamental interactions.

Interaction Field Range | Relative | Typical cross | Typical time
quantum (m) strength | section (m?) scale (s)
Strong Gluon 10-18 1 10-30 1023
Weak w#, 20 10-18 10-5 10-4 10-8
Electromagnetic | Photon o0 o= 1 10-% 10-20
Gravity Graviton o) 1038 - -

quantum-mechanical tunneling, a direct evidence of the wave nature of particles, as we
shall see later in §4-10.

Before the discovery of the neutron, it was assumed that a pucleus is made of
protons and electrons. The presence of electrons inside the nucleus was made necessary
for the following reason. The electric charge of a nucleus is, without exception, some
integer multiple of e, the absolute value of the charge on an electron. Let us use Z to
represent this integer. At the same time, the nuclear mass is essentially given by some
integer A times the proton mass m,. In the case of the hydrogen nucleus, we have
Z = A = 1. For a nucleus made of A protons (as neutrons were not known), the charge
should have been Ae. Instead, it is observed to be Ze, with Z < A for all nuclei beyond
hydrogen. To get around this difficulty, it was proposed to include A ~ Z electrons in
the nucleus to “neutralize” some of the proton charges.

This simple model fails when we include more data into our study. Nuclei with
odd number of nucleons (A = odd) are known to have half-integer value spins, the
total angular momentum and intrinsic spin of all the nucleons. On the other hand,
nuclei with even A have integer value spins. Since particles with half-integer spins
are fermions, particles that obey Fermi-Dirac statistics, an odd-A nucleus must be a
fermion. Both electrons and protons are also fermions by virtue of the fact that their
intrinsic spins are half integers. An electron and a proton may be combined to form an
electrically neutral object, but their total spin is an integer and the combined object,
as a result, cannot be a fermion. If there were no neutrons, the question of whether the
spin of a nucleus takes on integer or half-integer values would have to be determined
entirely by whether Z is even or odd. This is not found to be true in practice, and a
model of the nucleus made of protons and electrons cannot be correct, as it violates
the fundamental relationship between spin and quantum statistics.

The same quantum statistics consideration comes into play also in the discovery
of the neutrino in S-decay. A free neutron is more massive than a proton and decays
into a proton with a half-life of about 10 min. To conserve charge, an electron is
emitted. However, this cannot be the complete picture, as all the particles involved are
fermions. Furthermore, there are some difficulties with energy conservation as well. In
nuclei, §-decay can transform one of the protons in the nucleus to a neutron with the
emission of a positron and one of the neutrons to a proton by emitting an electron. The
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electrons and positrons are found to have a continuous spectrum of energy up to some
maximum value known as the end-point energy. This seemed, on the surface, to violate
energy conservation, as there is a definite energy difference AE between the parent and
daughter nuclei. If the final state of the decay involves only two particles, an electron
and the much more massive daughter nucleus, the kinetic energy of the electron is
essentially fixed and completely specified by conservation of energy and momentum in
the reaction. A continnous distribution of electron kinetic energy violates this simple
argument. The neutrino was proposed by Pauli in 1931 and used by Fermi in 1933 to
explain the puzzle. In addition to the electron or positron, a neutrino is also emitted
in nuclear J-decay. It was not observed in the reaction because it carries no charge and
very little, if any, rest mass. This “unobserved” fermion is even more elusive than the
neutron: It hardly interacts with any other particles and is so light that even today we
are still uncertain whether it is massless or not.

The concept of parity violation, the first one of a series of “broken” symmetries
found in physics, was confirmed through nuclear 5-decay. Both strong and electromag-
netic interactions are known to conserve parity, i.e., experiments give the same results
whether they are viewed in right-handed coordinate systems or left-handed coordinate
systems. In the early 1950s, it was almost unthinkable to doubt that weak interaction
should be any different from the other known ones, and certainly there were no rea-
sons to suspect that parity needs to be treated any differently. However, there were
baffling experimental data involving particles which seemed to be identical except for
their decay modes. The concept of parity violation, proposed by Lee and Yang in 1957,
was confirmed by a f§-decay experiment using %°Co in which it was observed that more
electrons were emitted with momentum components opposite to the orientation of the
nuclear spin than along it (for more details see §5-5). This is a clear violation of the
invariance of operations under space inversion, i.e., a reflection through the origin of
the coordinate system used. Violation of parity has led to a better understanding of
the weak interaction itself, and the concept of broken symmetry opens a new horizon
for us to view fundamental laws of physics.

1-2 What Is Nuclear Physics?

Since nuclei are involved in a wide variety of applied and pure research, nuclear physics
overlaps with a number of other fields. In particular, it shares common interest with
elementary particle physics in many respects. For example, the study of quark-gluon
plasma in relativistic heavy-ion collisions involves both particle and nuclear physics.
In astrophysics, stellar evolution and nucleosynthesis are intimately related to low-
energy nuclear reaction rates, and the subject is of interest to nuclear physicists as well
as astrophysicists. Many applications of nuclear properties, such as nuclear energy,
nuclear medicine, tracer element techniques, involve a knowledge of nuclear physics,
and nuclear physicists are often involved in the development of these areas. A broad
definition of nuclear physics will therefore include far too much material than a single
volume can reasonably cover. For our purpose, we shall only be concerned with the
core of nuclear physics, its place as an integral part of modern physics, and its relation
with some of the closed related disciplines.

The primary aim of nuclear physics is to understand the force between nucleons,
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the structure of nuclei, and how nuclei interact with each other and with other sub-
atomic particles. These three questions are, to a large extent, related with each other.
Furthermore, their interests are not necessarily confined to nuclear physics alone.

Nuclear force. One may argue that, since nuclear force is only one aspect of the strong
interaction between quarks, all we need to do is to understand quantum chromodynam-
ics (QCD), the theory for strong interaction. This is, however, not the complete picture.
Nuclear interaction operates at the low-energy extreme of QCD where the interaction
is strong and most complicated. This is one reason why studies in particle physics
are often carried out at high energies where things are believed to be far simpler and
we have a chance to unravel the mystery of the fundamental force between quarks.
Needless to say, we do not yet understand strong interaction anywhere as well as, for
example, electromagnetic interaction. In fact, studies made on nuclei constitute some
of the best means to clarify certain aspects of QCD.

Even a thorough knowledge of QCD may not solve the problem of nuclear force.
Again we can make an analogy with chemistry. All chemical interactions between
atoms and molecules are electromagnetic in nature. However, this does not mean that
we can calculate the structure of a DNA molecule starting from Maxwell's equations.
The same is true between the fundamental strong interaction and nuclear force. We
need QCD to provide us with an understanding of the foundation of nuclear force—
any practical applications in nuclei must still come from a direct knowledge of the
interaction among nucleons. It is also very likely that, from an operational point of
view, strong interaction is too complicated to be applied directly to nuclei, and nuclear
force derived from studies made on nuclei may be far more convenient to use in practice.

Nuclear structure. Nuclei are usually found in their individual ground states, by
virtue of the fact that these are the lowest ones in energy. However, in the laboratory,
and in the interior of stars, energy can be injected into nuclei to promote them to excited
states. Besides energy, other properties for many of these states, such as electromagnetic
moments and transition rates, can also be observed. In addition, f-decay, nucleon
transfer, fission, and fusion transform one nuclear species to another. The study of
these quantities supplies us with information on the structure of nuclei. In addition to
its intrinsic values, nuclear structure can also provide us with the “data” on the nature
of nuclei and the forces acting on the system.

From a quantum mechanics point of view, nuclear structure studies, for the most
part, may be classified as bound state problems. Given an interaction, solution to
the eigenvalue problem provides us with the energy level positions and wave functions.
From the eigenfunctions, we can calculate matrix elements of operators corresponding
to observables. The interaction of primary concern here is the strong force between
nucleons. The effect of Coulomb force, in many cases, can be treated as perturbation
to the predominant nuclear interaction. This comes, in part, because of the simple
radial dependence of electromagnetic force, in contrast to that for strong interaction.
On the other hand, weak interaction has extremely short range and, for all practical
purposes in nuclear physics, may be treated as a zero-range, or “contact,” interaction.
Its presence is mainly felt in #-decay and related processes.

We are, however, faced with several difficulties here. The first is that nuclear
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interaction is not well known. In fact, the interaction between nucleons bound in nuclei
can be somewhat different and, perhaps, even simpler than nucleon-nucleon interaction
in general. For this reason, an important part of nuclear structure studies involves
effective potentials between bound nucleons. A second difficulty is the Hilbert space
that must be used to obtain a solution, In principle, the dimension is infinite. To
reduce the problem to a tractable one, sever truncations are necessary. It is possible to
compensate in part the errors introduced in making the calculation within a restricted
space by adjusting, or “renormalizing,” the interaction. We shall see in Chapter 7 that
we have quite a bit of success in understanding nuclear structure by proceeding in this
way.

Most of our information is obtained from studies made on stable nuclei for the
simple reason that they are far easier to handle in the laboratory. Since this is a very
special group among all the possible ones that can be formed, it is likely that our
knowledge is biased. Furthermore, unstable nuclei form important intermediate steps
in nucleosynthesis and are crucial in stellar evolution. With the advent of radioactive
beams, large quantities of a variety of short-lived “exotic” nuclei will soon become
available to enrich our data bank on nuclear structure.

Nuclear reaction. In nuclear reactions, we study the behavior of nuclei in the relation
with other subatomic particles. From a quantum mechanics point view, it is primarily a
scattering problem. There are several marked differences from nuclear structure studies.

First, it involves kinematics, and the results depend very much on the reaction
energy as well. Besides elastic scattering, we can have inelastic processes that lead to
different final states and create particles not present in the initjal state. In addition,
the reaction may also be sensitive to any momentum dependence of the interaction
between particles.

Second, the probe itself is often a complex object and may be modified by the
reaction. For example, when a light ion, such as 60, is used to scatter off a nuclear
target, both the incident and target nuclei may be excited or transformed into other
particles. This complicates the analysis as well as opens up new channels for nuclear
studies.

A third aspect is that the scattering problem involving strong interaction is perhaps
too complicated to be solved. In fact, for many purposes, the complete solution may
not be of interest. The study of reaction theory is developed, to a large extent, because
of such interests in strong interaction processes. Unfortunately, the topic can be rather
formal at times. For our purpose, we shall only make very limited use of this vast
resource in Chapter 8.

A good example among those of current interest is heavy-ion reactions. At low en-
ergies, the reaction creates a large number of exotic nuclear states that further enhance
our knowledge of nuclear physics. At the other extreme of ultra-relativistic energies, it
allows us to study the fundamental strong interaction itself.

Understanding nuclear structure and nuclear reaction is interesting and important
by its own merits. However, the benefit goes beyond nuclear physics. We have al-
ready seen examples of new insight in terms of quantum-mechanical tunneling from
nuclear a-decay, in confirmation of parity nonconservation using nuclear 8-decay, and
in using relativistic heavy-ion collision to create quark-gluon plasma. As an integral
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part of modern physics, nuclear phenomena can give and have given deep insight in
understanding physics. The possibility is only limited by our imagination.

1-3 General Properties of Nuclei

The intense activity in the last century has resulted in a large body of knowledge on
nuclear physics. We shall summarize in this section some of the general properties that
are basic to the subject.

Valley of stability. Stable nuclei are found with proton number Z = 1 (hydrogen)
to Z = 82 (lead). There are, however, a few minor exceptions, and we shall come back
in Chapter 9 to see the significance of some of these in astrophysics. For each proton
number, there are usually one or more stable or long-lived nuclei, or isotopes, each
having a different number of neutrons. Since the chemistry of an element is determined
by the electrons outside the nucleus and, hence, the number of protons inside, the
chemical properties of different isotopes are fairly similar to each other. However,
since they are made of different neutron numbers N, their nuclear properties are quite
different.

The only unstable nuclei found naturally on earth are those with lifetimes com-
parable to or longer than the age of the solar system (~5 billion years) or as decay
products of other long-lived species. However, in stars, unstable nuclei are being cre-
ated continuously by nuclear reactions in an environment of high temperature and high
density. Many short-lived nuclei are also made in the laboratory, including those with
more nucleons than the heaviest ones found naturally on earth (see e.g., [84]). A list
of known elements together with their chemical names and abbreviations is given in
Table 1-2.

To a first-order approximation, stable nuclei have N = Z, with neutron number
the same as proton number. The best example is perhaps the A = 2 system. Here, we
find that the only stable nucleus is the deuteron, made of one proton and one neutron.
Di-proton and di-neutron are both known to be unstable. From this observation we
can conclude that the force between a neutron and a proton is attractive on the whole,
but not necessarily that between a pair of neutrons or a pair of protons.

As we go to heavier nuclei, the number of protons increases. Since Coulomb force
has a long range, its (negative) contribution to the binding energy increases quadrati-
cally with charge. In contrast, nuclear force is effective only between a few neighboring
nucleons. As a result, the attractive contribution increases only linearly with A. To
partially offset the Coulomb effect, stable nuclei are found with an excess of neutrons
over protons. The neutron excess (N — Z) increases slowly with nucleon number A.
For example, the most stable nucleus for Z = 40 is ®Zr with N = 50. The neutron
excess in this case is 10. For Z = 82, we find *"Pb as the most stable isotope with
N = 126, a neutron excess of 44. For Z > 82, all the known nuclei are unstable. If
we view the (negative of) nuclear binding energy as a function of N and Z, the stable
and long-lived nuclei are found in a valley in such a two-dimensional plot, as shown in
Fig. 1-1. This is sometimes referred to as the “valley of stability,” At low values of N
and Z, the bottom of the valley lies along the line with N = Z. As we go to heavier
nuclei, the valley shifts gradually to N > Z.
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Table 1-2: Known elements.

Z | Symbol | Name Z | Symbol | Name Z | Symbol | Name

1} H Hydrogen 9|Y Yttrium 7 Ir Iridium

2| He Helium 40 | Zr Zirconium 78 | Pt Platinum

3| Li Lithium 41| Nb Niobium 79| Au Gold

4| Be Beryilium 42 | Mo Molybdenum 80 | Hg Mercury

5{ B Boron 43 | Tc Technetium 81 ) Ti Thallium

6 C Carbon 44 | Ru Ruthenium 82| Pb Lead

7] N Nitrogen 45 1 Rh Rhodiuvm 83| Bi Bismuth

8; O Oxygen 46 | Pd Palladium 84| Po Polonium

9{ F Fluorine 47 | Ag Silver 85 | At Astatine
10| Ne Neon 48| Cd Cadmium 86 | Rn Radon
11| Na Sodium 49 | In Indium 87| Fr Francium
12§ Mg Magnesium || 50 | Sn Tin i 881 Ra Radium
131 Al Aluminum || 51 | Sb Antimony 89 | Ac Actinium
14 | Si Silicon 52 | Te Tellurium 90 | Th Thorium
15{ P Phosphorus || 63 | 1 Iodine 91| Pa Protactinium
161 S Sulfur 54 | Xe Xenon 92| U Uranium
17] C1 Chlorine 55| Cs Cesium 93 . Np Neptunium
18 | Ar Argon 56 | Ba Barium 94} Pu Plutonium
19| K Potassium 571 La Lanthanum 95| Am Americium
20| Ca Calcium 58 | Ce Cerium 96 { Cm Curium
21 | Sc Scandium 591 Pr Praseodymium 97 | Bk Berkelium
22| Ti Titanium 60 [ Nd Neodymium 98 | Cf Californium
23| V Vanadium 61 | Pm Promethium 99 | Es Einsteinium
24| Cr Chromium }} 62 | Sm Samarium 100 | Fm Fermium
25 | Mn Manganese |} 63 | Eu Europium 101 | Md Mendelevium
26 | Fe Iron 64 | Gd Gadolinium 102 | No Nobelium
271 Co Cobalt 65| Tb Terbium 103 | Lr Lawrencium
28 | Ni Nickel 66 | Dy Dysprosium 104 | Rf Rutherfordium
20| Cu Copper 67 1 Ho Holmium 105 { Db Dubnium
30 Zn Zinc 68 | Er Erbium 106 | Sg Seaborgium
311 Ga Gallium 69 | Tm Thulium 107 | Bh Bohrium
321 Ge Germanium || 70 | Yb Ytterbium 108 | Hs Hassium
31 As Arsenic 711 Lu Lutetium 109 | Mt Meitnerium
34| Se Selenium 72 | Hi Hafnium 1o | - 211110
35| Br Bromine 73} Ta Tantalum 111 | - 2121131
36 ) Kr Krypton 74| W Tungsten 12 - 217112
37| Rb Rubidium 75| Re Rhenium
38| Sr Strontium 76 | Os Osminm

The newly identified clements of Z = 110 to Z = 112 have not yet been assigned official names,
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Figure 1-1: Distribution of stable and long-lived nuclei as a function of neutron
and proton numbers. Stable nuclei are shown as filled squares and they exist be-
tween long-lived ones (empty squares) that are unstable against S-decay, nucleon
emission, and a-particle decay.

In most cases, the number of stable nuclei for a given N, Z, or A is fairly small,
and the lifetimes of unstable ones on both sides of the stable ones decrease rapidly
as we move away from the central region. For nuclei with a few more neutrons than
those in the valley of stability, §~-decay by electron emission is energetically favored.
Similarly, for nuclei with a few “extra” protons, the rates of f*-decay by positron
emission determines their lifetimes. As the number of neutrons or protons becomes too
large compared with those for stable nuclei in the same region, particle emission takes
over as the dominant mode of decay and the lifetimes decrease dramatically as strong
interaction becomes involved. By the time we get to the upper end (large N and Z) of
the valley of stability, nuclei become unstable toward a-decay and fission as well.

The local variations in the “width” of the valley of stability, that is, the number
of stable nuclei for a given Z, N, or A, reflect finer details in the nature of nuclear
force. For example, there are more even-even (even N and even Z) stable nuclei than
odd-mass and odd-odd nuclei, a result of pairing interaction, to be discussed in more
detail in Chapter 7. There, we shall also see the reason why the largest numbers of
stable nuclei are found near the “magic numbers.”

Binding energy. A more detailed examination of the binding energies of stable nuclei
shows some additional interesting features. For simplicity, let us consider only the
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most stable nucleus for a given nucleon number. The binding energy, Eg(Z, N), is the
amount it takes to remove all Z protons and N neutrons from the nucleus and is given
by the mass difference between the nucleus and the sum of those of the (free) nucleons
that make up the nucleus,

Ey(2,N)={ZMy + NM, - M(Z,N)}c* (1-1)

Here M(Z, N) is the mass of the neutral atom, My is the mass of a hydrogen atom,
and M, is the mass of a free neutron. It is conventional to use neutral atoms as the
basis for tabulating nuclear masses and binding energies, as mass measurements are
usually carried out with most, if not all, of the atomic electrons present.

Because of the short-range nature of nuclear force, nuclear binding energy, to a
first approximation, increases linearly with nucleon number. For this reason, it is more
meaningful to consider the binding energy per nucleon, Eg(Z, N)/A, for our purpose
here. The variation as a function of nucleon number for the most stable member of each
isobar is shown in Fig. 1-2. The maximum value is around 8.5 MeV, found at A = 56,
For heavier nuclei, binding energy per nucleon decreases slowly with increasing A due
to rising Coulomb repulsion. As a result, energy is released when a heavy nucleus
undergoes fission and is converted into two or more lighter fragments. This is the basic
principle behind nuclear fission reactors. For light nuclei, the reverse is true and energy
is released by fusing two together to form a heavier one. This is the main source of

energy radiated from stars and the cause behind nucleosynthesis of elements up to
A ~ 56.

—
=

Binding energy/nucleon (MeV)

) 100 200
Nucleon number A

Figure 1-2: Average binding energy per nucleon as a function of nucleon number
A for the most stable nucleus of each nucleon number.

The sharp rise in the binding energy per nucleon for light nuclei (A < 20) comes
from increasing number of nucleon pairs. A closer examination shows that the trend
is not a smooth one and the values are larger for the 4n nuclei, those with A=4xn
forn=0,1,2,.... Since N = Z for these light, stable nuclei, the 4n nuclei may be
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viewed as if they are made of a-particles. The fact that their average binding energies
per nucleon are larger than their neighbors implies that nucleons like to form a-particle
clusters in nuclei. This can be seen quantitatively by looking at the values for nuciei,
with 2 < A < 25, shown in Table 1-3. For the 4n nuclei, the difference between the
total binding energy and the sum of those for n a-particles is also given:

AE = EB(N, Z) - nEB(4He)

For n = 2, we find that the value is negative, showing that ®Be is unstable with respect
to a-particle emission. For the others in the list, the value increases with n. In fact,
if we divided AE by the number of a-particle pairs, given by n(n — 1)/2, the result
is roughly constant, with a value around 2 MeV. This gives us a picture that, at least
for light nuclei, a large part of the binding energy lies in forming a-particle clusters,
around 7 MeV per nucleon, as can be seen from the binding energy of ‘He. The much
smaller reminder, around 1 MeV per nucleon or 2 MeV between a pair of a-clusters,
goes to the binding between clusters. This phenomenon is usually referred to as the
“saturation of nuclear force.” That is, nuclear force is strongest between the members
of a group of two protons and two neutrons, and as a result, nucleons prefer to form
a-particle clusters in nuclei. It is a reflection of a fundamental symmetry of nuclear
force, known as SU, or Wigner supermultiplet symmetry. As the number of nucleons
increases, the “excess” in binding energy per nucleon of 4n nuclei is no longer visible.
Beyond 60, the increase in the binding among four nucleons in forming a cluster is
averaged over a larger number of nucleons in the simple way we are examining the
question here. However, the satura.ion effect persists to heavy nuclei. This may be
seen by the local increase in the energy required to take away a nucleon, shown later
in Fig. 7-2.

Table 1-3: Binding energies (MeV) for some stable light nuclei.

Symbol Ep | Ep/A| AE | Symbol Eg | Eg/A || Symbol Ep | Eg/A
’H 222 | 111 — 3 8.48 | 2.83 3He 7.72 | 2.57
4He 28.30 | 7.07 — || 5He 27411 5.48 5L 26.33{ 5.27
SLi 32.00 | 5.33 — Li 39.25 | 5.61 "Be 3760 | 5.37
8Be 56.50 | 7.06 | —0.09 9Be 58.17 { 6.46 B 56.31 | 6.26
log 64.75 | 6.48 — g 76.21 | 6.93 g 73.44 | 6.68
2¢ 92.16 | 7.68 7.27 Bg 97.11 | 747 13N 94.11 | 7.24
14N | 104.66 | 7.48 — LN 11549 | 7.70 Bg  {111.96 | 7.46
160 127.62 | 7.98 | 14.44 170 131.76 | 7.75 g 128.22 { 7.54
18 | 137.37 | 7.63 — g | 147.80 1 7.78 I5Ne |143.78 | 7.57
20Ne | 160.65 | 8.03 | 19.17 || 2!Ne {16741 7.97 2INa | 163.081 7.77
22Na [ 17415 | 7.92 — | ?°Na | 186.57 | 8.11 Mg (18173 | 7.90
X4Mg |198.26 | 8.26 | 28.48 || Mg | 205.59 [ 8.22 BAL {20053 { 8.02
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Nuclear radius and nuclear density. In addition to binding energy, the general
trend of nuclear size shows also a simple dependence on nucleon number. For the most
part, the nuclear radius is given by

R= T()Al/a (1-2)

with 79 = 1.2 fm (1 fin, or femtometer, equals 107*% m). This means that the volume is
linearly proportional to A and that the nucleons are not compressed in size in spite of
the large forces acting between them. In fact, one has to go to some extreme situations,
such as a black hole or during the collapse of a large star prior to a supernova explosion,
before nucleons can be compressed much beyond what is known as the nuclear matter
density po ~ 0.16 + 0.02 nucleons/fm®, a value that is 3 x 10™ times the density of
water. We can also arrive at the same order of magnitude from the fact that the mass
of a neutron star is typically around 1 solar mass (~10% kg) and the radius roughly
10 km.

In finite nuclei, the average density is somewhat smalier than gy. Using Eq. (1-2),
we arrive at p ~ 0.12 nucleons/fm®. This is attributed to a large diffused surface region
where the density drops off to zero more or less exponentially. For many purposes, the
radial distribution of nuclear deunsity may be represented by a Woods-Saxon form,

Po
r)= 1-3

olr) 1+ exp{(r — ¢)/2} (-3)
Here z is a parameter that measures the “diffuseness” of the nuclear surface, with
typical values around 0.5 fm, and ¢ is the distance from the center to the point where
the density drops to a half value. Some of the typical values found in nuclei are listed
later in Table 4-1

Nuclear shape. For stable nuclei, the nuclear shape is essentially spherical. As we
shall see later in §4-9, this is an effort to minimize the surface energy, in analogy to a
drop of fluid. However, small departures from spheres are observed, for example, in the
region 150 < A < 190. One way to quantify these “deformations” is to use the ratio

_AR

" R
where R is the average nuclear radius given by Eq. (1-2) and, for the case of an ellipsoidal
shape nucleus, AR is the difference between semi-major and semi-minor axes. For a
sphere, AR = 0. In nuclei, the typical value of 8 does not exceed 0.1 for low-lying
states. However, large deformations can be created in the laboratory by fusing two
nuclei together. In this way, values of § around 0.6 (that is, semi-major axis twice the
semi-minor axis) have been observed. This is the case of superdeformation, to which
we shall return in §9-2.

One of the reasons for nuclear deformation is the competition between Coulomb
and nuclear forces. Since the strength of the Coulomb force is inversely proportional
to the square of the distance, a nucleus can decrease its total energy (and increase its
binding energy) by putting protons as far away from each other as possible. For the
same volume, a deformed shape is preferred as a result. Nuclear force, on the other
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hand, tries to keep the shape spherical so that the short-range attraction can be more
effective. Since nuclear forces are stronger, light nuclei on the whole are spherical.
However, once we go to intermediate values of A and beyond, the saturation property
cuts off further increase in the binding energy per nucleon with increasing A due to
nuclear force. As a result, slight deformation can actually increase the binding energy
by decreasing the Coulomb contribution.

Density of excited states. The binding energy defined in Eq. (1-1) is only that for
the ground state of a nucleus. In general, a nucleus has a number of excited states
as well. For these states, it is customary to use a slightly different scale and measure
the energies relative to the ground state as the zero point. If we examine the spectra
for different nuclei, we find that each one is sufficiently unique that it can be used as
a signature to identify the nucleus, similar to the case of atomic spectra. In spite of
the individual characteristics, there are certain general features in the distribution of
excited states that are worth noting.

Nuclei are made of nucleons. Being fermions, Pauli exclusion principle demands
that each nucleon must occupy a different single-particle state. In the limit that inter-
actions can be ignored, the ground state of a nucleus is one with nucleons filling up all
the single-particle states in order of their energies, starting from the lowest one. This
is similar to a Fermi gas, one with all the molecules made of identical, noninteracting
fermions. At zero temperature, the fermions settle in the lowest possible single-particle
states and the energy of the highest filled one is known as the Fermi level. The only
way to put excitation energy into such a system is to promote some of the particles
below the Fermi surface to the unoccupied ones above. At low excitations, there is
only enough energy to put a few such particles from states just below the Fermi surface
to those just above. As there are not too many different independent ways to carry
out this operation, the deunsity of states, the number of excited states per unit energy,
is small. As we increase the excitation energy, more particles can be promoted and
the number of different ways to form many-body states increases, resulting in higher
level density. Based on such a simple picture, Bethe [30] in 1937 obtained the following
formula for the density of states at excitation energy E:

1
PA(E) = T e?VeF (1-4)
generally known as the Fermi gas model formula. The quantity a is the level-density
parameter. A derivation of Eq. (1-4) can be found, for example, in Ref. [152].
Interaction between nucleons modifies the energy spectrum from such a simple,
smooth form. The location of each excited state is now a complicated function of
the nuclear interaction and the nucleons. Nevertheless, the general form given by the
Fermi gas model remains to be essentially correct. The main effect of interaction may
be separated into two parts. The first is a change in the relative positions of individual
levels. From a certain point of view, we can say that the interaction introduces a
“fluctuation” in the spectrum over the smooth form given by the Fermi gas model.
Depending on one's interest, the fluctuations can be all that is important in a study if
one’s focus is on the position of a particular level or a group of levels. On the other
hand, if the concern is with general features, such as the amount of energy that can
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be stored in an excited nucleus under certain conditions, only the smooth part of the
spectrum is of primary importance.

A second consequence because of interaction is a shift in the energy scale by some
amount A. Since excitation energy is measured from the ground state, any change to the
latter produces a constant shift of the whole spectrum. In general, interaction tends to
lower the ground state energy from the value given by a noninteracting model. Because
of such a change in the energy scale, the level-density formula in many applications

takes on the form 1
— 2 /a(E-A
B = o a eV (1-5)

This is known as the back-shifted Fermi gas model formula. Here, both @ and A are
considered as adjustable parameters to be determined by fitting to known data [53].
An example for the nucleus %Fe is shown in Fig. 1-3.

Figure 1-3: State density of 5Fe
obtained using Eq. (1-4) (smooth T
curve) and an independent par- |
ticle model (staircase). The ob-
served values (shaded histogram)
are lower than the calculated ones,
as the ground state energy is de-
pressed by two-body correlations. o1y 1

This effect may be accounted for L [/
/
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by the back-shifted Fermi gas for-
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mula given in Eq. (1-5).

Scattering cross section. In studying atomic nuclei, we often resort to scattering of
one particle off another. This comes from the necessity that we are examining objects
of dimension on the order of femtometers (10™'% m). The wavelength of visible light,
on the other hand, is much longer, on the order of 10~" m. To go down to length scales
of interest to subatomic physics, far shorter wavelengths than visible light and, hence,
much higher energies are needed, and this can be achieved most readily by scattering.
A feeling of the energies required in a scattering experiment to reach a given length
scale may be obtained by examining the corresponding de Broglie wavelength:
h he

/\=E = B

Table 1-4 lists the values for photons, electrons, and protons at typical energies used
in nuclear experiments,
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Table 1-4: De Broglie wavelengths of y-ray, electron, and proton.

Energy Wavelength (fm)
(MeV) Photon Electron Proton
0.1 1.2x10 3701 90
0.5 2.5%x10% 1421 40
1 1.2x108 872 29
10 1.2x102 118 9.0
100 1.2x10 12 2.8
1,000 1.2 1.2 0.73
10,000 1.2x1071 1.2x1071{ 1.1 x 1071

The probability for a projectile scattering off a target particle is usually expressed
in terms of a quantity called “cross section.” The total cross section o in a reaction
is defined in the following way: Consider a single incident particle moving outside the
range of any interaction along a straight line toward the target. If the velocity is v,
the particle sweeps in time ¢ a cylinder of volume vt.A, where A is the area covered by
the particle. The scattering probability P is given by the ratio of the area block by
the target particles and 4. If the number of target particles per unit volume is n and
the target thickness is T, the number of target particles “seen” by the beam particle is
nAT. The scattering probability is then

nATo
A

Since n and T have, respectively, dimensions inverse length cubed and length, the
total cross section o must have the dimension of length squared, or area, as P is
dimensionless.

The total cross section is often not the quantity measured directly in an experiment,
as it requires all the scattered particle to be detected (hence, the name fotal cross
section). The angular distribution of the scattered particles is actually a more useful
quantity, as it provides us with more information. In the same way as above, we
can define the differential scattering cross section do/dQ in terms of the probability
P(8, ¢) for a scattered particle to arrive at a detector that is located at angles (6, ¢)
and subtends a solid angle AQ at the center of the target by the relation

P= =onT

P(6,¢) = -——nT

The connection between differential and total cross section is given by integrating over

all solid angles:

S —/ / 0.d0 dp

=), a0 sin
In §B-2, we shall redefine the same differential cross section in term of the wave functions
involved in a reaction.
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Reaction types. The usual type of final state we wish to deal with in a reaction is
two body. In other words, before the reaction, we have a projectile particle a incident
on a target particle A. After the reaction, a particle b is scattered away, leaving behind
a residual particle B. The reaction may be represented in either one of the following
two ways:

Aa,b)B or a+A—b+B

For example, if a proton incidents on a **Ca target and a neutron is observed to emerge
from the reaction, the residual nucleus is **Sc. The reaction may be written as

8Ca(p, n)*®Sc or p+*Ca — n+*Sc

Other reactions may also take place in bombarding a *3Ca target by a beam of protons.
For example, a proton may emerge, leaving the “*Ca nucleus in an excited state. The
reaction may be expressed as

®Ca(p, p')*Ca* or p+"Ca — p' +8Ca’

Here the asterisk indicates that, after the reaction, 4Ca is in an excited state and the
prime on the proton says that the energy is different from the incident amount.

Each one of these combinations is a different exit channel for proton-*Ca scatter-
ing, and the possible, or “open,” exit channels are governed by conservation laws and
selection rules operating in the scattering. In general, the number of open channels
increases very fast with increasing energy available in the reaction.

The allowed exit channel is not restricted to final states consisting of two particles.
For example, an experiment may be carried out using a deuteron as the incident particle
instead of the proton in the above example. A possible exit channel may involve a
breakup of the deuteron into a proton and a neutron. The reaction is represented as

BCa(d, pn)*¥Ca or d+%Ca —p4+n+%Ca

To simplify the discussion, we shall for the most part ignore reactions involving three
or more particles in the final state. Furthermore, the distinction between projectile and
target nuclei and that between the scattered particle and the residual nucleus is useful
only in fixed-target experiments in which the target is stationary in the laboratory.
For colliding beam experiments, in which the two particles in the incident channel
are moving toward each other, the separation is not meaningful. For most of our
discussions, we shall be working in the center of mass of the two-body system, and the
distinction reduces to a simple question of semantics.

In an elastic scattering, both the incident and target particles remain in their
original states, usually their respective ground states. Elastic scattering is, in general,
the simplest from a reaction point of view. For example, elastic scattering of electrons is
used to map the charge density distribution of a nucleus. Since the interaction is mainly
electromagnetic, it is possible to infer from the results how nuclear charge distribution
differs from that for a point particle.

Inelustic scattering is the process where a part of the incident kinetic energy is used
to excite the nuclei involved or to create new particles. The most obvious example is
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Coulomb scattering where the target nucleus is raised to an excited state by electro-
magnetic interaction, the inverse of electromagnetic decay. As another example, the
reaction

ve +3Cl - e~ + 3Ar

is the inverse of A~ -decay of ¥ Ar and is used in detecting solar neutrinos.

When two nuclei interact, it is possible to transfer one or more nucleons between
them. For example, if a deuteron is incident on a '®0 target, the loosely bound neutron
in the projectile may be attracted by the target nucleus and becomes attached to it as
a result. The scattered particle is now a proton and the residual nucleus becomes !70.
Such a reaction, ¥0O(d, p)!70, is called a stripping reaction, as a neutron is stripped
from the projectile. The inverse is a pickup reaction, for example, 7O(*He,*He)'¢0,
whereby a neutron in the target 7O is picked up by the 3He projectile. The scattered
particle is now *He, and %0 becomes the residual nucleus. More complicated nucleon
transfer reactions may be induced using heavy ions.

Nuclear fusion may be considered as the extreme of nucleon transfer reactions. In
this case, two heavy ions are brought into close proximity to each other so that nuclear
force can act between the nucleons in the two ions, forming a compound nucleus as
the intermediate state. Under favorable circumstances, some of the excess energy in
the system may be discarded by emitting y-rays and nucleons, resulting in a final state
that may be considered as a nucleus. For example, the yet-to-be named superheavy
element 77112 is obtained in this way from the irradiation of 2$§Pb by 13Zn [84].

Alternatively, the final state may be an unusual one in a known nucleus. Since the
collision of two heavy ions often involves large quantities of angular momentum, the
final state is very likely to retain a significant fraction and ends up in a state of high
spin. For example, the reaction 123Gd('§0,4n)'$THf produces 7Hf nuclei by “fusing”
160 with *Gd. Ignoring angular momentum carried away by the four neutrons (and
several -y-rays), we can make an estimate of the amount available in the final system. If
the center-of-mass energy of the '*0 beam is E.,, = 75 MeV and the impact parameter
b == 10 fm, we have the result

l = MUyb = by/2mPE,,, ~ 80k

by starting from the classical definition £ = r x p with p = mv. This is sufficient to
create states of very high spin values, such as A, observed in !*"Hf formed in this way.
For comparison, the ground state spin of ’Hf is only /. The only way for such large
spins to exist in a nucleus with only 167 nucleons is for a significant fraction of the
nucleons to act coherently as a single unit. This is an example of collective behavior
in a nucleus that takes the nuclear shape far from the nearly spherical ones normally
observed for ground states.

The usual consideration for creating such exotic states is that the energy involved
must be sufficiently high to overcome the Coulomb barrier between the two ions. This
is necessary for the two groups of nucleons to come into contact with each other for
fusion to take place. At the same time, one does not want to inject any more energy
into the system than necessary, as any excess has to be discarded in order for the final
system to live long enough to be detected. The value of F., = 75 MeV is roughly
what is nsed in practice for “light” ions such as 0. The value of b = 10 fm is also a
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reasonable choice, as it is essentially half the distance between the centers of the two
jons when they are just in contact with each other.

1-4 Commonly Used Units and Constants

In atomic nuclei, we are dealing with length scales that are extremely small and time
scales that are extremely short, compared with standard measures in daily life. Instead
of the meter, a more suitable unit of length, as we have seen earlier, is the femtometer,
abbreviated as fm (1 fm = 107'% m). For example, the typical size of a nucleus is of the
order of 1 fm. The same is also true for the range of nuclear force. For nuclear reaction
cross sections, a derived unit, the barn, equal to 10-2 m?, is often used. Typical values
are often given in millibarns, 10~% b or 10~! fm?.

A wide range of time scales enters into nuclear physics. In Table 1-1 we have
seen that the typical reaction time for strong interaction is 10~2* second, or 10~% s
using the standard abbreviation for seconds. At the other end of the scale, we find
naturally occurring radioactive elements that were made prior to the formation of the
solar system. The lifetimes of these radioactive nuclei must be of the order of 10° years
or longer, as anything with much shorter lives would have almost completely decayed
away.

For states that live on the order of 1078 to 102 g, the width of its energy distri-
bution I' is sometimes used to characterize the lifetimes. Because of the uncertainty
principle, AEA¢ = h, a state that lives only for a time At can have its energy measured
only up to an uncertainty no better than AE ~ h/At. This gives a width I' = A/T in
the probability distribution of the observed energy of the state. Here, T is the lifetime,
or mean life, of the state. Since k = 6.58 x 10?2 MeV-s, lifetimes of the order of 10~%* 5
correspond to I' of the order of 100 MeV, and a time scale on the order of 107° s
corresponds to a width on the order of 1 eV.

The mass of a nucleon is 1.67 x 107%7 kg, with neutrons more massive than protons
by about 0.14%. A convenient unit for mass is the atomic mass unit, commonly abbre-
viated as u, or amu, and 1 u is 1.6605402 x 10~%" kg. It is defined using the neutral
12¢C atom as the standard,

12
u= wmcw - lTvlig_ — 1.6605402(10) x 10~% kg = 931.49432(28) MeV /c?
A

where N, = 6.0221367(36) x 10% (kg mol)~! is Avogadro’s number and the values
inside the parentheses indicate the uncertainties in the last digits. In terms of atomic
mass unit, the masses of a free proton and a free neutron are, respectively,

M, = 1.007276470(12) u M, = 1.008664898(12) u

By definition, the mass of 2C is exactly 12 u.

Since binding energy is a small fraction of the rest mass energy of a nucleus, atomic
masses in atomic mass units are usually not very different numerically from the number
of nucleons A = N + Z. It is sometimes convenient to express nuclear masses in terms

of the mass excess, A(Z, N) (also referred to on occasions as mass defect), defined in
the foliowing manner:

A(Z,N) = {M(Z,N) in u — A} x 931.49432 MeV
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where multiplication by 931.49432 converts the quantity from atomic mass units to
energy units in MeV. For a hydrogen atom, the mass excess is

A(H) = (1.007276470 — 1) x 931.49432 + 0.51110 = 7.2891 MeV

and for a free neutron,
A(n) = (1.008664904 — 1) x 931.49432 = 8.0713 MeV

Given the mass excess of a nucleus, the binding energy in Eq. (1-1) may be expressed
as

En(Z,N) = ZA(H) + NA(n) - A(Z, N)

In some tables of binding energy, the values are given in terms of mass excesses.

Instead of mass, it is sometimes preferable to work in terms of the equivalent rest
mass energy. The commonly used unit of energy in nuclear physics, as we have already
seen, is MeV, or million electron-volts, and 1 MeV is 1.60217733 x 10713 J. For example,
the rest mass energy of a neutron is 939.56563 MeV. For some of the higher energy
events, it is more suitable to use instead GeV (10° eV), which is 1000 times larger
than MeV. For example, the order of magnitude for a nucleon mass is 1 GeV. A few
other derived units are also in use to measure other nuclear properties, such as nuclear
magneton uy for magnetic dipole moment. We shall define each one of them as they
appear in the discussion.

Universal constants, such as Planck’s constant h, speed of light ¢, and electric charge
¢, enter quite often into calculations involving nuclei. For electric charge, we shall use e,
the charge carried by a proton as the unit. For Planck’s constant, A = h/27 turns out
to be more convenient on most occasions. In fact, the combination hc = 197.3 MeV-fm
enters naturally in a variety of calculations. For example, in our earlier discussion on
de Broglie wavelength, the calculation can be carried much easier in terms of fic in the

following way:
)= E _ 2mhe , 2rhc
p pc v—C E
Here p is the momentum and E the energy of the particle. Similarly, in our estimate
of the angular momentum £ carried by two colliding heavy ions at impact parameter b,

the value in units of & may be evaluated as

vVomE b\/2mc2E
E T he

We see that, in the final expression, the mass is converted into rest mass energy mc?
and the denominator becomes fic.

Formulas involving electromagnetism are complicated by the fact that both centi-
meter-gram-second (cgs) and Systéme International (SI) units are in common usage.
We shall write them with an “extra” factor in square brackets that “converts” the
equation from cgs units to SI units. That is, the equation is in cgs units if the factor is
not there and in SI units if included. Thus, electrostatic potential Vo(R) between two
point particles, one with charge ze and the other with Ze, separated by distance R, is
given by

14
-h-=m’l)ob=b

iR = [ ] EAZI (1-6)

47eg
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The formula is in cgs units if the factor in square brackets is ignored and in SI units
when the factor is included. To avoid any dependence on the system of electromagnetic
units adopted, we can make use of the fine structure constant

a_[__L e 1
"7 ldmegl he T 137

to replace factors in Eq. (1-6) that depend on the system adopted. Thus, we can write

2z 2Z
— =~ 14—
R R(fm)
In the final form, R is given in terms of femtometers so that we can use the numerical
value afic ~ 1.44 MeV-fm. In a similar way, the Coulomb energy for a spherical nucleus
with Z protons and radius R is given by
3r 1 1(Ze)* 3 z? 3 Z(Z -1)
v o | — —t = — _ -l ———L
Ee=3 [mo] R T TR

Here, we assume that the charge is distributed evenly throughout the spherical volume.
The final form of the expression excludes the Coulomb energy associated with each one
of the Z individual protons.

Vo(R) = athie MeV

(1-7)

Problems

1-1. Given that the radius of a nucleon inside a nucleus is R = 1.2 fm, calculate the
density of nuclear matter. From this, evaluate the radius of the sun (mass =
2 x 10% kg) if it collapses into a neutron star without losing any of its present
mass.

1-2. From the uncertainty relation, find the minimum kinetic energy of a nucleon in
28p}, Use R = 1.24"/% fm for nuclear radius.

1-3. If the cross section for neutrino interaction with iron is ¢ = 10~ m?2, find the
mean free path of a neutrino in solid iron.

1-4. Use conservation of energy and momentum to calculate the maximum kinetic
energies for electrons released in the decay of a free neutron,

n—pt+e +7,
and in the decay of a free muon,
p-—e +ur,+7,
Consider the particles are initially at rest in the laboratory.

1-5. If the density distribution of W is given by the form shown Eq. (1-3), find the
average density of the nucleus using the values of ¢ and z given in Table 4-1.

1-6. For *®Fe, the level-density parameter is found to be a = 7.2 MeV~!. Evaluate the
level density of °Fe at excitation energy E = 20 MeV.



Chapter 2

Nucleon Structure

All nuclei are made of neutrons and protons, the two lightest members of the baryon
family. Nucleons are, however, not elementary particles. Partly for this reason, a sig-
nificant fraction of the present-day interest in nuclear physics is related in one way or
another to the underlying quark’s degree of freedom. Such a study is, in turn, a part
of the larger subject of quantum chromodynamics (QCD), the study of quarks and the
interaction between them. It is still too early at this stage of the development of QCD
to demand a complete description of nuclear physics starting from first principles; nev-
ertheless, an understanding of the nucleus cannot be achieved without some awareness
of quarks and their interactions. We shall attempt here only an introduction to certain
aspects of strong interaction essential to nuclear physics.

There are also good practical reasons to examine the relationship between quarks
before those between nucleons. One of the dominant considerations in subatomic
physics is the role of symmetries. In this respect, there are many similarities and
connections between quarks and nucleons, as expected. In some cases it is easier to
study these symmetry principles using quarks rather than nucleons, in part because the
number of quarks inside a hadron is much more restricted than the possible number of
nucleons inside a nucleus. For this reason as well, we shall devote a large part of this
chapter to the symmetry relations between strongly interacting fermions using quarks
as an example.

2-1 Quarks and Leptons

The search for the fundamental building blocks of all matter in the universe has always
been a central issue in physics. As our understanding of physical laws improves, our
view changes on what constitutes the elementary particles, particles that cannot be
made as composites of others. These days, the accepted view is that all matter is
made of quarks and leptons. The only additions to the list are photons, W* and Z°
bosons, gluons, and gravitons, particles mediating electromagnetic, weak, strong, and
gravitational interactions, respectively.

Quarks. Quarks are the basic building blocks of hadrons, particles interacting with
each other through strong interaction. In nuclear physics, we are mostly concerned with
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the lightest members of the hadron family: nucleons, which make up all the nuclei, and
pions, which constitute the main carriers of nuclear force. There are six different kinds,
or flavors, of quarks: u (up), d (down), ¢ (charm), s (strange), t (top), and b (beauty,
or bottom). These six particles may be arranged according to their masses into three
pairs, with one member of each pair having a charge %e and the other -—%e, as shown
in Table 2-1.

Table 2-1: Quarks and leptons.

Quarks
Qle= % n c t
Qle=—~} d ] b
Leptons
Qle=-1 e u T
Qle= 0 Ve Vy vy

Since quarks have not been observed in isolation—they appear either as bound
quark-antiquark pairs in the form of mesons or bound groups of three quarks in the form
of baryons—the names assigned to them, up, down, strange, etc., are only mnemonic
symbols to identify the different species. The word “flavor” is used, for convenience,
to distinguish between different types of quark, not because it has anything to do with
taste. Besides flavor, quarks also come in three different colors, for example, red, green,
and blue. Color and flavor are quantum-mechanical labels, or quantum numbers, very
similar to spin and parity, required to differentiate between the different states in which
a quark finds itself. Since there are no classical analogues to flavor and color degrees
of freedom, there are no observables that can be directly associated with them. In
this respect, they are similar to the parity label of a state which must be “observed”
through indirect evidence. For quarks, observation of any of their properties is made
even harder by the fact that they appear only in groups of two or more. However, there
is by now a large amount of evidence for the presence of flavor, color, and other degrees
of freedom associated with gquarks, and we shall examine some of these properties in
this chapter.

Leptons. Although quarks make up the bulk of observed mass in the universe, they are
not the only elementary building block of particles with finite rest masses. Leptons, or
light particles, are not made of quarks. They participate in electromagnetic and weak
interactions but not in strong interaction. The number of different types of known
leptons is also six and can also be arranged into three pairs, as shown in Table 2-1.
The electron (e), the muon (u), and the tau lepton (7) carry a charge —e each, but the
electron neutrino (v.), the muon neutrino (v}, and the tau neutrino (»,) are neutral.
The masses of leptons are much less than those of quarks, with m.c? = 0.511 MeV,
m,c® = 106 MeV, and m,c? = 1784 MeV. The neutrinos are known to be much lighter
and their rest masses may even be zero. A large amount of effort has been devoted
in recent years to measuring the mass of v,. The best estimate at the moment is that
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it is a few electron-volts or less, although much larger values for the upper limit have
also been reported. For the other two types of neutrinos, only the upper limits of their
masses are known: m,, < 0.25 MeV and m,, < 70 MeV.

In nuclear physics, leptons make their presence felt through nuclear 8-decay and
other weak transitions. In general, only electrons and electron neutrinos are involved;
occasionally muons may enter, such as in the case of a muonic atom where a muon
replaces one of the electrons in the atom. Because of its larger mass and its more
recent discovery, the r-lepton has yet to enter nuclear physics studies.

Lepton number conservation. The number of leptons is conserved in a reaction.
For example, a free neutron decays with a lifetime of 886.7+ 1.9 s through the reaction

n—opte +7, (2-1)

The bar over v, indicates that it is an electron antineutrino, the antiparticle of an
electron neutrino. On the left-hand side of the equation, only a neutron is present.
Since there is no lepton, we can assign L = 0 as its lepion number. On the right-
hand side of the equation, we have one electron, which carries a lepton number L = 1.
An antiparticle is given a particle number of the same magnitude as the particle with
which it is associated but with the opposite sign. This is necessary since an antiparticle
can annihilate a particle to form a state with no particle. Hence, the lepton number
of U, is —1. The total lepton number on the right-hand side of Eq. (2-1) is then
L = 1+(-1) = 0. With these assignments, we find that the lepton number is conserved
in the reaction.

Conservation of lepton numbers in Eq. (2-1) depends on the recognition that the
neutral lepton produced in the reaction is observed to be an antineutrino rather than a
neutrino. This is not merely a gimmick to balance the lepton number of the two sides of
the equation. The two types of neutrinos, v, and 7., are two different particles, related
to each other by a transformation between a particle and its antiparticle, or charge
conjugation. Electron neutrinos, v, can be obtained, for example, from the reaction

Poound —* 1 + 6+ + ve (2'2)

Such a process is not energetically possible for a free proton, the nucleus of a hydrogen
atom, as a free neutron is more massive (M,c? = 939.566 MeV) than a free proton
(Myc? = 938.272 MeV). However, a proton bound within a nucleus, pyound, can undergo
the reaction of Eq. (2-2). The necessary energy conservation is now between the parent
nucleus, having the bound proton as one of its nucleons, and the daughter nucleus
containing the neutron. As long as there is enough energy difference between the parent
and daughter nuclei to create the two leptons, a positron et and an electron neutrino
v., the reaction is possible (see §5-5 for detail). Since a positron is the antiparticle of
an electron, its lepton number L = —1. To conserve charge, the charged lepton on the
right-hand side of Eq. (2-2) must be a positron, and to conserve lepton number, the
reaction must be accompanied by an electron neutrino in the final state.

If v, and U, were the same particle, we could make use of the electron neutrino
obtained from the reaction given by Eq. (2-2) to induce the inverse of that of Eq. (2-1),

ve+p—et+n (2-3)
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To conserve charge, the charged lepton on the right-band side must be a positron with
L = —-1. However, the reaction is not observed to take place. On the other hand, the
reaction

T.+p—et +n (2-4)

is observed. This establishes that v, and 7, are two different particles as well as confirms
that the lepton number is conserved (see §5-6 for more detail). In fact, the conservation
of leptons (i.e., that leptons cannot be created or annihilated except in pairs each one
consisting of a lepton and an antilepton) is a fundamental conservation law, not too
different from the conservation of energy and momentum. Our convention of assigning
lepton nuimbers starts by giving L = +1 to an electron. Once this is fixed, al} the other
lepton numbers are determined by conservation requirements.

Particles that are distinct from their antiparticles are called Dirac particles. This is
to distinguish them from Majorana particles, which are the same as their antiparticles.
As we shall see in §5-6, one of the interests in double 3-decay, nuclear decay through the
emission of two electrons or positrons, is to find out whether neutrinos can be Majorana
particles. So far all the evidence seems to suggest that they are strictly Dirac particles.

The conservation of lepton numbers applies separately to each one of the three
groups of leptons, € and v., p and v, and 7 and v,. That is, the number of leptons in
the electron family L., the number of leptons in the muon family L,, and the number
of leptons in the tau family L, are conserved separately in a reaction. For example,
muons decay with a mean life of 2.2 us through the reaction

po=eT + T4y, (2-5)

Since only a muon appears on the left-hand side of this reaction, we have L, = 0 and
L, =1 (as well as L, = 0). On the right-hand side, the muon number is conserved
by the presence of 1,. The electron number must also be zero on the right-hand side
to conserve L., and this requires 7, to appear with e~. The fact that the reaction
produces two neutrinos, a muon neutrino and an electron antineutrino, rather than, for
example, v, and 7, or two y-rays, is good evidence for the conservation of L, and L,
separately. For most interests in nuclear physics we are concerned primarily with the
leptons in the electron family.

Baryon number conservation. The number of quarks of each type, u, d, s, etc.,
is also conserved in strong interaction processes. That is, one type of quark cannot
be changed into another. The exception happens in weak interaction processes. This
is equivalent to saying that flavor is a good quantum number only in the limit that
weak force can be ignored. Unless we are dealing with the quark contents of hadrons,
it is more convenient to examine instead the baryon number, which is known to be
conserved under the influence of weak interaction as well. The only exception is the
possible decay of protons through reactions such as

p—et+7° (2-6)

allowed under theories for grand unification of all forces. At present, the observed limit
on the lifetime of a proton is longer than 10?® years. As a result, we shall not be
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concerned with this possibility and we shall take the baryon number to be conserved
in all the reactions of interest to us.

There is no conservation law for the number of mesons. If there is enough energy
available, they can decay into other mesons, baryon and antibaryon pairs, lepton and
antilepton pairs, or y-rays. The lightest members of the meson family are the pions
with rest mass around 140 MeV/c?. It is stable on the time scale of strong interaction,
as it cannot decay into another hadron. However, through weak interactions, charged
pions decay predominantly to muons,

Tt

—ut+u, 7 = U+ Ty (2-7)
with a mean life of 2.6 x 1078 s, and a neutral pion decays 99% of the time to two
y-rays,

=+ (2-8)
with a mean life of 8.4 x 10717 5. Both lifetimes are much longer, by something around
6 to 14 orders of magnitude, than the typical time scale for strong interactions. Note
also that in all three modes of decay the lepton numbers are conserved and, as we shall
see later, the total number of quarks is also conserved.

2-2 Quarks, the Basic Building Block of Hadrons

Quark masses. Among the six quarks listed in Table 2-2, the least massive members
are the u- and d-quarks. These two are believed to have essentially the same mass,
in the range of a few MeV/c?. The lightest baryons, nucleons and A-particles, and
the lightest mesons, pions, must be made exclusively of these two quarks and their
antiquarks. The s-quark is more massive. The unique feature of the s-quark is that it
carries a quantum number called strangeness and is therefore a necessary constituent
of particles with nonzero strangeness, such the K-mesons, or kaons, and the baryon
A. The c-quark is even more massive. It was first found through the discovery of the
J/y-meson in 1974 as a narrow resonance in the annihilation of a positron with an
electron at 3.1 GeV center-of-mass energy. Since a meson is made of a quark and an

Table 2-2: Quantum numbers of quarks.

Flavor At tg S C B T Qle) McHGeV)

u (up) 11 L o0 o o +} o0002-0.008
d(down) |} § -1 0 0 0 0 -1 0005-0.015
s (strange) % 0 0 -1 0 o o -% 0.1-0.3
c{charm) 3 0 o0 o0 1 0o 0o +} 10-16
b(beauty) |3 0 0 0 0 -1 0 -} 41-45

t (top) 10 0o 00 0 1 +} 180%12

A: baryon number t: isospin 8: strangeness

C: charm B: beauty T: top
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antiquark, a new quark, heavier than u, d, and s, the three known at the time, must
be postulated in order to understand this new meson. This is the ¢-, or charm, quark,
having a mass far greater than those of u, d, and s. The existence of the c-quark was
subsequently confirmed by other experiments, including the discovery of excited states
of J/¢. The birth of the c-quark prompted the search for even heavier quarks, In this
way, the presence of a b-quark was found in the T-meson at 10 GeV. The mass of the
t-quark has only been measured recently [97]. At the same time, one may also wonder
whether there is a fourth generation of quarks beyond the three known ones.

Associated with each quark there is an antiquark. All the known hadrons are made
of these six quarks and their antiquarks. The properties of quarks are deduced from
measurements made on mesons and baryons, as observations on isolated quarks cannot
be carried out. The masses, magnetic moments, and other properties of quarks are
inferred from what we know of the properties of mesons and baryons (see, e.g., [22]).
Currently, our ability to make such deductions relies on our incomplete understanding of
QCD. 1t is especially inadequate at low energies, where the majority of the experimental
observations are made. For example, to obtain the masses of quarks from the known
hadron masses, we need to know the strength of the interaction between quarks that
binds them inside the hadron. Since this is poorly known, the quark masses listed in
Table 2-2 represent only the best estimates and may or may not be closely related to
their true masses. Furthermore, different ways of making the estimate result in different
values.

Fermions and bosons. Hadrons are subdivided into two classes, baryons and mesons.
Besides nucleons, we have A, A, and a large number of heavier particles in the baryon
family. Among mesons, we have already encountered pions, kaons, J/¢, and Y, and
there are many others.

Baryons are distinguished by the fact that they are fermions, particles that obey
Fermi-Dirac statistics. Because of this property, two identical baryons cannot occupy
the same quantum-mechanical state. The fact that baryons are fermions implies that
quarks must also be fermions, as it is impossible to construct fermions except from odd
numbers of fermions. Furthermore, if we accept that a quark cannot exist as a free
particle, the lightest fermion in the hadron family must be made of three quarks.

As fermions, baryons must have half-integer intrinsic spins. For example, the in-
trinsic spin of a nucleon is % and that of a A-particle is % This implies that quarks
must also have half-integer intrinsic spins. In addition, the quarks are residing in states
with definite orbital angular momenta, just like electrons in an atom. The energy of
three quarks in a baryon depends on the interaction between them and this, in turn,
depends on the total spin and angular momentum. We shall come back for a brief look
of this question later in the quark model of hadrons (§2-7).

Among the baryons, we are mostly concerned with the lightest pair, the neutron and
the proton. From charge considerations alone, we can deduce that a proton, carrying a
charge +e, must be made of two u-quarks, each having a charge of %e, and one d-quaxk,
~§e. The quark wave function of a proton may be represented as

|p) = |uud) (2-9)
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Similarly, the quark wave function of a neutron is
|n) =|udd) (2-10)

so that the total charge of a neutron in units of e is % - % - % = 0. Nuclear physics is
usually not concerned with any of the heavier baryons, except perhaps for A- and A-
particles. This comes because we are normally dealing with very low-energy phenomena,
a few giga-electron-volts per nucleon or less. As a result, there is usually inadequate
energy to excite nucleons to become heavier baryons.

Bosons, particles obeying Bose-Einstein statistics, may be made from even number
of fermions. This means that mesons are constructed of an even number of quarks.
Since, on the one hand, bosons can be created or annihilated under suitable conditions
and, on the other hand, the number of quarks is conserved in strong interaction pro-
cesses, a meson must be made of an equal number of quarks (q) and antiquarks (7).
The simplest meson is, therefore, made of a quark-antiquark pair (¢§). For example,
pions, the lightest members among the mesouns, are made of a quark, either « or 4, and
an antiquark, either T or d.

Quark charge. Many hadrons are observed to carry electric charge. This leads to the
conclusion that quarks must also carry charge. In nature all observed charges are in
multiples of e = 1.60217733 x 107!° C, with the charge on an electron being —e and on
a proton +e. The most convenient assignment of charge to the quarks is for u-, ¢-, and
t-quarks to have +Ze and d-, s-, and b-quarks to have —}e. The assignment of multiples
of %e to quarks seems, on the surface, to violate the notion that e is a fundamental or
indivisible unit of charge. However, there is no reason to assume that %e cannot be the
more fundamental unit instead of e. Furthermore, there is no problem, as quarks do
not exist freely and all the observed charges are in integer multiples of e.

2-3 Isospin

The nucleon. A proton and a neutron may be considered as two different aspects of the
same particle, the nucleon. Both of them have spin % and their masses, 939.566 MeV /c?
for a neutron and 938.272 MeV/c? for a proton, differ only by about 0.1%. The main
distinction between these two particles is in their electromagnetic properties: namely,
charge and magnetic dipole moment {see §2-8). If we are dealing only with strong
interactions, such differences are immaterial. That is, in the absence of electromag-
netic interaction, a proton cannot be distinguished from a neutron. This is similar to
the case of particles with different values of m,, projections of the intrinsic spin s on
the quantization axis. Consider a spin—% particle. In the absence of a magnetic field
B, particles with the two possible values, :i:%, of m, are degenerate in energy and,
consequently, are indistinguishable from each other. On the other hand, once a mag-
netic field is introduced, the degeneracy is removed and particles are abserved to have
different energies depending on whether their intrinsic spins 8 are aligned parallel or
antiparallel to B. The difference between a proton and a neutron is analogous to the
difference between particles with m, = i% if we substitute the Coulomb field with a
magnetic field.
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If protons and neutrons are considered as identical particles, we need a new label to
distinguish hetween them. For this purpose, the concept of zsospin is introduced. Since
there are only two possible states for a nucleon, the proton state and the neutron state,
we can assign isospin t = % to a nucleon, based on the analogy that a spin-% system
can have two different substates. The two nucleons are distinguished by t, = %3,
the expectation value of the third component of isospin operator ¢. It is a matter of
convention whether we consider the |t=%,to=+%) state to be a proton state and the
|t=%,to=~%) state to be a neutron state, or the other way around. Both conventions
are in use and we shall adopt the more popular one with

Ip) = [t=1, to=+13) [n) = |t=1, to=—1) (2-11)

where | p) and | n ) represent, respectively, the wave functions of a proton and a neutron.
For a nucleus consisting of several nucleons, the total isospin is given by the vector sum
of that for each individual nucleon,

T= _il £(i) (2-12)

where A is the number of nucleons. This is identical to the rule for angular momentum
addition.

In the absence of electromagnetic interaction, we expect isospin to be a constant
of motion. That is, the eigenstates of the Hamiltonian can also be the eigenstates of
t?, the square of the isospin operator, as well as the third component ty. As a result,
cach eigenstate may also be labeled by t and tg, with ¢(¢ + 1) as the expectation value
of t? and tg, that of g for the cigenstate. In dealing with nuclei, the main source of
isospin symmetry breaking comes from Coulomb interaction that acts only between
protons. A less severe but nevertheless noticeable source is the difference between the
masses of the neutral and charged mesons exchanged between two nucleons (see §3-6).
The possibility of more fundamental isospin-breaking terms in the nuclear force, for
instance, due to a possible small difference between the masses of u- and d-quarks, is
not yet well established but has not been completely ruled out either.

From a purely mathematical point of view, spin and isospin are similar in structure.
Let us concentrate on isospin-% systems for the moment and study them by analogy
with spin-% systems. A particle with s = % and projection along the quantization axis
m = +1 may be represented by a two-component column matrix in the following way:

[s=%, m=+1}) = ((1)) (2-13)
Similarly, the corresponding m = —% state may be represented as
fs=4,m==1) = (‘1’) (2-14)
The isospin wave functions of nucleons may be written in an analogous way,
P = l=pto=t]) = (o) (2:13)

n)

I

=pte== = (7). (2-16)
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where the subscript ¢, which we shall omit in the future unless required for reasons of
clarity, identifies that the column matrices are for isospin. Using the convention that
a proton has tg = +% and a neutron has ¢, = —-%, we can relate the charge number Q,
electric charge in units of e, for a nucleon to g,

— 1
Q=to+;

When we extend the concept of isospin to antiparticles and to systems of several nu-
cleons, the relation between @ and tq depends also on A, the number of baryons in the
system,
Q=t+3A (2-17)
A more general relation involving strangeness and other quantum numbers is given
later in Eq. (2-37).
Isospin operators for ¢ = % systems can be constructed from Pauli matrices o in
the same way as angular momentum operators for a spin-% system. For example, we

can write 0 1 0 ) L o
—1
= = = 2-
n=(o) ™G o) ™ ( 1) (218)
for the z-, y-, and z-components of isospin operator 7. The matrices obey the relation
T, = (5,]I+ ie.]-krk (2—19)

Here I is the 2 X 2 unit matrix and ¢ is the three-dimensional Levi-Civita symbol,
with €,,x = 1 if the order of ¢, j, and k is an even permutation of 1, 2, and 3; -1 if the
order is an odd permutation; and zero if two or more of the three indices are the same.
For a nucleon it is easily seen that the wave functions given by Eqs. (2-15) and (2-16)
are the eigenfunctions of the ; operator, or 7, operator in spherical representation,

1\ _ _[1\_ (1 0\/1\_ , (1
(o) = ™(0) = (o 1) (o) =+(o)
w(1) =)= 2)(G)=-()
1 \1 0 -1/\1 1
The value of the third component of isospin, ty, is equal to half of the expectation value
of 1y, the same relation as that between m, and ay for spin-% particles. By the same
token, the expectation value of 72 is 3, four times the value of t(¢ + 1) for a nucleon.
From the form of 7 given in Eq. (2-18), we can construct isospin-raising () and

isospin-lowering (7_) operators that transform, respectively, a neutron to a proton and
a proton to a neutron,

e =3(n+in) = (8 (1)) _=i(n—-in)= ((1) 8) (2-20)

In the same way as angular momentum raising and lowering operators, 74 changes the
value of £; without affecting isospin ¢ or any other parts of the wave function,

et to) = \Jt(t +1) —to(to £ 1) |, 20 £ 1) (2-21)
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The definition used here for T and 7_ is the more general form used in textbooks and
differs slightly from the convention for spherical tensor operators given in §A-2.

For nuclei made of several nucleons, isospin operators may be constructed out of
the single-nucleon operators I, 7y, 73, and 15 (= 73). For example,

Ty=; S i) (2:22)

where 74(¢) acts only on the isospin wave function of the ith nucleon.

The usefulness of isospin is not restricted to the economy gained in treating formally
a proton and a neutron as two different states of the same particle. Since isospin is
a constant of motion in strong interaction processes, it is a fundamental symmetry,
essentially on the same footing as flavor, parity, etc. Isospin is useful in classifying
hadrons in general. For example, as we shall see in §2-5, pions come in three different
charge states, 7, 7% and 7. They may be treated as the three projections, to = +1,
0, —1, of an isospin ¢ = 1 system. Since pions are not baryons, the baryon number
A = 0. We see that the relation between charge number @ and the third component
of isospin given in Eq. (2-17) holds here as well. In §2-7 we shall see the case of a
quartet of baryons, the A-particles, that appear in four different charge states, A*™,
At A% and A~, with charge number @ = 2, 1, 0, ~1. It is thereforea t = % system of
baryons. We shall return later for a discnssion of the isospin wave function of hadrons
and nuclei.

2-4 Isospin of Antiparticles

Particles and antiparticles. An antiparticle may be characterized by the property
that it can annihilate the particle with which it is associated. Energy and momen-
tum conservation are maintained in the process, for example, by the emission of two
v-rays or the creation of a different particle-antiparticle pair. Since the final state of
an annihilation process is electrically neutral, a particle and its antiparticle must have
opposite charges to conserve electric charge. For example, an electron has charge —e,
and its antiparticle, the positron, has charge +e. Similarly, the conservation of other
scalar quantum numbers, such as lepton number and baryon number, requires the cor-
responding labels for particles and antiparticles to be equal in magnitude but opposite
in sign, as we have seen in earlier examples. By the same token, the intrinsic parity
of an antiparticle is shown in §A-1 to be opposite to that of its particle. For vector
quantities, such as intrinsic spin and isospin, the rules of angular momentum addition
require that the magnitudes be the same for a particle and its antiparticle so that they
can be coupled together to form scalars.

Let us take the case of proton-antiproton annihilation at rest with the emission of
two photons as an example:

P+p—=7+7

Since a photon is an isospin zero, or 1soscalar, particle, the total isospin on the right-
hand side of the reaction is zero. Conservation of isospin requires that the proton and
the antiproton are coupled to a T' = 0 state on the left-hand side. Since t = } for a
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proton, the antiproton § must also have t = % The third component of isospin for a
proton is tg = +% by the convention we have adopted. For an isoscalar system, the
sum of the third components of isospin for all the quantities involved must also be zero.
From this, we conclude that ¢, = -—% for an antiproton, the opposite in sign from that
for its particle.

We see that the relation between charge number @ and the third component of
isospin given by Eq. (2-17) applies to antiparticles as well. For an antiproton, the
baryon number A = —1, and we obtain the correct result of Q = —1 from Eq. (2-17)
using t; value of —; deduced above.

Charge conjugation. The operation that transforms the wave function of a particle
to that of an antiparticle is called charge conjugation. It changes the sign of the
charge of a particle without affecting any of the properties unrelated to charge. In
relativistic quantum mechanics, this implies a transformation between a particle and
its antiparticle, hence the name particle-antiparticle transformation. Let {p} and |n)
represent, respectively, the wave functions of a proton and a neutron. In terms of
second-quantized creation operators aIto for a particle, we may express these wave
functions as

Ip)= al/z,+1/2|0) In)= a{n__1/2|0) (2-23)

where |0) is the wave function for vacuum. In the expression, we have displayed only
the isospin ranks and suppressed all other labels for simplicity. The wave functions of
an antiproton |F) and an antineutron |%) may be constructed in a similar way, using
the creation operator bI,O for an antiparticle,

|7) = b1/2,+1/2|0) |p) = b¥/2,—1/2|0> (2-24)

Here we have made use of the fact that, on transforming a particle to an antiparticle
(and vice versa), the charge, and hence the projection of isospin on the quantization
axis, changes sign. If particles and antiparticles are unrelated to each other, aI,o and
bLu are completely different operators defined, respectively, by Eqgs. (2-23) and (2-24).
However, particles and antiparticies can transform into each other through charge con-
jugation, C, and as a result, operators at and b' are not independent of each other.

In addition to isospin (and spin), the wave functions of a particle and an antiparticle
can also differ by a phase factor. There are several ways to obtain this factor. If we
take a},o and bI,o as operators with a definite irreducible spherical tensor rank ¢, the
phase factor is fixed by their transformation properties under a rotation in the isospin
space. For second-quantized operators, we have the relation

bIeo = (_l)t_toat,qg (2-25)

The phase factor arises from the fact that operators aI,o and a, _, are not Hermitian
conjugates of each other without the factor (—1)*~*. (For a more detailed discussion,
see, e.g., Refs. [34, 50].)

With the relation between the second-quantized operators given by Eq. (2-25), we
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find that, under charge conjugation,

p)  —— (F)Rp) =

G ~i7)
In)  ——— (-1 7)) = +|q) (2-26)

The same considerations apply to other particles as well. For example, since a u-quark
has isospin ranks (t, to) = (}, +}) and a d-quark has ranks (}, —1), the transformations
to their antiparticles under charge conjugation are

|u) — (—1)1/2+1/2|ﬂ)=—|ﬁ>
|d) — (_1)1/2—1/2|J) = +|J) (2-27)

These phase factors are used in writing the quark wave functions for pions in the next
section.

2-5 Isospin of Quarks

One of the consequences of treating a proton and a neutron as two different isospin
states of a nucleon is that we can change a proton into a neutron, and vice versa, using
the isospin-lowering and isospin-raising operators given in Eq. (2-20),

= (8 (=)=

mn = (3= .
1 0/\0 1
In terms of quarks, we have already seen in Egs. (2-9) and {2-10) that
|p) = luud) |n)} = |udd)
When we substitute these results into Eq. (2-28), we obtain
7y |udd) = juud) 7_|und) = |udd) (2-29)

Since a proton and a neutron are considered here to be identical to each other except
for the third component of their isospin, the other parts of the wave functions are not
changed by isospin operations. In terms of quarks, the only difference between a proton
and a neutron is the replacement of one of the two u-quarks by a d-quark. The relations
expressed by Eq. (2-29), therefore, imply that, when an isospin-raising operator acts
on the quarks, it transforms a d-quark to a u-quark, and the other way around for an
isospin-lowering operator. Since no other quarks are involved here, we conclude that
d- and u-quarks also form an isospin doublet, analogous to the proton-neutron pair.
Furthermore, since the third component of isospin is a scalar quantity, the sum of tg
of two u-quarks and one d-quark in a proton must be +1! and that of one u-quark and

2
two d-quarks in a neutron must be —%. To satisfy both requirements, we must assign
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tp = + to a u-quark and ¢y = —1 to a d-quark. The relation between charge number
@ and to is still given by Eq. (2- 17) when we note that a quark has baryon number
A= %, from the fact that it takes three quarks to make a baryon,

More formally, we can write the 7. operator for a nucleon as the sum of isospin-
raising or isospin-lowering operators acting on each one of the three quarks,

7+ (nucleon) — z 7+(q,)

where T4(g;) acts on the isospin of the ith quark only. Ignoring for the moment any
antisymmetrization requirement between the three quarks in a nucleon, we can write
the first relation of Eq. (2-29) in the following way:

mein) = {re(@) + 7o(@) + 7i(aa)} [u(1)d(2)d(3)

where we have assumed that the first quark in the neutron is a u-quark and the re-
maining two are d-quarks. Since 7,|u) = 0 (a u-quark has t, = +}), the first term
vanishes. The second and third terms give the results

() lu(1)d(2)d(3)) = Ju(1)u(2)d(3))
71(gs)|u(1)d(2)d(3)) = |u(1)d(2)u(3))

Upon antisymmetrization these two terms produce identical results which we shall
represent generically as |uud ).

1

Quark wave functions of pions. We can check the isospin assignment to the u- and
d-quarks by examining the structure of mesons formed of these two quarks and their
antiquarks. It is simplest to start from 7~ with £ = 1 and t; = —1. Since we cannot
use any quarks other than u, d, %, and d, the only way to form a t, = —1 system is
to take the ud combination. We can easily deduce that this pair of quarks must form
at = 1 system by elimination. Two isospin—% particles can only be coupled to total
isospin 0 and 1. The Td system cannot be t = 0 as it has tg = —1. As a result, we can
make the identification

v~} = [ud) (2-30)
as there is no other way to form a t =1, t; = —1 state with u, d, %, and d.

In general, it is possible to find several different linearly independent components
corresponding to the same ¢ and ¢y. The appropriate combination for a given situation
is guided by isospin-coupling rules. Furthermore, the wave function must be antisym-
metric among the quarks and is an eigenstate of the Hamiltonian. For our interest in
this section, we shall only be concerned with isospin coupling.

From the wave function of 7=, we can construct that for #° using an isospin-raisin
k)

operator, ) )
0 - —
= —TinT) == T(g)ud 2-31
") = el = 3 rala)iud) (2:31)
where N is the normalization factor to be determined later. The operator T, acts on
the wave function of each quark. We have already seen that

Tild) = {u) (2-32)
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However, for the antiquarks, B
rlm) = —[) (2-33)

The additional negative sign comes from the symmetry requirement under charge con-
jugation, as discussed in the previous section.

The normalization factor N in Eq. (2-31) may be determined using Eq. (2-21).
Since |7~ )isat =1, {p = —1 system,

1, -1) = V2|1,0)

we obtain a value N = /2. The final result for the wave function of 7% is then

1 _
0N — ) — .
7% = ﬁ{m) |dd )} (2-34)
The same result can also be obtained by coupling the isospin of the two particles using
the Clebsch-Gordan coefficients described in §A-3. Since the values of both coefficients
to couple two isospin-% particles to total isospin 1 are

1
l,il;l, Moy= —
(3 %3: 3, F3110) 72

we obtain the same result as given in Eq. (2-34) after inserting an “extra” minus sign
arising from the transformation from |d) to | d ) under charge conjugation.
The wave function for 7% in terms of quarks is

|7t} = —|ud) (2-35)

This result may be arrived at either by applying an isospin-raising operator on the
quark wave function of 7° obtained above or by constructing a (¢,%) = (1, +1) system
in the same manner as we have just done for the 77 -system. Again, the overall minus
sign comes from charge conjugation between d and d.

One question still reains concerning the ¢t = 0 wave function for a quark-antiquark
pair. There are two different ways, 4T and dd, to form a £ = 0 state from the two
quarks and two antiquarks provided. Besides the one given in Eq. (2-34), we can also
take the linear combination

1
[0) = %{

It is orthogonal to |7 ) and must therefore describe a meson other than 7% Both v@
and dd have to = 0 but a mixture of (,£) = (1,0) and (¢,tp) = (0,0). A particular
linear combination was taken in Eq. (2-34) so as to have the correct isospin of t = 1 for
the 7% meson. The linear combination given in Eq. (2-36) is a different one and must
correspond to an isospin zero system as a result, a fact that can also be seen from the
explicit values of the Clebsch-Gordan coefficients required to construct a ¢ = 0 system.
Such an isospin-singlet meson may be identified with the n-meson, which has a rest
mass of ~550 MeV/c?%.

The four particles, nt, 7%, 77, and 7, exhaust all the observed mesons in the form
of a quark-antiquark pair that can be constructed out of u, d, @, and d in their lowest

|um) + |dd)} (2-36)
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possible energy states. To obtain other mesons, we must either introduce excitations
in the quark-antiquark system or invoke s- and other more massive quarks. We shall
return to this point later.

Other quarks. Let us examine briefly the isospin of the other quarks, c, s, t, and b and
their antiparticles. It is perhaps tempting to assume that each one of the remaining
two pairs forms also an isospin doublet. This, however, is not the case. As can be
seen from Table 2-2, these four quarks are isoscalar particles. Two questions are raised
here: How are the assignments of t = 0 made to these quarks? What is the relation
between their values of @ and #,? Since quarks are not particles observed in isolation,
assignment of isospin (as well as other quantum numbers) must be carried out through
the hadrons they make up. This is what we have done for the u- and d-quarks and we
shall see how it can be carried out for the s-quarks as an example.

After u- and d-quarks, the next one in order of increasing mass is the s-quark. They
are found in hadrons with nonzero strangeness S. For our purpose here we can regard
S as a label to identify the number of strange antiquarks in the hadron. The lightest
strange mesons are the kaons, or K-mesons. They come as two isospin doublets (¢t = %
systems), one consisting of K*(u3) and K°(d3), and the other of K~ (us) and K°(ds).
Since u- and d-quarks have isospin t = %, the s-quark must have integer isospin 0 or
1 in order to form kaons with ¢t = % The assignment of ¢ = 1 may be ruled out on
the grounds that, if this were true, we should be able to form ¢ = % strange mesons,
for example, made of an s-quark and an antiquark, either 7 or d. The fact that such
mesons have not been observed implies that the isospin of the s-quark is zero. The
assignment of isospin to the other quarks may be carried out in a similar way and we
shall not go into the steps here.

With the assignment of ¢ = 0 to the heavy quarks, we need now to modify the
relation between the charge number @ and ;. Equation (2-17) was derived for u- and
d-quarks and must be changed now, as the other quarks have different relations between
Q and ty. The more general form of BEq. (2-17) is given by

Q=to+A+S5+C+B+T) (2-37)

where assignments of baryon number A, strangeness S, charm quantum number C,
beauty quantum number B, and top quantum number 7 for each of the six flavors of
quarks are given in Table 2-2.

2-6 Strangeness and Other Quantum Numbers

In strong interaction processes, the total number of each type of quark, u, d, s, ¢, b, and
t, is conserved. However, through weak interactions, quarks can be transformed from
one flavor to another, such as the example shown in Fig. 2-1. In terms of observed par-
ticles, the flavor degree of freedom in quarks shows its presence by separating hadrons
into different groups, with transitions between groups allowed only through weak inter-
actions. As a result, transition rates between members of the same group, characterized
by the fact that they have the same quark content, are fast and typical of strong inter-
action processes. On the other hand, transitions between members of different groups



36 Chap. 2 Nucleon Structure

Figure 2-1: Transformation of a d-quark into a u-quark through weak interac-
tion. The virtual W~-boson emitted decays into a pair of leptons, e~ and 7.

involve the transformation of one type of quark to another and are much slower, with
lifetimes more typical of weak interaction processes.

Each group of hadrons is characterized by the number of quarks of each flavor, and
transitions from one group to another involve a change in one or more of these numbers.
For example, the K*-meson, with mass 494 MeV/c?, is made of the quark-antiquark
pair u5. The dominant mode of decay, 63.5% of the time, is into leptons, u* + 7.
A less prominent mode, 21.2% of the time, is into a pair of pions 7t + 7% In either
decay mode, the total number of quarks is conserved. However, there is no strange
antiquark among the end products of the decay. One way to “remove” the strange
antiquark § withoni changing the net number of quarks involved is to let it decay to a
#-quark, which then annihilates with the u-quark in K+ to produce a pair of leptons.
Alternatively, the 3-quark may A-decay to a d-quark instead and form a part of the
pions in the end product. The mean life of the K *-meson, 1.2 x 107# 5, is typical for
weak decays.

Strangeness, charm, and beauty. Among the baryons, A is a particle with quark
content (uds) and mass 1116 MeV. It is produced in reactions such as

" 4+p—= A+ K°

where the meson K°, with quark structure d3, is the isospin partner of K. On the
left-hand side of the reaction, there is no strange quark, as both #~ and p are made
exclusively of u’s and d’s. On the right-hand side, we see that the presence of an s-quark
in the A-particle is accompanied by an 3 in the K° meson. In terms of the observed
hadrons, we find that the production of a A and other hadrons containing an s-quark is
always accompanied by another hadron containing an 3. This type of association may
be accounted for by assigning a strangeness quantum number S to count the number of
strange quarks. In strong interaction processes, we say that strangeness is a conserved
quantity to indicate the fact that the numbers of s and 3 produced must be the same.
For historical reasons, an s-quark is assigned S = —1 and ¥ is assigned § = +1 (and
& = 0 for all other quarks).

Similar to strangeness, we can assign a charm quantum number C to account for
the number of c-quarks, with C = 1 for a c-quark and ¢ = —1 for a &-quark (and C =0
for all other quarks). To acconnt for the number of b-quarks, a beauty quantum number
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B is used with B = —1 for a b-quark and B = +1 for a b-quark (and B = 0 for all other
quarks). Thus, for example, a hadron with n c-quarks has C = n and a hadron with
m b-quarks has B = —m. Whether a quark or an antiquark of a given flavor should
take on the positive sign for the quantum number representing that flavor is somewhat
arbitrary. The convention described here is the one commonly used and satisfies the
relation between Q and tp given in Eq. (2-37).

Earlier, we saw the long lifetime of kaons as an example of strangeness conservation.
Similarly, long lifetimes of the order 1073 s are observed for the analogous situation of
charm and beauty conservation in the decay of D- and B-mesons, the lightest mesons
containing, respectively, a ¢- and b-quark or their antiquarks. The rest masses of D
(1869 MeV for D*) and B (5278 MeV for B¥) are, however, much larger than those for
K-mesons, reflecting the heavier masses of c- and b-quarks. Relatively long lifetimes are
also observed for mesons made of heavy quark-antiquark pairs as, for example, those
shown in Table 2-3. Since these particles are not stable, they are observed as resonances
when their production cross sections are plotted as functions of the bombarding energy.
For this reason, it is more common to characterize the stability of such “particles” by the
widths I of their resonance curves, related to their mean life T through the uncertainty

relation

r=1%
T

where ki = 6.58 x 10~22 MeV-s is the Planck constant.

Table 2-3: Lifetimes of ¢-, J/9-, and Y-mesons.

Meson Rest mass energy Width MeaE life quark
MeV I (MeV) T(s) content
¢ 1019.41£0.01 4.43 +0.05 | 1.49x107%2 s3
J/¥ | 3096.88+0.04 0.087+0.005 | 0.75%x10~20 e
T | 9460.37+0.21 0.053+0.002 | 1.24x10720 bb

It is worthwhile noting that lifetimes for J/4- and Y-mesons are much longer and
the widths I" narrower than expected. This is caused by the special circumstance that
there is not enough energy available for a J/1-particle (ct), with rest mass 3097 MeV/c?,
to decay into a D*(cd) and a D~ (ed) particle, the lightest members of quarks containing
a charm quark, as their combined rest mass energy is 2 x 1869 MeV. Similarly, a T-
particle (rest mass 9460 MeV /c?) cannot decay to a pair of mesons containing 4-quarks,
as the lightest pair, a B*(bu) and a B~(b%), has a combined rest mass energy of 2 x
5278 MeV. As a result, J/1 and T must decay through much slower processes involving
three or more lighter hadrons, as shown, for example, in Fig. 2-2(a), and into lepton
pairs by weak interaction. In contrast, the analogous ¢-meson (rest mass 1019 MeV/c?),
made of s3, can decay to a K+ and a K~ with a combined rest mass energy of 2 x
493.6 MeV. The narrow widths of J/v- and Y-particles are quite astonishing in view
of the high energies involved. As a result, they are useful as energy calibrations and



38 Chap. 2 Nucleon Structure

@) (b)

Figure 2-2: Example of decay into hadrons for J/y-meson, made of ¢&. The
three-pion process shown in (a) is allowed whereas transition to D* D~ shown in
(b) is forbidden, as the total mass of the final product is greater than that of J/4.

as signatures of special events in high-energy nuclear physics as, for example, those
discussed in Chapter 9.

Color. Besides flavor, each quark has another important degree of freedom, known
as color. The need of this additional quantum-mechanical label can be seen most
readily by examining the quark wave function of a A-particle. As we have seen earlier,
A is an isospin t = 3 particle with four different charge states, A*+, A+, A and
A~. Since it is a nonstrange baryon (8 = 0), it must be made of u- and d-quarks
alone. For A**, the member with the highest charge state, there is only one possible
combination of quarks, (uuu), to make a baryon with Q = 2. The intrinsic parity of A
is known to be positive. This, together with other evidence, requires the spatial part
of the wave function for the three u-quarks in A** to be symmetric if we permute
any two of them. The intrinsic spin of A is % and, hence, the intrinsic spin part of
the wave function for the three u-quarks is also symmetric. Similarly, the isospin part
of the wave must also be symmetric in order to have ¢t = % The net result is that
the product of space, intrinsic spin, and isogpin parts of the wave function for At+ is
symmetric under a permutation among the three u-quarks. On the other hand, quarks
are fermions and the Pauli exclusion principle requires that the total wave function of
the three identical quarks be antisymmetric with respect to a permutation of any two of
the three quarks. The wave function we have obtained so far for A*+ is in contradiction
to this fundamental principle of quantum mechanics. There are two posgible ways to
get out of this dilemma: Either the Pauli principle is wrong, which is very unlikely, or
else we have missed one of the degrees of freedom for quarks.

This new degree of freedom is given the name “color” and hence the name quantum
chromodynamics for the theory dealing with strong interactions involving “colored”
quarks. To account for this new degree of freedom, a color is assigned to each quark,
for example, R (red), G (green), and B (blue). From the example of the A++-particle
we can deduce that the quarks in hadrons must be antisymmetric in the color degree
of freedom; that is, the net color in a hadron must vanish. We can also reach the same
conclusion from another point of view. Since color has not been an observed property,
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all hadrons must be colorless objects: The color degree of freedom of the constituents
inside a hadron must somehow neutralize each other. For mesons, this is easy to achieve,
as an antiquark must have the opposite color for a quark. For baryons made of three
identical quarks, such as A**, the different colors cancel by being antisymmetric with
respect to each other.

In nuclear physics, we are usually not involved explicitly with the color degree
of freedom. However, the A-particle is important. It was discovered by Fermi and
Anderson in 1949 as a resonance in nt-scattering off protons at pion kinetic energy
T, = 195 MeV, as shown in Fig. 2-3. It corresponds to a mass of the pion-proton
system of 1232 MeV. Since this takes place in the £ = 1 reaction channe! with both
spin and isospin %, it is also known as the Pi;-resonance. Because it is a very strong
resonance at relatively low energy, nucleons inside a nucleus may be excited fairly
easily to become a A-particle, and as we shall see later, such excitations may have a

strong influence in processes involving energies comparable to those required to change
a nucleon into a A-particle.
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Figure 2-3: Total cross section of charged pions scattering off protons. The
strong Pi3-resonance in 7% + p reaction occurs in the (J*,T) = (%+, 2) channel
with £ = 1. The 7~ + p cross section at the same energy is much smaller, as the
system is a mixture of T = $ and T = 1. The data are taken from Ref. [22].

2-7 Static Quark Model of Hadrons

A quark model of the hadrons should, in principle, involve all six different flavors. This
can be rather complicated, as a large number of particles can be constructed from six
different quarks and six different antiquarks. Fortunately ¢-, -, and t-quarks are so
much more massive than -, d-, and s-quarks that they are important primarily in heavy
hadrons. For most particles of interest at low energies, only the three light quarks, u,
d, and s, and their antiquarks, are involved. For this reason, it is quite adequate for us
to consider a model consisting of only these three quarks and their antiquarks.
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Mesons and pseudoscalar mesons. Let us start with the simpler case of mesons.
Although mesons can be made with any number of quark-antiquark (¢g)-pairs, most of
the observed ones may be understood by considering only a single (¢g)-pair. A simple
quark model of mesons, therefore, involves a quark and an antiquark moving with
respect to each other with orbital angular momentum £. The total angular momentum,
or spin, of the system is J = £+ 8, where § = 3,4 g5 is the sum of the intrinsic spins of
the quark and the antiquark. Since s, = 55 = %, the possible value of S for a ¢g-system
is either O (singlet state) or 1 (triplet state). As for the spatial part of the wave function,
it has been found that mesons with relative orbital angular momentum £ = 0 are lower
in energy, the same as in the case of atomic levels. We shall restrict ourselves to these
low-lying ones as they include essentially all those of interest to nuclear physics.

We have already seen that pions are the least massive particles among mesons.
Since both orbital angular momentum ¢ and total intrinsic spin S are known to be
zero, the spin J of a pion is also zero. They are therefore “scalar” particles, as their
wave functions are invariant under a rotation of the spatial coordinate system. However,
unlike ordinary scalars, their wave functions change sign under a parity transformation.
This may be seen in the following way. The parity of the pion is given by the product
of the intrinsic parities of the quark (+1) and the antiquark (—1) and the parity of
the spatial wave function of the (¢g)-pair. The property of the spatial wave function
under a parity transformation is related to the orbital angular momentum £ and is given
by (—1)%, the same as spherical harmonics of order ¢ discussed in §A-1. Since ¢ = 0,
the parity of the complete pion wave function is negative. The pion therefore behaves
like a pseudoscalar quantity, one that is invariant under a rotation but changes sign
under an inversion of the coordinate system. For this reason, pions and other J = 0,
negative-parity mesons are called psendoscalar mesons.

We saw earlier that with two quarks, u and d, and two antiquarks, 7 and d, a total
of 2 x 2 = 4 (pseudoscalar) mesons can be constructed with £ = 0 and S = 0: three
pions and one 7j-meson. When the strange quark s and its antiquark 3 are included in
addition, the total is now nine. These are shown in Fig. 2-4. The nine mesons may
be separated into two groups. Eight of the nine form an octet, the memhers of which
transform into each other under a rotation in the flavor space. That is, when we make
an interchange among u, d, and s, the wave functions of the eight mesons transform
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Figure 2-4: Pseudoscalar mesons.
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as an irreducible representation of the SU; group, special unitary group of dimension
3. Mathematically the transformation is very similar to, for instance, a rotation of the
spatial coordinate axes by some Euler angles. The various components of a spherical
tensor of a given rank, e.g., spherical harmonics Y, (6, ¢), differing only in the values
of m, are modified because of the rotation. However, the relation between different
components of Yy,(6,#) is such that, in the rotated system, the new Y,(8, ¢) can
always be expressed in terms of the spherical harmonics of the same order £ in the old
system, as shown in §A-2. In group theoretical language, the 2¢+1 spherical harmonics
of the same £ but different m form an irreducible representation. Members of the meson
octet also form such a group representation except that the rotation is in the (three-
dimensional) flavor space consisting of u-, d-, and s-quarks, and the transformation is
from quarks of one flavor to another.

The remaining meson, 7, is invariant under any such interchanges among the
three quarks and forms an irreducible representation by itself. In this way, the nine
mesons in the model flavor space of u-, d-, and s-quarks, and their antiquarks, may
be classified into an octet and a singlet according to their SU; symmetry in flavor
transformation. We shall soon see that, although this symmetry in the SUs(flavor) is
not exactly preserved in strong interactions, it is nevertheless useful as a classification
scheme for both mesons and baryouns.

It is a simple matter to write down the wave functions of the nine mesons in terms
of (¢g)-pairs. The pion wave functions have already been given in §2-5. There is no
ambiguity in constructing the kaon wave functions, as each one must involve either an
s or an 3. The flavor of the other quark for the S = 1 kaons, or an antiquark for the
S = —1 kaons, must be either « or d, or 7 or d, and the choice is completely determined
by the charge carried by each kaon. The results are shown in Fig. 2-4.

The wave functions of the two isoscalar mesons, 73 and 7y, are slightly more com-
plicated and must be deduced using, for example, symmetry arguments. Since g is
invariant under a transformation among the three flavors, its wave function must be a
linear combination of (ui), (dd), and (s3), with equal weight:

im0} = %{m—) +1d2) + 53)} (2-38)

where the factor 1/v/3 comes from the normalization requirement. The 79-meson is,
then, an “extension” of the ny-meson constructed out of u- and d-quarks (and their
antiquarks) given in Eq. (2-36). Similar to the two-flavor case, the wave function of 7,
the isoscalar meson in the octet, may be obtained by requiring it to be an isoscalar and
orthogonal to both |7°) and |7 ). The result is

1
|7} = %{

The derivation is left as an exercise (see Problem 2-5).

Two isospin ¢ = 0 pseudoscalar mesons are known at low energies, the 7-meson with
mass 548.8 MeV/c? and the n'-meson with mass 957.5 MeV/c?. Since the SU,(flavor)
symmetry is not an exact one, the observed mesons are mixtures of 7y and 7s given
above. The mixing coefficient, is usually expressed in terms of an angle 8, known as the

|wz) + |dd ) — 2153) } (2-39)
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Cabibbo angle,

n= ngcosf + mpsind 7 = —ngsinf + nycosd

For the pseudoscalar mesons, the value is 8 ~ 10°.

Vector mesons. Instead of S = 0, the total intrinsic spin of the quark-antiquark pair
in a meson may be coupled to S = 1. For £ = 0, the spin of the pions produced is now
J = 1. The parity, however, remains negative. Similar to the pseudoscalar mesons,
we now have a set of nine vector mesons whose wave functions behave like an ordinary
vector under a transformation of the spatial coordinate system.

The structure of the set of vector mesons, as far as their symmetry under a rotation
in the flavor space is concerned, is the same as that of the pseudoscalar mesons, as can
be seen by comparing Fig. 2-5 with Fig. 2-4, Corresponding to the pions, we have an
isospin triplet of p-mesons, and instead of the strange pseudoscalar mesons K°, K+,
K-, and K°, we now have the strange vector mesons K*°, K**, K*~, and K*®. The
two isoscalar vector mesons with definite SU; symmetry are ¢ and ¢5. The observed
isoscalar vector mesons, ¢ and w, have much larger SUs(flavor) mixing, with Cabibbo
angle # ~ 40°, compared to § ~ 10° for the pseudoscalar mesons.
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Figure 2-5: J™ = 1~ vector mesons.

The vector mesons are more massive than their pseudoscalar counterparts. For
example, the p-meson has a rest mass energy of 767 MeV and the w-meson has 782 MeV.
In contrast, the pion rest mass energies are 140 MeV for 7% and 135 MeV for 7. As
far as their wave functions are concerned, the vector and pseudoscalar mesons differ
only in their total intrinsic spin, with S = 1 for the former and S = 0 for the latter.
The large difference in their masses must come from the differences in the interaction
between a quark and an antiquark in the S = 0 and S = 1 states. We see here an
example of the important role of the interaction between quarks which we have ignored
for the sake of simplicity in most of our discussions.

Because of their larger masses, the p- and w-mesons can decay via strong inter-
actions to pions with lifetimes at least six orders of magnitude shorter than those of
pions. The p-meson transforms to two pions with a mean life of 4 x 1072* g (or width
I' =153 MeV) and the w-meson goes 90% of the time to three pions with a lifetime of
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8 x 108 s (I' = 8.5 MeV). As we shall see later, both p- and w-mesons play special
roles in the interaction between nucleons.

Baryons. With three flavors, we can construct a total of 3 x 3 x 3 = 27 baryons
for a given set of (¢,S)-values. They can be classified according to their SU;(flavor)
symmetries into four groups consisting of 10, 8, 8, and 1 members. The group of
10 baryons (decuplet) is completely symmetric under a transformation in flavor, and
the group of one baryon (singlet) is completely antisymmetric. The other two groups,
consisting of eight members each (octets), have mixed SUs(flavor) symmetry, neither
completely symmetric nor completely antisymmetric. Similar to the case of mesons, we
can make use of the SUs(flavor) symmetry to construct the quark wave functions for
these baryons.

The baryon wave functions are slightly more complicated to derive than those for
mesons for the simple reason that we are now dealing with products of three objects
instead of two. It is convenient to treat all the quarks as identical particles distinguished
only by their flavor and color labels. Since hadrons are color neutral objects, their quark
wave functions must be totally antisymmetric in color. As a result, the rest of the wave
function, formed of a product of flavor, spin, and spatial parts, must be symmetric
under a permutation of any two of the quarks.

Consider first the decuplet. The 10 members of the group, together with their quark
contents, are listed in Fig. 2-6. Because they are completely symmetric in flavor, it is
relatively simple to construct the quark wave functions. We have already encountered
one of the members in this group, A**, in introducing the color degree of freedom. As
mentioned previously, both the intrinsic spin and isotopic parts of the A-particle wave
function must be completely symmetric in order to couple to a state with maximum
total spin S = 52‘- and isospin ¢ = % Furthermore, for a symmetric product of spin,
isospin, and spatial parts, the spatial part of the wave function of three u-quarks must
also be symmetric.

With A*+ given by |uuu) from isospin considerations, the wave functions of the
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Figure 2-6: J™ = %+ baryon decuplet.
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other three members of the isospin quartet, At, A® and A~, may be obtained using
the isospin-lowering operator 7_ on | A**)| in the same way as we have done earlier in
obtaining the pion wave functions. With each application of the _-operator, one of the
u-~guarks is changed into a d-quark. This gives us the correct isospin structure of all four
members of the A, However, unlike the pion case where two nonidentical fermions are
involved, a quark and an antiquark, we are dealing here with three identical particles.
In addition to isospin coupling, we must also ensure proper symmetry between the
quarks under a permutation between any two of them,

When two identical particles are said to be in a symmetrical state under an in-
terchange, we mean that the wave function remains the same when we permute the
particle labels 1 and 2. Consider as an example the following symmetrical wave function
of two fermions:

Us(1,2) f{f( )¢(2) + ¢(1)6(2)} (2-40)

where £ and ¢ are single-particle wave functions and 1/ V2 is the normalization factor
for the case where the two single-particle wave functions are different from each other.
Under a permutation between 1 and 2, the two particles exchange the single-particle
states they occupy. Let us denote this operation by operator Pj,. It is obvious that,
for the wave function ¥4(1,2) defined above, we have

P2 ¥s(1,2) = ¥s(2,1) \/—{ﬁ(Z)C(l) +¢(2)¢(1)} = ¥s(1,2)
Similarly an antisymmetric two-particle wave function ¥ 4(1,2) may be written as

Va(1,2) \/—{5(1)4(2 ¢(1)€(2)} (2-41)

By inspection, we see that
Pa¥a(1,2) = ¥a(2 1) = —={EQ)C() - (L)} = ~a(1,2)

For ¢ = £, the symmetric wave function reduces to £(1)£(2) (with appropriate change
in the normalization) and the antisymmetric wave function vanishes, as required by the
Pauli exclusion principle.

For A** we have the simple situation that all three quarks have the same flavor.
The wave function is the symmetric product of three u-quarks,

1a%%) = {u(1))u(2))[u(3) (2-42)

We shall now see how to obtain the wave function of A* using the isospin-lowering
operator. When r_ is applied to | A*%), we have a choice of changing any one of the
three u-quarks into a d-quark. Since there is no way to make a distinction between
them, the wave function of A* must be a linear combination of all three possibilities
with equal weight, The normalized and symmetrized (since the color degree of freedom
is outside our considerations here) wave function for A+ is

|AT) = %{Id(l)HU(Z))IuB)) + (D) d(2))u(3)) + [u(1))u(2))1d(3)) }
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To simplify the notation, we shall write the same equation in a shorthand form,

|AY) = —I—{Iduu) + |udu) + |uud)}

V3

where it is implied that the first symbol in each term is for quark number 1, the second
one for number 2, and the third one for number 3. In cases where we wish only to
indicate the quark content of a hadron without displaying the permutation symmetry
explicitly, the notation can be shortened further to (uud), for example, as done in
Fig. 2-6.

Following this rule, the wave functions of A® and A~ may be written in the following
manner:

0 1
1A% = —ﬁ{lddu) + |dud) + judd) }
|A7) = |ddd)

They are obtained by applying the T_-operator to the wave function of A*, once for
| A®) and twice for {A™). Alternatively, we can start from the only possibility to
construct the wave function for | A™), the ¢y = member of the isospin quartet, as
we have done earlier for A**, and apply the i 1sospm raising operator to produce | A?).

The wave functions of the three strangeness S = —1 baryons in the decuplet may
be obtained by starting with |Z**), the ¢ = 1 member of the isospin triplet. We
can use | A*%) given in Eq. (2-42) as the starting point and replace one of the three
u-quarks with an s-quark. This is similar to the way we obtained |At) from |ATY)
above by replacing a u-quark with a d-quark. Here, instead of isospin, we are lowering
the strangeness by replacing a d-quark with an s-quark. Again, from the symmetry
requirement, the normalized wave function is

|5 = —-\}-E{Isuu) +usu) + | uus)) (2-43)

Next, we apply T_ operator on |L**) to obtain | £*?) and, thence, | £*~). Since the
s-quark is an isospin zero particle, it vanishes when acted upon by the v_- (or 7,-)
operator. The only effect of the isospin-lowering operation is to change one of the
u-quarks to a d-quark. As a result, we obtain

1
|£*0) %{Mus) + |uds) + |dsu) + [usd) + |sdu) + [sud)}
. i
|=*) = —\/_—3{|dds) + |dsd) + |sdd) }
This completes the wave functions for the three § = —1 members.
It is trivial to obtain the wave functions for the strangeness & = —2 members of

the decuplet, since now only one of the three quarks carries a nonzero isospin and, as a
result, only an isospin doublet can be constructed. Their wave functions are given by
the following expressions:

|zt = {|uss) + |sus) + Issu)}

Z) {ldss) + |sds) + Issd)}

I

Si-8l-
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For & = —3 there is only one possibility,
Q7) = | s3s)

Although it is an isoscalar particle, and consequently ¢y = 0, it is a charged particle.
This can be seen from Eq. (2-37). Since the baryon number is A = 1 and strangeness
8§ = -3, the charge number of the particle is —1. The same result can also be obtained
from the fact that each s-quark carries a charge -%e‘ The particle therefore carries one
unit of negative charge and, hence, the negative sign in the superscript.

Baryon singlet. A state of three quarks completely antisymmetric in flavor is also
simple to construct. The quark content in this case must be uds, one of each flavor.
However, there are 3! = 6 possible choices: three choices in arranging which one of the
three quarks has flavor label u aud two choices in arranging which one of the remaining
two quarks has flavor label d. (The last one takes on label s.) There is no reason to
favor any one of the six possibilities and a linear combination of all six is required.
The particular choice, however, must be antisymmetric with respect to a permutation
between any two quarks in order to satisfy the requirement of being a singlet state.
We can arrive at the correct linear combination by starting from any of the six terms,
for instance, u(1)d(2)s(3). To this, we add terms generated from it by applying all the
possible linearly independent permutations among the three indices 1, 2, and 3. For the
three odd permutations Pj,, Py, and P3; producing the arrangements (dus), (uzsd), and
(sdu), we must take them with the negative sign in order to satisfy the requirement of
being symmetric. Similarly, the two even permutations Py2Pp3 and Ps; Py3 that generate
the arrangements (dsu) and (sud) must be taken with the positive sign. The normalized
singlet quark wave function is then
A = —\}—g{luds) + [dsu) + Jsud) ~ |dus) = Jusd) — |sdu) }

Except for an overall sign, this is the only unique way to construct the required anti-
symmetric linear combination. Since there is no other way to construct a wave function
with the same symmetry, | A; ) forms an irreducible SU;(flavor) representation by itself.

Let us examine the symmetry of the isospin part of the wave function. Since the
s-quark is an isoscalar quantity, the isospin of the wave function is determined by u-
and d-guarks. To illustrate this point, we can rewrite the wave function in the following
form by putting the s-quark always at the end:

m) = —e{(u0)d@) - 140 )l s(3)
+(1u(2)1d(3)) - 14(2))|u(3)))5(1))
+(1u(3))1d(1)) — 143 u(1)))1 5(2)) }

We can recognize that each one of the linear combinations in u and d has ¢t = 0, as it
is antisymmetric in the isospin-carrying parts. The singlet SUs(flavor) representation
therefore describes an isoscalar particle. Since the isospin is completely determined by
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the symmetry in flavor of the quark wave function, it does not constitute an independent
degree of freedom in fixing the wave function.

So far we have not explicitly put in the intrinsic spin part of the wave function. An
example will be glven later for the nucleon wave function. Here, we shall simply state
the result that J* = - * for the Ay-baryon.

Since the SUs(ﬂavor) symmetry is not an exact one, the observed strangeness S =

~1, isoscalar, J* = §+ particle A is a mixture of |A;) and |Ag), the latter being a

+ - . .
member of the J™ = % baryon octet. This is similar to the admixture in pseudoscalar
and in vector meson wave functions we have seen earlier.

Baryon octet. The remaining 16 members of the 27 possible baryons constructed
from -, d-, and s-quarks have mixed symmetry in flavor. They may be classified as
two octets distinguished by their symmetries under a simultaneous interchange of both
flavor and spin. We shall be interested only in the lower energy octet, as it contains
protons and neutrons as members. The waves function for each member in this group
is symmetric under the combined exchange of flavor and intrinsic spin, as the three
quarks must be antisymmetric in color. The members of the octet together with their
quark contents are shown in Fig. 2-7.
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Figure 2-7: J" = — baryon octet.

Let us construct the proton wave function as an example. Since the intrinsic spin
and parity of a proton are ; , and the orbital angular momen’cum is 0, we can start by
coupling the intrinsic spins of the three quarks to the value 1 5. There are several ways to
achieve this, and we shall take the simplest one by coupling the first two quarks to spin

0 and then couple the third one with spin up to form a system with (S, Sp) = (3, +3),

18 = 5 (leWDIe) ~ la@DIaN)la@) (2-44)

Here, the up-arrow symbol represents a quark with intrinsic spin up (+ } and the
down-arrow symbol a quark with spin down (—-) The assignment of ﬂavor to each of
the quarks will be made later. A second possibility to form an (5, Sp) = (2, +z ) system
is to couple the first two quarks to spin 1 instead of 0, as we have done above This
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chmce is complicated by the fact that the final system is a mixture of total spin 3 3 and

. To project out the desired S = 5 part, a linear combination must be taken of the
fwo possibilities, {(g142), ,(43)1/2,-1/2} and {(4192); o(43)1/2,+1/2}, Where the first of the
two subscripts indicates S and the second the value of its third component.

The combined symmetry of the spin and flavor parts of the wave function may be
determined after assigning a flavor to each one of the quarks involved, subject to the
condition that, for a proton, each term must consist of two u-quarks and one d-quark.
Let us start by giving the first two quarks different flavors. Equation (2-44) becomes

b4 = = (DD - WO )

The combination of spin and flavor may be symmetrized in two stages. First we shall
carry out the process only for the first two quarks and obtain

L+d) = $(lu(OnId@)l) - fu(n)1)ld)r)
+Hd(1)De()1) = [dONu(@)))[u(3)1) (2-45)

Next, we shall generate the others by applying permutations Py and Pi, on each of
the four terms in Eq. (2-45). This gives us a total of 12 terms. On grouping identical
terms together, we obtain the quark wave function for a proton with spin orientations
of all the quarks indicated explicitly,

Ip) = Iflﬁ{g("” ul dl) + Juf d) uf) + ldl uf 1))

—(lut ul di) + fud df ul) + |d] uf ul)
+ud ut 1)+ [ul df ul) + |df «l u1))} (2-46)

To simplify the notation, we have dropped the labels for quark number and rely on
the order each quark appears instead. The fact that this wave function is symmetrical
under a simultaneous interchange of flavor and spin between any two quarks can be
established by inspection.

The neutron wave function can be written down from that for a proton by simply
substituting all the u-quarks by d-quarks and vice versa. Similarly, the wave functions
of the strangeness S < 0 members of the octet can be built from that of the proton, in
the same way as we have done for members of the decuplet by starting from | A++).
These are left as exercises.

2-8 Magnetic Dipole Moment of the Baryon Octet

The hadron wave functions obtained in the previous section are based solely on sym-
metry considerations. Since they are not the eigenfunctions of a realistic Hamiltonian
involving interaction between quarks, we cannot expect them to be able to describe
any of the dynamic properties with good accuracy. Nevertheless, calculations for some
simple quantities can be carried out, and the results will show whether they are useful
as zero-ovder approximations to the wave functions. Besides quantities used already in
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obtaining the wave functions, such as charge number, spin, isospin, and strangeness,
the magnetic dipole moment is one we can use to test our model. We shall only deal
with members of the baryon octet given in Fig. 2-7, as more are known about them.

The magnetic dipole moment of a baryon comes from two sources, the intrinsic
dipole moments of the constituent quarks and the orbital motion of the quarks. For
the baryon octet of interest here, all the members have J™ = %*’. In the simple model
adopted in the previous section for our discussion, the three quarks are symmetric in
the spatial parts of their wave functions, with relative motion £ = 0. As a result,
contributions from quark orbital motion may be ignored.

Quark magnetic dipole moments. Associated with the intrinsic spin 8 of a particle,
there is an intrinsic magnetic dipole g. The ratio between the two quantities is a

constant g, known as the gyromagnetic ratio. In terms of operators, we have the
relation

K= gsup (2-47)
For quarks, it is convenient to measure the dipole moment in terms of
_ ghld]
Hp = 2mge

This is identical in form to the definition for nuclear magneton py except, here, g is
the quark charge e/3 and m,, the quark mass, is used instead of nucleon mass (and the
factor [c] in the numerator converts the result from cgs to SI units).

For Dirac particles, i.e., particles devoid of internal structure, we have g = 2
for those with intrinsic spin s = % In practice, no particle is observed to be com-
pletely without some “structure” associated with it. For example, electrons and muons
emit and absorb virtual photons. The contributions from these virtual processes give
rise to an “anomalous” magnetic dipole moment such that the observed value of g¢
is 2 x 1.001159652193(10) for an electron and 2 x 1.001165923(8) for a muon. The
small corrections to the simple Dirac particle values for the charged leptons are well
understood and can be calculated to very high precision in quantum electrodynamics.

Since a quark is an elementary particle, we can take it as a simple Dirac particle
to start with. The relation between intrinsic magnetic moment and spin is given by
Eq. (2-47) with ¢ = 2. However, we do not know the quark masses; it is therefore
not possible to deduce the values of p in any simple way. (For this reason there is no
point to consider corrections to g due to anomalous magnetic dipole moment either.)
However, if we assume that the masses of u- and d-quarks are equal, the ratio between
their magnetic dipole moments is given by the ratio of their charges. This gives us the
result

My = —2lg (2‘48)

As we shall soon see, this is useful in getting an idea for the values of the intrinsic
magnetic dipole moments of the u- and d-quarks.

Nucleons. The contribution to the magnetic dipole moment of a baryon from quark
intrinsic dipole moments depends also on the orientation of the spin of each quark.
Since the quark orbital motion does not enter here, the magnetic dipole moment is
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given by the number of quarks of each flavor in each one of the two possible spin
orientations. For a proton, we can count the numbers of u1, u{, df, and d] explicitly
using the wave function given earlier in Eq. (2-46). The results are simply the sums
of the squares of the coefficients in the wave function for each one of the four possible
combinations of flavor and spin orientations: $ for the number of u-quarks with spin
up, § for the number of u-quarks with spin down, 1 for the number of d-quarks with
spin up, and % for the number of d-quarks with spin down. The net contribution from
u-quarks to the proton magnetic dipole moment is then 3 — 1 = %, and that from

3 )
d-quarks is § — 2 = —1. In this simple model, the final result for a proton is then

Hp = %Nn - %Ud

For a neutron, we can again interchange the roles of u- and d-quarks in the expression
above and obtain the result,

Hn = %ﬂd - %I«Lu
If we now make the assumption that the masses of the u- and d-quarks involved are

equal and their ratio of magnetic dipole moments is given by Eq. (2-48), we obtain the
ratio between those of a neutron and a proton,

N T 1 T

Hp %ﬂn - %'J'd - —3u4 a 3

This is in good agreement with the observed value of —1.913/2.793 = -0.685.

Baryons with S§>0. For the other six members of the octet, there is at least one
s-quark involved. As a result, we need to include the contributions from the intrinsic
magnetic dipole moment of strange quarks. Since the s-quark is known to be more
massive than the u- and d-quarks, we cannot easily relate its intrinsic magnetic dipole
moment to those of the u- or d-quarks in the same way as we have done in Eq. (2-48)
between u- and d-quarks. On the other hand, eight magnetic dipole moments are known
for the members of the octet and all of them are given in terms of the intrinsic magnetic
dipole moments of the three quarks in this simple model. As a result, a least-squares-
fitting procedure may be used to deduce the three unknown quark values from these
eight pieces of data. To carry out this procedure, we must first express the baryon
magnetic dipole moments in terms of those for the three quarks, as we have done above
for the nucleons.

Although we do not have the quark wave functions written out in detail for the
8§ < 0 members of the octet as we have done in Eq. (2-46) for the proton, we can
nevertheless count the number of quarks of each flavor with spin up and that with
spin down, starting with the quark content of each baryon given in Fig. 2-7. This
is particularly simple for those strange baryons involving only two different flavors,
i.e., those made of s- and u-quarks only or s- and d-quarks only. For example, the L+
baryon is made of two u-quarks and one s-quark. Compared with the proton, (uud),
we see that the only difference between the quark structure of these two baryons is
that, in the place of a d-quark in proton, we have an s-quark in £%. Since all members
of the octet have the same combined symmetry for spin and flavor, the proton and &%
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must have very similar quark wave functions, except for the replacement of d with s.
Hence, the magnetic dipole moment of the X *-baryon is given by

Hg+ = %l‘u - %p’!
Similarly, the quark content of £~ is {dds). Comparing it with a neutron, we find that
the expression for the magnetic dipole moment of a X~-baryon is the same except that,
in the place of u-quarks in a neutron, we have the contributions from s-quarks. This
gives us the result

Mg = 3ld — i
Using similar methods, the expressions for the magnetic dipole moments of the two
S = —2 members of the octet, Z~(dss) and Z*(uss), can be obtained and the results
are given in Table 2-4.

Table 2-4: Magnetic dipole moment of baryon octet.

Octet Quark content Best fit Observed
member % d s I3y by
P $ -3 0 | 2793 | 2.792847386(63)
n -4 4 0 | -1.913 | -1.91304275(45)
A 0 0 1 |-0613 | -0613(4)
o+ i 0 -3 2.674 | 2.458(10)
- 0§ -} |-1092 |-1.160(25)
=0 -1 0 4 | -1435 | -1.250(14)
E- 0 -3 % |-0493 | —0.6507(25)
DA -/F i o |-1630 |-161(8)
Q- 3 | -1.839 | —2.02(5)
u 1 1.852
d 1 -0.972
1 | -0613

For the two remaining members of the octet, £° and Ag, the quark contents are
(uds) for both. Since three different flavors are involved, a slightly different approach is
required. For both hadrons, we can make use of their isospin difference to derive their
wave functions. For this purpose we can ignore the s-quark for the moment, as it is an
isoscalar particle not involved in any isospin considerations.

Let us start with Ag. Since it is an isospin singlet, we have t = 0. In the discussions
given earlier for the quark wave functions of 7% and 7o-mesons, we have seen that a
to = 0 system, consisting of a u- and a d-quark, is a mixture of isospin 1 and 0. To
project out the isospin ¢ = 0 part, we need an antisymmetric linear combination of the
two possible arrangements of v and d,

I(t, ) =(0,0)) = %{Iu(l)d@)) ~ ld(L)u(2))}
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The spins of these two quarks cannot be both up, as such an arrangement will be
antisymmetric under the simultaneous exchange of spin and flavor. The only possibility
is therefore

I(2,t0)=(0,0); (s,m,)=(0,0)) = ${(Iw(1)T d(2)1) - |e(1)T w(2)L))
+(Jd()) w(@)1) = (1)} d@)1))}

Note that the total spin of the two quarks is also zero as a result of the symmetry
requirement.

We can now couple the s-quark to the product and form a spin-% system of three
quarks,

(£, t0) = (0, 0); (s, m) = (4, +3)y = H{ (lu(D)T d(2))) - [d(1)T u(2)))
+(Jd)L w(@)) - [w(D)} d2)D) }s(3)D  (2-49)

The wave function is not properly antisymmetrized with respect to the third quark.
However, for the purpose of calculating the magnetic dipole moment, this is not neces-
sary; all we need to do is to count the number of quarks of each flavor with spin up and
the corresponding number with spin down, and this is independent of the symmetriza-
tion among the three quarks beyond those given in Eq. (2-49) above. Furthermore, it
is also evident from the structure of the wave function that the net contributions from
both u- and d-quarks are zero, as there are equal numbers of each with spin pointing
up as there are with spin pointing down. As a result, we obtain

Bp = g

for the magnetic dipole moment of Ag. Because of the crudeness of the model used
here, there is no point in considering any SUs(flavor) symmetry-breaking effects and
the resulting difference between Ag and the observed A-baryon.

The isospin of £Y is unity, as it is a member of a triplet, £+, £° and £=. The
quark wave function is somewhat more complicated than what we have obtained for
Ag, as the u- and d-quarks must now be coupled to a spin-1 state. We shall leave the
calculation of sz in terms of quark magnetic dipole moments as an exercise, since the
value of sz is not known and we cannot make use of it in our calculation. On the
other hand, the decay of Z¥ through the reaction

0o A4y
is similar to a magnetic dipole transition (see §5-3) and, as a result, the transition

probability is proportional to |ptge 4|2, The matrix element of the magnetic dipole
transition operator O(M1) has the value

ooy = (EO(MDA) = ——lﬁ(uu 1)

Since the experiment measures the square of the transition matrix element, only the
absolute value is determined [116]. The sign is known from independent sources to be
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negative. As a result the value of y50_, may be used as a piece of information for our
calculation.

Table 2-4 summarizes the contribution from each one of the three quarks to the
magnetic dipole moments for the members of the baryon octet together with Hso_p-
The observed values are listed in the last column in units of nuclear magnetons, uy =
ehi/(2Mpc) in cgs units or ehi/(2M,) in SI units. The values of u,, ug, and p, are
deduced by fitting them to the eight measured dipole moments. Since the accuracics
that can be achieved for the measured values of the various baryons differ by a large
margin, the eight pieces of data that went into the calculation as input have been
weighed inversely according to their experimental uncertainties, given in parentheses in
the table. The results of the calculation are shown under the column labeled “Best fit."
The calculated values agree quite well with observation, especially in view of the crude
model used. Except for 27, the discrepancies are less than 0.2p1;. This close agreement
has two implications. The first is that the model used to deduce the moments in terms
of those of the three quarks is a reasonable one, otherwise much larger differences would
have resulted. The second is that the values deduced for the quark magnetic dipole
moments are physically meaningful.

We expect several corrections to our simple analysis. One of the assumptions we
have made is that the wave functions have only £ = 0 components. This is true if
orbital angular momentum is conserved by the interaction between quarks. As we shall
see in the next chapter, in an analogous discussion on the deuteron ground state, the
orbital angular momentum is not necessarily a constant of motion. Consequently, it is
unreasonable for us to expect that the ground states of the members of the baryon octet
be purely £ = 0. In general, some configuration mixing from ¢ > 0 terms is present,
and this may be the most important correction to our simple model. A more detailed
discussion can be found in a status report by Brekke and Rosner [36}.

The values of the magnetic dipole moments of the three lighter quarks obtained
from the least-squares-fitting procedure are given at the bottom of the table. Although
there are no observed values to compare with, we can, nevertheless, get a rough idea
whether the results are reasonable. For example, the ratio pt, /g = —1.91 is fairly close
to the value of —2 obtained earlier by assuming that the masses of u- and d-quarks are
identical to each other and both of them have the same gyromagnetic ratios.

2-9 Hadron Mass and Quark-Quark Interaction

Another striking feature in hadron spectroscopy is the systematics in their masses. In
Table 2-5, the observed values for some of the low-lying members are given, together
with their uncertainties in the last digits in parentheses. First of all, we notice that the
masses for the members of the J™ = %+ baryon octet are well correlated in value with
their strangeness quantum numbers. That is, the mass differences between members
with the same strangeness are much smaller than those between members of different
strangeness. For example, the difference between a proton and a neutron is less than
2 MeV/c?, whereas the difference between a A-baryon (S = —1) and a neutron is
around 176 MeV/c?, and that between a Z-baryon (§ = —2) and a A-baryon is
around 200 MeV/c?. The obvious conclusion one can draw from such comparisons is
that the rest mass energies of the underlying u- and d-quarks are the same within a
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few mega-electron-volts and that the value of the s-quark is larger than those of the
u- and d-quarks by 100 to 200 MeV. Further support for s-quarks being more massive
can be found in the mass differences between members of the baryon decuplet, between
members of the pseudoscalar mesons, and between members of the vector mesons. As
for the charm and beauty quarks, we have already seen evidence from the masses of
J/1- and T-mesons in §2-6 that they are even more massive. From a comparison of
the masses of hadrons made of different quarks, the masses of the various quarks can
be deduced. The generally accepted values were given earlier in Table 2-2.

Table 2-5: Low-lying hadron masses in MeV/c?.

Baryons Mesons
S=0 s scalar meson
p 938.27231(28) | «* 139.56995(35)
n 939.56563(28) | n? 134.9764(6)
S=-1 K#* 493.677(13)
A 1115.684(6) KOK®  497.672(31)
ot 1189.37(7) n 547.45(19)
20 1192.55(8) ' 957.77(14)
- 1197.436(33) Vector_mesons
S=-2 p 768.5(6)
=0 1314.9(6) K* 891.59(24)
== 1321.32(13) w 781.94(12)
¢ 1019.413(8)

The small mass differences hetween hadrons having the same strangeness can come
from either electromagnetic effects or a small difference between the masses of u- and
d-quarks. However, our present knowledge of the strong interaction is not able to
elucidate on this question. In spite of our ignorance, the small difference between the
masses of proton and neutron and between n* and #° are important in understanding
certain nuclear phenomena, such as isospin symmetry breaking in the nuclear force.

It is worthwhile to emphasize here again that, since quarks have not been observed
in isolation outside hadrons, the values deduced from hadron spectra are not their true
masses. The observed hadron masses depend on the intrinsic masses of the quarks as
well as the binding energy hetween the quarks. If the binding energies are known, it
is a trivial matter to obtain the quark masses from those of hadrons. As we shall see
later in the analogous situation of nuclear masses, binding energy calculations require
a knowledge of the interaction between the constituents. Even in the nuclear case, it is
not easy to obtain high precisions, partly because of our incomplete understanding of
the interaction between nucleons and partly because of the inherent difficulties of the
many-body problem.

For quarks, the situation is further complicated by several factors. First, the quark-
quark interaction is known to be very strong at energies of concern to us here. We have
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seen an example of this from the mass differences between the pseudoscalar mesons
(sum of quark intrinsic spins § = 0) and the vector mesons (S = 1). For example,
the quark contents of the 7- and p-mesons are the same, but their masses are quite
different, with m,c* ~ 140 MeV and m,c? ~ 767 MeV, respectively. The large dif-
ference must be attributed mainly to the dependence of the interaction on the total
intrinsic spin of the quark-antiquark pair. This is quite different from the usual situ-
ation in quantum systems where the interesting physics often arises from small parts
of the complete interaction. For example, in atomic physics the main contribution to
the binding energies of electrons comes from the electrostatic attraction between the
nucleus and each one of the electrons. Most of the other properties of an atom, on
the other hand, are sensitive mainly to small perturbations caused by the interaction
between electrons. As a result, a number of perturbative methods have been developed
over the years and they are found to be quite successful in handling such problems.

For quarks, the interaction is very strong at low energies where nuclear physics op-
erates and where most of the experimental observations are made. Because of what is
generally known as asymptotic freedom, the quark-quark interaction is weak only at ex-
tremely high energies. As a result, perturbative techniques apply to QCD only at such
extremes, far beyond the realm of nuclear physics and low-lying hadron spectroscopy.
For the low-energy regions, methods other than perturbative approaches must be ap-
plied before we can properly link QCD calculations to observations. We shall see one
such example in the form of lattice QCD calculation in §9-3.

Second, there is the question of confinement. Again, since quarks are not observed
in isolation, their mutual interaction must have a component that grows stronger as the
distance of separation between them increases. This is opposite to our experience in
the macroscopic world, where interactions, such as gravitational and electromagnetic,
grow weaker as the distance of separation between the interacting objects is increased
(and the relation is given by the inverse square law). As a result, we need to devise new
methods to handle the problem. One way is to impose confinement “artificially” as a
boundary condition. In other words, the quarks are considered to be inside a “bag”
that prevents them from escaping to the outside. Such a bag model, together with its
many variants, has made impressive contributions in improving our understanding of
the structure of hadrons and in linking the quark-quark interaction with the interaction
between nucleons. We shall see a simple application of such a phenomenological model
when we come to the question of phase transition from hadronic matter to quark-gluon
plasma in §9-3.

Problems

2-1. Show that conservation of energy and momentum requires at least two -y-rays to
be emitted in the annihilation of an electron by a positron.

2-2. Show that the nucleon isospin wave functions given in Egs. (2-15) and (2-16) are
the eigenfunctions of the operator

2.2 2 2
T =T +7Ty +73

with eigenvalues 3. Express 72 in terms of T, 7_, and 19 and calculate again,
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2-3.

2-4.

2-5.

2-6.

2-7.

2-8,

2-9.

in terms of these operators, the expectation values of 72 for the isospin wave
function of a proton and a neutron.

Antiprotons are created when a beam of high-energy protons strikes a hydrogen
target. In the laboratory system what is the minimum proton kinetic energy
required for the reaction to take place?

Construct the quark wave function of 7~ by applying an isospin-lowering operator
to the wave function of 7° given in Eq. (2-34). Use the same technique to construct
the quark wave function of £** by applying an isospin-lowering operator to that
of =** given in Eq. (2-43).

The meson 73 is a neutral, isospin-singlet particle made of a linear combination
of quark-antiquark pairs taken from u-, d-, and s-quarks and their antiquarks.
Construct the quark wave function of 7g by requiring it to be normalized and
orthogonal to those of #° and 7, given in Eqgs. (2-34) and (2-38).

An electron is moving in a circular orbit. Show that the magnetic dipole moment
generated by the orbital motion is given by the relation

eh|c]
= ——=f
2m.c

where £ is the angular momentum in units of & and the factor [c] converts the
formula from cgs to SI units. Assume that the charge and mass of the electron
are distributed uniformly along the orbit and ignore the contributions from the
intrinsic magnetic dipole moment.

The £V-particle is a baryon made of a u-quark, a d-quark, and an s-quark coupled
to total intrinsic spin § = % and isospin ¢ = 1. Assume that the orbital angular
momentum ¢ = 0; show that the magnetic dipole moment of £ is given in the
quark model by

Hyo = %(l‘u + ftd) ~ %l‘m

where jiy, f1g, and g, are, respectively, the intrinsic magnetic dipole moments of
the u-, d-, and s-quark.

Use the quark model to show that the magnetic dipole moments of vector mesons
pt and p~ are equal in magnitude but opposite in sign.

If the magnetic dipole moment of a u-quark is 1.852u,, of a d-quark, —0.972u,
and of an s-quark, —0.613uy, what are the values of magnetic dipole moments
of their antiquarks? The p*-meson is a vector meson with J™ = 1~ and isospin
T = 1. Calculate the magnetic dipole moment using the values of quarks assuming
the orbital angular momentum to be the lowest value possible.



Chapter 3

Nuclear Force and
Two-Nucleon Systems

The interaction between two nucleons is one of the central questions in physics and its
importance goes beyond the properties of nuclei. In a 1953 Scientific American article,
Bethe (page 59 of Ref. [31]) estimated that “in the past quarter century physicists have
devoted a huge amount of experimentation and mental labor to this problem—probably
more man-hours than have been given to any other scientific question in the history
of mankind.” In the intervening years after Bethe wrote these words, even more effort
has been expended on the topic than before and much progress has been made. We
now know that nucleons are not elementary particles and their interactions derive from
the force acting between quarks that make them up. While quantum chromodynamics
gives a fairly good description of the structure of hadrons in terms of quarks, it is
far less certain how the interaction between nucleons is quantitatively related to the
fundamental quark-quark interaction.

In this chapter, we shall examine the problem from a mostly phenomenological point
of view. We shall concentrate on two-nucleon systems and make use of their simplicity
to illustrate some of the challenges we face in nuclear studies. First we shall examine
the deuteron, the only bound system formed of two nucleons. Far more information is
provided by the scattering of one nucleon off another, and we shall see what we can
learn about the nucleon-nucleon interaction from such studies.

3-1 The Deuteron

Binding energy. The deuteron is a very unique nucleus in many respects. It is only
loosely bound, having a binding energy much less than the average value between a pair
of nucleons in all the other stable nuclei. We have seen in Eq. (1-1) that the binding
energy Ep of a nucleus is given by the mass difference between the neutral atom and
the sum of the masses of free neutrons and protons in the form of hydrogen atoms.
For a deuteron, the mass M, is 1876.1244 MeV/c®. The binding energy is then the

57
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difference between My and the sum of those for a neutron, M, and a hydrogen atom,
MHZ
M,c?= 939.5656 MeV

+ Myc?= 938.7833 MeV

=]878.3489 MeV (3-1)
— Myc*=1876.1244 MeV

Eg= 22245 MeV

A more precise value, Ep =2.22457312(22) MeV, is obtained from radiative capture
of a neutron by hydrogen. In this reaction, represented as p(n,~)d, a slow neutron is
captured by a hydrogen atom followed by the emission of a y-ray (see Ref. [78] for
details). If the energy of the incident neutron is negligible, the energy of the ~-ray
emitted gives the deuteron binding energy. Since it is usually far easier to determine
v-ray energies accurately than measurements of atomic masses, binding energies are
often better known than absolute masses,

Partly because of the small binding energy, the deuteron has no excited state;
all observations on the deuteron are made on the ground state. The results of the
more important measured quantities are listed in Table 3-1. In spite of the small
number of independent pieces of data available, we stand to learn a great deal about
the two-nucleon system from the deuteron, Furthermore, because of their fundamental
importance, many careful and sophisticated measurements have been carried out and
the available values represent some of the best that can be obtained for the type of
measurement. In this section we shall make use only of spin, parity, and isospin,
leaving the study of the magnetic dipole moment and electric quadrupole moment to
the next two sections.

Table 3-1: Ground state properties of deuteron.

Ground State Property Value
Binding encrgy, Ep 2.22457312(22) MeV
Spin and parity, J* 1t
Isospin, T' 0
Magnetic dipole moment, p, 0.857438230(24) uy
Electric quadrupole moment, Q, | 0.28590(30) efm?®

LR_adius. Ty 1.963(4) fm

Note: Uncertainties in last digits of the measured values are
given in parentheses.

Spin and parity. The parity of a state describes the behavior of its wave function
under a reflection of the coordinate system through the origin, as shown in §A-1. For
the deuteron, it is known that the parity is positive. Let us see what we can learn from
this piece of experimental information. For this purpose, it is useful to separate the
wave function into a product of three parts: the intrinsic wave function of the proton,
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the intrinsic wave function of the neutron, and the orbital wave function for the relative
motion between the proton and the neutron. Since a proton and a neutron are just
two different states of a nucleon, their intrinsic wave functions have the same parity.
As a result, the product of their intrinsic wave functions has positive parity, regardless
of the parity of the nucleon. This leaves the parity of the deuteron to be determined
solely by the relative motion between the two nucleons.

For states with a definite orbital angular momentum L, the angular dependence in
the wave function is given by spherical harmonics Y, ,,(8¢). Under an inversion of the
coordinate system, spherical harmonics transform according to the relation

Yim(8,8) —5— You(n — 0,7+ ¢) = (-1)"Yrr(6, ¢)

The parity of Y. (8, ¢) is therefore (—1)%. The fact that the deuteron parity is positive
implies that the orbital angular momentum must be even.

The spin of the ground state of deuteron is J = 1, where J = L + S. The possible
values of S, the sum of the intrinsic spins of the two nucleons, are 0 and 1. We can
eliminate S = 0, as it is impossible to couple it with even values of L to form a J =1
state. Furthermore, we can also rule out any L values greater than 2 by the same
argument. From the fact that the spin and parity of a deuteron are J* = 1%, we find
that the only possible values of (L, S) are (0,1) and (2,1). We shall see later that the
dominant part of the ground state wave function is the L = 0 component. However,
the small L = 2 admixture is important to understand certain properties of deuteron
and nuclear force.

Isospin. Through symmetry arguments, we can also deduce the isospin 7" for the
deuteron. Since the projection of isospin on the quantization axis is ¢y = +% for a
proton and -—% for a neutron, the deuteron is a state with the sum of the isaspin
projections To = 0. The isospin of such a system of two nucleons can be coupled
together to either T = 0 or T = 1, as we saw earlier in §2-7. For a light nucleus such
as the deuteron, the isospin is expected to be a good quantum number and the ground
state of the deuteron can take on only one of these two values.

If, again, we regard a proton and a neutron as two different isospin states of a
nucleon, a deuteron may be treated as made up of two identical particles. The total
wave function of such a system is required to be antisymmetric under a permutation of
the indices of the two (Fermi-Dirac) particles,

PIQ\I‘(]., 2) = \11(2, 1) = —\I’(l, 2) (3-2)

The wave function ¥(1,2) may be decomposed into a product of spatial, spin, and
isospin parts. For the spatial part, a permutation of the indices means that

rTr=r—ry —-—-Fl;—'—f -Tr
In a spherical polar coordinate system, this corresponds to the transformation
(T’€s¢) _—F;;““’ ('l‘,ﬂ' - 0,¢+7l’)

Since the radial coordinate r is unchanged by the transformation, the symmetry of the
spatial wave function is given by the angular dependence and, consequently, that of
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the spherical harmonics. The transformation is, then, mathematically the same as that
under a parity change. For L = 0, 2, the spatial wave function is symmetric under
permutation as a result.

It is also easy to see that the intrinsic spin part of the deuteron wave function is
even in the S = 1 state. Consider the state with Mg = 1 among the triplet of possible
states of Mg = 0, £1 for § = 1. The intrinsic spin wave function may be written as
the product of those for the two nucleons,

|S=1, Ms=1) = |s=%,m,=%)l|s=%,m,=%)

2 (3-3)

The function on the right-hand side of the equation is obviously even under a permu-
tation of the indices of the two nucleons indicated by the subscripts. Since there is
no other way to construct an (S, Ms) = (1,1) state, the function given by Eq. (3-3)
must be the intrinsic spin wave function for the state. The wave functions of the other
two S = 1 states, with Mg = 0, —1, may be generated from the Mg = 1 state us-
ing an angular momentum lowering operator. Since the operator is symmetric with
respect to the two nucleons, the resulting wave functions retain the symmetry of the
(S, Ms) = (1,1) state we started with. Consequently, they are also symmetric under a
permutation of the two nucleons. From this, we establish that the intrinsic spin part
of the deuteron wave function is even under a permutation of the two nucleons.

With both spatial and spin parts of the wave function symmetric, the isospin part
must be antisymmetric in order to maintain the product of all three to be antisymmetric
under a permutation of the two nucleons, as required by the Pauli exclusion principle.
The algebras of intrinsic spin and isospin are the same. From the discussion above
on the intrinsic spin wave function, we can conclude that the T = 1 state of two
nucleons is symmetric under permutation. On the other hand, the antisymmetric linear
combination

1
|T'=0, Ty=0) = —2-{|t=%,to=+%)1|t=%, to=—3%), — |t=§,to=+%)2|t=§,t0=-§)l}

describes a T' = 0 state. This can be seen either by examining the explicit values of the
Clebsch-Gordan coefficients invelved or by the fact that the right-hand side of Eq. (3-4)
vanishes when either an isospin-raising or an isospin-lowering operator is applied to it.
The requirement that the isospin part of the two-nucleon system is antisymmetric then
implies that the deuteron ground state is in a T = 0 state.

We can also arrive at the same conclusion by a different set of arguments. If the
ground state of the deuteron were T = 1, we expect to find similar bound states in
the other two T = 1 two-nucleon systems, the two-proton system (Tp = 1) and the
two-neutron system (Tp = -1). However, no such bound states have been observed.
We can perhaps eliminate the possibility of a two-proton bound state on the grounds
that Coulomb repulsion between two protons is of the order of 1 MeV at the distance
of the deuteron radius. Since this value is a large fraction of the deuteron binding
energy, it is difficult to expect that a bound state can be formed of two protons. This
limitation, however, does not apply to a system of two neutrons. Since no bound state
is observed for two neutrons either, we come to the conclusion that it is not possible
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to have a T' = 1 bound state for two nucleons in general. The neutron-proton system
can be either an isoscalar (T = 0) or an isovector (T = 1) state. Since there does not
seem to be a bound state for the T' = 1 system, the deuteron ground state must have
isospin T = 0. We may also conclude from the same argument that there is an isospin
dependence in the force between a pair of nucleons that is attractive only in the T =0
state.

In summary, we have established using symmetry considerations that the deuteron
ground state has S =1 and T = 0. There remain, however, two possibilities, Z = 0 and
L = 2, for the spatial part of the wave function. In spectroscopic notation, the I = 0,
S =1 state is represented as 35, (triplet-S state) and the L = 2, § =1 as *D; (triplet-
D state). If L and S are good quantum numbers, i.e., if the nuclear Hamiltonian H
commutes with both L? and S, the deuteron ground state would have to be in either
one of these two states. There is, however, no fundamental reason to expect that this
has to be true. In fact, we shall soon see that there is clear evidence that both the
36,- and the 3D;-components must be present in deuteron. This, in turn, leads to the
conclusion that the nuclear force mixes different L-components in an eigenstate.

3-2 Deuteron Magnetic Dipole Moment

Magnetic dipole operator. The magnetic dipole moment of a nucleus arises from
a combination of two different sources. First, each nucleon has an intrinsic magnetic
dipole moment coming from the intrinsic spin and the orbital motion of quarks (see
§2-8). Second, since each proton carries a net positive charge, its orbital motion con-
stitutes an electric current loop. If, for simplicity, we assume that the proton charge is
distributed evenly along its orbit, we can use classical electromagnetic theory to obtain
its contribution to the magnetic dipole moment of a nucleus,

forbital) _ e—h[cl& (3-5)
2M,c

where £; is the orbital angular momentum of the ith proton in units of % and M, is
its mass (see Problem 2-6). As usual, Eq. {3-5) is in cgs units if the factor inside the
square brackets is ignored and in SI units if included.

It is more convenient to express the contributions to the nuclear magnetic dipole
moment from individual nucleons in terms of gyromagnetic ratios g(¢). For orbital
motion, we can define g,(i) by the relation

™ = g i) e, (36)
with
9,(6) = {1uN for a proton
t 0 for a neutron
to reflect the fact that only protons carry net charge and, consequently, can contribute
to the nuclear magnetic dipole moment. Use of the nuclear magneton p, as the unit
avoids any explicit dependence in the appearance of the equation on the system of
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electromagnetic units used. Similarly, contributions from the intrinsic spin of each
nucleon may be expressed as _

spin .

i = 9s(i) 8, (3-7)

Since 8 = %, the gyromagnetic ratioc for a free nucleon is
=2u, = 5.585695 for a proton
a(i)=1"" " v TP (3-8)
gn = 2y = —3.826085u, for a neutron

Here, we have assumed that the structure of a bound nucleon inside a nucleus is the
same as in its free state. As a result, we may use g, and g,, the “bare” nucleon values,
ag those for g,(7) in nuclei as well.

In terms of gyromagnetic ratios, the magnetic dipole operator may be written as a
function of the orbital angular momentum operator £, and the intrinsic spin operator
s, of each nucleon. For a deuteron, only two nucleons are involved, and the operator
takes on a particular simple form,

Hq = 9p8p + Gn8n + ep

where £, is the angular momentum operator for the proton and s, and s, are, respec-
tively, the intrinsic spin operators acting on the proton and the neutron wave functions.
To simplify the expression, we have made use of the fact that g, is 1 for a proton and
0 for a neutron. Since the masses of a proton and a neutron are roughly equal to each
other, we may assume that each one of the two nucleons carries one-half the orbital an-
gular momentum associated with their relative motion, i.e., £, = %L. The final result
is then

By = Gp8p + Gn8n + %L (3-9)

where L is the deuteron orbital angular momentum operator.

Contribution from the 3S;-state. For the deuteron 35;-state, L = 0, and the
expectation value of the magnetic dipole operator reduces to a sum of the intrinsic
dipole moments of a proton and a neutron,

184(3S1) = ptp + tn = 0.8798051 (3-10)

The details of this calculation are given later in Eq. (3-14). The final result of Eq. (3-10)
is almost the same as the observed value of 0.857438u,. The small difference,

pa — 1g(3S1) = 0.857438 — 0.879805 = —0.022367

is, however, worth more careful consideration.
We can think of at least three possible causes for the small departure of the mea-
sured value from the expectation one in the 35;-state:

(1) The internal structures of the proton and the neutron are modified by the fact that
the two nucleons are in a bound state. As a result, the gyromagnetic ratios for
intrinsic spin may be different from g, and g,, given in Eq. (3-8) for free nucleons.
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(2) There are contributions from charged (virtual) mesons exchanged between the
proton and the neutron, and these have not been included in Eq. (3-10).

(3) There is a small admixture of the *D;-state in the deuteron ground state.

Item 1 is extremely unlikely, as the deuteron is only a loosely bound system. The
binding energy of 2.22 MeV can hardly be expected to affect the motion of quarks
inside a nucleon that are bound by energies of the order of hundreds of mega-electron-
volts. The effect of mesonic current suggested in item 2 is possible. In fact, it has been
shown that mesonic currents are important in understanding magnetic dipole moments
of odd-mass nuclei (see §4-7). However, we shall not discuss the topic here, partly for
the reason that item 3 is more likely to be the major cause for the discrepancy between
pa and p,(3S;). Furthermore, it is not easy to distinguish between items 2 and 3 from a
more fundamental, field-theoretical point of view. For simplicity, we shall consider only
item 3 and treat the 3D;-admixture as the source for the small discrepancy between the
observed and the calculated 35;-state value.

Expectation value of the magnetic dipole operator. Let us calculate next the
expectation value of g, in the deuteron 3D;-state using the form given in Eq. (3-9). The
matrix element depends also on M, the projection of spin J of the state on the z-axis.
By convention, the magnetic moment, similar to other static electromagnetic moments,
is defined as the expectation value of the z-component, or the ¢ = 0 component in
spherical tensor notation of §A-2, of the operator in the substate of maximum M,
i.e., M = J. For the magnetic deuteron dipole moment, we have

Hq = (J’ M= JI”d,q:OI‘]Y M= J) (3'11)

Since both 4, and Jp (g = 0 component of J) are similar operators, as far as
their angular momentum properties are concerned, their expectation values must be
proportional to each other, as shown in §A-6.

The constant of proportionality is given by the Landé formula, Eq. (A-20), in terms
of the expectation value of the projection of u along J,

1
= —— <J)J
<J1M|ﬂ0|J1M> J(J+1)(J>Ml(l"' J) OIJvM)
M M- D19, M) (3-12)
JI xR
To calculate the expectation value of the scalar product between u and J, we shall first
rewrite Eq. (3-9) in terms of S = s, + 8, and J=L + S,

pa={(gp+ 92)S + (g5 — 9)(8, — 8a) + L} (3-13)

Since the operator s, — 8, acts on proton and neutron spins with opposite signs, it can
only connect between two states, one with S = 1 and the other with S =0, and as a
result, cannot contribute to the expectation value of interest to us here. This reduces
t44 to a function of L and S only.
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On substituting the simplified form of p, of Eq. (3-13) into (3-12), we obtain the
result

M

{(J, MpolJ, M) = T+

(/s MI3{(gp + ga)(S - T) + (L - )}, M)

The scalar products on the right-hand side may be written in terms of J?, L? and S?,
5 J=8(L+8)=8"+{F-L'-8)=LP-L*+5%
L-J=L-(L+8)=L"+Y{F-L*-8H)=4{r+L*-8%)

and the value of the magnetic dipole moment in a state of given J, L, S and M = J
reduces to

= 4_(31+—ﬁ{(g,g+g,,)(J(J+1)—L(L+1)+S(s+1))

+H(J(J + 1)+ L(L+1) = S(S +1))} (3-14)

For the %S;-state, L = 0 and J = S = 1, we recover the result 44(351) = pp + pn given
earlier in Eq. (3-10). For the D,-state, we have L = 2 and this gives us the result

1a(*D1) = H(gp + 92)(=2) + 6} = 0.310py (3-15)

The difference from the measured value of 0.857uy is even larger than that for the
35-state, making it unlikely for the deuteron ground state to be a purely 3D;-state.
This leads to an admixture of 35;- and 3D;-states as the most likely candidate for the
denteron wave function, as far as the magnetic dipole moment is concerned.

Admixture of 3D;-state. We can make a simple estimate of the amount of
D, -component in the deuteron ground state using the measured value of uy and the
calculated values of u;(351) and p,(°D;) obtained above. For a linear combination of
35,- and *D,-components, the deuteron wave function may be written as

[Wa) = al’$)) +b°Dy) (3-16)

with the normalization condition
al+b =1 (3-17)

Since there is no off-diagonal matrix element of u between 35;- and 3D;-states, the
deuteron magnetic dipole moment is given by

ta = a’g(’1) + b 11y (°Dy) = 0.857py (3-18)

The values of a and b may be obtained by solving Eqs. (3-17) and (3-18) together.
The value for b turns out to be around 0.04, suggesting that there is a 4% admixture
of the °D)-component in the deuteron ground state. As we shall see later, this is
consistent, though somewhat on the low side, with the range of values obtained from
other measured properties of the deuteron.
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3-3 Deuteron Electric Quadrupole Moment

In electrostatics, the potential due to an arbitrary charge distribution at points far
away from the source may be characterized by the moments of a multipole expansion
of the source. For a microscopic object like a nucleus, it is not possible to observe the
distribution directly, and the measured multipole moments give us some information on
the source. For the charge distribution in a nucleus, the lowest nonvanishing multipole
moment is the quadrupole, as the expectation value of the electric dipole operator, as
well ag all the other odd multipoles, vanishes due to the fact that the operators change
sign under space inversion (see §4-6). For the deuteron, the measured quadrupole
moment is Qg4 = 0.28590 efm?, as shown in Table 3-1.

Quadrupole operator. For a spherical nucleus, the expectation values of the squares
of the distance from the center to the surface along z-, y-, and 2-directions are equal

to each other,
(2%) = (1*) = ()
As a result, the expectation value of r? = z? 4+ 3% + 22 is
(r?) = (z® + y* + 2%) ~hemer 3(z%)

The electric quadrupole operator, which measures the lowest order departure from a
spherical charge distribution in a nucleus, is defined in terms of the difference between
322 and r?,

Q, = e(32° - 1?) (3-19)

For a spherical nucleus, we have (@) = 0 as a result. If a nucleus bugles out along the
equatorial direction and flattens in the polar region, (2?) is smaller than the average
expectation value of the squares of the distance along the other two axes and the
quadrupole moment is negative. A positive quadrupole moment of 0.29 efm? indicates
that the deuteron is slightly elongated along the z-axis, like an olive.

The operator Q, is a spherical tensor of rank 2 (see §A-2), carrying two units of
angular momentum. In terms of spherical harmonics,

Qp =e(322 —r?) = er!(3cos’ 4 — 1) = | lg—” er’Yy(8, ¢) (3-20)

The electric quadrupole moment of a nuclear state is defined as the expectation value
of Qg in the substate of maximum M,

Qa= (I M=J|Qo|J M=J) (3-21)

similar to the definition of magnetic dipole moment seen earlier.

Based on angular momentum considerations, any nuclear state with J < 1 cannot
have a quadrupole moment different from zero. The expectation value (J, M|QlJ, M)
vanishes if the three angular momenta involved, J, 2, and J, cannot be coupled together
to form a closed triangle. At the same time, since @, operates only in the coordinate
space, it is independent of the total intrinsic spin S. This means that the orbital
angular momentum L of the state must also be greater or equal to 1. For this reason,



66 Chap. 3 Nuclear Force and Two-Nucleon Systems

the expectation value of Qg vanishes in the 35;-state. The existence of a nonvanishing
quadrupole moment is therefore a direct evidence of the presence of the *D;-component
in the deuteron ground state,

Expectation value of the quadrupole operator. Let us work out the connection
between the spatial part of the wave function and the quadrupole moment, assuming
for the time being that the deuteron is in a state of definite orbital angular momentum
L. Such a wave function | LS; JM ) may be represented by the product of a spatial part
| LM ) and an intrinsic spin part | SMs ), coupled together to total angular momentum
(J, M),

|LS; IM) = 3 (LMy SMg|JM)|LM.)|SMs) (3-22)

My Mg

where (LM SMg|JM) is the Clebsch-Gordan coefficient. For the expectation value of
Q,, we have

Qa(L)

(LS5 IM|Qo|LS; JM)
S Y (LM SMs|IM)(LM, SMy|JM)(LMySMs|Qy|LM;S M)

MLMs My My

Since the operator does not act on intrinsic spin, we can remove this part of the wave
function from the matrix element by making use of the orthogonal relation between the
intrinsic spin wave functions,

(SMs|SMg) = 5M5M§

As a result, the expectation value of @, reduces to a matrix element involving only the
spatial part of the wave function,

Qa(L) =3 (LM S (M-My)|JM)* (LML]|Qo|LMy) (3-23)

ML

where we have made use of the property that the Clebsch-Gordan coefficients vanish if
Mg # (M — My).

We may simplify the expression on the right-hand side of Eq. (3-23) further by
writing the spatial wave function as a product of radial and angular parts,

ILML) = Ry () Y1y, (09)

where the angular part is given by spherical harmonics Y, (6¢) and the radial part
satisfies the normalization condition,

/0°° Ry(r)R,(r)rdr =1
Using the explicit form of Q, given in Eq. (3-19), we obtain the result
(LMy1Qo|LML) = e‘ll—?:/om Ry (r)r Ry (r)r?dr

2T
X [ [ Yin, (68)no(80)Ysrs, (04)sin6d0dp  (3-29)
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The radial integral here is the expectation value of r? and therefore must be a positive
quantity. However, we cannot evaluate its value without making some assumptions on
the radial wave function.

The angular integral over three spherical harmonics may be expressed in terms of
3j-symbols,

27w
L L Y0, (60)Yan(00) Viag, (09)5in 0 db g

= (~1)™" (-JI\J/IL?)AZ) (2L +1) 2517 (5(2){;) (3-25)

For L = 2, the numerical values for this integral are —1/7,/5/%, +1/14,/5/=, and

+1/7\/g/—7r, respectively, for My, = 2, 1, 0. Before we can insert these values into
Eq. (3-24) and obtain a value for Q4(L = 2), we also need the square of the three
Clebsch-Gordan coefficients {LMy S(M-M)|JM)? for S=1, L =2, M =J =1, and
My =2, 1, 0. These can be found using Table A-1, and the values are %, &, and &,
respectively. With these, we obtain the result

Qi(CD1) = (DiM =1|Qyf'D:iM =1)
= (L =2M,=2QyL =2 M, =2)
+3(L=2,M, =1|Qy|L =2,M =1)
+5(L=2,My =0|Qy|L =2, M =0)

= “%‘3(7'2)1)

where o
(rt), = /0 Ry (r)r?Rp(r)r? dr

If, as an estimate, we take the value of (r?)p as the square of the deuteron radius, we
obtain Q4(3D:) = —0.77 efm?. Since even the sign disagrees with the measured value,
it is unlikely that the deuteron wave function is made up entirely of the 3D;-state.

For a more realistic model, we shall take a linear combination of 35;- and 3D;-
components, as we have done earlier in Eq. (3-16) for the magnetic dipole moment.
The deuteron electric quadrupole moment now has the form

Qs = aCSHM =1|Qel’SiM = 1) + *{*DiM = 1|Q,’DiM = 1)
+2ab(3$\ M = 1|Q, |’ D1 M = 1)

The first term vanishes, since L = 0. The main contribution is likely to come from the
last term, as the 3D;-component is only a few percent of the total and |a] > |b] as a
result. This term involves an off-diagonal radial integral,

CSIM = 1QoDiM = 1) /o ¥ Ry(r)r*Rp(r) 7 dr

The value is sensitive to the shapes of the radial wave functions and, as a result, it is
difficult to put a firm value on the amount of *D;-component in the deuteron ground
state from electric quadrupole moment calculations. Most of the estimates put |b{? to
be in the range of 4% to 7%.



68 Chap. 3 Nuclear Force and Two-Nucleon Systems

3-4 Tensor Force and the Deuteron D-state

We have seen that both magnetic dipole and electric quadrupole moments support the
idea that the deuteron ground state is a linear combination of 35)- and 3D, -states, The
orbital angular momentum is, therefore, not a good quantum number and the nucleon-
nucleon interaction potential does not commute with the operator L?, In this way,
presence of the 3D,-component in the deuteron ground state provides us with one clear
piece of information concerning the property of nuclear force.

Deuteron Hamiltonian. The Hamiltonian for the deuteron problem may be written
in the form

W,
H=-3 ViV (3-26)

where the first term is the Kinetic energy in the center of mass of the two-nucleon
system and p is the reduced mass. The second terin expresses the interaction between
the two nucleons in terms of a potential V', The ground state wave function, v, is the
eigenfunction of the Schrédinger equation

Hq) = Ealt,)

with eigenvalue F4. In §3-1 we deduced from symmetry arguments that only L = 0,
2 can contribute to the wave function, and the eigenfunction has the form given in
Eq. (3-16),
1a) = a['S)) +b)Dr)

where a and b are coefficients to be determined by solving the Schrodinger equation.

It is convenient for us to think in terms of a matrix approach to the eigenvalue
problem (see also §7-1). Since we are only interested in finding the amount of mixing
between 35;- and 3D, -states, we may use these two states alone as the basis to construct
the Hamiltonian matrix,

Hy Hu‘)
H} = ( 327
Y=g, H, (3-27)
where the matrix elements are given by the following definitions:
Huy = (S1|H|'S,) Hyy = (*D1|HP*Dy) Hip = Hy = (*D1|HI|%S))

On diagonalizing this real, symmetric matrix, we obtain the energy E; and the coeffi-
cients a and b. However, this is not our interest here; we are more concerned with the
type of Hamiltonian that can cause a mixing between 35)- and *D;-states.

If the off-diagonal matrix elements f,; and H;; vanish, the Hamiltonian matrix is
diagonal. The two eigenstates are then |35, ) and |®D,) without any mixing between
them. The fact that the deuteron ground state is a linear combination of these two
basis states implies that the off-diagonal matrix elements are not zero:

CDiHS:1) # 0 (3-28)

Since the kinetic energy term of the Hamiltonian contributes only to the diagonal matrix
elements in the two-dimensional Hilbert space we are working in here, Eq. (3-28) must
be the result of the interaction potential V. This leads to the conclusion

(Dy|VI%:) # 0 (3-29)
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That is, the nuclear potential is not diagonal in a basis span by states with definite
orbital angular momentum and can, therefore, mix 35;- and 3D;-states.

In order to have a nonvanishing off-diagonal matrix element, the potential V must
have a spatial part that is a spherical tensor of rank 2 so as to be able to connect an
S- to a D-state, as required by Eq. (3-29). Again, let us express the deuteron wave
function as a product of spatial, intrinsic spin, and isospin parts. Similarly, the matrix
element of V above may also be written as a product of three matrix elements: one in
coordinate space, one in intrinsic spin space, and one in isospin space. For simplicity,
we shall ignore any possible dependence on the isospin in the matrix element of V in
the following discussion.

Since the nuclear Hamiltonian conserves the total angular momentum of the system,
the potential V must be a scalar in spin J. However, if the spherical rank of the spatial
part of the operator is 2, we must find an operator of the same rank for the intrinsic
spin part so that a scalar product of these two rank 2 operators can be constructed.
For this purpose, let us examine first the possible spherical tensor operators that we
have in the intrinsic spin space.

Spin operator. For a spin-% system, an arbitrary operator may be expressed in terms
of Pauli matrices,

I G B R

together with the two-dimensional unit matrix. In terms of spherical components, the
Pauli matrices may be written as

oy = —%(U,+iay)=\/§(g —(1))

oy = +%(ax—-ia’y)=\/§((1) 8) (3-31)
1 0

o = a=(; )

These form the three components of an operator acting only on the intrinsic spin part
of the wave function of a nucleon and carrying one unit of angular momentum, similar
to other vector operators such as L.

A two-body operator in the nucleon intrinsic spin space may be constructed from a
product of &(1) and &(2), respectively, the intrinsic spin operator for particles 1 and 2.
Since each one is a vector, the spherical tensor rank of the product is the vector sum of
o(1) and o(2) and may therefore carry zero, one, or two units of angular momentum,
as shown in §A-3. The first two possibilities are, respectively, analogous to the usual
scalar and vector products in multiplying ordinary vectors. The last possibility is a new
one and is often loosely referred to as the “tensor product” of two vector operators. The
name should not be confused with the more general product of two spherical tensors.

The scalar product of two vectors is a familiar quantity. In a Cartesian coordinate
system, a scalar two-body operator in the intrinsic spin space may be expressed as

o(1) - o(2) = a,(1)o:(2) + 0,(1)0,(2) + 0.(1)0.(2) (3-32)
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In terms of the spherical components given in Eq. (3-31), the same product may be
written in the following way:

a(1) - (2) = o0(1)a0(2) ~ 041(1)0_1(2) — o1 (1)0441(2) (3-33)

as done in Eq. (A-19). We can also make use of the explicit values of the following
Clebsch-Gordan coeflicients given in §A-3,

(141 1-1]00) = (1-11+1]00) = +—= (1010}00) = -

V3

and write the result in spherical tensor notation,

(1) o(2) = =33 (191 ~4l00),(1)e_o(2) = ~V3(e(1) x &(2))g (3-34)
q

L
V3

where g, the index of summation, takes on values —1, 0, and +1. The last form expresses
the two-body operator in intrinsic spin space as a product of two Pauli spin operators
with angular momentum coupled together to zero.

In general, a product of two operators with tensorial ranks r and s, coupled together
to form a tensor of rank ¢, may be written as a coupled product,

(T, x U,)y = > (rpsgitm) T,,U,q (3-35)
7]
as done in Eq. (A-10). Thus, the vector product of (1) and &(2) is given by
((1) x (2))1,, = Y_(1plg|Ilm)o,(1)oy(2) (3-36)
P

It is left as an exercise to show that this is equivalent te the vector product of &(1)
with o(2) in Cartesian coordinates (see Problem 3-5).

By the same token, we can also use Eq. (3-35) to write the components of the
second-rank tensor product of o(1) and &(2),

(o(1) x 0(2))y,, = Z(lplq]Zm)Up(l)aq(Z)

4

Each component may be expressed explicitly as

i

(0(1) X o(2)) ——}g{mmmm + o1(1)o(2) + 200(1)en(2)}

(o(1) X &(2))y4,

—;—ﬁ{aﬂ(l Joo(2) + oo(1)oa(2)) (3-37)

(0(1) x 0(2)p, = 0o21(1)o4(2)

using the values of the Clebsch-Gordan coefficients given in Table 3-2.

We can now return to the operator for the intrinsic spin part of the nuclear potential
V. Since the product of #(1) and &(2) can only be coupled together to form a scalar,
a vector, or an operator of spherical tensor rank 2, the maximum rank of V' in intrinsic
spin space i8 2. Furthermore, since the intrinsic spin part and the orbital angular



§3-5 Symmetry and Nuclear Force 71

Table 3-2: Values of Clebsch-Gordan coefficients {1plg|2m).

p q|{lplgl2m) | m| p q| (1plg|2m)

o o o |3
—

|

(=

-

—

—

o
HH.¢|~§|

momentum part must have the same rank to form a scalar product in J, the maximum
rank of the orbital angular momentum part must also be 2. As we have seen earlier,
this is adequate for our purposes since, from the admixture of the ®D;-component in the
deuteron ground state, we have concluded in Eq. (3-29) that there must be a component
in V with spherical tensor rank 2 in L.

Tensor operator. An operator formed by the scalar product of a second-rank operator
in intrinsic spin space and a similar one in coordinate space is often referred to as a
tensor operator. It is generally written in the form

3
Slz= r—2(¢rl-r)(o'2-r)—-o'1 c 09 (3-38)

where we have used subscripts to indicate on which of the two nucleons each Pauli
spin operator acts. We shall follow this practice for single-particle operators in general
wherever there is no need to indicate the spherical tensor component of the operator.
The context will always make it clear whether the subscript on an operator is for
spherical tensor rank or an index for particle number. The form of the tensor operator
given in Eq. (3-38) is only the L- and S-dependent parts: The strength of the force as
well as its radial and isospin dependence must be put in separately.

The fact that there is a small admixture of *D;-component in the predominantly 35,
deuteron ground state implies that there must be a tensor component in the nucleon-
nucleon potential. Although we cannot say much more about this component of the
nuclear force from the deuteron properties alone, the clear evidence for such a term is
an indication of the richness in the deuteron problem. In the next section, we shall
see that, besides the tensor force, the nuclear potential contains also terms that have
tensorial ranks 0 as well as 1 in intrinsic spin and spatial coordinates as well as other
operators of rank 2.

3-5 Symmetry and Nuclear Force

Nucleons interact with each other through two-body interactions. That is, the force
between nucleons acts only between a pair of them at a time. The absence of one-body
terms in the potential can be seen by contrasting with atomic electrons. In an atom,
the electrons are bound to a central electrostatic potential provided by the protons in
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the nucleus. As a result, there is a force acting on an electron even in cases where it is
the only one present, such as the hydrogen atom. This is not true for nuclei, as there
is no external source to provide a force on the individual nucleon. The only one-body
operator in a nuclear Hamiltonian is the kinetic energy arising from the motion of each
nucleon. We shall see later, for example in §7-3, that one may on occasion introduce
an “effective” one-body term in the nuclear potential to approximate the average effect
from all the other nucleons in the nucleus. The source of such an effective one-body
potential is, however, the two-body interaction between nucleons.

On the other hand, it is not possible to rule out completely three-body and higher
particle-rank terms in the nuclear interaction. A three-body force is one which is felt
only when there are at least three particles present, such as that represented later
by Fig. 3-8(¢). For example, in a three-nucleon system such as a triton, the nucleus
of tritium, or a 3He made of two protons and one neutron, a two-body force acts
between nucleons 1 and 2, between nucleons 2 and 3, and between nucleons 3 and 1.
If, after taking away the sum of the interactions between these three pairs, there is
still a residual force left in the system, we can then say that there is a three-body force
between nucleons. All the available evidence indicates that such a term, if present, must
be very much weaker than the two-body force. With the possible exception of three-
nucleon systems, it is unlikely that our present experimental equipment and theoretical
knowledge can detect the presence of any three-bady forces in nuclei. For this reason
we shall ignore any possible three-body forces from now on. The same applies to other
many-body terms in the nuclear potential.

One way to study nuclear two-body interactions is to make use of two-nucleon
systems such as the deuteron. However, as we have already seen, the deuteron is a very
limited system having only one bound state. For a more comprehensive investigation,
we must resort to scattering of one nucleon off another. Before going into the details of
nucleon-nucleon scattering, it is advantageouns to examine first some of the restrictions

imposed on the nuclear interaction by the symmetry requirement on a two-nucleon
system.

Charge independence. We shall assume that nuclear force is charge independent;
that is, the only difference in the interaction between a pair of protons and a pair of
neutrons is the Coulomb interaction between protons. This is, again, an assumption
based on experimental evidence. There is no fundamental reason to rule out a charge-
symmetry-breaking term in the nuclear force itself. As we shall see in the next section,
the difference in mass between charged and neutral pions alone implies the possibility of
a small but significant difference between proton-neutron interaction and the interaction
between a pair of protons or a pair of nentrons. On the other hand, from a practical
point of view, there is perhaps no need to be concerned with any possible violation of
charge symmetry in nuclear force. At the moment, all the evidence puts the term to
be smaller than the accuracies we can achieve in handling the much stronger charge-
independence-breaking effect due to electromagnetic interaction. For simplicity, we
shall ignore, from now on, any charge dependence that may be present in nuclear force.
Furthermore, for our discussion of nuclear force here, we shall also ignore any charge
symmetry breaking coming from electromagnetic origin.

Since charge is related to the third component of the isospin operator T, the charge
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independence of nuclear force implies the commutation relation,

[H T} =0 (3-39)

where H is the nuclear Hamiltonian. This, in turn, means that the eigenvectors |1 ) of
a nuclear Hamiltonian can also be the eigenvectors of Tj at the same time,

Toly) = (2 - N)ly) (3-40)

where Z is the proton number and N the neutron number of the nucleus.

Isospin invariance. In addition to Tg, the nuclear Hamiltonian commutes also with
the square of the isospin operator,

[HTY =0 (3-41)

In other words, the eigenfunctions of the nuclear Hamiltonian are also eigenfunctions
of the operator T?,

T*ly) = T(T +1)|¥) (3-42)

Physically, it means that the wave function of a state with a definite isospin T is
unchanged if we replace some of the protons by neutrons, and vice versa. Such a
transformation between the two states of a nucleon takes us from one member of the
isobar, a nucleus of the same nucleon number, to another. Since nothing else is changed,
these two states must have essentially the same properties except for a difference in the
proton and neutron numbers. Mathematically, the wave functions of two such states
are related to each other through an isospin rotation that can be realized using raising
or lowering operators.

A group of states related by a rotation in the isospin space are known as isobaric
analogue states (IAS) of each other. Many examples are known in light nuclei. As
illustration, the energy level spectra for two A = 11 nuclei and two A = 21 nuclel are
shown in Fig. 3-1. In both examples, the members of each pair are, furthermore, mirror
nuclei of each other; that is, the number of protons in one is equal to the number of
neutrons in the other, and vice versa. In a sense, they are the image of each other in
a mirror that turns protons into neutrons and neutrons into protons. In addition to
energy level positions, many other properties of states in mirror nuclei are found to be
very similar to each other. Most of the small differences found may be attributed to
the Coulomb interaction, which we choose to ignore in our discussion here.

In heavy nuclei, the Coulomb effect increases because of the larger numbers of
protons. Since electromagnetic interactions do not conserve isospin, we find that nuclear
states are no longer eigenstates of T2. In contrast to Eq. (3-42), we have

Ti) = Y aelvn)
%

That is, when T acts on an eigenstate of the nuclear Hamiltonian, the result is a linear
combination of eigenstates of different isospin. The situation may also be described by
saying that the strength of the IAS is split among several states. When this happens,
it can be difficult to find any direct evidence for the presence of IAS and the concept
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Figure 3-1: A comparison of the low-lying spectra of members of the 4 = 11
and A = 21 isobars, showing the similarity in their level structure. (Plotted using
data from Ref. {95).)

of isospin ceases to be useful. In spite of the complications caused by electromagnetic
interactions, the evidence for isospin invariance of the nuclear force itself is quite atrong.
As we shall soon see, we may be able to make use of isospin symmetry to limit the
possible forms the nuclear potential can take.

Isospin operators. Isospin invariance, however, does not imply isospin independence
of nuclear force. We have already seen evidence that the nuclear force is different
depending on the isospin of the two-nucleon system. For example, a bound state is
found for T' = 0, the deuteron, but not for T = 1. Let us examine the possible forms
of isospin operators that satisfy these conditions and can be used in a nucleon-nucleon
potential.

For a single nucleon, the isospin operator v may be written in terms of Pauli

matrices, .
n=(G o) =G ) = 2) (>4

as we have done in Eq. (2-18). Alternatively, they can be expressed in terms of spherical
components analogous to Eq. (3-31), except that the operators here act on the isospin
part of the wave function. Since there are only two isospin states for a nucleon, the
only possible (single-nucleon) operators for the isospin part of the wave function are 7
and the identity operator,

1= ((1) (1’) (3-44)

All other single-nucleon isospin operators can be expressed in terms of 1 and + For
example, the eigenvalue of 72 in the space of a nucleon is always 3, as can be seen by an
explicit calculation using the nucleon isospin wave functions given in Egs. (2-15) and
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(2-16). As a result, the operator 72 may be replaced by the form 3 times the identity
operator 1.

For a system consisting of A nucleons, the isospin operator is the sum over those
acting on individual nucleons,

1 A
T= E Z Ti (3-45)
i=1
For the two-nucleon system we are mainly interested in here, we can write
=3(m+m) (3-46)

Since nuclear force is two body in nature and a scalar in isospin space, we must construct
two-body operators using operators 1 and T acting on each one of the two nucleons.
The operator T is unsuitable for our purpose here, as it is one body and acts on one
nucleon at a time. Furthermore, it is a vector in isospin space. One way to construct a
two-body, isoscalar operator is to take a scalar product of T'with itself. From Eq. (3-46),
we have

fl-‘2 =T T= %(T12+T22+2T1 '7‘2) (3-47)

The first two terms on the right-hand side are one-body operators, seen by the fact
that they do not vanish even when there is only one nucleon present. Only the third
term, 7 - Ty, is a two-body operator, as it vanishes unless it is acting on a state with
both nucleons 1 and 2 present. The operator T? therefore has mixed particle rank of 1
and 2. The only purely two-body operators we are left with in the isospin space are the
unity operator and 7y - ;. All other two-body isoscalar operators may be expressed as
functions of these two.
From Eq. (3-47), we have the relation,

T Ty = 2T2 - %le - ';'7'22

For a single nucleon (isospin %), the expectation of 72 is 3, as we have seen earlier. The
expectation value of T - 7 in the space of two nucleons with total isospin T is then

-3 forT=0

AT\ - m|T) ={ 1 forT=1

(3-48)
Since the expectation value is different, the operator 7, - 7 is able to distinguish a
two-nucleon state with isospin T = 0 from one with T = 1. In contrast, the identity
operator has the same expectation value, unity, in both T = 0 and T = 1 states. We
shall see later that the difference between these two operators is adequate to give a
proper isospin dependence for nucleon-nucleon potentials.

Other symmetries and general form of nuclear potential. The force between
two nucleons must be invariant under a translation in space of the two-nucleon system
as a whole. In other words, the interaction can only depend on the relative position
of the two nucleons and not on their absolute positions with respect to some arbitrary
coordinate system. This requirement is generally referred to as translational invariance,
and it implies that only the relative coordinate between the two nucleons

r=r"-m" (3-49)
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can enter as one of the arguments.

The nuclear potential V may depend on the momenta p, and p, of the two particles.
On the other hand, since the sum P = p, + p, corresponds to the center-of-mass
momentum of the two-nucleon system as a whole, it cannot appear as an argument of
the interaction between the two particles. The only possible momentum dependence V
can have is on the relative value between two nucleons, defined by

p= %(1’1 ) (3-50)

This is known as Galilean invariance of the two-nucleon system.

In addition to isospin, translational, and Galilean invariances, a nuclear potential
must also remain unchanged under a rotation of the coordinate system, time reversal,
space reflection (parity), and a permutation between the two nucleons. In terms of
independent operators, the potential can only be a function of oy, o3, 71, and 7 in
addition to r and p. As we have demonstrated with isospin operators, only a very
limited number of linearly independent two-body operators, satisfying the symmetry
requirements for a nuclear potential, can be constructed using a given set of single-
nucleon operators. For example, the single-particle orbital angular momentum operator
£ is not an independent operator from those in the set given above, as it is the vector
product of » and p. Okubo and Marshak [114] have shown that the most general
two-body potential under these conditions must take on the form

Viryono,m,1) = W(r)+ Va(r)ey oy + V(1)1 - 7 + Vor (r) (o - o) (11 - 72)
+Vis(r)L - 8+ Vis (r)(L - S)(m - 1)
+Vr(r)Sia + Vi, (r)Spp 11 - 12
+Vo(r)Quz + Vor(r)Q i 11 - 72
+Vep(r) (o1 p) (o2 - p) + Vep.(r)(01 - )02 P)(T1 - 7))
(3-51)

with 12 terms. In addition to the tensor operator Sy, given earlier in Eq. (3-38), we have
two other operators that are constructed from elementary single-nucleon operators; the
two-body spin-orbit operator,

L-S= %(81+e2)-(01+02) (3-52)

and the quadratic spin-orbit operator,
Qu = }{(o1 L)(02- L) + (a2 L)(0y - L)} (3-53)
The radial dependence and strength of each one of the 12 terms are given by the
12 functions Vo(r), V,(r),... . To determine the forms of these functions, we will

need information in addition to those generated from symmetry arguments above. For
example, we can make use of our knowledge of the basic nature of the nuclear force, such
as the meson exchange picture of Yukawa to be discussed in the next section, or we can
use a semi-empirical procedure and fit some assumed forms of the radial dependence to
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experimental data. When our understanding of QCD is fully developed in the future,
it should also be possible to determine these functions from first principles.
The 12 terms in Eq. (3-51) may be divided into five groups. The first four,

Vcentral = VO(T) + V,,(T)U'l ‘o + V‘r(T)Tl ‘Tt VG‘Y(T)(GI ) 0'2)(1-1 : 7-2) (3'54)

are the central force terms, as the tensorial ranks of the spatial parts of all four operators
are zero. Similar to isospin, there are only two two-body operators for intrinsic spin:
unity and o - o2. Analogous to Eq. (3-48), two-nucleon states with total intrinsic spin
S are distinguished by

-3 forS=0

3.
1 forS=1 (3-59)

(Sloy - a2|S) = {
The product of two independent two-body intrinsic spin operators and two similar ones
for isospin gives us the four central force terms. As we can see from Eq. (3-54), the first
term Vy(r) depends only on the radial distance r. The second term has, in addition, a
dependence on the intrinsic spin but not isospin. The third has isospin dependence but
no intrinsic spin dependence. Only the fourth term has both intrinsic spin and isospin
dependence. However, all four terms are scalars in intrinsic spin and, hence, in orbital
angular momentum as well. A central force, therefore, commutes with S%, L? and J°.
The other terms in Eq. (3-51) do not necessarily preserve the total intrinsic spin
and the total orbital angular momentum of a two-nucleon system. In the presence of
these terms, the two-nucleon system is invariant only in the combined space of L and S
labeled by J. The dependence of the nuclear force on the two-body spin-orbit operator
is expressed by fifth and sixth terms in Eq. (3-51),

Vipm-ort = Vis(r)L - 8 + Vg, (r)}(L - 8)(11 - T2) (3-56)

The reason that two separate components are needed here (as well as the other terms
to be discussed below) comes from the possibility that the radial dependence of the
isospin-dependent and the isospin-independent parts may be different from each other,
as for example the result of different mesons being exchanged. The spatial part of
the two-body spin-orbit operator involves L. Since it does not change sign under an
inversion of the spatial coordinate system, it is an axial vector. In order to maintain
parity invariance as well as rotational invariance for V, only a scalar product with
another axial vector may enter here. It is easy to see that the operator L? is not
suitable for this purpose, as it conserves both L and S and is, therefore, a part of the
central force. The only other possibility is the product L - S. (See Problem 3-8 for
other possible forms.)

The two-body spin-orbit operator, however, cannot connect two states with different
orbital angular momenta. In other words,

(LS|L-S|L'S"Y =0 for L'#1L

This comes from a combination of two reasons. From angular momentum coupling
requirements, the matrix element (LS|L - S|L'S’) vanishes if |{L' — L| > 1, as the
operator L carries only one unit of orbital angular momentum. On the other hand, the
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parity of the orbital part of the wave function of a state with angular momentum L is
(=1)£. Under a space reflection, operators L and S do not change sign. The matrix
element (LS|L - S|L'S"), however, changes sign if L' = L+1 and must therefore vanish.
The net result is that the spin-orbit term is nonzero only between states of the same
orbital angular momentum. However, the same constraint does not apply to the total
intrinsic spin. As a result, Vipin-orbit is not a central potential.

The next pair (seventh and eighth) of terms in Eq. (3-51) involve tensor force which
we have already encountered in §3-4. The quadratic spin-orbit terms Vg(r)Q;; and
Vor(7)Qi1271 - T2 enter only when there is momentum dependence in the potential. The
last two terms, Vpp(r)(oy-p){o2-p) and Vpp, (r)(ey-p)(e2-p)(T1+T2), are often dropped
since, for elastic scattering, they can be expressed as a linear combination of other
terms. Their contributions, therefore, cannot be determined using elastic scattering,
from which we obtain most of the information on nucleon-nucleon interaction.

Returning now to the deuteron system, we see that if only the central force terms,
given by strengths V4, V,, V,, and V,,, are present in the nuclear potential, both L
and S are good quantum numbers. The same is also true for the spin-orbit terms
for reasons mentioned earlier. Among the remaining terms, the simplest one that can
admix the 35)- and 3[,-states is the tensor force. The presence of the *D;-component,
in the ground state wave function provides the clearest indication of the presence of
such a term in the nuclear force.

3-6 Yukawa Theory of Nuclear Interaction

The meson exchange idea introduced by Yukawa in 1934 is a good starting point to
examine nucleon-nucleon interaction beyond what we can learn through symmetry ar-
guments in the previous section. In the Yukawa picture, the interaction between two
nucleons is mediated by the exchange of mesons. Although it is not straightforward to
draw a quantitative connection with the underlying quark structure of the hadrons, the
theory does make it possible to relate nuclear interaction with various other hadronic
processes, such as the strength of meson-nucleon interaction. On a more empirical
level, the Yukawa idea provides us with a reasonable form for the radial dependence of
nuclear potentials. Such expressions may be used, for example, as the starting point for
semi-empirical approaches. Our focus in this section will be mainly on the origin of the
meson exchange idea itself. We shall leave any applications to the last section after we
have first taken a look at the experimental information derived from nucleon-nucleon
scattering.

A proper derivation of a potential based on boson exchange requires a relativis-
tic quantum field theory treatment that is beyond our present scope. However, the
essence may be obtained by drawing an analogy with classical electrodynamics. The
electrostatic potential ¢(r) in a source-free region is a solution of Laplace’s equation,

Vip(r) =0 (3-57)

In the presence of a point source with charge g, located at the origin, the equation takes
on the form

V24(r) = — [47160-]47rq5(r) (3-58)
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The solution is the familiar Coulomb potential,

#r) = =] (3-59)

When the electromagnetic field is quantized, photons emerge as the field quanta and
the charge becomes the source of the field.

Nuclear force differs from its electromagnetic counterpart in several respects. The
most important one is perhaps the short range, and we shall see evidence in support
of this in the next chapter. For now, we are concerned mainly with the question of
finding an equation similar to Eq. {3-58), and its analogue in quantum field theory, for
a short-range nuclear potential. The equation must also be invariant under a Lorentz
transformation so that it is correct in the relativistic limit as well. This rules out the
Schrodinger equation, which applies only in the nonrelativistic limit. The field quantum
exchanged between the nucleons must be a boson, as only bosons can be created and
annihilated singly. A fermion, on the other hand, must be created and annihilated
together with its antiparticle. The Dirac equation is therefore unsuitable, as it is an
equation for spin—% particles (i.e., fermions). This leaves the Klein-Gordon equation as
the prime candidate.

The relativistic energy-momentum relation is given by the equation

E? = p*c® + m*c*
We can quantize this equation in the same way as in nonrelativistic quantum mechanics
by replacing energy E with operator i%(8/6t) and momentum p with operator —iAV,
62
at?

Here, m is now the mass of the field quantum. After dividing both sides of the equation
by (fic)? and rearranging terms, we obtain the familiar Klein-Gordon equation,

—h—4(r) = (=h2*V2 + m?c*)é(r) (3-60)

2 a‘l 202
(v - S25)9r) = Z-6(r) (3-61)

This is only the analogue of Eq. (3-57), as it does not yet contain a source term for
field quanta. This point may be further demonstrated by letting the mass of the field
quantum m go to zero and ignoring the time dependence. The result is the same as
Eq. (3-57).

To include a source, we must find the equivalent of Poisson’s equation (3-58) by
adding a source term to Eq. (3-61). For simplicity, we shall consider only the static
limit and ignore terms involving time derivatives. For a point source with strength g
located at the origin, this is given by

m2c?

v2¢(r) = h2

#(r) — gb(r) (3-62)
The solution for this equation,

o(r) = ﬁ; e~mer/ (3-63)
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has the well-known form of a Yukawa potential and reduces to Eq. (3-59) on letting
m = 0 and g = [(47m¢g)"']dmg. On the other hand, if the field quantum has a finite
mass, we find that the strength of the potential drops by ~1/e at a distance ry = h/mc.
The quantity ro may be taken as a measure of the range of the force mediated by a
boson with mass m. For pions (m ~ 140 MeV/c?), the value of rg is around 1.4 fm.
We shall see later that one-pion exchange gives a good representation of the long-range
part of the nuclear potential.

3-7 Nucleon-Nucleon Scattering Phase Shifts

The form of the nucleon-nucleon interaction potential given in Eq. (3-51) was obtained
using properties of the deuteron and symmetries in the two-nucleon system. To make
further progress, we need additional experimental information, and this is provided by
the scattering of one nucleon off another at different energies.

Nucleon-nucleon scattering. In principle there are four types of scattering measure-
ments involving two nucleons that can be carried out. The scattering of an incident
proton off a proton (pp-scattering) is the simplest one of the four from an experimental
point of view, as it is relatively easy to accelerate protons and to construct targets
containing hydrogen (proton). For neutron scattering, there are two major sources
for incident beam. At low energies, neutrons from nuclear reactors may be used. At
higher energies, one can make use of neutrons produced by a beam of protons, for
instance, through a (p,n) reaction on a "Li target. However, both the intensity and
the energy resolution of neutron beams obtained in these ways are much more limited
than those for proton beams. As a result, neutron scattering is, in general, a more
difficult experiment than those with protons. The scattering of neutrons off proton
targets (np-scattering) and the corresponding pn-scattering are however important in
that the reaction takes place in the T = 0 channel as well. In contrast, pp- (and nn-)
scattering can only provide information on the 1" = 1 state of two nucleons.

In addition to pp- and np-measurements, one can, in principle, carry out pn- and
nn-scattering experiments as well. Here, instead of using protons as the target, a
“pentron target” is used. Free neutrons are unstable, with a half-life on the order of
10 min. It is therefore immpossible to construct a “fixed” neutron target, in contrast to
protons where material consisting of hydrogen may be used. There are, in principle, two
methods of getting around this limitation. One way is to carry out a “colliding beam”
experiment. In place of a target fixed in the laboratory, a second neutron beam is used
and, instead of having an incident beam scattering from a fixed target, two beams of
particles are directed toward each other. Scattering takes place when the particles in
the two beams collide. To be practical, such an experiment requires high intensities in
both beams, and currently, highly intense beams of neutrons are not easily available.

The other way is to “simulate” a fixed neutron target using deuterium. Since the
deuteron is a loosely bound system of a neutron and a proton, the desired pn- or nn-
scattering results can be obtained by carrying out the corresponding pd- or nd-scattering
experiments. The contribution due to protons in the deuterium target may be removed
by subtracting from the measured values the corresponding results obtained in pp- or
np-scattering. This procedure is correct provided that:
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(1) The subtraction procedure can be carried out with sufficient precision. This re-
quires that the corresponding scattering data on a proton target are available with
comparable or better accuracy and that the effect of deuteron binding energy can
be corrected in a satisfactory manner. In general, both points are relatively easy
to achieve.

(2) Three-body effects are negligible. When a nucleon interacts with a deuteron, the
entire system now consists of three nucleons. If there are fundamental three-body
forces, their contributions will be present in pd- and nd-scattering but not in the
scattering of one nucleon off another one. Hence, proton-deuteron scattering, for
example, may not be the simple sum of pp- and pn-contributions alone. As we
saw earlier, this may not be a problem, as three-body forces, if they exist, are
expected to be weak.

The information obtained from pn- and nn-scattering may not be any different
from that in np- and pp-scattering. For example, the only difference between pn- and
np-scattering is whether the neutron or the proton is the target. Under time-reversal
invariance, these two arrangements are expected to give identical results.

As we have seen earlier, both pp and nn are T = 1 systems. If nuclear force is
charge independent, the results of pp- and nn-scattering can only be different by the
contribution made by Coulomb interaction. Since the latter is well known, a comparison
of pp- and nn-scattering results can, in principle, test the charge independence of nuclear
interaction. However, the accuracy that can be achieved with nn-scattering is still
inadequate for such a task. In the next section we shall see that there is a possible test
at low energies where high precision is relatively easier to attain.

To simplify the notation, we shall use the symbol NN from now on to represent
a system of two nucleons when there is no need to differentiate between neutrons and
protons and the symbol np to represent both np and pn unless further distinction is
required by the occasion. Furthermore, we shall assume that Coulomb contribution,
where present, has already been taken out and we can therefore ignore it in the discus-
sion.

Our primary interest here is to relate scattering data to the NN-interaction po-
tential. A large collection of measured values at a variety of bombarding energies and
scattering angles have been accumulated over the years. Instead of relating the poten-
tial V directly to the scattering results, it is more common to reduce the experimental
information to phase shifts 6, for different £-partial waves. The merit of a particular
potential is often judged by comparing the calculated phase shifts with those extracted
from experimental data, such as the example shown later in Fig. 3-3. For this reason
we shall briefly review first the subject of partial-wave analysis for NN-scattering. A
more detailed discussion is given in §B-2.

Scattering cross section. The quantity measured in a scattering experiment is the
number of counts registered by a detector at angle {8, ¢). The counting rate depends on
the solid angle subtended by the detector at the scattering center, the intensity of the
incident beam, the number of target nuclei involved, and the differential cross section
do /dS. Our primary interest is in do/dQ, a function of the bombarding energy as well
as the scattering angle.
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In the nonrelativistic limit, the scattering of one particle off another is described
by the Schrédinger equation. In the center of mass, the wave function is the solution
of the equation \

)

—ﬁvw +(V-E}Y=0 (3-64)
where p is the reduced mass in the two-nucleon system. We shall be mainly concerned
with short-range nuclear forces here (see §B-5 for Coulomb scattering), and conse-
quently we can assume that ¥V = 0 except in a very small region where scattering takes
place.

In the asymptotic region, far away from the small volume where V is different from
zero, the wave function has the form

tkr

W(r8,9) —m € + (6,0)— (3-65)

where the term exp{ikz} represents the incident plane wave and the part of the incident
beam unaffected by the reaction. The scattered wave is given by a spherical function,
r~'e™*", radiating outward from the scattering center. The probability of scattering to
direction (6, ¢) is specified by the scattering amplitude f(8, ¢). For simplicity, we shall
consider first only elastic scattering, and as a result, the wave number k in the center of
mass of the two particles has the same magnitude before and after the scattering. The
differential scattering cross section at angles (8, ¢} is given by Eq. (B-7) as the square
of the scattering amplitude,

20,6)= 156, (366)

As shown in Fig. 3-2, the geometry of a scattering arrangement is such that it is
convenient to place the origin of the coordinate system at the center of the scattering
region and take the direction of the incident beam as the positive direction along the
z-axis. The incident wave vector k and the scattered wave vector k' define a plane, the
scattering plane.

Figure 3-2: Schematic diagram of a scattering arrangement. The scattering
angle # is between wave vectors k, along the direction of the projectile, and &',
that of the scattered particle. The result is independent of the azimuthal angle ¢
unless the orientation of the spin of one of the particles involved is known.

If nucieons in the incident beam and in the target are not polarized—that is, there is
no preferred direction in space with which the intrinsic spins are aligned—the scattering
is invariant with respect to a rotation around the z-axis. In such cases, the cross section
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is independent of the azimuthal angle ¢ and the differential cross section is a function
of the scattering angle 6 alone. We shall return later to the more general case where
the orientation of the intrinsic spin is also detected for one or more nucleons involved
in the scattering.

Partial-wave analysis. For a central potential, the relative angular momentum £
between the two scattering nucleons is a conserved quantity. Under such conditions, it
is useful to expand the wave function as a sum over the contributions from different
partial waves, each with a definite £-value,

Y(r,0) = ia, Yw(0) R,(k,7) (3-67)

=0

Here a, are the expansion coeflicients. Only spherical harmonics Y, (6, ¢) with m = 0
appears in the expansion since, in the absence of polarization, the wave function is
independent of the azimuthal angle ¢. We have explicitly included the wave number
k here in the argument of the radial wave function R,(k,r) so as to emphasize the
dependence on energy.

For a free particle, V' = 0, and the radial wave function reduces to

Ry(k,r) —=2— 5y(kr) e —-l—sin(kr — Lem) 3-68)
¢ kr 2

where k = \/2pE/h and j,(p) is the spherical Bessel function of order £. If only elastic
scattering is allowed by the potential, the probability current density in each partial-
wave channel is conserved. The only effect the potential can have on the wave function
is a change in the phase angle. In other words,

Ry(k,r) —tost %sin(kr—%£w+6,) (3-69)

where &, is the phase shift in the ¢th partial-wave channel. (For more details, see §B-2.)
Using Eq. (B-16), the scattering amplitude may be expressed in terms of §, as

O @ f: VZTF 1 e sin 8,Yy0(9) (3-70)

t=0

Using Eq. (3-66), the differential scattering cross section may be written in terms of
the phase shifts,

oo 2
Y. V2€+ 1 e sin §,Ye(6)

do _ ﬂ
k2 £=0

0=

as given in Eq. (B-17). The scattering cross section, the integral of de /dS2 over all solid
angles, becomes

do . = 4m & .2
g = / Eh_dﬂ =4 lgo(% + 1) sin® 6¢(k) (3-11)

Decomposition into partial waves is a useful way to analyze the scattering results for
a given bombarding energy. In particular, only a few of the low-order partial waves
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can contribute to the scattering at low energies, as shown in §B-2. For realistic nuclear
potentials, the orbital angular momentum is not conserved. A partial-wave expansion
remains to be useful as only a limited number of ¢-values can be admixed by the
noncentral forces. We shall see how to handle such cases later.

Nucleon-nucleon scattering phase shifts. Realistic nucleon-nucleon scattering dif-
fers in several important respects from the simple, central potential processes discussed
above. First, we found out earlier in §3-5 that nuclear potential is a function of also
the total intrinsic spin of the two nucleons. As a result, the total angular momentum
J = £+ 8, rather than the orbital angular momentum £, is conserved in the seattering.
For two nucleons, the value of total intrinsic spin S can be either 0 or 1. To determine
the value of S, we need to detect the orientations, or polarizations, of the spins of
the nucleons involved. In fact, the information on NV-scattering is incomplete unless
polarizations are also observed. Second, with sufficient energy, scattering can excite
the internal degrees of freedom in nucleons, for example, by changing one of them to a
A-particle through such reactions as

prp—- AT 4
or producing secondary particles, such as pions,
p+p—op+n+at

and baryon-antibaryon pairs,

ptp—pt+tpt+tp+p

These are inelastic scattering events, as part of the incident kinetic energy is converted
into excitation energies or mass of the particles created.

Since we are dealing with identical fermions, the scattering of two nucleons can take
place only in a state that is totally antisymmetric with respect to a permutation of the
two particles, in the same way as discussed earlier for the deuteron. For pp-scattering,
we have T = 1 and the two nucleons are symmetric, as far as their total isospin wave
function is concerned. If the intrinsic spins of the two protons are coupled together to
S = 0 (antisymmetric state), the relative orbital wave function must be in a symmetric
state and, as a result, only even f-values are allowed. For § = 0, we have J = ¢, and
the partial waves for the lowest two orders of pp-scattering are Sy (¢ = 0) and 'D,
(¢ = 2). The phase shifts extracted from measured pp-scattering data for these two
partial waves at bombarding energy less than 300 MeV in the laboratory are shown in
Fig. 3-3(a) as illustrative examples. Ouly the real part of the phase shifts are given.
At laboratory energy less than 300 MeV, contributions from inelastic scattering are
still relatively unimportant and the imaginary parts of the phase shifts extracted from
measured scattering cross sections are small.

By the same token, partial waves for triplet (S = 1) pp-scattering have odd f-values.
The lowest order in this case is a p-wave (¢ = 1). When £ = 1 is coupled with § =1,
three states, with J = 0, 1, 2, are produced. The phase shifts for two of the triplet of
states, 3Py and P, are also shown in Fig. 3-3(a). There is no admixture between the



§3-7 Nucleon-Nucleon Scattering Phase Shifts 85

Figure 3-3: Real part of nucleon-
nucleon scattering phase shifts in de-
grees for low-order partial waves [10}:
{a) proton-proton scattering with con-
tributions from the Coulomb potential
removed, (b) isovector neutron-proton 2
scattering, and (c) isoscalar neutron- 9
proton scattering. Filled circles in the
15, and 35, phase shifts of np-scattering
are the calculated results using a Paris
potential [138].

(b) np (T=1)

(©) np (T=0)

o 180 kL] Tho

Laboratory energy in MeV

two J = 0 states, %Py and 1Sy, as they are of different parity. As a result, we find that
both £ and S are good quantum numbers here by default.

The np-system may be coupled together to either isospin T = 0or T = 1. For
T = 0, the two nucleons are antisymmetric in isospin. In this case, the § = 0 states
must have odd ¢-values in order to be antisymmetric in the total wave function. The
lowest order partial wave here is £ = 1 and the phase shifts for !P-scattering extracted
from experimental data are shown in Fig. 3-3(c). In order for p-wave np-scattering to
be in the S = 1 state, it is necessary for the total isospin to be T = 1. The phase
shifts in this case are expected to be identical to those found in pp-scattering, if nuclear
force is charge independent and Coulomb effects are removed. An examination of the
two sets of empirical p-wave phase shifts, 3Py and 3P, given in Fig. 3-3(b), shows that
they are only slightly different from the corresponding values given in Fig. 3-3(a) for
pp-scattering. It is not clear whether the small differences come from the way the phase
shifts are extracted from experimental scattering cross sections or they are indications
of a weak charge dependence in the nuclear force. We shall return to this point in the
next section in a discussion on the difference between the scattering lengths for pp- and
np-scattering.

The other T' = 0 phase shifts in the np-system, shown in Fig. 3-3(c), are for triplet
(S = 1), even f-scattering. This is the first time we encounter a mixing of different
f-partial waves. Up to now, each phase shift has been characterized by a definite ¢-
value (as well as J- and S-values) even though the orbital angular momentum is not
fundamentally a good quantum number. Mixing of different /-partial waves has not
taken place because of parity and other invariance conditions. As in the deuteron case,
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the tensor force can mix two triplet states of the same J but different in £ by two
units (¢ = J £ 1). For a given J-value, the scattering is now specified by two (energy-
dependent) phase shifts, &, for £ = J—1 and 6, for £ = J +1, as well as a parameter
¢; to indicate the amount of mixing between the two at a given energy.

There are several ways to define the parameter ¢;. The usual convention used in
the literature today is that of Stapp, Ypsilantis, and Metropolis [132]. In this system
of definitions, the scattering matrix (see §B-6) for a given J is written in the form

)= (372

01> cog2¢,  det®>Hic)gin 2¢, )

iebr>+0<)gin2e;,  e2bi< cos 2¢,

In other words, the scattering matrix element from ¢ = J + 1 channel to the same
¢ = J + 1 channel is given by

e? = %895 o 2,
and from £ = J — 1 channel to the same ¢ = J — 1 channel,
el = eM01< 05 2¢,

On the other hand, the matrix elements from ¢ = J~-1to { = J+1, and from ¢ = J+1
to £ = J — 1, are given by
e = B> 4809 giyy 9,

These are generally referred to as the nuclear bar phase shifts. For the triplet J =1
state, the values of ¢; deduced from experimental data are shown as a part of Fig. 3-3(c)
for illustration.

Spin polarization in nucleon-nucleon scattering. Because of spin dependence
in the nuclear potential, the scattering cross sections between nucleons are different
depending on whether the sum of their intrinsic spins is coupled to S = 0, 1. To observe
S, it is necessary to detect the orientation of nucleon intrinsic spins. Since each nucleon
isa spin-% particle, its projection on the quantization axis can either be +% or —%. If
the spins of all the nucleons in the incident beam are aligned in a particular direction,
the beam is said to be a polarized one. Similarly, if the spins of the target nucleons are
oriented along a given direction, the target is a polarized one. When the orientation of
spins is taken into account, there are four possible combinations for the two nucleons in
the initial state, as well as the final state, in a nucleon-nucleon scattering experiment.
These four may be represented as |+3,+3), |-3,+3), |+3,-1) and |-L,-1), Since
spin orientations can be changed by spin dependence in the interaction, there are 16
possible different polarization measurements that can be carried out, corresponding to
starting from any one of the four incident spin combinations to any one of the four final
ones.

Mathematically, we may write the scattering amplitude as a 4 x 4 matrix, with each
of the elements representing the probability for one of the 16 possible arrangements for
the scattering. These 16 quantities are not independent of each other. Because of time
reversal and other symmetries inherent in the scattering, only five matrix elements are
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unique for each type of nucleon pair, i.e., np- or pp-scattering. This can be seen by
writing the five independent scattering amplitudes in the following manner:

fi=Ffevpt = fo fo=fro=F it
fi=frp-= ) A fa= f+—,—+ = fobt- (3-73)
fs=frra-=fto=feho=foiis

=femt = fmpt = frper = foe -

where we have used 4+ and — in the subscript to stand, respectively, for +% and —%
projections of the spins of two nucleons in the initial and in the final states.

Instead of scattering amplitudes f, it is more common to express NN-scattering as
the matrix element of the t-matrix operator defined in Eq. (B-64). An element of the
t-matrix is related to the scattering amplitude in the following way:

fi = =5 (Kltlk) (3-74)

where | k) and | k') are, respectively, the initial and final states of the two nucleons.
In the place of f; to f5, the t-matrix for nucleon-nucleon interaction is often written as
a function of five coeflicients, A, B, C, E, and F, in the form of an operator:

tyi(1,2) = A+ Bo,(1)o.(2) + C{o.(1) + o.(2)}
+ Eo,(1)04(2) + Fop(1)a,(2) (3-75)

The three directional vectors n, p, and q, along which the nucleon spin components
are taken, are defined in terms k and k/,
kxK K~k

ﬁ=m f]=m =f]X‘fl (3-76)
The relation between the five coefficients A to F' and the five scattering amplitudes
fi1 to fs, as well as other common ways of writing the NN-scattering ¢t-matrix, can be
found in standard references such as Bystricky, Lehar, and Winternitz [41]. Instead of
np- and pp-pairs, decomposition of the NN-scattering amplitude into five independent
quantities may also be carried out in terms of T = 0 and T = 1 states of the two
nucleons.

The amount of independent information obtained from scattering is greatly in-
creased with polarization measurements. The experiments are, unfortunately, far more
difficult to carry out than ordinary scattering measurements. Polarized beams are fairly
common these days, and it is relatively easy to carry out analyzing power (A,) mea-
surements. Here, only beam is polarized. Because of spin dependence, the differential
cross section at a fixed scattering angle 8 may be different depending on whether the
spin of the incident nucleon is polarized along the unit vector 7 defined in Eq. (3-76)
or antiparallel to it. Such a difference is characterized by the analyzing power. This
supplies one of the five independent quantities in the scattering. The sum of the same
two differential cross sections supplies the other.
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For additional information, the polarization of the scattered particle must be mea-
sured. The only efficient way to detect the polarization of a nucleon is to carry out
a second scattering off a target of known analyzing power. The asymmetry in the
differential cross section of the second scattering provides us with information on the
polarization direction of the nucleon after the first scattering. Since the cross section is
low in general for nuclear processes, a second scattering greatly complicates the exper-
imental setup and reduces the rate of data collection. In spite of such difficulties, more
and more high-precision data involving the polarization of the scattered particle are
becoming available. Valuable information can also be obtained using polarized targets.
However, this requires sophisticated low-temperature techniques to “freeze” the spin
orientations of the nucleons with respect to some given spatial direction, such as that
provided by an external magnetic field. Data involving such targets are still quite rare
as @ result.

Inelastic scattering. With sufficient kinetic energy available in the center of mass
of the two-nucleon system, inelastic reactions become possible. Since the mass of the
lightest meson, 7%, is around 140 MeV/c?, we expect pion production to take place once
the bombarding energy is above the threshold (see Fig. 3-4). As the energy increases,
excitation of the internal degrees of freedom of the nucleon as well as the production
of secondary particles become increasingly more likely. Inelastic scattering represents
a loss of flux from the incident channel, and as far as the incident channel is concerned,
the probability amplitude is no longer conserved. Such a situation may be described
by a complex scattering potential.

Both the scattering amplitude and the phase shifts produced by a complex potential
are also complex in general. Let us define a scattering amplitude f, for the ¢th partial
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Figure 3-4: Energy dependence of the total cross section for pion production in

pp-scattering leading to final states d+ #%, p+n+#*, and p+p + 7% (Adapted
from Ref. {90].)
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wave by the expression

1(6) = 3 Am@ET 1) fo Yaol0) (377)

t=o0

For purely elastic scattering,
1 s, T 2,
f[ = Ee sin 5( = m(e et 1) (3-78)

as we have seen earlier. If inelastic scattering is also taking place, the scattering am-
plitude becomes complex and may be expressed in terms of two real numbers: 7, (the
inelasticity parameter) and (,, defined by

fo = m (¥ — 1) (3-79)

2ik
The energy dependence of complex scattering amplitudes is often displayed in the form
of Argand diagrams in terms of the locus of the point

2=kfy= 211 (n,e¥t ~ 1) (3-80)
in the complex plane [22, 152].

An examination of the values deduced from experimental nucleon-nucleon scattering
data shows that the phase shifts are essentially purely real until the energy is above
300 MeV in the laboratory (~150 MeV in the center of mass). At much higher energies,
the real and imaginary parts become comparable to each other, as more and more
inelastic channels are open. Complete lists of phase shifts up to 1 GeV in laboratory
scattering energy are available, for example, from Arndt, Hyslop, and Roper [10].

3-8 Low-Energy Scattering Parameters

Effective range analysis. If we make a partial-wave expansion of the scattering
wave function, as given in Eq. (3-67) for example, and substitute the results into the
Schrédinger equation (3-64), we obtain an equation for the radial wave function for
orbital angular momentum #:
R2rl1d ,d £(€+1)}
—— gt = Re(k,v)+ V(r)Re(k,r) = ERy(k,r 3-81
si\mia G~ Rk ) + VORAE ) = BR(kr)  (38)
The term £(£+-1)/7? comes from the angular part of the kinetic energy and is sometimes
referred to as a centrifugal barrier, as it is repulsive to an incoming particle. The
“effective potential” experienced by the scattering particle is then
~ h*ee+1)
V(r)=V(r )+ %
as given in Eq. (B-24). Because of the barrier, scattering at low energies is dominated
by partial waves for small ¢-values. In particular, for £ < 10 MeV, nucleon-nucleon
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scattering is essentially given by s-waves (£ = 0) alone, as can be seen from Fig. 3-3
from the fact that only 8y, the # = 0 phase shifts, are significantly different from zero.
When the kinetic energy E — 0, the total cross section remains finite for nucleon-
nucleon scattering. The limiting value is often characterized by a length parameter a

defined by the relation
g_x%a = 4ma® (3-82)

The quantity a is known as the scattering length, and it is often convenient to discuss
extremely low energy scattering in terms of it instead of the s-wave phase shift. The
two quantities are related in the following way, as shown in Eq. (B-28):

a= Ilcl_rj}) %{—%e"’“ sin 60}

where kZ = 2uF /fi2 and R indicates the real part. The energy dependence of 8y at low
energies is given by the effective range parameter r., defined by the relation

1 1 .,
k cot 60 = - a + irek (3-83)
A more detailed discussion of these parameters and their relation to the nucleon-nucleon
interaction potential is given in §B-3.

Scattering length and effective range provide a useful way to parametrize informa-
tion on low-energy nucleon-nucleon scattering. Furthermore, these parameters may be
related to observations other than NN-scattering, such as deuteron binding energy. In
addition, very accurate results can be obtained for the np-system by scattering slow
neutrons off protons in hydrogen atoms bound in H; molecules. For these reasons,
a great deal of attention is devoted to the measurement and understanding of these
parameters,

Neutron scattering off hydrogen molecules. The hydrogen molecule, Hy, is a
homonuclear molecule, a diatomic molecule made of two identical nuclei. Since the
distance between the two atoms is large (7.8 x 107! m), compared with the range
of nuclear force, we do not need to consider any nuclear interaction between the two
protons in a Hy molecule. On the other hand, being identical particles, they must obey
the Pauli exclusion principle. Like other two-nucleon systems, the allowed states for twa
protons in a hydrogen molecule must be antisymmetric in the product of their orbital
and spin wave functions. For this reason, the spin orientations of the two protons are
correlated with their relative orbital angular momentum, and such a correlation may
be exploited for neutron-proton scattering length measurements.

There are two low-lying states for a hydrogen molecule. The lower one in energy is
the pare-hydrogen state, in which the two protons are symmetric relative to each other
in their spatial wave function. The higher energy state is the ortho-hydrogen state,
in which the two protons are antisymmetric in spatial wave function. For an ortho-
hydrogen, it is necessary that the intrinsic spins of the two protons be coupled together
to Sy = 1 to satisfy the Pauli principle. For this arrangement, Mg, the projection
of Sy on the quantization axis, can take on any one of three values, —1, 0, and +1,
and, consequently, there are three possible states associated with each ortho-hydrogen
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molecule. The total intrinsic spin of the two protons in a para-hydrogen, in contrast,
is Sy = 0 and there is only one possible state. At room temperature, the thermal
energy is much higher than the difference between the para- and ortho-hydrogen, and
we expect ortho-hydrogen to have three times the statistical weight of para-hydrogen
in a sample at thermal equilibrium. On the other hand, at low temperatures, hydrogen
molecules tend to go into the lowest possible energy state and, as a result, are almost
completely in the lower energy para-hydrogen state. Thus the relative amount of para-
and ortho-hydrogen in a sample may be controlled by varying the temperature of the
sample.

Measurements of low-energy neutron scattering from hydrogen molecules can be
carried out with high precision partly because of the intense neutron flux available from,
for example, reactors. By lowering the energy, the wavelength of incident neutrons can
be made sufficiently long so that scattering off the two protons in a hydrogen molecule
is a coherent one. Low-energy neutrons are also useful in that very little energy is
transferred to the hydrogen target. Energy received by a molecule may cause transitions
from para- to ortho-hydrogen states, and this reduces the accuracy that can be achieved
in a measurement. For these reasons, the neutron energy is kept low, around 10 meV (1
meV = 1073 eV), corresponding to the average thermal energy at temperature 100 K.
At such low energies, contributions from the effective range term in Eq. (3-83) may be
ignored, and the scattering is characterized by the two np-scattering lengths.

For ¢ = 0, a neutron-proton system is either in its singlet state with S = 0 and
T =1 or in its triplet state with S = 1 and T = 0. The scattering length in the form
of an operator may be expressed in the following way:

a=13a,+a,)+ (ar - a,)8, - 8 (3-84)

where a, is the scattering length in the triplet state and a, that for the singlet state.
The operators s,, = %an and s, = %a',, act, respectively, on the intrinsic spins of the
neutron and the proton. Similar to oy - o given in Eq. (3-55), the scalar product s,- s,
is sensitive to the sum of intrinsic spins of the neutron-proton system. It is easy to
check that the expectation value of a in Eq. (3-84) is a; in a triplet state and a, in a
singlet state for a neutron-proton system.

Returning now to the hydrogen molecule, we may write the operator for the sum
of the intrinsic spins of the two protons as

Sy = 8p, + 8, (3-85)

In terms of Sy, the scattering length for a slow neutron from two protons in a hydrogen
molecule may be written in a form similar to Eq. (3-84) above,

ay = 1(3a, +a,) + (ar — a,)8, - Sy (3-86)
The scattering cross section is given by the expectation value of ay squared,

oy = A4nl{ady)
= 4#{}(3(1, +a,)° + (3ar + a,)(a — a,)(8n - Syr) + (@, — a,) (85 - SH)Z)}
(3-87)
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For unpolarized incident neutrons, the second term in the final form vanishes on averag-
ing over all possible orientations of the intrinsic spin of an incident neutron. The third
term may be simplified by applying the same argument in the following way. First, we
expand the operator in terms of the Cartesian components of the intrinsic spins,

2 2 o2 2 o2 2 o2
(311 ' SH) = smtSHz' + SnySHy + SnzSHz
+23,,ms,,ySHmSHy + 25,9725y SHz + 2802802 SH: SHz
The expectation values of the last three terms in the expression are again zero for an
unpolarized neutron beam. For the first three terms we note that, since 87 = s+ s +s?
and (s?) = ¥, we have

As a result,

2 2 2 2 2 2
(snmsllx + SnuS"u + SnzSHz)

1(She + Sty + Shy) = 1(Sk) = 1Su(Su +1)
and
o =1{(a, + a,)* + (a: — 0,)*Su(Sy + 1)} (3-88)

For para-hydrogen, we have Sy = 0, and the cross section is
Opara = 1\'(3(11 + aa)z (3-89)

For ortho-hydrogen, we have Sy = 1, and the result is

2

Tortho = T(3a, + a,)2 + 2n(a, ~ a,) (3-90)

From the values of 0pas and Ooreno measured with slow neutron scattering off hydrogen
molecules, the values of scattering lengths a, and a; may be deduced, and the results
are listed in Table 3-3. Data of similar quality can also be obtained from coherent
scattering of slow neutrons from protons bound in crystals, from crystal diffraction,
and from reflection of slow neutrons by liquid hydrocarbon mirrors.

Table 3-3: Nucleon-nucleon scattering length (a) and effective range (7).

§=0,T=1(fm){S=1, T=0{fm)
moa -17.1+0.2 —
Te 2.79410.015 -
nn a -16.6+0.6 —
Te 2.84:+£0.03 —_
np a | —23.715+0.015 5.42330.005
Te 2.73+0.03 1.7310.02

Neutron-proton scattering length. Let us examine first the singlet scattering
length for the np-system. Since this is a system with isospin T = 1, we can com-
pare its value with a,, and a,,, the scattering lengths for pp- and nn-scattering. The
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signs in all three cases are negative. Using the definition for the sign given in §B-3, this
means that there is no bound state for two nucleons in T = 1, a fact we encountered
earlier in the discussion on deuterons.

The pp-scattering length a,, is easily measured from low-energy proton scattering
off a hydrogen target. However, since the cross section for Coulomb scattering, given
later in Eq. (4-7), is inversely proportional to the square of the energy, the observed pp-
scattering at low energies is dominated by electromagnetic effects. In principle, one can
subtract the contributions of the Coulomb term from the measured values. However,
the accuracy one can achieve in practice is rather limited, as the cross section for
nuclear scattering is only a very small part of the total measured value. For example,
the scattering length corresponding to the measured cross section is ~7.823 + 0.01 fm,
and after correction for Coulomb effects, the pp-scattering length is ~17.1+0.2 fm (see,
e.g., Ref. [112]).

Measurements of the nn-scattering length are complicated by the absence of fixed
neutron targets. Several different types of experiment have been carried out to deduce
the value of a,, using either deuterons or tritons in reactions, such as

n+d—p+n+n n+t—d+n+n
d+d—p+p+n+n t+d-—’He+n+n
t+t—a+n+n

With the availability of good quality pion beams in recent years, the reaction
m +d—=y+n+n

has also been used to reduce the measured uncertainty of a,,. Here, instead of relying
on scattering of neutrons off neutrons, the value of a,, is obtained from “final state
interaction,” that is, changes in the observed reaction cross section due to interaction
between the two emerging neutrons. The observed values of a,., are displayed in Fig. 3-5
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Figure 3-5: Distribution of the measured values of nn-scattering length a,, in
chronological order from left to right. The average value of —16.6 + 0.6 fm is
indicated by the dashed line. (Taken from Ref. [73].)
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in chronological order, and the average of these values, shown as the dashed line in the
figure, is listed in Table 3-3.

A comparison of the three values of T = 1 scattering length is of interest. First we
find that the value a,, = ~23.715+0.015 fm is noticeably larger than those for a,, and
ne- It is tempting to treat the difference as a possible indication of charge dependence
in nuclear force. However, most of the difference may be explained by the following
argument. At low scattering energies, the two nucleons are never very close to each
other and, as a result, only the long-range part of the nuclear force is operating. The
nuclear interaction here is dominated by the exchange of a single pion. For a pair of
protons and a pair of neutronsg, only a neutral pion can be exchanged. On the other
hand, a charged pion can also be exchanged in the interaction between a neutron and
a proton, as shown in Fig, 3-6. This can take place by the proton emitting a 7+ and
changing itself into a neutron while the original neutron becomes a proton on absorbing
the positive pion. Alternatively, the neutron may emit a 7~ and change into a proton
while the original proton converts itself into a neutron on absorbing the pion. These are
“exchange” processes, as the “identities” of the neutron and proton are interchanged.
Since in quantum mechanics it is not possible to follow the trajectory of a particle as
it interacts with another indistinguishable particle, there is no way to associate either
one of the two nucleons in the final state with a particular one in the initial state.
As a result, we cannot distinguish an exchange process from a direct one in which a
neutral pion is exchanged and the contributions of both processes must be included in
an np-scattering. Because of the small mass difference between charged and neutral
pions,

Mgt —~ Myo = 4.6 MeV

we expect a small difference in the interaction between a proton and a neutron from
that for two identical nucleons. In this way, most of the difference between the np-
scattering length in the triplet state and the scattering lengths for pp- and nn-systems
can be accounted for (for more details, see, e.g., Ref. [149]). The observed difference
of anp from a,, and an,, therefore, cannot be taken as an indication of a fundamental
charge dependence in the nuclear force or in the strong interaction itself.

(a) (b) () (d)

Figure 3-6: One-pion exchange diagrams: (a) pp-interaction, (b) nn-interaction,
(c) direct term, and (d) exchange term for np-interaction,
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The difference between a,, = —17.1 £ 0.2 fm and a,, = —16.6 £ 0.6 fm is not
significant at this time because of the large uncertainty associated with the measured
value of a,,. Within experimental error, pp- and nn-scattering lengths are equal to
each other and the results support charge independence of nuclear force. However, it
is worth noting that the measurement of nn-scattering length by Gabioud et al. [70)
gave a value a,, = —18.6 £ 0.5 fm from 7~ +d — v+ n+ n reactions. Using improved
techniques, the experimental uncertainty in this measurement is reduced compared with
previous results. Since the value obtained differs from a,, by more than one standard
deviation of experimental uncertainty, the charge independence of nuclear force may
again be in question. A new type of experiment involving direct scattering of neutrons
from neutrons using two intense colliding beams of neutrons has been planned at the
Los Alamos National Laboratory (73].

For T = 0, the scattering length can only be measured on the triplet np-system.
The large number of significant figures in the value 5.423 +0.05 fm is a reflection of the
accuracy that can be achieved in slow neutron scattering. The positive sign indicates
that there is a bound state, which we have already seen as the deuteron ground state.
The fact that the value is significantly different from that for T = 1 is a clear indication
of the isospin dependence of nuclear force.

The values for the effective range may be obtained from low-energy nucleon-nucleon
scattering as well as, for example, photodisintegration of deuterons or slow neutron cap-
ture by protons. The best known values are given in Table 3-3 for comparison. Again,
we find evidence for isospin dependence but there is no indication of any contradiction
to the assumption of charge independence of nuclear force. The accuracies of the mea-
sured values are, however, somewhat poorer than the corresponding scattering length
measurements, in particular, for the np-system. This is not surprising, as we are no
longer in the extremely low-energy region where high precision is possible, as we have
seen with scattering length measurements.

3-9 The Nuclear Potential

One-pion exchange potential. When Yukawa's idea of a simple one-pion exchange
potential (OPEP) was applied to nuclear force, it was found that it could fit exper-
imental data only for internucleon distances greater than 2 fm. In retrospect this is
not surprising. As we have seen earlier in §3-6, the pion mass is around 140 MeV/c?,
corresponding to a range of approximately 1.4 fm. At shorter distances, contributions
from sources other than single-pion exchange enter into the picture. This can also be
seen, for example, from the values of s-wave phase shifts shown in Fig. 3-3. At low
energies, the values are large and positive, indicating that the force is an attractive one.
As the energy is increased to around 250 MeV in the laboratory for the 'S5-channel and
to just above 300 MeV for the 39;-channel, the phase shifts become negative, showing
that the force is now repulsive. This is generally interpreted as evidence of a hard core
in nucleon-nucleon interaction when the two nucleons are within a distance of the order
of a femtometer between their centers.

From a quark picture, such a strongly repulsive, short-range term in the interaction
between nucleons is to be expected. Being fermions, each one of the three quarks inside
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a nucleon must occupy one of the three lowest available states. When two nucleons
are close together, a large fraction of their volumes overlap each other. As a result,
the six quarks in a two-nucleon system can no longer be considered as two separate
groups consisting of three quarks each. The Pauli exclusion principle between the
quarks demands that three of the six quarks must go to states above the lowest ones
already occupied by the other three. A large amount of energy is required to make this
transition. From the point of view of nucleon-nucleon scattering, this additional energy
shows up as a great resistance for the two nucleons to come very close to each other,
almost as if there is some sort of impenetrable barrier between them. Unfortunately,
it is not easy to obtain a quantitative predication. To start with, 300 MeV is a very
low energy for QCD to carry out any sort of reliable calculations. As a result, we have
no precise way yet of evaluating the range or the strength of the repulsive core from
fundamental considerations.

At the hadron level, it is also difficult to generalize the one-pion-exchange picture,
designed to understand the long-range part of the force. In addition, the OPEP also has
difficulties in relating the strength of nucleon-nucleon interactions to the observed mag-
nitude of pion-nucleon interactions. If two nucleons interact with each other through
the exchange of a virtual pion, the strength of the interaction must be related to the
probability of a nucleon emitting and absorbing real pions. Such probabilities are,
in turn, connected to the coupling constant, or interaction strength, between a pion
and a nucleon. In the language of field theory, the strength is characterized by the
pion-nucleon coupling constant g,, analogous to the factor g in Eq. (3-62). Models
of nuclear force built solely upon the one-pion-exchange picture have found that, in
general, the value of g,y obtained, for example, from pion-nucleon scattering cannot
be used directly to calculate the coupling constant for nucleon-nucleon scattering. As
a result, the value for two nucleons is often treated as a parameter, adjusted to fit the
nucleon-nucleon scattering data.

One-boson exchange potential. Our present view is that nuclear force may be
divided into three parts, as illustrated schematically in Fig. 3-7. The long-range part
(r > 2 fm) is dominated by one-pion exchange. If exchanges of a single pion are
important, there is no reason to exclude similar processes involving two or more pions
and mesons heavier than pions. The range of interaction associated with these more
massive bosons is shorter, and for this reason, the intermediate-range part of the nuclear
force (1 fm< r < 2 fm) comes mainly from exchanges of single heavier mesons and two
pions. The hard core in the interaction (r S 1 fm) is made of heavy meson exchanges,
multipion exchanges, as well as QCD effects.

It is helpful to use pictures based on Feynman diagrams in field theory to represent
the various boson exchange terms. The exchange of one pion between two nucleons
may be represented hy the diagram given in Fig. 3-8(e). An implicit assumption in the
diagram is that the time axis is in the vertical direction. Two nucleons with momenta
p, and p,, represented by the two solid lines, are moving freely until time ¢, when a
(virtual) pion is emitted by nucleon 1. The pion emission, represented by the dashed
line, changes the momentum of nucleon 1 from p, to pj. At time ¢,, the pion is absorbed
by nucleon 2 and the momentum of the nucleon is changed from p, to p) as a result.
For simplicity, the diagram is often abbreviated in the form shown in Fig. 3-8(b).
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Figure 3-7: Schematic diagram
showing the different parts of a
nucleon-nucleon potential as a func-
tion of distance r between two nu-
cleons. The hard core radius is
around 0.4 fm and it takes en- V() /
ergy >1 GeV to bring two nucleons
closer than (twice) this distance.
The main part of the attraction lies
at intermediate ranges, at radius
~1 fm, and is believed to be dom-
inated by the exchange of scalar

mesons. The long-range part, start- = T
ing at around 2 fm, is due to the \/—’

single-pion exchange.

hard  scalar meson pion
core exchange exchange

Following the same rules, a two-pion exchange process may be represented by that
shown in Fig. 3-8(c). On possible form of two-pion exchange term is given by Fig. 3-8(d),
in which the intermediate state of one of the nucleons becomes a A-particle, shown as
a double line, as a result of absorbing the pion. Since a p-meson decays into two pions
with a mean life of only 4 X 1072 s, the exchange of a p-meson, shown in Fig. 3-8(e),
may be considered as a special type of two-pion exchange term. Similarly, the exchange
of an w-meson is a type of three-pion exchange (not shown) as w decays to three pions
with a mean life of 8 x 1072 5. Figure 3-8(f) is another type of two-pion exchange
term where both pions are emitted before either one is absorbed. In contrast, the two
plons in Fig. 3-8(c) are emitted and absorbed one after another. As a side interest, a
three-body force may arise, for example, as the result of a nucleon emitting a p-meson.
The two pions from the decay are absorbed by two different nucleons, as shown in
Fig. 3-8(g). As a result, there are three nucleons involved in the process.

Nucleon-nucleon potentials. There are two general approaches to construct a po-
tential that has the correct form for long-, intermediate-, and short-range parts. The
first is a phenomenological one which generalizes the one-pion exchange idea to a one-
boson exchange (OBE) picture. To keep the form simple, only the exchange of a single
boson is allowed. In addition to pions, heavier mesons are introduced to account for
the intermediate range. To compensate for multimeson exchanges, the strength for
each type of meson exchange is left as a parameter to be determined by fitting, for
example, NN-scattering data. The hard core is put in explicitly “by hand” without
any reference to its source. The strength of such an approach lies in its simplicity.
There are, however, several problems. The lifetimes of many of the mesons involved
are sufficiently short that the validity of a model involving the exchange of these par-
ticles without considering their decay is not very sound. Furthermore, in order to fit
experimental data with a minimum number of terms, the range of each OBE term and
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(a) ) (©)

@ (e) ® (8)

Figure 3-8: Diagrammatic representation of meson exchange between two nu-
cleons: (a, b) one-pion exchange, (¢) two-pion exchange, (d) two-pion exchange
with intermediate state involving a A-particle, (e) p-meson exchange, and (f)
another type of two-pion exchange term with both pions emitted before either
one reabsorbed. An example of three-body force is shown by (g).

consequently the masses of the mesons exchanged often become adjustable parameters
as well, with little or no relation to real mesons. These “fundamental” objections to
such phenomenological potentials, however, should not detract us from their successes
in a variety of applications,

A second approach in constructing a nucleon-nucleon potential is to make use of
our knowledge of hadrons as much as possible and treat phenomenologically only those
aspects, mainly short-range interactions, of which we have incomplete knowledge. Such
a program was carried out, for example, by the Paris group {138} and the Boun group
[101] with great success. The one- and two-pion exchange parts of the potential are well
known and both groups used essentially the same approach. For the less well known
short-range parts, different techniques were employed.

It is perhaps of interest to examine three important differences in the two potentials,
in part to see the possible future direction in the development of nuclear force studies.
The first is the treatment of three- and four-pion exchanges that form g part of the
short-range interaction. Here the Paris potential used a phenomenological approach
and determined some of the parameters involved by fitting them to known data. The
Bonn potential made an estimate of the effect instead.

A second difference in the two potentials is in the treatment of the A-particle.
As we have seen earlier in Fig. 2-3, a strong resonance in the scattering of nt off
protons is found at laboratory pion energy 195 MeV. Such a dominating feature in pion-
nucleon reaction must have a profound influence on the nucleon-nucleon interaction.
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For example, a nucleon may be excited to become a A-particle in the intermediate
state, as shown in Fig. 3-8(d). Since it is distinguishable from a nucleon, the A-
particle is not affected by the Pauli exclusion principle with respect to nucleons in the
nucleus. For applications involving nucleon energies above 300 MeV in the laboratory,
the formation of a A-particle is expected to play a significant role and must be included
as a part of the potential. On the other hand, it is not easy to incorporate such a
strong inelastic channel in a potential except by putting in the resonance explicitly, an
approach adopted by the Bonn group.

The interactions between two antinucleons, and between a nucleon and an antin-
ucleon, are also integral parts of a nucleon-nucleon potential. This is especially true
if we take a fully relativistic approach where both nucleons and antinucleons appear
together in the same wave function. Furthermore, experimental data are available for
scattering of antinucleons off nucleons and nuclei (see, e.g., Fig. 8-9). Studies of such
scattering using nucleon-nucleon potential, with antinucleons incorporated as a part,
can tell us more about the two-nucleon system than considering nucleons and antin-
ucleons as totally separate entities. There are several different ways to carry out the
extensions to include antinucleons and, in this respect, the Paris and Bonn potentials
differ also from each other.

In spite of these differences, it is important to realize that, at low energies where
most of the experimental data are taken, calculations using both potentials have pro-
duced very similar results. For instance, the values of 1Sy and 35, phase shifts obtained
with both potentials are essentially indistinguishable from each other and only a rep-
resentative example is shown in Fig. 3-3 as illustration. The close agreement between
the two sets of calculated results and with values extracted from NN-scattering data
is a demonstration of the degree of understanding already achieved in nucleon-nucleon
interaction.

Nucleon-nucleon interaction for bound nucleons. One of the reasons for having a
nucleon-nucleon potential is to make use of it in nuclear structure and nuclear reaction
studies. For this purpose it is not essential, in principle, to have a potential. Most
of the applications require only many-body matrix elements of the nuclear interaction.
A two-body force acts between two nucleons at a time. Many-body matrix elements
of such an interaction can always be expressed in terms of two-body matrix elements,
similar in form to the nucleon-nucleon t-matrix given in Eq. (3-75). These matrix
elements are, however, different from those for free nucleons in two important aspects.
In the first place, there may be a difference in the interaction between a pair of nucleons
inside a nucleus from that between a pair of free ones. In this chapter we have dealt
mainly with the latter category. As we shall see in §7-5, interaction between bound
nucleons is modified by the presence of other nucleons in the same nucleus and may be
different from that operating between free or bare nucleons discussed here.

A second problem is the question of whether a nuclear potential can be specified
completely within the two-nucleon space. When two free nucleons interact, energy and
momentum are conserved within the two-particle system. Let us consider only the
nonrelativistic limit for simplicity. The momenta of the two nucleons, p; and p,, are
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restricted by the relation
p_f + _p_%_ =E (3-91)

Uty 2t
where p; and py are the reduced masses of the two particles in their center of mass. In
other words, the sum of the momenta of the two nucleons is confined to lie on a spherical
“shell” in momentum space with the square of the radius, p2+p?+p? = 2pE, determined
by the total available kinetic energy E in the center of mass. Under such circumstances,
the two-body interaction t-matrix elements are said to be “on the energy shell” and
are called on-shell matrix elements. Once nucleons are bound to a nucleus, energy-
momentum conservation applies to the nucleus as a whole and the momenta of a pair
of nucleons inside a nucleus are no longer restricted by Eq. (3-91). Interaction between
two nucleons is “off the energy shell,” or off-shell for short, if the condition given by
Eq. (3-91) is not satisfied, i.e., the sum of the momenta squared is not constrained
by the kinetic energy of their relative motion. Such off-shell interactions are usually
built into a nucleon-nucleon interaction potential. On the other hand, since off-shell
conditions do not exist for two free nucleons, we have no way of determining these
parts of the potential using NN-scattering. In this sense, the nuclear potential cannot
be completely specified by studies made on systems of two free nucleons alone. By the
same token, purely phenomenological potentials with parameters fitted to data on two
free nucleons have no way of knowing a priori whether they are correct for off-shell
effects.

Again there are two possible ways to solve the problem of the off-shell behavior of
a nuclear potential. The first is to have a theory connecting off-shell effects to those
on-shell, a relation that is implicit in all the models of nuclear potential, If we have
the correct association between these two types, the off-shell behavior of a potential
is completely determined once the on-shell matrix elements are given. However, we
have not yet arrived at this level of understanding of nucleon-nucleon interaction. In
the absence of such a theory, an alternative is to take a semi-empirical approach and
determine the off-shell matrix elements by comparing them with data sensitive to such
effects. Unfortunately, such investigations must be carried out on systems with more
than two nucleons; however, not too many quantities have been found that are useful
for this purpose. An unambiguous determination of the off-shell behavior of nuclear
force is still to be developed.

Relation with quark-quark interaction. Although it is generally accepted that the
force between nucleons is a facet of the strong interaction between quarks, a quantitative
connection between nuclear force and quark-quark interaction is still lacking. The root
of the problem is the difficulty of carrying out QCD calculations at the low energies
where nuclear physics operates.

To study nuclear interaction in a quark model, we need a system of at least six
quarks. The force between the quarks must be such that it satisfies the condition of
confinement; that is, unless the two nucleons are very close together, the six quarks are
clustered tightly into two separate groups, or “bags,” of three quarks each. At large
enough distances compared with the average value between quarks inside a nucleon,
the force between these two bags of quarks must have a form consistent with that
given successfully by meson exchange. At intermediate distances, the force must be
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attractive and not too different from what is given by models involving the exchange
of several pions and heavier mesons. With our present level of knowledge of low-energy
strong interaction, it is not difficult to demonstrate such a relation must exist between
quark-quark and nucleon-nucleon interactions; however, a proper derivation of nuclear
force from QCD is still being developed.

Qualitatively we can see how nuclear force may arise from a quark-quark interaction
by making an analogy with the force between chemical molecules. The fundamental
force here is electromagnetic. Charge distributions in many molecules are spherically
symmetric so that there should not be any net electrostatic force left to act between
two such molecules. However, since we know that such molecules do condense into
liquids and solids, there must be a residual force between them, generally known as van
der Waals force. It is useful to see how such a force arises between molecules so that
we may gain some insight into the question of how force between nucleons comes from
the interaction between quarks.

Suppose a neutral molecule acquires an electric dipole moment p, for instance, as
a result of fluctuation in its shape and, consequently, in its charge distribution. The
electrostatic potential at a point r from the center of a dipole is given by the expression

o(r) = [47:60] i‘r'zp = [47:60] pcvzsg (3-92)

where the angle @ is between vectors p and # (# = r/r and r = |r|) and the factors
within square brackets are needed if we wish to work with SI units. The electric field
from such a dipole,

E(r,0) = -Vé=— [:1-7%6—;] {% - 3(”‘:’439)r} (3-93)

induces a dipole moment p' in another molecule with a magnitude proportional to the
polarizability x,

p'=xE
As a result, a dipole-dipole interaction arises between these two molecules with a
strength

V(r)=~p'-E= —[(Z;:—E;)z]x(l + 3 cos? 9)?—:— (3-94)

Note that the interaction energy is always negative regardless of the orientation of the
first dipole assumed at the start. Consequently we have a force that is always attractive
and varies as 777,

For a spherically symmetric molecule, the dipole moment is zero on the average,
(p) = 0. However, because of fluctuation, the instantaneous value of p may be different
from zero (i.e., {p?) # 0), resulting in an attractive van der Waals force. In the same
way, an attractive force between two nucleons can also arise because of fluctuation.
Instead of electrostatic force, we are dealing with the “color” force between quarks.
Although strong interactions confine quarks within nucleons, a color van der Waals
force can, in principle, occur between nucleons, just as a dipole-dipole force appears
between a pair of molecules. In this way, we can see how a nuclear force arises from
the residual interaction between quarks in two nucleons. Although the idea of a color
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van der Waals force is pleasing, the actual form it produces has a range much longer
than what is observed. Currently, the color van der Waals force does not seem to be a
correct model for nuclear interaction without modifications.

Problems

3-1.

3-2.

3-3.

3-4.

Find the possible range of values for the depth of a one-dimensional square well,
3 fm wide, that has only one bound state for a nucleon.

If the surface of a deformed nucleus is given by the equation
P+ +12:2=R?

where R = 1.2A4'/? femtometers, calculate classically the electric quadrupole mo-
ment, assuming A = 200, Z = 80, and the nuclear density is uniform inside the
surface and zero outside.

Carry out the angular part of the integration

/02” /oﬂ(YLM(9¢))qf20(a¢) Yy 1 (09)sin 6 d0 de

in Eq. (3-25) for the expectation value of the quadrupole operator in the L = 2
and M = 2 state using the explicit forms of the spherical harmonics.

For an infinite three-dimensional harmonic oscillator potential well, with oscillator

frequency w, the radial wave functions for the lowest s-state and the lowest d-state
are, respectively,

4 2
Rir) = 21/3/4,",——1/48—111'2/2 Riir) = U7/47r—1/4,r2e—ur /2
10( ) ld( ) \/ﬁ

where the oscillator length parameter v = Mw/h, with M as the mass of a
nucleon. Find the root-mean-square radii in each of these states taking hw =
15 MeV. Compare the values obtained with the measured deuteron radius. For
the radial wave function given above, what is the value of the off-diagonal ma-
trix element (R;,|r?|R14)? Use this model to calculate the deuteron quadrupole
moment, assuming that the wave function is predominantly made of the 35;-state
with a 4% admixture of the 3D,-state.

. Rewrite the right-hand side of following the rank 1 spherical tensor product

(0(1) x (21 = J_{1plalim)oy(1)oe(2)

given in Eq. (3-36) in terms of the Cartesian components of Pauli matrices o(1)
and o(2) for nucleons 1 and 2, respectively. Show that, in Cartesian coordinates,
it has the same form as an ordinary vector product of the two vectors.
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3-6.

3-8.

Show that the spherical tensor rank of the operator

3
Si2 = ;2‘(01 o2 7) =~ 010y
is 2 in intrinsic spin space. That is, it may be written as an operator of the form
Yo {i1052q' |AM) 1,099 With X = 2 and j; = j, = 1. Here (j1gj2¢'|AM) is the
Clebsch-Gordan coefficient.

. In classical electrodynamics, the scalar field ¢(r) produced by an electron located

at the origin is given by the Poisson equation
Vip(r) = —4meb(r)

Show that the radial dependence of the field is given by

or)=7

r

For a nucleon, the scalar field satisfies the Klein-Gordon equation
s 1
(V? = 5)a(r) = dmgb(r)
To

Show that the radial dependence of the field is given by

e—r/ro

¢(r) =g

7

Derive that the range g is given by the relation ro = fi/mc using the fact that
the boson, with mass m, is a virtual particle and can therefore exist only for a
time At given by the Heisenberg uncertainty relation.

For a velocity-independent two-body potential, the only two-body scalars that
can be formed using operators r=r; — 1, S=0;+ 03, and T=7 + T are 1,
0y 03, T\ - Ty, Oy 091y - Ty and Sy, where Sy = 3(r- 04)(r- 03)/12 — (01 - 02).
Show that the operators

(a) S-8 (b) (r-S)
© (rx8)-(rx8) (@ (rx(o1-02)-(rx(on—c3)

can be reduced to functions of these scalars. Give the symmetry argument of why
scalar products 7 - 8 and r - T are not allowed for a nuclear potential.

With velocity or momentum dependence, the only additional operator required
is L+ S, where L = r x p and p = }(p; — p,). Show that the following terms do
not form independent scalars either:

() pp, L-L, (L-S) (f) rxL-p (8) (L-S)L-L)
(h) (r-p)r-S) i) (r-p)L-8)
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3-9.

3-10.

3-11.

3-12.

3-13.

Calculate the s-wave phase shift of a neutron scattered by an attractive square-
well potential of depth Vy and width W. Obtain the scattering length a and
effective range 7g in terms of V5 and W.

Show that the angular distribution of an s-wave scattering is isotropic. If the
only nonzero phase shifts in a hypothetical scattering of a particle off another
are s- and p-waves, find the angular distribution of the scattering cross section
assuming that the particle is a neutron, the s-wave phase shift is § = 45°, the
p-wave phase shift 6, = 30°, and the scattering takes place with laboratory energy
5 MeV. Plot the results for scattering angle between 0° and 180°,

If, instead of the observed value of J™ = 1%, the deuteron ground state were
J* = 0~, what are now the possible values of orbital angular momentum L,
sum of intrinsic spin S, and isospin T in this hypothetical state? What are the
implications for nuclear force if this were true?

Show that, for any function f(r) of r,

V(o Vf)=i(e7) [‘W - 131] +otd

art  ror r ar
where 7 is an unit vector and V, = -V; = V.

At distances sufficiently large that overlap between their densities may be ignored,
the interaction between two nucleons may be shown to be similar to that between
two point dipoles,

V(r) ~ (o1 Vi)(oa - Va) f(r)

Under the assumption of one-pion exchange, we may take the radial dependence
to have the form

e~r/ro
7y =
1y ="=
where
fic
7'q =
T e

is the range. The strength of the potential may be related to the pion-nucleon
coupling constant g (g?/hc ~ 0.081 £ 0.002). Except for isospin dependence,
which we shall ignore here for simplicity, the potential may be written as

e—r/ro

V(r) = —g*r¥(oy - Vi)(a2- Va) -

Use the result of Problem 3-12 above to show that V/(r) can be expressed in terms
of the tensor operator Sy, given in Eq. (3-38),

2 3r 372 -rfro
V(r) = Z {[(1+ %_q_,__y%o) Sz + oy ‘02] ! - ~ dn7gb(r)e "72}

where 7 = |r] — ry|.




Chapter 4

Bulk Properties of Nuclei

In general, observations made on atomic nuclei can be separated into four categories:
energies, static moments, transition probabilities, and reaction rates. In this chapter,
we shall be concerned primarily with the first two. In particular, we shall examine
the energy, spin, isospin, and static moments of nuclei in their ground states. From
their variations across the periodic table, we can gain some useful insight into the bulk
properties of nuclei.

4-1 Electron Scattering Form Factor

The best tool to study the density distribution of nuclei is electron scattering. Besides
being a point particle, the electron also can be accelerated easily. It interacts with
nuclei predominantly through electromagnetic interaction. This is an advantage, as
the interaction is well known and the results are relatively easy to interpret. On the
other hand, the scattering is only sensitive to charge and can only probe the distribution
of protons in the nucleus.

Form factor. The density distribution of a nucleus is given by the square of the wave
function ¥(r), usually that for the ground state,

p(r) = |¥(r)?

For the charge in a nucleus with proton number Z, it is more convenient to define the
charge density distribution as

pan(r) = Z|¥(r)|’ (4-1)

In this way the dependence on the total charge is made explicit and the wave function
U(r) can be taken to be normalized to unity.

The actual quantity obtained in an electron scattering experiment is the Fourier
transform of pg,(r), given by the integral

F(g)= [ pan(r)et av (4-2)

This is known as the charge, or longitudinal, form factor, to distinguish from the trans-
verse form factor to be discussed later.

105
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Usually we are only interested in the radial dependence of the density. As a result,
we can average over the angles and consider only pu(r). The angular part of the
integration in Eq. (4-2) can be carried out explicitly in this case and the (radial) charge
form factor reduces to the expression

F(¢h) = fi—ql/pd, (r)sin(gr)r dr (4-3)

It is a function of ¢?, the square of the momentum transfer to be defined later in
Eq. (4-13), as ¢* (rather than g¢) is a proper Lorentz scalar. We shall also see in
Eq. (4-19) that F(g?) is an even function of g.
In terms of F'(g*), the cross section for elastic scattering of electrons off a spin J =0
nucleus may be expressed as
do do 2
75 = (55) ! F@) (4-4)
where (do/d?)peine is the differential cross section for scattering off a point particle
carrying the same amount of charge. This gives a physical meaning to the (square of
the) form factor as the ratio of the observed scattering cross section to the expected
value for a point nucleus. The density distribution is obtained from F(q?) by applying
an inverse of the transformation given in Eq. {4-2),

Pen(r) = #5; /ﬂw F(q*)sin(gr)qdq (4-5)

Examples of charge density distribution obtained this way are shown in Fig, 4-1.

01 1
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Charge density

]
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Radius (fm)

Figure 4-1: Charge densities of 150, *°Ca, and 2°*Pb obtained using Eq. (4-21).
The Fourier-Bessel coefficients come from fits to electron scattering data [51].

For elastic scattering off J = 0 states, only the “electric” part of the interaction
can contribute. On the other hand, states with J > 0 have usually nonzero magnetic
moments that can interact with the intrinsic magnetic dipole moment of the electron.
As a result, we have an additional term. In the place of Eq. (4-4), the cross section is
now given by

= () pan I+ (4 00 D et} s
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where 0 is the scattering angle. The additional contribution is characterized by the
transverse form factor Fr(q?). In terms of operators, longitudinal and transverse form
factors are related to electromagnetic moments given in §4-6, and transition probabili-
ties between states are given in §5-3.

Scattering off point particles. A convenient starting point for discussing charged
particle scattering is the Rutherford formula for differential cross sections at scattering

angle 8,
(d_a) _ {[ 1 ] zZe? }2 B {ahczZ 1 }2 ar
dQ)/ Rutherford — | {47eq 4Tsin2§ - AT sin“24 (4-7)

It is intended for a point projectile carrying a charge ze scattering off a point particle
target with charge Ze. The original application was to analyze a-particle scattering
off nuclei. Since the projectile was obtained from the decay of long-lived, naturally
occurring radioactive nuclei, the kinetic energy T in the center of mass was low. Fur-
thermore, the ground state spin of an a-particle is 0, and as a result, we can ignore any
influence due to spin. Departures in the observed scattering can then be attributed to
finite nuclear size.

We cannot simply use the Rutherford formula as the quantity (do/dQ)peine in
Eq. (4-6) without some modifications. First, we are primarily interested in electrons
with de Broglie wavelength on the order of nuclear dimension or shorter. The kinetic
energy required is much higher than the rest mass energy of ~0.5 MeV. As a result, a
relativistic form of the Coulomb scattering formula must be used. Second, electrons are
Dirac particles, each one with intrinsic spin 8 = -,i; The magnetic moment associated
with it makes a contribution to the scattering in addition to the purely electrostatic
one given by Eq. (4-7). The replacement is the Mott formula

do 1 E2ZE ? pict L0
(d—ﬁ)Mott - {[Z;re_o] 2pzczsin2g} {1 ” —E'Tsm 5}

- {_"‘_hc_z_ﬂ.}zh —ﬁ’sin’%} (4-8)

2p*c?sin® §

It gives the differential cross section for scattering relativistic electrons off point-charge
particles. Here p is the magnitude of the momentum, E = {/(pc)? + (m.c?)? is the total
relativistic energy of the incident electron, and # = v/c. In the nonrelativistic limit, we
have £ & m,c? and the kinetic energy of the incident electron becomes T = p?/2m,.

This gives us
E 1

——— D i A
p2%cr U 4T
and the Mott formula reduces to that of Rutherford.

B == 0

Momentum transfer. It is often useful to express the scattering result as a function
of the momentum transfer hq from the electron to the nucleus. In the nonrelativistic
limit, we can define a three-momentum transfer

q= ka - kb (4—9)
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where hk, is the incident electron momentum and /ik; is the final electron momentum.
If the electron energy is high, it is more appropriate to use, instead, the Mandelstam
variable t. Let us represent the four-momenta of incident electron a and scattered
electron b in the center of mass by

0o = (ifa y ku:n kaga knz) o= (%121 kb:} kbm k'bz) (4‘10)

where E, and E, are, respectively, the center-of-mass energies of a and b. The four-
momentum transfer is given by the difference between g, and g,. The square of this
quantity is a Lorentz scalar given by

t = —(oa— 90)22
O s
= micd +micd — 2EZZE° + 2Ky kycos 8
= — 2kaks + 2kq ky cos § = —4k,k, sin’ -g- (4-11)

For elastic scattering, m, = my, ks = ky = k, and F, = E. In this case Eq. (4-11) may
be rewritten as

t = —2k*(1 — cos @) = —4k?sin? g (4-12)
The square of momentum transfer is reduced to
9 2E 2 6
2 ¢ = 4k%gin? — ~ [ZZY 4in? — -
g = t-—4ksm2_(hlc) sin’ 5 (4-13)

with the magnitude of ¢ simply related to the scattering angle.
It is also possible to express the differential cross section in terms of ¢? instead of
the solid angle. From Eq. (4-13), we have the relation

i
dQ = 2rd(cos §) = 7c3dq? (4-14)
In the limit £ — pc = hkc, the Rutherford cross section may be approximated as
do 4rZ%?
(E&E)Rutherford ~ q4 (4-15)

This result demonstrates that the differential cross section is mainly a function of the
momentum transfer without any explicit dependence on the energy.

Dirac formula. Since a nucleus is much heavier than an electron, it is often more
convenient to express the scattering cross section in the laboratory frame of reference
in which the target is at rest. The difference between the energies E, and F, of,
respectively, the incident and scattered electron is the energy taken away by the recoil
of the target particle as a result of the scattering,

Ey _ 1
E. 14 (2E,/Mc?)sin’(6/2)

(4-16)
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where M is the mass of the target particle.

In the limit that the electron rest mass may be ignored, the cross section in the
laboratory for elastic scattering of unpolarized electrons off spinless (J = 0), point-
charge particles is given by

(= ) B
a2/ peint = \2E, sin%(6/2)) E, " 2 (4-17)

For targets with a finite spin, there is an additional contribution coming from “mag-
netic” scattering. Instead of the above expression, we have

doy  _(__Zahe VB a0 (h) .0
dQ)Diruc—‘ (2Eusin2(0/2)) —E—G{COS §+m81n 5} (4-18)

This is known as the Dirac formula and is used as the point particle scattering cross
section in, for example, extracting form factors. To differentiate between the two terms
in the expression, the first one is called the electric term and the second one the magnetic
term. The relative contributions of these two terms may be found in the following way.
From Eq. (4-13), we see that

0
27
s 2

(he)? _,( E \?
ziitey = 2izz)
is much less than unity if the electron energy is much smaller than the rest mass en-
ergy of the target particle (£ <« Mc?). As a result, the magnetic scattering term in
Eq. (4-18) may be ignored in elastic scattering. The exceptions are found at high ener-
gies and backward angles. In the latter case, the cos?(8/2) factor reduces contributions
from the electric term compared with the sin?(8/2) dependence for the magnetic term.

For inelastic scattering, the magnetic term dominates in cases where the electric term
is forbidden by selection rules.

4-2 Charge Radius and Charge Density

Charge radius. From the charge form factor F(¢%) deduced from electron scattering
experiments, we can obtain the root-mean-square (rms) radius of a nucleus. At low
momentum transfers, F(q?) may be expanded as an infinite series in g*. To achieve
this, we shall start with Eq. (4-3) and write the sine function in the integrand on the
right-hand side as a power series in terms of its argument (¢r). Upon integrating term
by term, we obtain the result

F(¢") = %/Pch(r){qr~ 31—!(qr)3+--~}rdr

/pch(r)47rr2dr — %ql /TQpch(T)47l'T2 dr+---

Z{l—éq2<r2>+~--} (4-19)
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where the overall factor Z comes from the normalization chosen for charge densities
given in Eq. (4-1). Since the sine function involves only odd powers of ¢, the final result
contains only even powers.

The radial integral in the second term of Eq. (4-19) is the expectation value of the
radius squared. At low ¢?, the behavior of the form factor is dominated by this term,
and the slope of F(g?) in this region gives us the expectation value for the square of
the radius. A plot of (r?)!/? deduced from electron scattering and other measurements
is given as a function of nucleon number A in Fig. 4-2. To see the dependence of (r2)}/?
on AY3, the figure is made in terms of the ratio (r?)!/2/A!/3, Except for small A, we
see that (r2)Y/2/A!/3 is roughly constant, with a value of 0.9740.04 fm. This is a direct
evidence of the notion that the nucleus is made of an “incompressible fluid,” with the
volume increasing linearly with nucleon number A and radius A!/3,

[0] VRN SRR EPRET W B

0 100 300
NUCLEON NUMBER A

Figure 4-2: Distribution of {r?)1/2/A'/3 as a function of nucleon number A using
values of (#2)!/2 deduced from electron scattering data [51). The horizontal lines
are for (r2)/2 = (0.97 + 0.04) x A'/3 femtometers.

Note that the value of (r?)!/2 is not the nuclear radius R. This may be illustrated
by the example of a constant-density sphere of radius R with

po forr <R
)=
pir) {O r>R

The volume of the sphere is then
s 2
V= 47r/ plr)ridr = %szpo
0
and the expectation value of r? is given as

(r?) = =

= R3p0 0

o0
p(r)ridr = IR? (4-20)
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This gives R = {(5/3)(r})}}/% = 1.29 (r*)}/2. For more realistic radial density distribu-
tions, such as the ones given below, the ratio R?/(r?) turns out to be slightly smaller
than 3. For the value of (r?)!/? ~ 0.97A!/° obtained from Fig. 4-2, we come to the
result R = rgA'/® with 7o = 1.2 fm, as given in Eq. (1-2).

Fourier-Bessel coefficients. Nuclear charge densities are often tabulated in terms
of Fourier-Bessel coefficients. The density up to some cutoff radius R, is expressed in
terms of jo(§), with spherical Bessel function of order zero,

o(knr/R.) forr <R,
pen() ={ e oxgo(knr/Re) forr < (4-21)

forr> R,

The parameters a; are known as Fourier-Bessel coefficients. Only a spherical Bessel
function of order zero enters here, as the charge density operator is a scalar, carrying
no angular momentum. For inelastic transitions involving multipole excitation of order
A, spherical Bessel function j,(£) takes the place of jy(£).

The Fourier-Bessel coefficients may be expressed in terms of the density in the
following way. Since

and .
/[; sin(mnz) sin(nnz) dr = ;6mn for integer m and n

the Fourier-Bessel coefficients are related to the charge density through the integral

2m?n? R _ T
7 /0 p(T)]o(mWE)T2dT

Oy =

In practice, the form factor F(¢®) can only be measured up to some maximum momen-
tum transfer. For this reason, the density p(r) can be determined only up to a certain
precision. This, in turn, implies that there is only a finite number of Fourier-Bessel
coefficients that can be found from a given measurement. The accuracy achieved in us-
ing a finite number of Fourier-Bessel coefficients to represent a charge density depends
somewhat on the choice of the cutoff radius R, as well. Usually R, is taken to be just
slightly beyond where the density essentially drops off to zero. For light nuclei, a value
around 8 fm is often used and for heavy nuclei, 12 fm.

Other forms of charge density. For many practical applications, density distribu-
tions in terms of Fourier-Bessel coefficients are still too complicated. Furthermore, the
density is essentially constant except in the surface (r & R) region, as can be seen from
examples shown in Fig. 4-1. This is particularly true for heavy nuclei where the nuclear
size is large enough for the central region to be significant.

Because of the short-range nature of nuclear force, nucleons near the surface of
the nucleus are less tightly bound than those inside, for the simple reason that there
are fewer nucleons in the vicinity with which to interact. As a result, nuclear density
drops off more or less exponentially in the surface region. A density distribution with a
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constant central region and a diffused edge may be represented by expressions involving
fewer parameters than the number of Fourier-Bessel coefficients in Eq. (4-20). Several
such forms are commonly used in both nuclear reaction and nuclear structure studies.
The radial dependence of a density distribution with a diffused edge may be written
s _ Po
T 1+ exp{(r —¢)/z}
The two parameters ¢ and z are determined, for instance, by fitting to densities derived
from measured form factors, and the factor pp is given by normalization. Equation
(4-22) is generally known as a two-parameter Fermi or Woods-Saxon form. The meaning
of ¢ may be interpreted as the radius of the distribution to a point where the density
drops to half of its central value, and z is the diffuseness, related to the thickness of
the surface region (see Problem 4-5). Examples of the values extracted from observed
charge densities are listed in Table 4-1 for illustration.

ngp(T) (4'22)

Table 4-1: Sample values of (r?)!/2 and the parameters for two- and three-
parameter Fermi forms of charge density distribution.

Nucleus (r2)1/2 c z w

160 | 2.730£0.025 | 2.608 | 0.513 | —0.051
8g; | 3.086+0.018 | 3.340 | 0.580 | —0.233
00a | 3.48240.025 | 3.766 | 0.586 | —0.161
8gr | 4.17 £0.02 | 4.83 | 0.496
1204 | 4.60840.007 | 5.38 | 0.532
80 | 4.98940.087 | 5.771 | 0.596
11w | 542 £0.07 | 6.51 | 0.535
06ph | 5.509+£0.029 | 6.61 | 0.545
3y 15.84 6.805 | 0.605

A somewhat better description of the observed density is provided by a modified
Fermi form with an additional parameter w,
1+ w(r/c)?
1 + exp{(r — c)/z}
generally known as the three-parameter Fermi form. Other formulas, such as the three-
parameter Gaussian form,

Papr(T) = p (4-23)

1+ w(r/c)?
~o1 + exp{(r? — c?)/22}

and the harmonic oscillator model form,

Puo(r) = Po{l + z(g)z}e‘(f/f)2

are also in use. Tabulated values of these parameters for various nuclei using these
forms can be found, for example, in de Vries, de Jager, and de Vries [51).

PapG(T) =
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4-3 Nucleon Form Factor

At sufficiently high energies, giga-electron-volts and above, the de Broglie wavelength of
an electron becomes much shorter than the size of a typical nucleus. In such cases, the
scattering result is dominated by the charge distributions within individual nucleons.
The primary interest shifts to the structure of nucleons rather than that for the nucleus
as a whole. In the place of nuclear form factors, we are concerned with the analogous
quantities for nucleons. We shall return at the end of §4-4 to the question of whether
there is any difference in scattering off bound nucleons instead of free ones.

Nucleon form factors. Since nucleons are spin-1 particles, both electric and magnetic
scattering contribute to the cross section. For reasons that will soon become obvious, it
is more convenient to use the Sachs form factors G(¢?) and G (q?) rather than F{¢?)
and Fr(q?) of Eq. (4-6). This gives us the Rosenbluth formula for the differential cross

section of electron scattering off nucleons,

do do GL(¢%) + CGL (¢
( ) _( )pom{ (¢°) + (G (d*)

+ 2¢G% (¢*) tan® g} (4-24)

dQ /1.~ \dQ 1+¢
where the dimensionless quantity ( is given by
fig \?
¢= (ZM c)

The relation between Sachs form factors and longitudinal and transverse form factors
may be seen by comparing Eq. (4-24) with (4-6). The Sachs form factors have the
property that, at zero momentum transfer,

1 for a proton { i, for a proton
Gz(0) = G, {0) = P 25
=(0) {0 for a neutron u(0) u, for a neutron, (4-25)
where p, and p, are, respectively, the magnetic dipole moments of a proton and a
neutron in units of nuclear magnetons (see Table 2-4).
In the place of G¢(g?) and G (¢?), the scattering cross section may also be written
in terms of Dirac and Pauli form factors Fy(q%) and Fy(q?), defined by

Gs(9%) = Fi(q®) — (Fa(d”) Gu(d®) = Fi(¢®) + F2(¢%)

The main difference between these two sets of form factors is that, instead of electric and
magnetic scattering, Fy(¢?) and Fy(g?) are distinguished according to helicity o p/|pl,
the projection of electron intrinsic spin o along its direction of motion p/|p|. The Dirac
form factor Fy(q?) represents the helicity-preserving part of the scattering and the Pauli
form factor F(¢?) represents the helicity-flipping part. The Rosenbluth formula (4-24)
is actually derived using a first Born approximation, involving only the exchange of
one photon for the electron-nucleon interaction. In principle, corrections due to two
or more photon exchanges are needed. However, comparisons with observations have
shown that the formula works well to fairly high energies.

Asymptotic forms. There are two interesting points connected with nucleon form
factors. The first is that, in the limit of large momentum transfer, the two proton form
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factors and the magnetic form factor of a neutron are identical to each other except for
a scaling factor. The required factors can be deduced by examining Eq. (4-25),

Ga") = - OLle") = o

The function G(¢%) may be described by a dipole form,

GL(e") =G (4-26)

1
T {1+ (/0P

Empirically, the parameter gq is found to be figy = 0.84 GeV/ec.
Using the dipole form, the proton charge distribution becomes

G(q*)

pen(r) = poe” ™"
From this, we obtain the square of the charge radius of a proton,

o _ [rpa(r)rtdr 12 2
") = ey ar — g - 08 )

Because of the scaling relation (4-26), the magnetic radius of a proton must also have the
same value. Note that the value 0.81 fm for the rms radius of a nucleon is slightly smaller
than the corresponding average value (r?)"/2/A"/3 = 0.97 + 0.04 for nucleons in nuclei,
If we use a uniform density sphere to approximate the proton charge distribution, as
we did in the previous section for nuclei, we obtain the radius of a proton to be around
1 fm.

The electric form factor of a neutron G%(g?) is only known at small momentum
transfers, ¢ < 10 GeV/¢, and is found to be much smaller than the corresponding
magnetic form factor G%(¢*) at the same momentum transfer. In addition, there are
two other reasons why measurements of neutron electric form factors are difficult at
high ¢. The first is the increase in the value of { in Eq. (4-24) with ¢, and as a resuls,
the scattering cross section at high ¢ is dominated by the magnetic form factor. The
second is the absence of a fixed neutron target, and all our experimental knowledge on
neutrons must be deduced indirectly from scattering off such targets as deuteron and
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Figure 4-3: Dirac and Pauli form factors and charge distributions of proton and
nentron. (Adapted from Refs. [85) and [98).)
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He. Based on the information available, the charge distributions obtained by applying
Eq. (4-5) to the measured form factors are shown in Fig. 4-3. Since a neutron has no net
charge, it is not surprising to find the Fy(g?) to be much smaller than the corresponding
values for a proton. On the other hand, the values may be important in understanding
some of the details in nuclear charge distribution to be discussed later in §4-5.

4-4 High-Energy Lepton Scattering

Let us return to the question of electron scattering off nuclei. At low energies, where
the electron wavelength is much larger than the nuclear size, the scattering cross section
is essentially given by the Mott formula (4-8). As the energy of the incident electron
is increased, the extended size of the nuclear charge distribution comes into play and
the scattering cross section is modified by the nuclear form factors. Our interest is still
confined to elastic scattering, with the energy of the scattered electron E; differing
from its incident value E, only by the amount taken up by nuclear recoil. The energy
transferred to the nucleus is then

h 2
ho = By — By = & 21‘3 (4-27)

The relation between w and ¢* given above may be taken as a definition of elastic
scattering.

Quasi-elastic scattering. As we increase the incident energy further, the electron
wavelength eventually becomes short enough to be comparable with the size of a nu-
cleon. At this point, coherence in the scattering from several nucleons at the same
time is no longer important and the scattering takes place essentially from individual
nucleons. However, the situation is different from scattering off free nucleons in that
the energy transferred is given by

_ (ng)
o= i,

The difference from Eq. (4-27) is that the nucleon mass My rather than M, the mass
of the target nucleus, appears in the denominator. Since My is different from M, the
scattering of an electron from a “bound” nucleon is no longer a true elastic scattering
by the definition given in Eq. (4-27). It is, instead, a quasi-elastic scattering of electrons
off individual nucleons.

Quasi-elastic scattering differs from elastic scattering off free nucleons also in that
nucleons in a nucleus are not stationary with respect to the nuclear center of mass.
The average momentum of a nucleon may be estimated from the uncertainty relation,

h
PF"’E

where R is the size of the potential well that binds the nucleon. This is essentially the
Fermi momentum of a nucleon inside a nucleus. Since R is of the order of the size of the
nucleus, i.e., a few femtometers, pp is of the order of 100 to 200 MeV/c. As a result,
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there is a spread of the order of 100 MeV in the energy transferred in quasi-elastic
scattering, around 10% of the total.

Structure functions. At forward angles, the momentum transferred is small and the
cross section is dominated by elastic scattering. Since form factors decrease in value
very quickly with increasing momentum transfer, the elastic scattering cross section
rapidly becomes very small as the momentum transfer is increased, and the presence
of inelastic scattering processes becomes apparent. The reaction cross section now
depends in general on the amount of energy hw as well as the momentum ¢ transferred.
The result is usually expressed as a double differential cross section,

d*a _47rZ"’0z2 hE, {yﬁ
de?dw ~ ¢ E.Mc\ hw

Fy(q*, w) cos® g + 2F{q*, w) sin’ g} (4-28)
where the factor 47Z%a?/¢* is the familiar Rutherford scattering cross section off a
point charge given in Eq. (4-15). The functions Fy(¢?,w) and Fy(g?,w), related to the
form factors defined earlier for the (single) differential cross section do/dQ2, are usually
referred to as the nucleon structure functions, as they express the difference of a nucleon
from a point particle.

The definition of momentum transfer in an inelastic scattering remains the same as
that given by Eq. (4-9); however, its relation to energy is slightly different. In the limit
that the electron rest mass can be ignored, the final form of Eq. (4-11) is equivalent to

(heq)? = 4E,E, sin® g- (4-29)

the same as that given by Eq. (4-13). In addition to the energy taken away by target
recoil, some of the incident energy is also expended in promoting particles from ground
to excited states,

Since nucleons are not “elementary” particles, quasi-elastic scattering off the con-
stituent quarks and inelastic scattering involving excitation of nucleon internal degrees
of freedom can take place in the same way as inelastic scattering off nuclear targets.
The only difference between these two types of processes is that the energies involved
in nucleon scattering are usually much higher. In high-energy electron scattering, it is

customary to express the scattering in terms of the following two dimensionless quan-
tities: ha? "
q w
T = = — -
2Mw E, (4-30)
instead of ¢* and w. Let us rewrite the double differential cross section for inelastic
scattering in terms of these two variables.

From Eq. (4-29), we obtain the relation
28 (he? M2

27 4B,E, 2B, 7 (4-31)
and for high-energy scattering in the forward directions,
9 g z

cos? 5= 1 - sin? 3= 1- ‘(Izc,.q;b 1 (4-32)
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Instead of Eq. (4-29), we may also write ¢* in terms of z and y,

, 2ME,
q =““F7_zy

Using Eqs. (4-31)and (4-32), the angular dependence on the right-hand side of Eq. (4-28)
may be expressed in terms of z and y,

d*c arZ%a? 1 5 ) )
ddo T;{Fz(q )1 —y) + Fi(g", z)zy }

where we have made use of the fact that
E,
= o1-
E. y

from the definitions of fiw in Eq. (4-27) and y in (4-30).
In terms of z and y, the double differential cross section may be written in the form
usually found in the literature,

d®c  4r2%*2ME, 2 ) )
i = B D0 - R )

In the derivation, the only property of an electron used is that its rest mass may be
ignored; the formula can therefore be applied at sufficiently high energies to describe the
scattering of other charged leptons, such as muons. For neutrino scattering, however,
one must replace the factor 4wa?/q* for Rutherford scattering with G%/2r, where Gr
is the Fermi coupling constant for weak interactions {see §5-5). The details can be
found in standard texts on particle physics, such as Perkins {115].

European Muon Collaboration group effect in deep-inelastic scattering. Many
different types of final states can be reached in high-energy scattering. If the cross
section includes all the possible final states, the process is called a deep-inelastic, or
incluswe, scattering, in contrast to exclusive scattering to a particular final state. One
of the interesting questions in high-energy, deep-inelastic lepton scattering off nuclei and
nucleons concerns the quark substructure of nucleons. Indeed, it was the identification
of point-like objects inside nucleons in lepton-nucleon scattering, known as partons at
the time of discovery, that provided the early experimental evidence for the existence
of quarks in hadrons.

The effect of quark substructure in lepton scattering may be formulated in terms of
the nucleon structure functions introduced in Eq. (4-33). The relation applies equally
well to lepton scattering off nucleons as well as nuclei. For the convenience of com-
parison between the measured results on nucleon and nuclear targets, we shall define
the structure functions for nuclear targets in terms of their values for a single nucleon,
Fp(q?,z) and Ff\(¢? ), by taking out a constant factor A from Fy(¢? z) and Fy(¢?, 7)
in Eq. (4-33). This gives us the result

d’o A2 2ME,
drdy =~ ¢* AR?

{F{(¢%2)(1 = 9) + F{ (g%, o)y’
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Let us compare the structure functions per nucleon obtained from high-energy lepton
scattering off free nucleons and off bound nucleons in nuclei.

From their differences in the charge distributions, we expect the structure functions
for neutrons and protons to be different from each other and may, principle, be measured
by separate experiments. However, for scattering off finite nuclei, the measured values
will be an average between the contributions from neutrons and protons, without any
easy way to distinguish between them. Let us assume for simplicity that we have
N = Z, which is true for light nuclei. For such targets, the contributions from bound
neutrons and protons are equal in weight., The same relation between neutrons and
protons is obtained from scattering off a deuteron target. Since the deuteron is a loosely
bound system, we can treat the two nucleons as essentially free, as we have done in the
previous chapter for nucleon-nucleon scattering.

Again, for simplicity, we shall ignore F)(g?, ), as it contributes only a small amount
to the measured cross sections. If the quark substructure of a free nucleon is the same
as that of a bound nucleon in a nucleus, we expect the ratio

A
R(z) = 2220 (4-34)

to be unity for all values of momentum transfer characterized by the dimensionless
variable . The experimental results, first reported by the European Muon Collabora-
tion (EMC) group [12] and later confirmed by others, however, showed that not only
R(z) differs from unity but also the ratio changes as a function of z. Examples of such
results are shown in Fig. 4-4. The apparent departure would, on the surface, imply that
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Figure 4-4: Examples of cross sec-
tions for high-energy lepton scat-
tering off 4He, %%Al, and %Fe as

ul J
ratios to that for deuteron, essen- ; ;
tially the same quantities as R{x) 1 ~ ]
of Eq. (4-34). The points are the 1‘(41}
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measured values taken from Sloan,
Smadja, and Voss [130] and the
smooth curves are the calculated re- Fe
sults of Akulinichev et al. [5].
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the internal structure of a bound nucleon, as shown by F,(¢?,z), is somewhat different
from that of a free nucleon. Most of the departure from R(z) = 1 can, however, be
explained by the binding energy of nucleons in a nucleus. The only exception is in the
very small z region, where measurements are difficult to make. As a result, it remains
to be one of the unsolved problems in high-energy nuclear physics.

4-5 Matter Density and Charge Density

We have seen in the previous sections that electron scattering is capable of mapping the
charge density distribution in nuclei. The high precision achieved in the measurements
enables us to ask a variety of interesting questions. Among these, the influence of
neutrons on the charge distribution has been studied using isotopic shift, the difference
in the charge distributions of nuclei with the same number of protons but a different
number of neutrons. If charge distribution in a nucleus is independent of neutrons, we
expect the isotopic difference to be negligible. The measured results indicate that, in
general, the shifts are small but not zero. The same effect can also be observed in other
measurements, such as the energy of z-rays from muonic atoms and scattering using
pions and nucleons.

Isotopic shifts in calcium isotopes. Let us take the even calcium isotopes as an
example. The isotopic shift data, obtained from electron scattering [68], are summarized
in Table 4-2. In addition to the root-mean-square radius, the values of the surface
thickness ¢, the distance between 90% and 10% of the peak density, and parameters c,
2z, and w of the three-parameter Fermi distribution defined in Eq. (4-23) are also given
to provide a feeling of the large surface region in these nuclei.

Table 4-2: Charge distribution of calcium isotopes.

Nucleus | (r?)/2(fm) t(fm)  c(fm) z (fm) w

10Ca 3.4869 2.681 3.6758 0.5851 —0.1017
2Ca 3.5166 2724 3.7278  0.5911 —0.1158
“Ca 3.5149 2.630 3.7481 0.5715 —0.0948
8Ca 3.4762 2.351 3.7444 05255 —0.03

874 3.5844 2.580 3.8551 0.5626 —0.0761

The differences, for example, in the root-mean-square radius (r?)}/2 between the
isotopes given in the table are quite small. However, the good accuracies achieved in the
measured values indicate a genuine difference among them. Since the radius decreases
by 0.01 fm in going from *°Ca to 48Ca, it means that the addition of neutrons to calcium
isotopes reduces the size of the charge distribution of the same 20 protons when the
neutron number is increased from 20 to 28. If we take the simple view that charges
were distributed evenly throughout the nuclear volume, the charge radius should have
increased by 6% based on the simple R = roA'/? relation. This is found to be true in
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the case of *Ti, a nucleus with two more protons and six more neutrons than *°Ca.
Here, the size of the charge distribution is increased by 0.1 fm for *3Ti, not far from
the expectation of an A'/%-dependence, instead of decreasing for **Ca.

There are two possible explanations for the decrease in the charge radius with
increasing neutron number among even calcium isotopes. The first is that the addition
of neutrons makes the protons more tightly bound and, hence, the charge radius is
smaller. This is, however, not true for nuclei in general and has led to the speculation
that there are some other nuclear structure reasons for Ca to be a more tightly bound
nucleus than its neighbors.

A second explanation is based on the charge distribution within a neutron. The
net charge of a neutron is zero; however, as we have seen in §4-3, the charge distribu-
tion inside a neutron does not vanish everywhere. One possible model for the charge
distribution in a neutron is that the central part is positive and the region near the
surface is negative, as shown in Fig. 4-3. The detailed charge distribution is not well
known, because of the difficulty in measuring the small charge form factor. However, a
small excess of negative charge in the surface region can produce about a third of the
decrease in the charge radius in going from 4°Ca to *8Ca, as suggested by Bertozzi et
al. [26]. The other two-thirds may be attributed to the spin dependence (Darwin-Foldy
term) in the interaction of protons with other nucleons in the nucleus.

Regardless of the exact cause of the isotopic shift among calcium isotopes, it is
clear that neutrons have a definite influence on the measured charge distribution of
a nucleus. Unfortunately data obtained based on electromagnetic interaction are not
sufficient to provide us with the type of detailed information we need. In principle,
strong interaction probes can be used to deduce the neutron distribution. The difficulty
here lies in separating out the small effects due to neutrons from a multitude of others,
including those involving aspects of strong interaction that are not yet very well known.

Muonic atom. A muon is a lepton with properties very similar to an electron. For
this reason, it is possible to replace one of the electrons in an atom by a (negative)
muon to form a muonic atom. However, since the mags of a muon is 207 times larger
than that of an electron, the radii of the muonic orbits are much smaller than those of
electrons.

Consider first the case of a simple, hydrogen-like atom with Z protons in the nucleus
and only a single electron outside. Using the Bohr model for this hydrogen-like atom,
the radius of the nth orbit is given by

n2h? 1 n?h?

7'"(6—) = [47[60] anee? = aﬁ;zme (4-35)

where m, is the mass of an electron, « is the fine structure constant, and the quantity
inside the square brackets converts the formula from cgs to SI units. For a hydrogen
atom (Z = 1), the ground state (n = 1) radius is the well-known Bohr radius,

h
g = —— =529%10"" 1
aCMe

In arriving at this result, we have only made use of the electrostatic potential between
a negatively charged electron and a positively charged nucleus. The charge distribution
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in this case may be considered to be concentrated at a point, as the electron is much
further away than the extent of the nucleus. Since nothing special about the electron
enters into the derivation, we can obtain the analogous results for a muonic atom by
replacing m, in Eq. (4-35) by m,, the mass of a muon,

1 n2h? _n’m,
alicZm, Zm,

Using similar arguments, we can arrive at the energy level of a muonic atom consisting
of a single muon,

'rn(u“) = (4'36)

m, (Zac)®

E,=- SRy (4-37)

by starting with the energy levels of a hydrogen-like atom given in most standard
textbooks on quantum mechanics.

The results of Eqs. (4-36) and (4-37) apply only to a hydrogen-like atom. For atoms
with Z > 1, it is necessary that all the electrons except one are stripped off so as to
remove the influence due other electrons. Such “screening” effects are, in general, quite
difficult to calculate accurately. Fortunately, this is not a serious problem for muonic
atoms with only a single electron replaced by a muon. Since the muonic orbits are so
much smaller than the electronic orbits, there is very little chance of finding electrons
between the muon and the nucleus, in particular for the low-lying orbits of interest to
us. For this reason, the screening effect due to electrons in a muonic atom may be
ignored here and, as a result, the energy levels of a muonic atom may be approximated
by that of Eq. (4-37)

For a heavy nucleus, such as 2®Pb with Z = 82, the radius of the lowest muonic
orbit from Eq. (4-36) is

0511
82 x 106

or 3.1 fm, using a muon mass of 106 MeV/c?. This is actually smaller than the value
of 7.1 fm for the radius of 2®Pb, estimated using R = 7,AY3 with r = 1.2 fm.
A more elaborate calculation shows that the muon spends roughly 50% of the time
inside a heavy nucleus. As a result, the actual muonic orbits differ from those given
by Egs. (4-36) and (4-37) for a point-charge nucleus. Being very close to the nuclear
surface, the low-lying muonic orbits are sensitive to the detailed charge distribution.
The resulting changes in the energy levels may be observed as shifts in the positions.
This, in turn, changes the energy of z-rays emitted when the muonic atom decays from
one level to another.

When a muon is captured by an atom, it is likely that the orbit is initially one of
the higher ones. Being a different particle from the atomic electrons, there is no Pauli
effect to prevent the muon from decaying to lower levels by emitting electromagnetic
radiations Since the differences in the energy levels are larger than the corresponding
electronic orbits because of the greater muonic mass, as can be seen in Eq. (4-37), the
wavelengths of the radiation emitted are in the z-ray range. From the energies of these
2-rays, we can deduce the muonic energy levels. The differences from the values given
by Eq. {4-37) provide a measure of the charge distribution in the nucleus (for more
details, see, e.g., Devons and Duerdoth [52]).

(i) ~ao 31x107% m
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Pion-nucleus scattering. We have seen earlier in §2-6 that there is a strong pion-
nucleon resonance in the spin-isospin (T, S) = (3, 2) channel at pion laboratory energy
of 195 MeV (see Fig. 2-3). The dominance of the Pi;-resonance provides us with
a unique opportunity to examine the difference between neutron and proton density
distributions in a nucleus.

There are six different possible reactions in pion-nucleon scattering with charged
pions as the projectile:

() 7t +p—at+p b) 7~ +n—-a"+n
(c) nt+n—at+n (d m=+po7+p (4-38)
(&) #t+n—7%+p (f)y mo+p—=2+n

The last two may be ignored here, as the scattered neutral pions are much harder to
detect. Among the remaining four only (a) and (b) have |t| = 4 and must therefore
take place entirely in the isospin-2 channel For reactions (c) and (d), [to| = 1, and the
isospin is a mixture of ; and 3 From simple Clebsch-Gordan coupling of i 1sospm, we
find that

mtn) = 3 < 118, -4td > 1t4) = Eit=3, to=1) + /2 It=1, to=1)
t
IW—P) = Z < 1,—1%%"!_% > ltr_l flt_% 0="= %) - \/_glt=ést0=~%)

That is, only a third of the scattering amplitude of either one of these two reactions is
in the isospin t = 4 channel and the other two thirds are in the t =  channel.

Since isospin is conserved in pion-nucleus reactions, the scattering amplitudes for
the first four reactions in Eq. (4-38) may be decomposed in terms of isospin:

(@) fa+p(8) = fizy2(6) (B fa-al8) = f¢=3/z(f9)
(©) fatn(0) = 3fims/2(8) + 2 fi=12(6) (d) fa-p(0) = §fima/a(6) + 2 fi=1/2(0)

At energies near the Py3-resonance, the scattermg cross section in the isospin t = %
channel is much smaller than that in the t = § channel. To simplify the argument, we
shall ignore the t = 3 L contributions. In this approxnmatlon we obtain the ratios

a(r*p) o(n7n) ~9
a(7r+n) o(m=p)

by taking squares of the scattering amplitudes. Thus, the difference between the elastic
7+- and 7~ -scattering cross sections off a nucleus is, to ~10% uncertainty, the difference
between neutron and proton density distributions. The method is particularly useful
since pion scattering is sensitive mainly to the nuclear surface region where most of
the differences in the neutron and proton densities are expected. This point has been
verified in tests applied to a variety of nuclei.

For the even calcium isotopes discussed earlier, differential cross sections for charged
pion scattering confirm the observation, made originally with electromagnetic probes,
that the proton distribution is essentially unchanged as we add more neutrons. When
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the results of 180 MeV «*-scattering off **Ca and *3Ca are plotted on the same graph as
shown in the left side of Fig. 4-5, very little difference can be detected. Since the energy
is very close to the Pj3-resonance and the cross sections are dominated by scattering off
protons, the data give strong support to the similarity of proton distributions in *°Ca
and “8Ca. On the other hand, a definite difference is found in the results of scattering
of 7~ off the same two nuclei at the same energy, as shown in the right side of Fig. 4-5.
This is caused by the differences in the neutron distribution, a result expected from the
eight additional neutrons in *Ca. When we examine the 7~ -scattering data off the same
two nuclei at energies away from the Pj3-resonance, the same type of difference is also
observed except that the magnitudes are smaller, and the ratio between scattering off
neutrons and protons is closer to unity. However, the precision that can be achieved in
pion scattering is not yet as high as that with electrons. As a result, it is not possible
to examine the detailed differences as we have done earlier with electron scattering
results.

103 ”
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Figure 4-5: Angular distributions of 180 MeV n% (left) and «~ (right) scat-
tering off 4°Ca (triangles) and *¥Ca (circles) targets. Similarity in the n* cross
sections shows that proton distributions in the surface regions of the two nuclei
are essentially the same. The differences in the 7™ results demonstrate that the
neutron distributions are different. (Adapted from Ref. [87].)

Nucleon-nucleus scattering. We shall see later in Chapter 8 that the time spent
by an intermediate-energy (100 to 1000 MeV) proton in a nucleus is sufficiently short
that it is unlikely to suffer multiple scattering, i.e., projectile scattered more than once
inside a target nucleus. The incident proton has only the opportunity to interact with
one of the nucleons in the target, and as a result, the scattering is sensitive to the
density of nucleons in a direct way. The projectile proton can interact with either a
proton or a neutron in the nucleus. From the small isospin dependence in the nucleon-
nucleon interaction, we expect the result to be dependent on the differences in neutron
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and proton distributions. The isospin dependence of nuclear force is, however, not
strong enough to clearly differentiate between neutrons and protons, as in pion-nucleon
scattering at Pjj-resonance. One way to proceed is to take it for granted that the
proton density distribution in a nucleus is already known through electron scattering.
Any difference observed in proton scattering may therefore be attributed to the presence
of neutrons. Neutron density distributions ohtained in this way depend a great deal on
the model used to analyze the data, and the results are somewhat ambiguous compared
with, for example, those obtained from charged pion scattering at the Pi3-resonance.

4-6 Nuclear Shape and Electromagnetic Moments

Multipole expansion of charge density. In electromagnetism, the potential ¢(r)
at a point r due to a finite charge distribution ¢(»') is given by

0= [gza] [ o

where the quantity inside the square brackets converts the expression from cgs to SI
units. In the region r > 7/, the potential may be expressed as an infinite series in terms
of spherical harmonics,

0= (] T ] 7 Rl 90,010

An

where we have made use of the notation r = (r,6, ¢) and ' = (', ¢, ¢'). For a charge
distribution py, (') in a nucleus

drZ 1
[411*50] 2,\+1 A+l =51 DYl 8) (4-39)
where the multipole coefficients

1 / / !
0, = 7 [ e V30, #)pa(r) dr (4-40)

are quantities characterizing the distribution. Along the z-axis, we have cos§ = 1 and
Eq. (4-39) reduces to the familiar form given in many texts on electromagnetism for
the potential of an arbitrary, finite charge distribution,

¢(r)=[—1—]3§ Y

dmegl T IN+1 K

If the charge distribution is nearly spherical in shape, Eq. (4-39) is a fast convergent
serics and the importance of higher order terms decreases very rapidly with increasing
A. In fact, the potential of snch a charge distribution can often be approximated hy
the contribution from the lowest nonvanishing order alone. We shall adopt the same
philosophy here to describe the electromagnetic properties of a nucleus. Qur interest



§4-6 Nuclear Shape and Electromagnetic Moments 125

is mainly in the lowest few multipoles, as the moments of these are the only ones that
can be measured in practice.

Using the normalization for charge density given in Eq. (4-1), we can rewrite the
right-hand side of Eq. (4-40) as an expectation value,

Qyu = (¥(r)er* Yy, (6, 6)|¥(r))
This allows us to identify the operator for the (), ) electric multipole as
Osu(E) = er’Y}.(6,¢)

The complex conjugation on the spherical harmonics is irrelevant in most of the sub-
sequent discussions, as we shall be concerned mainly with the 4 = 0 component. If
we adopt a model that the nuclear wave function is made of products of single-particle
wave functions (see §7-1), O,(F) may be expressed as a sum of operators, each one
acting on an individual nucleon,

O (E)=e Z r,-AY,\‘“(B,, ¢,) = ie(i)r;‘Y;“(H,-,¢,-) (4-41)

protons i=1
where, in the final form, we have introduced the symbol

. e for a proton
e(i) = {
0 for a neutron
so that the summation may be taken over all A nucleons in the nucleus. Equation
(4-41) is a general one, useful in discussing electric multipole transitions as well.

If the charge distribution of a nucleus is spherical in shape, only Qg is different from
zera. All higher order moments vanish, as can be seen from Eq. (4-40). Nonvanishing
multipole coefficients, other than Qgo, are therefore measures of “deformation,” or
departures from a spherical shape.

Multipole coefficients can also vanish for reasons of symmetry. For example, under
an inversion of the coordinate system,

(T,e, ¢) —}3_——> (Tiﬂ' - Bvﬂl +¢)
as given in Eq. (A-2). On the other hand, spherical harmonics has the property
qu(ﬂ' -6,7+ ¢) = (—1)'\Y,\,,(0, ¢)

As a result, we expect all odd electric multipole coefficients to vanish.

Since a nonvanishing odd electric multipole implies a breakdown of the symmetry
under a parity inversion, it is of interest to find out if it happens in practice. The lowest
order is dipole. The neutron turns out to be the best candidate for this purpose, as it is
a neutral particle and, hence, Qp = 0. To have a nonzero electric dipole moment for a
neutron, both time and parity invariance symmetries must be violated. Currently, the
measured upper limit stands at 0.97 x 10~2% e-cm, consistent with zero. On the other
hand, it does not rule out the possibility of a small symmetry-violating contribution
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either. For our purposes, we shall assume that both parity and time invariance are exact
symmetries and only even-order electric multipole moments may be different from zero.

Angular momentum coupling imposes a restriction on the highest order multipole
coefficients a state can have. The multipole operator r*Y;,(8, ¢) is a spherical tensor
of rank (A, 1) and carries an angular momentum A. The expectation value of such an
operator vanishes for a state with spin J unless J, A, and J can be coupled together
to form a closed triangle. This is the same as saying that only multipole coefficients of
A < 2J can be nonzero. For this reason, a J = 0 state has no multipole moment except
A = 0. This may also be illustrated using the following argument.

Classically, we can “see” the shape of an object, for example, by taking a pho-
tograph. This is possible even for an object rotating at high angular velocities—all
we need to do is to use an exposure time that is sufficiently short. For a quantum-
mechanical object, we can also think in terms of taking a photograph of the object
in order to find out its shape. The only difference here is that the Heisenberg uncer-
tainty relation plays a role. Since AE At > i, small At implies large AE. For our
“thought experiment” of taking a photograph, At is the exposure time. If it is short,
the photograph cannot be that for an object in a definite energy state. Instead, it is
a superposition of all the states in an energy interval AE = h/At. For a picture of
an object in a particular eigenstate, we need good energy resolution and consequently
long exposure time. As a result, the rotating object may appear, under certain circum-
stances, to be “spherical” in the sense that it looks to be the same regardless of the
direction to view it. Quantum mechanically, such an object is in a J = 0 state. Instead
of photography, scattering is used in practice to carry out the observation. The limi-
tations imposed by the uncertainty principle on our thought experiment nevertheless
apply.

The expectation value of an operator depends on the spin J as well as M, the
projection of J on the qnantization axis. The dependence on M is, however, a trivial
one and given by a Clebsch-Gordan coefficient. Using the Wigner-Eckart theorem, we
find that, from Eq. (A-15),

M) = 07 (2 ) i)

where all the dependence of the matrix element on M is contained in the 3j-coefficient
g—i"lzl{l) Since the reduced matrix element (J||Q,|jJ) is common to all the states
differing only by their M-values, there is only a single independent quantity character-
izing multipole coefficients of order A for all 2J + 1 magnetic substates. For this reason,
it is convenient to define the multipole moment as the expectation value in the state of
maximum M, as we have done eatlier for both the magnetic dipole moment of baryons
and the electric quadrupole moment of the deuteron.

Electric quadrupole and hexadecapole moments. The lowest even-order elec-
tric multipole moment that can give us some idea of the “shape” of a nucleus is the
quadrupole moment (A = 2). The existence of a nonvanishing electric quadrupole
moment implies that the charge distribution of the state is no longer a spherical one
and the nucleus is said to be deformed. Usually nuclei near closed shells are more or
less spherical in shape and have small absolute values for their quadrupole moments.
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In contrast, nuclei in the middle of a major shell are often deformed and have large
absolute values for their quadrupole moments. More detailed discussions of deformed
nuclei are given later in §6-3 and §9-2.

The quadrupole moment is defined as the expectation value of the operator
r2Y30(6, ¢) in the substate of M = J,

Q = | Soreld M=JlrY(0, 6)lJ, M=J)
e(J, M=J|(32* — r?)|J, M=J) (4-42)

For a spherical nucleus, (z?) = (y?) = (2?) = (r?), and the quadrupole moment
vanishes. For a deformed nucleus having an oblate shape, one with the polar axis
shorter than the equatorial axis, @ is negative. On the other hand, for a prolate-shape
nucleus, with polar axis longer than equatorial axis, the quadrupole moment is positive,
as we have seen earlier for the deuteron.

The next higher order electric multipole is hexadecapole. Here, the spherical tensor
rank of the operator is A = 4 and the expectation value vanishes for states with J < 2.
For such a state, the quadrupole moment is usually nonzero as well. As a result, it is not
easy, in general, to measure the hexadecapole moment, as it is difficult to separate the
contributions from those of the quadrupole in the observed results. Furthermore, since
most nuclei are very nearly spherical in shape, any measured effect due to deformation
tends to be dominated by the lowest order, the quadrupole here. The shortage of
hexadecapole moment data comes also, in part, from the limitation that static moment
measurements are far easier to carry out on ground states and there are only a few stable
nuclei with ground state spin J > 2. Most of the known values of hexadecapole moments
are for excited states, often deduced in a model-dependent way from measurements such
as Coulomb excitation (see §8-1).

Magnetic moments. In addition to (electric) charge distribution, a deformed nucleus
may also have a nonspherical “magnetic charge” distribution. Nuclear magnetism, as we
have seen earlier, originates from a combination of two sources, the intrinsic magnetic
dipole moment of individual nucleons and the orbital motion of protons. Analogous to
an electric charge density distribution, we may define a magnetic charge density pn,(r)
as the divergence of a magnetization density M(r),

pr(r) = =V - M(7)

The density can, in turn, be written in terms of a magnetization current density,

c

J(r) = HV x M(r) (4-43)
For J(r), we can again adopt a model that nuclei are made of point nucleons having
an intrinsic spin but no internal structure. A neutron is, then, a particle with magnetic
dipole moment %g,,, and a proton, one having a magnetic dipole moment % gp as well as
a unit of positive charge. In such a point-particle picture, the magnetization current
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density may be written as a sum of the contributions from all the nucleons in the
nucleus in the following way:

2 ()
J(r) = Z{e.‘h(’)

=1

+ m—-g.(z)v x 8(i) }o(r — r(i)) (4-44)

where, in units of nuclear magneton sy,

o= {1 for a proton - { 5.586 for a proton
9e 0 for a neutron ! —-3.826 for a neutron

and M, is the mass of a nucleon.
Similar to charge distributions, we may decompose a magnetization density distri-
bution in terms of multipole coeflicients given by the integral

My, = / 1Y} (6, )pm(r) dr = — / rY5(0,4)V - M(r)dr (4-45)

Because of the divergence operator, the parity of the magnetic multipole operator of
order X is (=1)**!, instead of (—1)* in the case of the electric multipole moment. As a
result, even-order magnetic multipole moments vanish for the same reason as odd-order
electric multipole moments.

The lowest order nonvanishing magnetic multipole for a nucleus is the dipole. From
Eq. (4-45), we see that the operator is proportional to rY},. Since 7Yy, is given by the
j2th component of the vector r in spherical coordinates, the expectation value of the
magnetic dipole operator may be obtained in the following way. Using the definition
given in Eq. {4-45), the magnetic dipole coefficient may be written as

My, = - f Y1,V - M(r) dr

From this, we obtain the result

My, = f M,(r)dr (4-46)

using integration by parts.

The operator for magnetic dipole O,,(M1) is given by the integrand of Eq. (4-46).
Consider first the contribution from intrinsic spin alone. By comparing Eq. (4-43) with
the second term of Eq. (4-44), we can express the intrinsic spin part of M, (r) in terms
of a,(i). This gives us the result

0,,(M1,s) 2:4[61 Zg,(z) 8,(i (4-47)

for the contribution from the nucleon intrinsic magnetic moment to the dipole operator.
For orbital motion, we note that

M0 = [ My(e)ar = %/(r X (V x M(e))), dr = /(r x J(0)), dr
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obtained, again, with the help of integration by parts. For a proton, orbital motion
contributes (e/M,)p to the magnetization current J(£), where p is the linear momen-

tum of the proton. Using the fact that orbital angular momentum is the vector product
of r and p,

lh=rxp

we obtain the contribution due to proton orbital motion as

C A
0u1,0= 8 (rx Tentr ) =2 Samem s

p

(see also Problem 2-6).

Combining Eqgs. (4-47) and (4-48), we obtain the magnetic dipole operator in terms
of orbital angular momentum £(i) and intrinsic spin s(z) of each nucleon,

Oln(Ml) = Oly(Ml Z)+01[‘(M1,8)
- 2d ¢ 5 {0 400+ 00 2,6}

= m:{g, W(0) + 9:(1) 8,(3)} (4-49)

The general expression for a magnetic multipole operator of arbitrary order is

(2 Lo
O (M) = iy D { 5 9e)E0) + 0u(Ds(0) | - V(Y61 6.)
i=1
For a derivation, see, e.g., Bohr and Mottelson {34] or de Shalit and Talmi {50].

4-7 Magnetic Dipole Moment of Odd Nuclei

The magnetic dipole moment p is defined as the expectation value of O;,(M1) given
by Eq. (4-49) in a state with M = J. In units of nuclear magnetons,

g o= (J,M=J|O,(M1)|J, M=J)

A
S (J, M=J|g,(i)o(s) + g,(3)s0 ()] J, M=J) (4-50)
=1

i

Since Oy,(M1) carries one unit of angular momentum, the expectation value vanishes

in states with spin J < % By making a few simplifying assumptions on the wave

function, it is possible to evaluate u for a given state, in particular the ground state.

Single-particle model. As we shall see in the next section, pairs of identical nucleons
in the ground state of a nucleus prefer to couple to angular momentum zero. For
such zero-coupled parrs, contributions to the magnetic dipole moment vanish. This is
easy to see both from angular momentum considerations and, more explicitly, from
the following argument. For a zero-coupled pair of protons or a pair of neutrons, the
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total orbital angular momentum L and intrinsic spin 8 must be either the combination
(L, S) = (0,0) or (L, S) = (1,1) to satisfy the Pauli principle. The (L,S) = (1,1) case
has a higher energy and is of no interest in the ground state. To form an S = 0 state,
the intrinsic spins of the two nucleons must be aligned antiparallel to each other. As a
result, their contributions to the magnetic dipole moment cancel each other., Similarly,
for a pair of protons coupled to L = 0, the net contribution from orbital motion must
also vanish, as the two are moving in opposite directions.

In the limit that pairing completely dominates the nuclear ground state, all pairs of
neutrons and protons are coupled to J = 0. Since these nucleons make no contribution
to the magnetic dipole moment, we can leave them out for our present purpose. In
the case of even-even nuclei, the magnetic dipole moment vanishes due to the fact that
the spin J must be zero. This is observed to be true in practice for all stable even-
even nuclei. For odd-mass nuclei, only one nucleon is outside zero-coupled pairs and
Eq. (4-50) reduces to the expectation value of the unpaired nucleon alone,

Hep. = n {3 m=jlgeo + 9s80l5, m=j) (4-51)
where |j,m) is the single-particle wave function of the unpaired nucleon in a state with
angular moment (j, m).

Using the Landé formula (A-20), as we have done earlier in the case of the deuteron
magnetic moment in §3-2, we obtain

Mg p

= =gy m=il(e - il m=) (4-52)

From Eq. (4-61), we identify the magnetic dipole operator for a single nucleon to be
p=gl + g8

Thus, the product p - j in Eq. (4-52) may be expressed ag a sum of £- j and 8- 5. The
expectation values of these operators can come from the relations

£ = L-(8+8) = L+ 1(2-0-4%

8- = 8-(L+8) = & +1(5"-£ -4

This gives us the final result as

. Gs — 4 .
ap =J{gli 2e_+1l} for =) (4-53)
In this extreme single-particle picture, the magnetic dipole moment of an odd-mass
nucleus is completely determined by the £ and j values of the unpaired nucleon.

Schmidt value. We can make use of the same single-particle model to deduce the
spin and orbital angular momentum of the unpaired nucleon. If all the nucleons except
one are members of zero-coupled pairs, the spin of the state is also given by that of
the unpaired nucleon. Thus we have j = J, where J is the observed ground state spin.
For a given j, there are two possible f-values, £ = j % % The choice between them
is determined by parity. Since all the other nucleons are grouped in pairs, with each
pair occupying single-particle orbits having the same f-value, the parity of the state is
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given by the orbital angular momentum of the unpaired nucleon, 7 = (=1)%. In this
way, the spin and parity of the state, together with whether the unpaired nucleon is
a proton or a neutron, provide all the information we need to calculate the magnetic
dipole moment using Eq. (4-53). For each j-value, the results obtained fall into two
groups depending on the two possible values of £. These are known as the Schmidt
values and they are compared with observations in Fig. 4-6.
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Figure 4-6: Magnetic dipole moment of odd-mass nuclei. The solid lines are cal-
culated results using Eq. (4-53) and the observed values are taken from Ref. [95].

From the figure, we see that most of the observed magnetic dipole moments for
odd-mass nuclej fall in between the two Schmidt values for £ = j & 1. This is not
surprising. The main approximation used in the model is that all the nucleons except
one are tied in zero-coupled pairs. A more realistic ground state wave function includes
other components as well. For our purpose here, we can characterize them by the
number of “broken” zero-coupled pairs, pairs of nucleons coupled to J > 0. From
considerations based on angular momentum coupling alone, it is unlikely that these
non-zero-coupled pairs can contribute to the magnetic dipole moment of the nucleus in
some coherent way to change the values given by y,, above by any substantial amount.
More quantitative calculations also tend to support such an intuitive argument. Since
configuration mixing of components with broken pairs decreases the weight of the single-
particle component, the absolute value of the magnetic dipole moment is reduced from
that given by the single-particle model. For this reason, the Schmidt values form, more
or less, the limits of the possible ground state magnetic dipole moments.

Corrections to single-particle model. The model should work best for nuclei with
one nucleon away from a closed shell (see §7-2). Consider the closed shell nuclei *He
and '°0. By removing one neutron from the former, we obtain *He, and removing one
proton from the latter results in *N. Similarly, by adding a nucleon to 10, we obtain
170 and '"F. In such cases, the single-particle model is expected to be good, and as
a result, we have the best chance to see the corrections required to such an extreme
picture. The actual results found are, however, somewhat surprising. Corrections to
the Schmidt values from nuclear structure considerations alone are found to be much
larger than those required to account for the differences between the observed and
Schmidt values. This implies that other factors are playing a role here.
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In calculating the expectation values, we have assumed that each nucleon in the
nucleus has the same properties as a free one. For example, the intrinsic magnetic dipole
moment of a proton is taken to be }g, and that of a neutron }g,. Such an assumption is
sometimes referred to as the impulse approzmation, a term originated from scattering
studies (see §8-4). There are two ways by which the impulse approximation may fail.
The first is the effect of mesons in nuclel. If charged mesons are exchanged between
nucleons, their flow constitutes an electric current which may also contribute to the
observed magnetic moments. The influence of such a mesonic current may also be
responsible for the discrepancies in calculating other nuclear properties based on the
impulse approximation. The second is that we have made the naive assumption in
Eq. (4-44) that nucleons in nuclei behave like point particles carrying the same charge
and magnetic dipole moments as free nucleons. Instead, effective values should be
used to account for modifications of nucleons bound in nuclei, in the same spirit as
we did earlier in our calculation of the magnetic dipole moment in the quark model
for the baryon octet in §2-8, These two possibilities, mesonic current and the effective
nuclear operator, are related to each other and to the more general question on the
modifications a nucleon experiences in the nuclear medium. In the case of the magnetic
dipole moment of odd-mass nuclei near closed shells, these two effects seem to cancel
each other to a large extent, resulting in much closer agreement to the Schmidt values
than expected from the size of either correction term alone.

4-8 Ground State Spin and Isospin

The ground state is the lowest one in energy for a nucleus. It is a special state of a
system of N neutrons and Z protons by virtue of the fact that it i3 the most stable one.
In addition, it is in general the most accessible and, as a result, often the best known
and most extensively studied state in the nucleus.

The properties commonly observed are binding energy, spin, isospin, and static
electromagnetic moments. We have already discussed the lowest order electromagnetic
moments in the previous two sections, and we shall return to the question of binding
energy in the next section. Other observables such as transition rates to and from
ground states and reactions involving ground states will be covered in the later chapters.
In this section, we shall concentrate on the possible values for the ground state spin
and isospin of a nucleus.

Ground state spin. Since each nucleon has an intrinsic spin 8 = % and an (integer)
orbital angular momentum £, the total angular momentum or spin j carried by a nucleon
is a half integer quantity. As a result, the total spin, the vector sum of the spins of all
the nucleons in a nucleus,

A
J= Zje
i=1

is half integer for odd-mass (A4 = odd) nuclei and integer otherwise. The same consid-
erations apply to isospin as well,
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where ¢, = % is the isospin of the ith nucleon. Even-mass nuclei can be divided further
into two categories: Those with both neutron and proton numbers even (N = even,
Z = even) are called even-even nuclei and those with both neutron and proton numbers
odd (N = odd, Z = odd) are called odd-odd nuclei.

For even-even nuclei, the ground spin is observed to be zero without any exception.
This remarkable phenomenon reflects a fundamental property of nuclear interaction
known as pairing. Since ground state spins of odd-odd nuclei are observed to be nonzero
in general, we conclude further that pairing interaction is important only between two
identical nucleons, two protons or two neutrons, but not between a neutron and a
proton. For example, we have seen that the deuteron ground state spin is J = 1 (and
isospin T' = 0). If there were a strong pairing force between a neutron and a proton,
the spin would have been J = 0 instead. In terms of isospin, we see that pairing force
is present only in the T = 1 state of two nucleons but not in the T' = 0 state. Because
of antisymmetrization, a neutron and a proton occupying the same single-particle orbit
and having relative angular momentum £ = 0 form an isoscalar pair three-fourths of
the time and an isovector pair one-fourth of the time (see §3-8). If the T = 1 pairing
were strong enough to dominate over the T = Q contribution, a neutron-proton pair
would have preferred to be in a T = 1 state instead. Since this is not observed to be
true, we have here another piece of information saying that the isospin dependence of
nuclear force is not very prominent.

Because of pairing, the ground state spin of an odd-mass nucleus is given by the j-
value of the unpaired nucleon. We have made use of this point already in the previous
section. The basic idea here is that an odd-mass nucleus may be considered as a
nucleon coupled to an even-even core consisting of neutrons and protons locked in zero-
coupled pairs. The total angular momentum of such a core is zero and, as a result, the
ground state spin of an odd-mass nucleus assumes the value of the unpaired nucleon.
In Chapter 7 we shall see that the j-value of the unpaired nucleon may be found from
the single-particle energy level spectrum, and as a result, the ground state spin of an
odd-mass nucleus can often be deduced from its neutron and praton numbers.

For odd-odd nuclei, it is not easy to predict the ground state spin. An estimate
may be made in the following way. As an extension of the idea used for deducing the
ground state spin of odd-mass nuclei, we can treat an odd-odd nucleus as made of an
even-even core plus a neutron and a proton outside. Again, the even-even core may
be ignored here, as its lowest state must have spin zero due to pairing. If the spin of
the unpaired proton is j, and that of the unpaired neutron is Ja» the total angular
momentum of the neutron-proton pair outside the core is the vector sum of these two
spins. The possible range of values is then

o —dnl £ J < Jp+in
We can find the value of j, from the ground state spin of the neighboring odd-mass
nucleus with one less neutron. Similarly, the value of j, may be obtained from the
neighbor with one less proton. However, it is not possible to narrow down the possible

J-values any further. Some guidance may be obtained from the empirical Nordheim
rules:

Strong rule: J = |jp — Jnl forn=10
Weak rule: J = either |jp — jn| OF jp + jn for n=+1
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Here, # = j, — €, + j, — €, In practice, many exceptions are found and the rule can
only provide a general guide to the likely value for the ground state spin of an odd-odd
nucleus.

Ground state isospin. The possible isospin of a nucleus may be deduced from the
proton and neutron numbers. For a system of Z protons and N neutrons, the projection
of isospin on the quantization axis is

To=42-N)

The absolute value of Ty gives the minimum of the possible isospin of a nucleus.

The maximum possible value is limited by the total number of nucleons. This may
be seen from the following arguments. Isospin is related to the symmetry in interchanges
between protons and neutrons. Since each nucleon has |to| = }, the maximum absolute
value of Ty for a system of A nucleons is A/2, attained when all the nucleons are either
protons or neutrons. This must be the maximum value of T itself, as a larger value
requires a larger |Ty| and this is impossible. Together with the minimum value given
above, the value of isospin is limited within the range

HZ-NI<T<}(Z+N)

The isospin dependence of the nuclear force is not strong enough to put states belonging
to different T into isolated groups in energy. However, except for odd-odd nuclei, the
lowest member of each allowed T-value is well separated in energy from each other.

Based on the fact that there is a bound two-nucleon state for T = 0, the deuteron,
but not for T = 1, we can infer that nuclear force favors the minimum value, T =
|Z — N|/2, as the isospin for the ground state. For higher isospins, the lowest member
of each group usually appears at successively higher energies. For example, in €O the
ground state has 7 = 0 and the lowest T = 1 state occurs around 13 MeV excitation
and the lowest T' = 2 state at 23 MeV, as shown later in Fig. 4-8. States with 7' > 3
are expected to be at energies above 30 MeV. However, the density of states is too high
at these excitation energies for individual states to be identified.

In odd-odd nuclei, the separation in energy between the lowest members of the two
smallest possible isospins is often quite small. This is the result of competition between
T- and J-dependence in nuclear force. Because of this, the ground state isospin is often
a choice between the minimum value of 1|Z — N| and one larger. For example, the
ground state of 2Al has (J7,T) = (5%, 0) and the first excited state at 0.229 MeV has
(J*,T) = (0*,1). In 33Sc, the ground state has (J™,T) = (0%,1) and the lowest state
with T = 0 occurs at 0.6 MeV with J™ = 7T,

Isospin mixing. We have assumed from the start that nuclear force depends only on
the isospin and not the charge state of the interacting nucleons. This is, however, not the
complete picture. In addition to strong interaction, we have also Coulomb interaction
between protons. (We shall not be concerned with the much weaker magnetic dipole-
dipole interaction between nucleons that depends on whether it is a proton pair, a
neutron pair, or a proton-neutron pair.) Any charge-dependent term in the interaction
violates the symmetry between proton-neutron exchange. Although at the nucleon
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level Coulomb force is much weaker than nuclear force, and may be ignored for most
purposes, it is not true for the nucleus as a whole. As we have seen in §1-3, through
short-range nuclear force a nucleon can only interact with a few of its neighbors. For this
reason, its contribution in a many-body system increases, to a first-order approximation,
only linearly with nucleon number. In contrast, the Coulomb term has a long range
and its contribution to the binding energy, for example, increases quadratically with
proton number. As a result, the effect of Coulomb interaction may be quite significant
in heavy nuclei and isospin may no longer be a good quantum number,

We can investigate whether isospin is conserved by examining the amount of admix-
ture of different isospin components in an eigenstate of a Hamiltonian containing such a
symmetry-breaking term. Consider two eigenstates of the isospin-conserving part of the
Hamiltonian, | JTz ) and | J'T'y). Here, z and y are labels other than spin and isospin
required to specify these two states. When we include also an isospin-breaking term,
| JTx ) and | J'T"y) are no longer eigenstates. If the symmetry-breaking term does not
make connections to states outside our model space, we can find the new eigenstates
|4 ) and | ¢») using | JTz ) and | J'T"y) as the basis and solve the eigenvalue problem
in this model space.

It is convenient to carry out this calculation using a matrix method, as we have
done earlier in §3-4 for the deuteron D-state problem. The Hamiltonian matrix in the
present case may be represented as

— sz sz)
{H} B (H yz HVV

The diagonal matrix elements
Hge = (JT2|HJTx) Hyy = (JT'y|H|J'T'y)

are expected to be large, as they include contributions from nuclear interaction. In
contrast, only isospin-breaking terms are effective in the off-diagonal elements

H,y = (JTz|H|J'T'y) H,, = (J'T'y|H|JTz)

in the basis we have chosen. They are, in general, much smaller than the diagonal ele-
ments. Furthermore, the Coulomb force preserves rotational symmetry and is invariant
under time reversal. As a result, the Hamiltonian matrix is real and symmetric. We
can therefore take

Hyy=Hy =56,

where S is the size of the off-diagonal matrix element. The eigenvectors are now linear
combinations of the two basis states

[¥y) =  cos|JTx) +sin6|J'T'y)
l¥2) = —sin8|JTz)+ cos6|J'T'y)
where the angle € is given by the relation
tan28 = 20 (4-54)

Hyp — Hyy
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From this expression, we see that the amount of mixing among the two basis states
depends on the size of the off-diagonal matrix element as well as the difference in the
values of the diagonal matrix elements.

In a real nuclens, the number of states that can be admixed by isospin-breaking
forces is likely to be larger. However, the general features are well illustrated by our
simple, two-dimensional example. Several interesting problems may be studied using
this model. The first is that the admixture is important only between states whose
“unperturbed” locations, given essentially by the values of the diagonal matrix elements
in the example above, are close to each other in energy, as can be seen by looking at
the denominator on the right-hand side of Eq. {(4-54). The second is that since the
isospin-breaking term in the Hamiltonian is rotational invariant, off-diagonal matrix
elements vanish between states having different J-values. As a result, isospin mixing
can take place only between states of the same J.

We can go one step further by examining more closely the value of the off-diagonal
matrix element. Since Coulomb force has a long range, the value is small unless the
wave functions of the states involved are very similar to each other in every respect
except isospin. This can be most easily seen in the limit that the isospin-breaking term
has an infinite range, and as a result, the radial dependence may be approximated by
a constant. In this case, the off-diagonal matrix elements vanish unless z = y. In
other words, the two states must be identical except for isospin. In reality, we find that
isospin mixing is important only between nearby states having the same spin and a
large overlap between their spatial wave functions.

In light nuclei, the isospin purity of a state is preserved by a combination of two
factors. First, the Coulomb force is relatively weak, as the number of protons is still
small. As a result, the value of S in Eq. (4-54) is small in general. Second, the density
of states is relatively low in the low-lying regions of interest. It is, therefore, rare to
find two (unperturbed) states of different isospin near each other in energy and having
a large overlap in their radial wave functions as well.

In heavy nuclei, isospin remains pure for the ground state and a few of the low-lying
states nearby for a quite different set of reasons. Because of neutron excess, the Fermi
energy for neutrons is much higher than that for protons. The lowest possible isospin
is Tmin = |To} = $1Z — N|, as we saw earlier, and the dominant component in the
ground state wave function is given by the configuration with nucleons occupying the
lowest available single-particle states. Admixtures of isospin will have to come from
states with T = Ty, + 1. The location of the lowest member of such a state may be
found by estimating the excitation energy of the isobaric analogue (see below) to the
ground state of a neighboring isobar with one more proton and one less neutron. The
main configuration for the ground state of such a nucleus may be obtained by changing
a proton in the nucleus with Ty = T\, to a neutron. Since the neutron and proton
Fermi levels are quite different, it takes a large amount of energy to make the change.
A crude estimate puts the amount to be the same as the neutron-proton Fermi energy
difference and is therefore a function of the neutron excess, as can be seen from looking
at Fig. 4-7. As a result, the location of the isobaric analogue to the ground state of the
T = Ty + 1 nucleus is quite high for nuclei with a large neutron excess. This, in turn,

means that it is difficult to have any significant isospin mixing in the low-lying states
of heavy nuclei.
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In a sense, isospin is no longer a meaningful symmetry in heavy nuclei, as the active
neutrons and protons are occupying different single-particle states and are therefore
distinguishable by the states they occupy. Furthermore, the argument for isospin purity
given above applies only to the ground state region. For excited states, the strong
Coulomb effect leads to large mixing, and isospin ceases to be a meaningful quantum
number altogether.

Isobaric analogue state. The importance of isospin in light nuclei can also be seen by
the similarities in the properties among members of an isobar, nuclei having the same A
but different Z and N. An example was shown earlier in Fig. 3-1 for the low-lying states
in A =11 and A = 21 mirror nuclei. A more interesting one for our present purpose
is the case of the A = 16 isobar shown in Fig. 4-8. Let us start with N with N =9
and Z = 7. The ground state isospin is T = 1, on account of the fact that Tp = —1.
If we apply an isospin-raising operator T, on the ground state wave function of °N,
we obtain a state with (7, T) = (1,0). This is a state in 0 (N = Z = 8). Since
the ground state of %0 is T = 0, the state produced by operating T, on the ground
state of **N must be an excited state in 0. The isospin-raising operator does nothing
other than change a neutron to a proton. Furthermore, since nuclear force is charge
independent, the state produced must also be an eigenstate of the nuclear Hamiltonjan
and, hence, correspond to an actual state in 150. This state should be very similar
in properties to the ground state of !N, since the wave functions are identical except
for Ty. Two such states, one in *N and one in O in our example here, related by
isospin-lowering and isospin-raising operators, are called isobaric analogue states (IAS)
of each other.

We can easily estimate where such an excited state in °0 should lie. If the forces
acting on a nucleon are completely charge independent, the excitation energy of the
isobaric analogue to the ground state of !N in 60 is given by the binding energy
differences of these two nuclei. From a table of values, we find that

Eg(**0) = 127.62 MeV Eg(**N) = 117.98 MeV

The difference is 9.64 MeV.
Two corrections must be applied before we can compare the result with the observed
value in !%Q. The first is that contributions of the Coulomb interaction to the binding



138 Chap, 4 Bulk Properties of Nuclei

energies depend on the number of protons. The difference in the Coulomb energy
between %0 and N may be estimated using the uniformly charged sphere model
given by Eq. (1-7). The result, calculated with a radius of R = 1.24'° = 3.02 fm,
is 4.00 MeV. This means that, instead of 9.64 MeV, the IAS should be at excitation
energy 13.64 MeV. A second correction comes from the difference in mass between a
neutron and a proton [together with an atomic electron to keep the atom neutral as
required in the definition of binding energy given in Eq. (1-1)]. Since '®0 has one more
proton and one less neutron than 6N, the calculated value of the excitation energy
of the IAS we obtained above is too large by an amount equal to the neutron-proton
mass difference of 0.78 MeV. This puts the calculated excited energy of the 1AS to the
ground state of N in %0 at 13.64 — 0.78 = 12.86 MeV. The ground state spin and
parity of 1N are J™ = 2~ and there is a 2=, 7 = 1 state at 12.97 MeV in 160, as shown

in Fig. 4-8. Tt is also known that this state is very similar in property to the ground
state of 16N,
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Figure 4.8: The A = 16 isobar with known isobaric analogue states connected
by dashed lines. The energies of 15C, N, '6F, 16Ne relative to the ground state of
160, corrected for Coulomb effect and neutron-proton mass difference, are shown
inside square brackets. (Plotted using data from Ref. [136].)

The difference of 0.11 MeV hetween our estimate and the observed excitation energy
may be attributed to the crudeness of our Coulomb energy calculation and to a possible
small difference in the wave function of the 12,97-MeV state in 'O and that produced
by applying T', to the ground state of ®N. In fact, a more careful examination of
Fig. 4-8 shows that there is a quartet of states with J™ = 2=, 07, 3™, and 1~ in the
ground state region of !®N. The same quartet of T = 1 states is also found in 190 at
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around 12.9 MeV. However, the sequence of the four levels is different from what is
observed in !°N, showing that some small violation of the IAS idea is found in actual
nuclei.

Besides T' = 1 states, the IAS for T = 2 are also known in the A = 16 isobar. The
ground state of §C (T = —2) is 0% and an excited 2% is found at 1.77 MeV. Similarly,
the ground state of ®Ne is (J*,T) = (0%,2) and a 2%, T = 2 state is found at 1.69
MeV. The IAS of these two T' = 2 states are found in !*N at 9.93 MeV for the 07 state
and at 11.90 MeV for the 2% state. Similarly, the same 7' = 2 pair is found in 'O at
22.72 MeV (0*) and 24.52 MeV (2*). On the other hand, since the ground state of
18F is not stable (Ty/2 ~ 107! 5), the level structure is not known to sufficiently high
excitation energies to identify the 7" = 2 states.

4-9 Semi-Empirical Mass Formulas

We saw in §1-3 that nuclear binding energy is more or less a smooth function of nucleon
number and other “macroscopic” degrees of freedom. In fact, if we are willing to ignore
small local departures, it is possible to develop simple formulas that express the binding
energy Eg(Z, N), or the equivalent quantity M(Z, N), the mass of a nucleus, in terms
of variables such as nucleon number A, proton number Z, and neutron number N. To
keep the forms as simple as possible, it will not be possible to make a direct connection
to the underlying nucleon-nucleon interactions responsible for the binding energies. We
shall, instead, take a semi-empirical approach and determine the parameters involved
by fitting appropriate observed values; hence the name semi-empirical mass formulas.
The power of these formulas lies in providing us with some idea of the general trends
in nuclear binding energies that is useful for a large variety of purpose.

Weizacker mass formula. One of the popular ways to find nuclear binding energy
is based on the analogy of a nuclens with a drop of incompressible fluid. We have seen
earlier that nuclear volume increases linearly with the number of nucleons, in support of
such a “liquid drop” model. For binding energy, we saw in Fig. 1-2 that, to a first-order
approximation, it is linearly proportional to the nucleon number,

where «; is known as the volume energy parameter. Several corrections must be applied
before the formula can provide us with useful results.

Similar to a drop of liquid, nucleons on the surface of a nucleus are less tightly
bound, as there are fewer particles nearby with which to interact. As a result, we expect
a decrease in the binding energy with increasing number of nucleons on the surface.
Since the nuclear volume increases linearly with A, the surface area is proportional to
A3 With the correction, the expression for nuclear binding energy becomes

Eg(Z,N) = ;A — ap AY?

Here a is the surface energy parameter.
The next correction term comes from the repulsive Coulomb interaction between
protons. For a uniformly charged sphere, the Coulomb energy is given by Eq. (1-7).
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Taking R = 1.2A'/% fm, the result is

_ Z(Z - 1)
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A real nucleus has a diffused surface region and its shape may not necessarily be
spherical. For these reasons, we do not expect the uniformly charged sphere value to
be completely correct. On the other hand, the expression captures the essence of the
dependence on A and Z. We shall therefore adopt the form of the Coulomb correction
given above but leave the strength as an adjustable parameter. The binding energy
now takes on the form
Eg(Z,N) = ;A ~ 0y A¥® — aa%ﬂ

with a3 as the Coulomb energy parameter.

So far purely classical ideas have been used. The first quantum-mechanical consid-
eration is the isospin dependence of nuclear force. We have seen in earlier sections that,
apart from Coulomb repulsion between protons, stable nuclei prefer to have N =~ Z.
Such an effect may be expressed by a quadratic dependence on N — Z, and the binding
energy formula expands to

2(Z-1)  (N-2)
Al MR

The new contribution is sometimes known as symmetry energy, with a4 as the ad-
justable parameter. The factor A in the denominator is used to compensate in part for
the observed fact that the increase in neutron excess (N — Z) with A is much faster
than that for the isospin effect.

We have also seen earlier that, because of pairing force, even-even nuclei are more
tightly bound than their odd-odd counterparts with the same A, and odd-mass nuclei
have intermediate values between them. To account for pairing, a factor A is included.
The complete binding formula now has the form

Ep(Z,N) = 0 A — ;gAY — oy

(4-55)

Z(z-1) (N-2)

EB(Z,N) =01A—'02A2/3—(13 A1/3 — (Y4 Y

+A (4-56)

where the pairing energy parameter

0 for odd-mass nuclei
-4 for odd-odd nuclej

with 6 taken as a parameter to be fitted to known data.

The final form, Eq. (4-56), is known as the Weizacker mass formula. The values
of the five parameters oy, a3, o3, oy, and 6 depend somewhat on the binding energies
used to find their values. A commonly used set,

é for even-even nuclei
A=

a) = 16 MeV vy = 17 MeV a3 =0.6 MeV

4-57
a4 = 25 MeV 6 =% MeV (4-57)
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provides some idea of the magnitude of each of the terms. The value of the pairing
parameter 6 is, perhaps, the least well determined quantity among the five and is found
to be much larger, for example, if we restrict the fit to heavy nuclei alone (see Problem
4-11).

The usefulness of such a mass formula lies, for example, in obtaining the energies
involved when a heavy nucleus undergoes fission into lighter fragments. The calculated
results give a correct overall picture of the dependence on A, Z, and NV values. However,
there are local increases in the binding energy for nuclei near closed shells, known as
the shell effect, that are important for a number of applications. Corrections may be
included in the ways suggested by Myers and Swiatecki {108] and Strutinsky [134], as
we shall see later in §9-2.

Kelson-Garvey mass formula. The primary aim of the Weizacker mass formula is
to obtain global agreement with observed values. For this reason, it does not always
give the best result for the binding energy difference between neighboring nuclei. In
applications where such values are important, the Kelson-Garvey approach 88| is more
useful. Instead of a liquid drop, a microscopic model is used as the starting point.
Nuclear binding energy is considered to be a sum of one- and two-nucleon interaction
terms. The values of these terms may vary from one mass region to another, but in
a small region differing only by a few nucleons, they must be essentially constant and
their values may be found from neighboring nuclei.

Let us illustrate the procedure by cousidering first an example consisting of one-
body terms alone. This is not a realistic approximation and is used here only for its
simplicity. In this limit, the binding energy of a nucleus made of Z protons and N
neutrons is given by

Eg(Z,N)=aN + 7

where parameters « and f represent, respectively, the average values of the interaction
of a neutron and a proton with the rest of the nucleons in the nucleus.

We can deduce the values of & and J for a small region in mass from the differences
in the known binding energies in, for example, the following way:

a=Ep(Z,N+1)-Eg(Z,N) B=Eg(Z+1,N)-Eg(Z N)

In terms of these parameters, the difference between Eg(Z + 1, N + 1) and Eg(Z, N)
is given by
Eg(Z+1,N+1)—Eg(Z,N)=a+f3
=Eg(Z,N+1)—Eg(Z, N)+Eg(Z+1,N)—EZ(Z,N)

This may be rewritten as a difference equation relating the binding energies of four
nearby nuclei,

EB(Z+1iN+1)+EB(ZaN)NEB(ZvN'Fl)~EB(Z+11N)=O

In other words, the binding energy of any one of the four nuclei may be deduced from
the known values of the other three. Such a simple relation is, of course, the result of
our one-body model and is correct only if the binding energy is predominantly one body
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in nature, We can test whether the premise is correct by calculating the differences
between four such nuclei using known binding energies,

In practice, we find that the values of AEy are rather large, reflecting the shortcomings
in ignoring two-body terms.

There are, in general, three types of two-body contributions to be included: proton-
proton, neutron-neutron, and neutron-proton interactions. For a nucleus of N neutrons
and Z protons, the number of pairs for each type is

12(Z -1) proton-proton
Number of pairs = ¢{ IN(N —1) neutron-proton
NZ neutron-proton

Using these results, we can express a model for the binding energy of a nucleus in terms
of one- and two-body contributions as

Eg(Z,N)=aN +bZ + cN(N - 1) +dZ(Z ~1) +eNZ (4-58)

with five parameters, a, b, ¢, d, and ¢, to be determined from known binding energies
in neighboring nuclei.

We can follow the same approach as used earlier in the one-body model and rewrite
Eq. (4-58) as a difference equation. One of the several possible forms is

Eg(Z+1,N-1)+ Eg(Z - 1,N)+ Eg(Z,N +1)
—EBg{Z,N ~1)—Eg(Z+1,N)~Eg(Z-1,N+1)=0 (4-59)

To derive this relation, we can, for example, rearrange the six binding energies into
three groups, each one consisting of the difference between a pair of nuclej having the
same neutron number. In this way, terms depending only on neutron numbers do not
enter and the difference equation reduces to one involving only three parameters: b, d,
and e.

We shall do this for two different pairs of nuclei. First consider a pair with neutron
number NV — 1 and proton numbers Z and Z 4 1. For such a choice, the purely neutron
terms in Eq. (4-58) can be ignored and we obtain the difference in the binding energy

as
Eg(Z+1,N=-1)=b(Z+1)+d Z(Z + 1)+e(N -~ 1)(Z + 1)+ f(a,c,N)
-~ EglZ, N-1) =b2 +dZ(Z ~1)+e(N - 1)Z +f{a,c,N)
Eg(Z+1,N-1)
—Eg(Z,N-1)=b +2dZ +e(N —1)
Similarly, the difference for a second pair of nuclei with neutron number N + 1 and
proton numbers Z and Z + 1 is given by
Eg(Z,N+1) =bZ +dZ(Z-1) +e(N+1)Z +9{(a,c,N)
- Eg(Z -1, N+ 1)=b(Z - 1)+d(Z - 1)(Z - 2)+e (N + 1)(Z - 1)+g(a,c,N)
Eg(Z,N +1)
—Eg(Z~-1,N+1)=0b +24(Z +1) +e (N +1)
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The sum of these two differences is the same as the difference between a pair with N
neutrons and proton number differing by 2,
Eg(Z+1,N)=b(Z+1)+dZ(Z + 1) +e N(Z + 1)+h(a, c, N)
—Eg(Z~1,N)=b(Z - 1)+d(Z - 1)(Z - 2)+e N(Z — 1)+h(a,c, N)
Eg(Z +1,N)— Eg(Z -~ 1,N)=2b +2d(2Z+1)  +2%N '

By eliminating b, d, and e from these three equations, we obtain the result given
in Eq. (4-59). The same relation can also be derived by considering three pairs of
differences with each pair having the same proton number.

We can check how well Eq. {4-58) works in practice by calculating, from six known
binding energies, the difference

AEp = Ep(Z+1,N—1)+Eg(Z-1,N)+ Eg(Z,N +1)
~Eg(Z,N=1) = Eg(Z+1,N) = Eg(Z - 1,N +1)

in the same way as we did earlier when we had only one-body terms. We do not expect
AEp to be exactly zero for an arbitrary group of six neighboring nuclei even with
two-body terms included. However, if the assumptions that went into constructing
Eq. (4-58) are essentially correct, AEp should be much smaller here and distributed
randomly around zero. This was found to be true and the standard deviation for a
sample of N such differences turns out to be

1 (X 1/2
N{Z(AEB)’} ~ 100 keV
i=1

We can take this result to mean that Eq. (4-59) may be used to calculate the binding
energy for any one of six nuclei from the other five with an uncertainty of about 100
keV on average.

The usefulness of a relation represented by Eq. (4-58) is not limited to extrapolating
binding energies for nuclei one nucleon away from known masses. To make estimates
for nuclei further away, we can use the Kelson-Garvey mass formula to calculate the
values of the unknown intermediate ones and include them as a part of the input. The
uncertainties in the prediction, however, increase roughly as the square root of the
number of steps.

One can, in principle, include contributions other than one- and two-body effects to
reflect higher order terms that may occur in an effective nucleon-nucleon interaction.
The difference equation, in this case, involves more than six nuclei. Since binding
energies are known for a large number of nuclei, it is possible to consider such a higher
order approach for nuclei far away from the valley of stability.

4-10 Alpha-Particle Decay

In light nuclei, the threshold for a-particle decay is comparable with that for nucleon
emission, as can be seen from the plot of separation energies given later in Fig. 7-2. For
this reason, a-particle decay is not energetically favored until about 4 > 150. Even
for heavy nuclei, the lifetimes are long by strong interaction time scales. Furthermore,
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the energy of a-particles emitted tends to be confined in a narrow range of 5 to 9 MeV
whereas the half-lives vary by several orders of magnitude. As mentioned in Chapter 1,
these observations led to the discovery of quantum-mechanical tunneling, a milestone
in the development of modern physics.

Barrier for a-particle emission. It is perhaps easier to visualize the barrier an
a-particle must tunnel through by considering first the inverse process of a low-energy
a-particle approaching a heavy nucleus from large distances away. For simplicity, we
shall take the nucleus to be a uniform density sphere of radius R = rgA1/3. Outside the
nuclear surface, » > R, the interaction is purely Coulomb and the repulsive potential
may be represented as

2
1 ]2Ze : 2Zahe _ 2.887 MeV (4-60)

Ve(r) = [m T T T
where Z is the charge number of the nucleus and r is measured in femtometers in the
final equality.

Once the a-particle is inside the nuclear surface, short-range nuclear force becomes
effective. The fact that it is bound at distances r < R means that the combination
of Coulomb and nuclear forces must be attractive. For simplicity, we shall take the
potentjal for this part to be a square well, as shown schematically in Fig. 4-9. In
this approximation, the height of the barrier that retains the a-particle inside the
potential well may be estimated from the amount of work required to overcome Coulomb
repulsion in bringing an a-particle to the surface of a heavy nucleus, such as 33U,

[ 1 ]2Ze2 2Zahc

~ 35 MeV
47"60

R 'I‘()Al/:l
Better estimates put the Coulomb energy of an a-particle in this region of mass number

to be just below 30 MeV.

Classically, an a-cluster inside a heavy nucleus must acquire enough energy to reach
the top of the potential barrier before it can escape. Furthermore, the kinetic energy

V(r)
Figure 4-9: Schematic diagram
showing the wave function of an a- Coulomb
particle tunneling through a poten- v
tial barrier. Inside the potential \
well, 7 < R, the particle is bound Y

and the wave function is sinusoidal.

In the region R < r < H;, the en- a‘\

ponentially. Once outside, r > Ry,
the a-particle is essentially free ex- '
cept for Coulomb interaction with R Ry
the residual nucleus.

ergy of the particle is less than the »

barrier height and the amplitude of ﬂ > S N o N

the wave decreases more or less ex- VV ////ﬁ7~ ~rq-f f E
t
i
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of the particle emitted is expected to be as least as large as the barrier height, as the
a-particle carries with it all the energy it acquired to reach the top of the barrier. The
observed values, however, are much smaller and, consequently, some other mechanism
must be operating here. The guantum-mechanical explanation is that the a-particle
does not have to go over the top of the potential barrier before being emitted. Instead,
it tunnels through the barrier. The basic reason comes from the fact that the o-particle
wave function does not vanish inside a small region of (finite) repulsive potential. In
quantum mechanics, it is well known that the amplitude of a wave function, to a first-
order approximation, decays exponentially inside such a barrier, and as a result, there
is a finite probability to find the particle outside, as shown schematically in Fig. 4-9.

The reason that a-particle emission is an important channel of decay for heavy
nuclei comes from a combination of two reasons. The first is the saturation of nuclear
force which favors a pair of neutrons and a pair of protons inside a nucleus to form
an a-cluster. As we have seen earlier, the average binding energy between a-clusters
is much less than the corresponding value between nucleons within the same nucleus.
This makes it energetically more favorable to emit an a-particle rather than a nucleon.
The second reason is the increase in Coulomb repulsion in heavy nuclei due to the
larger number of protons present. The combined effect of both reasons enables the
Q-value for a-emission to become positive (negative in terms of the separation energy)
for A > 150, as can be seen from Fig. 7-2. Examples of ()-values for some of the
heavy nuclei as measured by the kinetic energy of the a-particles emitted are given in
Table 4-3, together with the half-life associated with each case.

Table 4-3: Half-lives and energies of a-particle decay in typical heavy nuclei.

a-Emitter E, (MeV) T1/2 a-Emitter E, (MeV) T2
206pg 5.22 8.8 days 2361y 4.49 2.39x107 yr
208pg 5.11 2.90 yr 38y 4.20 4.51x10° yr
A0p, 5.31 138 days 38py 5.50 86 yr
n2py 8.78 0.30 us 20py 5.17 6.58x10% yr
24p, 7.68 164 us 2py 4.90 3.79%10° yr
216p, 6.78 0.15 s Hapy 4.66 8x107 yr
28y 6.69 9.1 months M0 6.29 26.8 days
8oy 5.89 20.8 days 2¢cm 6.12 163 days
12y 5.32 72 yr 240 5.80 17.6 yr
By 4.77 2.47x10° yr | 2%Cm 5.39 5.5 x 10° yr

Decay probability. Even before there were any theoretical models, it was found
empirically that the large range of a-decay half-lives, from 107 s to 10'7 years, may
be related to the square root of the kinetic energy F, of the a-particles emitted in the
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following way:

D
VE,
where W is the decay probability. The parameters C and D are weakly dependent on
Z but not on the neutron number, as can be seen from the plot in Fig. 4-10. This
is known as the Geiger-Nuttall law., A simple, one-body theory of a-particle decay
described below provides the foundation for this observed relation.

log,, W=0C -

(4-61)
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Figure 4-10: Semi-log plot of the transition rate W as a function of the ratio
Z/\/E, for a-decay of heavy nuclei with proton number Z and a-particle kinetic
energy E,. The clustering of data along a straight line, described by Eq. (4-61),
is known as the Geiger-Nuttall law. (Plotted using data from Ref. [95].)

The probability W for a-particle emission from a heavy nucleus by tunneling may
be separated into a product of three factors. The first is the probability p, to find an
a-particle inside the nucleus. In a heavy nucleus, there is a good chance for two protons
and two neutrons to form an o-like entity. We shall call such an object an a-cluster.
However, this is only one of the many possible components of the wave function for
such a nucleus. As a result, it is not easy to make an estimate for the value of p,. A
crude way is to say that it must be essentially of the same order of magnitude for all
heavy nuclei, as there are only small fractional differences in their masses and we shall
take p, ~ 0.1 as a rough guide.

Once an rv-cluster is formed inside the nucleus, it must come to the surface before
it can tunnel through the barrier. The frequency v with which it appears at the edge
of the potential well depends on the velocity v it travels and the size of the potential
well. A reagonable way to estimate v is to take the well size as twice the nuclear radius
R. With this assumption we obtain the result,

2K/M,
o v VKM,
2R 2R
where K is the kinetic energy of the a-cluster inside the well and M, its mass. The

precise value of K depends on the depth of the potential well and is not well known.
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It is reasonable to expect that K is of the same order of magnitude as E,, the kinetic
energy of the a-particle emitted. For our simple model, we shall take & = E,. This

leads to the result
V2EL /M, VE,
V=
2R

= X 29x10% 57!

where E, is measured in mega-electron-volts and, as usual, we have taken R = r5A}/3
with g = 1.2 fm. From this we obtain, for example, a value of v = 10% s~} for 238U with
Ey = 5.6 MeV. It is about an order of magnitude larger than the best values deduced
from measurements. Part of the reason for the poor agreement comes from the fact
that heavy nuclei do not have the simple spherical shape assumed here. Furthermore,
the replacement of K by E, may also have cost some loss of accuracy.

Transmission coefficient. Once at the barrier, the probability for an a-particle
to tunnel through it is given by the transmission coefficient 7. For a one-dimensional
square potential barrier of height V and width b, the value is given in standard quantum

mechanics texts as
-1

T={1+ y sinh? kb} (4-62)

VOZ
Eu(vﬂ - Ea)

V 2m(V0 - Ea)

E, is the kinetic energy (Fa. < V), and m is the mass of the particle. Outside the
potential barrier, the particle is free and the wave function is sinusoidal. Inside the
barrier, the wave function decays exponentially, as the kinetic energy of the particle is
less than the barrier height. An extreme situation with V4 >> FE is particularly simple
to calculate. In this limit, kb — 00, and sinh kb — €™®. The transmission coefficient
in Eq. (4-62) simplifies to the form

Here

K=

S -

T — g2 (4-63)

The factor e~ expresses the attenuation of the amplitude of the wave in going through
the barrier, and it is quite reasonable to expect that the transmission coefficient is
essentially given by the square of this factor. For our case of V4 ~ 30 MeV and E, in
the range 4 to 9 MeV, the condition of V 3> E, is adequately satisfied for the accuracies
we need. As a result, we can use the approximate form of 7 given in Eq. (4-63) for the
rest of the discussion.

The true potential barrier experienced by an q-particle in heavy nuclei is more
complicated than the square-well example in the previous paragraph. However, the
results of the one-dimensional treatment remains valid on the whole. As long as the
potential well is spherically symmetric, the radial part of the Schrodinger equation has

the form Fu(r) 2 o 1)52
u(r 13 _ _ ___—%—_ _
—dT2 + F{(E& V(T)) 2/‘T2 }U(T) =0

where p is the reduced mass of the a-particle inside the barrier and u(r) is the radial
wave function divided by r.
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Since we are interested here in the region outside the range of nuclear force, the
potential V(r) may be taken as purely Coulomb, having the form given by Eq. (4-60).
Al the angular dependence is contained in the £(¢ + 1)/r? term and may be taken as a
part of the potential barrier. For this purpose, we shall define an “effective™ potential
barrier,

T 2ur? T 2ur?
The radial equation reduces to the form

1 122¢® 8+ DR zZahe 0+ 1)K

d*u ,
ldr(f) + %%{E ~ V() Ju(r) = 0

This result has essentially the same form as that for a square well used for our simple
model above, except that the barrier height is now a function of r. The equation must

now be solved hy better techniques, such as the Wentzel-Kramers-Brillouin (WKB)
method.

The form of the solution, however, remains very similar to that given in Eq. (4-63)
if we make the replacement

kb — /RR' VB - B dr

The integration is taken from r = R at the nuclear surface to r = R;, where R, is the
classical turning radius given by the relation

‘/b(Rl) - En = 0
For £ =0, we have
[ 1 ] 2Zer  zZahc
Ri=|—|"F— =20
E, Eq
In this case, the integral can be carried out explicitly, and the result for the transmission
coeflicient becomes

_ R 1 /R }R( R)
In7T = -2kb= 7 2uE, {cos R i I_E

Since we can take R < R, for the accuracies we need, the arc cosine term may be

approximated by (7/2 ~ \/R/R;) and I7/R; may be dropped in the last term. The
result simplifies to

2R, w R 21 [Tg0cC
= ———2uFE, | — — 1/—«— = - ,1/—— LoV Z AR
In7T 5 i (2 2 7, ) rzZoc E + 8 5 ZA

At low energies, such as those encountered in stellar evolution in astrophysics (see
810-2), the first term dominates. In this limit, the transmission coeflicient is generally
referred to as the Coulomb penetration factor and often written as

471'60

T =e ™ = exp {_21rzZac}

" (4-64)
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with 7 known as the Sommerfeld number.

Energy and mass dependence. Using p,., v, and 7 obtained above, we can write
the transition probability as
W = povT

To put this expression into a form so that it can be compared with the Geiger-Nuttall
law of Eq. (4-61), we take the logarithm in the base 10 for both sides and obtain the
result

logiygW = logiopa +logyo v +1log,y T

VE, zZ
20.46 + logy, A +1.42VZAV3 — 1.72\/E:

The dominant energy dependence comes from the last term, in agreement with the
empirical result of the Geiger-Nuttall law.

In addition to energy, there is also a dependence of log,, W in Eq. (4-65) on Z
and, to a lesser extent, on A. To show the Z-dependence, we can plot log,;q W as a
function of VE, separately for each element. The observed values are now found to
cluster much closer to straight lines than we have seen earlier in Fig. 4-10. The curves
belonging to different Z-values are running, more or less, parallel to each other, as
shown in Fig. 4-11. The remaining deviations in the distribution of data points from
straight lines, usually too small to be noticed in such a plot, are due to nuclear structure
effects that can only be explained by a proper account of p,. For our purposes, we shall
be satisfied with the success of a relatively simple theory to explain almost 30 orders
of magnitude difference in the half-lives.

I

(4-65)
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Figure 4-11: Semi-log plot of the transition rate W for a-decay as a function of
the square root of E,, the kinetic energy of the a-particle emitted. The observed
values for different isotopes of each element, labeled by proton number Z, are
closer to straight lines than those given in Fig. 4-10. (Plotted using data from
Ref. [95].)
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We have implicitly assumed in the above discussion that there is only a single
kinetic energy E, for all the a-particles emerging from a nucleus. In fact, it is common
to find several different groups of a-particles emitted by the same parent nucleus, The
example of 22Bi shown in Fig. 4-12 has more than 14 different decays known and each
one leaves the residual nucleus in a different state.

@ (36%) [ aBi \ §(64%)

3
\
Np————T
Figure 4-12: Energy level diagram \15 13
showing the decay of 2'2Bi. The \* 8
Q-value for a-decay is 6.206 MeV E, (MeV) ss%L——-——mpo
leading to the ground state of 208T1 080 é M
and 2.246 MeV for fB-decay to the o2 /
ground state of 2*?Po. (Plotted us- o
ing data from Ref. [95].) 049 %ﬁ/ﬁ
O T
w0t £0___T0%/)
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4-11 Nuclear Fission

In addition to a-decay, heavy nuclei can also lower the energy of the system as a
whole by fission into two or more fragments. Nuclear fission can either take place
spontaneously or be induced by another reaction. In the latter case, the reaction is
the result of stimulation from energy supplied by an external source, such as neutron
capture. In general, spontaneous fission reactions are rare events, and most of our
knowledge on the subject of fission is derived from induced fission.

Fission involves the movement of many nucleons at the same time and is therefore
an example of collective motion in nuclei. We may visualize the process in the following
way. For a heavy nucleus, it may be energetically more favorable to assume a shape
such that the nucleons are divided into two overlapping groups separated by some
distance d between their centers of mass. In this way, the repulsive Coulomb energy
is decreased by the larger average distance between protons. On the other hand, the
binding energy due to nuclear interactions is not lowered in any significant way, as the
range of nuclear force is short and the saturation property favors interaction among
a few nearby nucleons. In terms of the Weizacker mass formula, the reduction comes
mainly from a small increase in the surface area as a result of deformation. By sacrificing
some surface energy, the binding energy of the system is increased by a larger decrease
in Coulomb repulsion and the equilibrium shape of heavy nuclei becomes deformed.

For such nuclei, spontaneous fission is possible in principle, as the system may
gain even more binding energy by splitting into two completely separated pieces. The
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only thing preventing spontaneous fission from happening more often is the fission
barrier through which the fragments must tunnel. We shall return to the source of
this barrier later. Since the condition for large deformation required for fission is found
only in extremely heavy nuclei, spontaneous fission does not become an important decay
channe) until A > 240. For example, the partial half-life for spontaneous fission of 222U
is around 10" years, whereas the value for a-decay is only 2.85 years. On the other
hand, by the time we get to %4Cf, the half-life reduces to 60 days with a branching
ratio of 99% for spontaneous fission.

Induced fission. Nuclear fission was actually first found through induced fission before
the discovery of spontaneous fission. Induced fission may be defined as any reaction
of the type A(q,b)B with final products b and B being nuclei of roughly comparable
mass. The best-known example is the fission of 25U induced by thermal neutrons.
A compound nucleus 2*U* (where the asterisk in the superscript indicates that the
nucleus is in an excited state) constitutes the intermediate state for the reaction. For
all practical purposes, we may regard the kinetic energy of the incident thermal neutron
to be zero. In this limit, the excitation energy of the compound nucleus is simply the
excess in binding energy for 235U plus a “free” neutron over that for (the ground state
of) 6U. The value found from a table of binding energies is 6.5 MeV. The ground
state of 23U is unstable toward o-particle emission with a half-life of 2.4 x 107 years.
However, the excitation energy brought along by the neutron capture sets the entire
nucleus into vibration, and as a result, fission into a number of different products
becomes possible. A typical channel is the reaction

U+ n— 32Kr+'2B8a + 2n (4-66)

The energy liberated in this example is around 180 MeV. The two neutrons emitted in
the process are called prompt neutrons, since they are released as a part of the fission
process. However, both ?Kr and '#?Ba are neutron unstable, as the heaviest stable
isotopes are, respectively, ®Kr and »®Ba. Among other possibilities, neutrons are
released either directly from ®Kr and #?Ba or from unstable daughter nuclei derived
from their decays. These neutrons are the delayed neutrons since they emerge after
some delays—as, for example, due to intervening - and vy-ray emissions.

It is often found that there is a preference for asymmetric fission, fission into two
fragments of unequal mass. When a heavy nucleus with large neutron excess undergoes
fission, for instance, into two medium-weight nuclei with nucleon number roughly A/2
each, the fragments would have to be nuclei far away from the valley of stability. As a
result, many prompt neutrons would have to be emitted, greatly increasing the number
of independent entities in the final state. Phase space considerations, on the other hand,
strongly favor exit channels with 2 minimum number of products. Fission involving
one heavier fragment, together with one lighter counterpart, reduces the number of
prompt neutrons that have to be emitted. The net result, shown schematically in
Fig. 4-13, is that the fission fragments have a bimodal distribution as a function of
mass. Besides binary fission involving two final nuclei (plus prompt neutrons), ternary
fission consisting of three final nuclei is also commonly observed. In principle, larger
numbers of fragments are also possible, but, again, phase space considerations reduce
their probability.
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Figure 4-13: Schematic diagram
showing the distribution of fission
fragments as a function of nucleon
number. The reason for a bimodal
distribution comes from the larger
ratio of neutron to proton num-
bers for the heavy parent than those -
for medium-weight nuclei making up
the fragments.
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The reason for using thermal neutrons to induce 23U fission in most nuclear reactors
is related to the neutron absorption cross section. As can be seen from Fig. 4-14,
the prabability at low energies for 25U to form a compound nucleus decreases almost
exponentially with increasing neutron energy. The only exceptions are small resonances,
related to the single-particle states of 23U at neutron threshold energy. For our purpose
here, we may ignore them, as their combined contribution to the fission cross section
is not significant. In contrast, the induced fission cross section for ?®¥U, the dominant
component in uranium ore, is negligible until the neutron energy is above 1 MeV, or
10'9 K in terms of temperature. Consequently, fast neutrons are more suitable to induce
238YJ figsion, the principle behind breeder reactors.

IU"r

Figure 4-14: Schematic diagram
showing the cross sections for
neutron-induced fission on 23°U
and 38U as functions of nentron
energy. Large values for 235U at
low energies favor thermal neu-
tron fission. In contrast, neutron

Fission cross section 1 fm 2
~N

induced fission for 238U is insignif- 04
icant until the energy is above 1E
1 MeV.
1 L /] —
10? I 10* 10 10°

Neutron encrgy in eV

Fission barrier. A crude simulation of the barrier that inhibits fission may be con-
structed from a liquid drop model using the Weizacker mass formula given in Eq. {4-56)
as the starting point. For simplicity, we shall take for our calculation a hypothetical
nucleus of A = 300 and Z = 100 and symmetric fission into two equal fragments of
A = 150 and Z = 50 each. The volume energy term in Eq. (4-56) is unchanged when
the nucleus is split into two separate pieces and may be omitted from our considera-
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tions here. Similarly, changes in the pairing and symmetry energy terms are too small
for us to be concerned with here. Only two terms, the surface energy a,A?? and the
Coulomb energy a3Z(Z — 1)/AY3, remain and they form the main components of the
fission barrier. Since both terms enter the binding energy equation with negative signs,
a decrease in either term will increase the binding energy of the system as a whole.

When the hypothetical nucleus undergoes a transformation from A = 300 to two
fragments of A = 150 each, the loss in binding energy due to changes in the surface
energy is given by

2
Euuface = 2 {2 x (34) e A"’/“} = 0.260;4%° » 200 MeV

where we have used the value a; = 17 MeV from Eq. (4-57). The amount is the decrease
in binding energy of the system when the two clusters are sufficiently far away from
each other that there is no more nuclear interaction remaining between them. Let us
use d, the distance between the two centers of mass, as a measure of the separation
between the two fragments. Before fission, we shall assume d = 0, and after the reaction
is completed, d is greater than twice the radius of each of the fragments. For simplicity,
we shall take the radius of each fragment to be R; = ro(150)!/% ~ 6.4 fm. It is not easy
to calculate the contribution from the surface energy term at distances between d = 0
and d = 2Ry ~ 13 fm. Schematically, it may take on a form as shown by the dashed
line in Fig. 4-15(a).

Surface

Figure 4-15: Schematic diagram of
fission barrier as a function of the
distance d between two fragments.
Competition between surface energy,
represented by the dashed curve in
(a), and Coulomb energy, the solid = d
curve in (a), produces a potential
shown by the dashed curve in (b). Re- A (b)

alistic potential barriers can be more -~
complicated as, for example, shown
by the solid curve in (b), with a sec-
ond minimum, indicated as II in the
diagram, in addition to the primary 1 H
well at I.

Energy

Potential
-~
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Separation Distance

Let us now consider the contribution to fission due the Coulomb energy term. For
A = 300, the Coulomb energy from Eq. (4-56) is
Z(Z-1)
Al3

using a3 = 0.6 MeV. For each of the fragments, the value is found to be roughly
275 MeV by the same method. There is therefore a gain of 350 MeV in binding energy

as ~ 900 MeV
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from the Coulomb term as a result of splitting the nucleus into two. The amount is
obtained under the assumption that the two fragments are separated by an infinite
distance without any Coulomb interaction between them. As the distance decreases,
the Coulomb energy increases with a 1/r dependence if we ignore any possible shape
changes in the fragments. At d < 13 fm, the value cannot be estimated easily. Again,
we can take it to be something like that shown by the solid curve in Fig. 4-15(a).

The net change in binding energy as a result of fission in our simple model is the
difference between the gain in the Coulomb energy and the loss in the surface energy
outlined above. The value 350 — 200 = 150 MeV is of the correct order of magnitude
as, for example, compared with the energy released through the reaction given by
Eq. (4-66). The fission barrier may therefore be schematically represented by a sum of
the two curves shown in Fig. 4-15(a) and plotted as the dashed curve in Fig. 4-15(b).
For lighter nuclei, the difference between the contributions from surface and Coulomb
terms is not as clearly marked as in our example. The resulting barrier is much broader
and spontaneous fission is suppressed. For extremely heavy nuclei, the opposite is true
and the nucleus becomes unstable toward fission.

Deformation, however, complicates the shape of fission barriers, even though the
main features are given correctly by our simple model. The most interesting aspect
due to deformation and other finer considerations is that the detailed shape of the
fission barrier may be somewhat different, as shown schematically by the solid line in
Fig. 4-15(b). Sometimes a local minimum in the potential, marked as II in the figure,
may develop. The evidence for such a secondary potential well is obtained from narrow
resonances found in the fission cross section that cannot come from levels in the main
well, marked as [ in the figure. Such a barrier is often called a double-hump potential
for obvious reasons. With such a potential, it is possible that the nucleus may be
trapped in the excited states of well II. Such states, especially the low-lying ones, may
prefer to de-excite by fission rather than returning to the main well by y-ray emission.
In some cases the rate of spontaneous fission for some of the low-lying states in well 11
may be hindered by a sufficiently large factor that a fission isomer may develop as a
result.

Partly because of its importance to applied work, fission of heavy nuclei has been
investigated extensively by many experiments. Theoretical studies to understand the
equilibrium shape and the process leading to fission are, however, complicated, and it
is somewhat difficult to make progress.

4-12 Infinite Nuclear Matter

We saw in §4-2 and §4-5 that a finite nucleus has a large surface region where the density
drops gradually to zero with radial distance. Even for a heavy nucleus, only a small
fraction of the nucleons are in the central region where the density may be considered to
be constant (see Problem 4-4). For many theoretical investigations, it is much easier if
the density is uniform throughout the nuclear volume. For this reason, infinite nuclear
matter is created as an idealized system of bound nucleons with an uniform density
that approximates the interior of a heavy nucleus. To make the situation even simpler,
we shall assume that the neutron number is the same as the proton number. Such a
system is convenient for testing nucleon-nucleon interaction as well as techniques for
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solving many-body problems. Furthermore, being an infinite system, we do not have
complications caused by motion of the center of mass, as in the case of finite nuclei.
Electromagnetic interactions are usually ignored in such studies, as the primary interest
is nuclear.

There is obviously no observed data on such an idealized system. A neutron star
is as close to an infinite system of nuclear matter as we can imagine; however, exper-
imental measurements on neutron stars of direct interest to nuclear physics may not
be forthcoming for a while. As a result, most information concerning infinite nuclear
matter must be inferred from our knowledge on finite nuclei.

Energy and density. Let us first try to deduce the binding energy in nuclear matter,
for instance, using the Weizacker mass formula given in §4-9. For a finite nucleus, the
volume is proportional to nucleon number A and the surface area to A%3. The ratio
of the surface term to the volume term therefore varies as A='/3, For infinite nuclear
matter, we can ignore the surface term in Eq. (4-56), as A=Y/ — 0. Contributions
from Coulomb repulsion between protons can also be put to zero, as we do not wish to
consider any electromagnetic effect here. Similarly, the symmetry energy vanishes with
the assumption of N = Z. Pairing effect may also be ignored because A is infinite.
This leaves only the volume term in the binding energy. From studies made on finite
nuclei, we have the result

Ep

A
for the binding energy per nucleon in infinite nuclear matter, the same value as «; given
in Eq. (4-57). The uncertainty of 1 MeV here, in part, reflects variations in the values
obtained by different ways of determining the parameter.

The density of infinite nuclear matter can be inferred from the maximum or satu-

ration density in finite nuclei. The value commonly used is

=16+ 1 MeV (4-67)

Po = 0.16 % 0.02 nucleons/fm> {4-68)

It is slightly higher than the average density of 3/(47r3) = 0.14 nucleons/fm3 obtained
using ro = 1.2 fm. The difference comes from the absence of a surface region here.

Fermi gas model. We can also relate pg to the Fermi momentum of nucleons in
the following way. If the excitation energy is not very large—we shall come back at
the end of this derivation to give an estimate of what is considered to be large—most
of the low-lying single-particle states are occupied. As a result, the Pauli exclusion
principle plays a more important role than nucleon-nucleon interaction in determining
the motion of nucleons inside infinite nuclear matter. For such a system, we can adopt
a degenerate Fermi gas model to study the momentum distribution of the nucleons. In
this approximation, nucleons are treated as noninteracting fermions, with the ground
state formed by filling up all the available low-lying single-particle states.

For a free particle in a cubic box of length L on each side, the wave function may
be represented by a plane wave,

1 .
YP(r) = me:k T
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In the absence of spin and isospin degrees of freedom, the allowed values for the wave
numbers k = (k., k,, k,) are given by the condition that the wave function vanishes at
the bonundary of the box. As a result,

2 2 2
ky = %nm ky = %ny k, = Tﬂn,
where n,, ny,, and n. are integers 0, &1, +2,... . The number of allowed plane wave
states in a volume element d°k is then
dn = 4( o ) &k (4-69)

where the factor of 4 comes from the fact that there are equal numbers of protons and
neutrons and that each of them can be in a state with either spin up or spin down.

We can now relate nuclear density to the Fermi momentum. Since the total number
of nucleons is A and, in the ground state, they fill all the low-lying states up to Fermi
momentum kp, this gives us the relation

o, L T AN L
A—/o dn—/o (271') &k = 4(21r) ?kp

The nucleon density is found from the number of nucleons in volume L3,
A 2,
L3 32 F

On inverting the relation, we obtain the Fermi momentum in terms of the density of
infinite nuclear matter,

po =

372 1/3
ke =<—§—po) = 1.33 £ 0.05 fm™" (4-70)

where the final result is calculated using the value of py given in Eq. (4-68).

The average kinetic energy of nucleons in infinite nuclear matter may be found from
Eq. (4-69) using the fact that the value for a nucleon is (hk)?/2M,, with M, as the
mass of a nucleon. On averaging over all the nucleons, we obtain the result

=5l () o= =

5 2M,  5°F (4-71)

The value of the Fermi energy ¢, can be found using kr given in Eq. (4-70),

= (hkr)?
F= oM,

= 37 MeV (4-72)

The average enecrgy of a nucleon is then € ~ 22 MeV. From this result, we see that only
a small fraction of the nucleons in a nucleus of nucleon number A can be excited unless
the energy involved is comparable to Acp, of the order of 10* MeV for a medium-weight
nucleus. This in turn justifies the use of the Fermi gas model above.
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Compression modulus. The state of minimum energy is an equilibrium for infinite
nuclear matter, stable against small variations of the density. Variations of the binding
energy per particle due to changes in Fermi momentum must therefore vanish,

d (EB) -0
dkp\ A
The second-order derivative of E5/A depends on the difficulty, or st:ffness, of nuclear
matter against changes in the density. This is measured by the compression modulus,

& (E
lc=k2——(—‘l> 4-73
FAZ\" A ) = po (4-73)

which is the slope in the variation of binding energy per nucleon as a function of kg.
Since it is evaluated at the energy minimum, it is a positive quantity. The compression
modulus is the equivalent of the bulk modulus in mechanics that characterizes variations
of the volume of a material as a function of applied pressure (see Problem 4-19).

For nuclear matter, generally

K =~ 200 MeV (4-74)

estimated, for example, from the energy required to excite a nucleus without changing
its shape. This is called a breathing mode of excitation (see §6-1) and is most easily
recognized in even-even nuclei, in particular, closed shell nuclei. Since the ground state
spin and parity of such a nucleus is 0%, one way to excite to another 0* state is by a
change in the density.

Nuclear matter calculations. One of the aims of infinite nuclear matter calcula-
tions is to reproduce the values of the three pieces of known “data” deduced from finite

Figure 4-16: Binding energy per
nucleon as a function of nucleon
Fermi momentum in infinite nuclear
matter. Shaded area represents the
possible values extrapolated from fi-
nite nuclei and small squares are
calculated results using potentials
shown (HJ, Hamada-Johnston; BJ,
Bethe-Johnson; BG, Bryan-Gersten;
and SSC, super-soft-core). The solid
lines are the results of different Dirac-
Brueckner calculations and dashed 20l Se o’ i
lines are more conventional Brueck-

ner calculation. (Adapted from Ref.
[100].)
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nuclei: the binding energy per nucleon of Eq. (4-67), the saturation density in terms
of the Fermi momentum of Eq. (4-70), and (not always carried out) the compression
modulus of Eq. (4-74). The hope is that the simple geometry offered by the idealized
system provides us with a direct and meaningful test for nucleon-nucleon interactions
and techniques for many-body problem. The test is a nontrivial one. For example,
most of the properties of finite nuclei are not very sensitive to the hard core in nucleon-
nucleon interactions. In contrast, the value of this term is crucial in reproducing the
saturation density in infinite nuclear matter. Without the short distance repulsion,
infinite nuclear matter can gain binding energy by increasing its density. In fact, many
calculations failed to produce the correct binding energy per nucleon at the correct sat-
uration density. The situation is more promising for some of the relativistic approaches.
Results, obtained using a version of the Bonn potential for nucleon-nucleon interaction
and a relativistic version of the most fruitful many-body technique, seem to produce
the correct answers for both quantities, as shown in Fig. 4-16. We shall not go any
further into these calculations, as it would require a lengthy discussion of the various
techniques required to solve the many-body problem involved here.

Problems

4-1, The differential cross section for Rutherford scattering is proportional to
sin~*(8/2) where § is the scattering angle. Explain why, in reality, experimental
differential cross sections remain finite as § — 0.

4-2. Derive an expression for the form factor F(¢?), assuming that the nuclear density
is given by a uniform sphere of radius R.

4-3. Show that, for high-energy inelastic scattering where the projectile rest mass may
be ignored, the momentum transfer is given by

(heg)? = 4EE' sin® g

of Eq. (4-29), where E is the energy of the projectile, E’ the energy of the scattered
particle, and # the scattering angle.

4-4. Use the values of the parameters given in Table 4-1 to calculate the number of
nucleons in the surface region of 2%Pb, i.e., the region where the density is 90%
or less of the value at the center of the nucleus.

4-5. The radial dependence of the density of a nucleus may be described by a two-
parameter Fermi distribution,

- fo
1 +exp{(r ~c)/z}

as given in Eq. (4-22). Show that the parameter ¢ is the radius of the nucleus
measured from the center to a point where the density falls to roughly half of its
value at the center and the parameter z = {/4.4, where ¢ is the radial distance
between two points in the nucleus whose densities are, respectively, 10% and 90%
of the maximum value.

p2pF(T)
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4-6.

4-10.

4-11.

4-12.

4-13.

A muon (i) can take the place of an electron in an atom and form a muonic atom.
Since the muon is 207 times more massive than an electron, the radii of its orbits
in an atom are much smaller. For a heavy atom, the low-lying muonic orbits may
have a substantial overlap with the nuclear wave function as a result. Calculate
the fraction of time a muon is inside a spherical nucleus of radius R = 1.2A4!/3 fm,
when the muonic atom is in the lowest energy state. Take 4 = 200 and Z = 70.

. Use a table of binding energies (e.g., from http://www.nndc.bnl.gov) to:

(a) Calculate the energy released in fusing two free protons and two free neutrons
into an a-particle.

(b) Show that **U is unstable toward a-decay and calculate the kinetic energy
of the a-particle emitted.

(c) Calculate the maximum possible energy released in the fission of 23U induced
by thermal neutrons. Make a reasonable assumption of the fission fragments
released in the process.

. The radius of a nucleus may be approximated as R = rpA'/%. From the binding

energy differences between odd-A mirror nuclei (i.e., a pair of nuclei having the
same A but with neutron and proton numbers interchanged) in the mass range
A =11to A =17, estimate the value of rq assuming a uniform spherical charge
distribution for each nucleus and ignoring effects other than Coulomb.

. From the binding energies of members of the A = 16 isobar, '5C, 18N, 160,

16 and '¥Ne, calculate the position of the T = 1 isobaric analogue state to
the ground state of '®F in Q. Use a uniformly charged sphere of radius R =
1.2A'/3 femtometers to find the Coulomb energy difference between the two nuclei.
Repeat the calculation starting from the ground state of ®N and compare the
results obtained. Deduce also the positions of the lowest J™ = 0%, T = 2 states
in !N, 160, and '°F from the binding energies of '®C and '*Ne. Compare the
results with the observed values shown in Fig. 4-8.

From a table of binding energies show that the ground state of ®Be is stable
against (-decay and nucleon emission but unstable against decay into two a-
particles. Calculate the energy released in the decay 3Be — o + «v.

Obtain the masses of members of the A = 135 isobar from a table of binding
energies and plot the results as a function of Z. From the results deduce the
value of the symmetry energy parameter a4 in Eq. (4-56) for the Weizacker mass
formula. Carry out the same calculation for members of the A = 136 isobar and
estimate the value of the pairing parameter 6 from the results.

The Weizacker mass formula is useful to obtain global distribution of binding
energies as a function of A, Z, and N. Use this formula to show that the Q-value,
i.e., kinetic energy released, in fission is positive only for heavy nuclei.

Use the Kelson-Garvey mass relation to find the binding energy of 20 from
the values of nearby nuclei. Estimate the uncertainties in the value deduced.
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4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

Using the value of binding energy obtained and a minimum amount of additional
experimental data, find the locations of isobaric analogue states to the ground
state of 120 in 2N and 12C,

Calculate the average density of *®U assuming it is a uniform sphere of radius
R = 1.24"/3 femtometers. If, instead, R is the radius of **¥U measured from the
center to a point on the surface where the density is half of that in the central
region, and the nuclear density is given by the two-parameter Fermi form given in
Eq. (4-22) with 2 = 0.6 fm, what is the central density of the nuclens? Compare
the value obtained for the average density.

Determine the Coulomb and symmetry energy parameters of the Weizacker mass
formula from the binding energies of three members of the A = 27 isobar, (4, Z) =
(27,12), (27,13), (27,14).

The barrier penetration factor for

an a-particle to pass through the
Coulomb field of the residual nucleus v
may be estimated using a triangular-
shaped, one-dimensional barrier as
shown in the figure on the right. For °
a heavy nucleus with Z = 72, we can
use R = 9 fm. The height of barrier

Vo may be taken as the Coulomb en-
ergy at distance R and the distance

Ry may be estimated using the point
where the Coulomb energy is equal

to the kinetic energy E, of the a-
particle. Find the probability for an
a-particle of E, = 5 MeV to escape
from the nucleus.

Assume that a binary fission of 2*%U* is accompanied by two prompt neutrons.
Calculate the optimum neutron and proton numbers of the two fragments using
the Weizacker mass formula of Eq. (4-56).

Calculate the excitation energy of 28U formed by the capture of a thermal neutron
to the ground state of 2357,

In the study of the property of ordinary matter, the bulk modulus B is defined as
the negative of the ratio of the change in pressure applied, Ap, to the fractional
change in the volume, AV/V,

Ap
AV
where the negative sign simply means that volume shrinks when the pressure

is increased. Find the relation of B to the compression modulus X defined in
Eq. (4-73).

B=



Chapter 5

Electromagnetic and
Weak Interaction

The wave functions of nuclear states are usually taken as the eigenvectors of a Hamil-
tonian in which the only interaction is nuclear. Electromagnetic and weak interactions
are treated as perturbations, inducing transitions from one state to another. In this
chapter we shall examine the rates of these transitions and see what they can tell us
about the atomic nucleus. Other processes, such as nucleon and a-particle emission,
also change the state a nucleus. They are examined in Chapters 4 and 8.

5-1 Nuclear Transition Matrix Element

Transition probability. If we have a sample of N radioactive nuclei, the probability
for any one of them to decay at a given time is independent of the status of other
members in the sample. The number of decays taking place in a given time interval is
therefore proportional to N(t), the number of radioactive nuclei present at time ¢,

dN

dt

The constant of proportionality, W, is the transition probability or decay constant, and

its value depends on the nature of the perturbation that causes the decay as well as the

properties of the initial and final states involved. For this reason, the decay constant
is the quantity of central interest in examining nuclear transitions.
From Eq. (5-1), we obtain the familiar exponential decay law,

= ~WN(t) (5-1)

N(t) = Noe-Wt

where Np is the number of radioactive nuclei at time £ = 0. The half-life, 11, is
the amount of time it takes for the activity of a sample to be reduced by half and is
inversely proportional to the transition rate,
T = In2 _ 0.693
12535 = W
161
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The lifetime, or mean life, of an excited state is the average amount of time it takes for
a radioactive nucleus to decay. It is connected to the transition probability and half-life
by the relation
T _ fooo te‘W‘ dt _ 1 _ T1/2
T y®e™tdt ~ W 0.693
Transition probability, half-life, and lifetime are three different ways to characterize the
same physical observable.

Width. If a nucleus is in an excited state, it must discard the excess energy it has by
undergoing a decay. It is, however, impossible to predict when the decay will actually
take place. As a result, there is an uncertainty in time At = T associated with the
existence of the excited state. Because of the limited lifetime, it is not possible for
us to measure its energy to infinite precision. This is independent of the instrumental
accuracy in the measurement. In fact, for our purpose here, we can regard uncertain-
ties introduced by the measuring apparatus to be sufficiently small that they may be
ignored.

In quantum mechanics, the expectation value corresponding to an observable is
interpreted as the average over measurements for a large number of identically prepared
samples. In other words, if we carry out the energy measurement for N nuclei in the
same excited state, there will be a distribution of the values obtained. If the value for
the ith excited nucleus is F,, the average (E) is given by

1 N

An idea of the spread in the measured values is provided by the square root of the

variance,
N

1 2 N Ea
r= {5 - @)
The Heisenberg uncertainty principle says that the product of I and T is equal to &
under the best circumstances, or

I's= o AW (5-2)

==

The quantity I" is known as the natural line width, or width for short, of a state, as we
saw earlier in §2-6. It is also a way to indicate the transition probability of a state and is
proportional to (the inverse of) the lifetime and half-life. Since i = 6.6 x 10722 MeV-s,
a width of 1 MeV corresponds to a lifetime of 6.6 x 10-%? s,

One can also relate I" to the probability of finding the excited state at a specific
energy E. In terms of the wave function, the decay constant W may be defined in the
following way:

[ (r, O = [¥(r, 1-0) 267" (5-3)
For a stationary state, the time-dependent wave function may be separated into a
product of spatial and temporal parts,

U(r,t) = P(r)e E/"
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To carry such a separation over to a decaying (excited) state, the energy E must be
changed into a complex quantity,
E — (E) - }ihw
The time-dependent wave function now takes on the form
U(r, 1) = y(r)e EWA-WA/2 (5-4)

so as to satisfy Eq. (5-3).

Alternatively we can make use of the fact that the excited state is one without a
definite energy and write the wave function as a superposition of components having
different energies,

U(r, t) = ¥(r) / a(E)e E/* 4E

where a(E) is the probability amplitude for finding the state at energy E. Comparing
this form with Eq. (5-4), we arrive at a relation between the decay constant W and
probability amplitude a(E),

W2 / a(E)eE-(ENA 4 E

That is, e="*? is the Fourier transform of a(E).
The relation can be inverted and we obtain the result

1 o0 1 1
= L [T W gy - L
(B =55l © L= R E—E) i

The probability for finding the excited state at energy E is given by the absolute square

of the amplitude,
i L 1

BN = mE—Emy + any

where we have replaced BW with I" using Eq. (§-2). The shape of such a distribution
is Lorentzion and the width I" may be interpreted as the full width at half maximum
(FWHM) of such a distribution. Since the question of instrumental uncertainty does
not enter here, the width is the “natural line width” of the distribution in energy of
the excited state.

Branching ratio. A given excited state may decay to several final states. If the
transition probability to the ith final state is W(i), the total transition probability for
the initial state is the sum of the probabilities to all final states,

W= W(i) (5-5)
Similarly, the total width I is the sum of all the partial widths,

r= ZF(i)
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The relation between half-life T'; and partial half-lives T2 (i) = In 2/W(i) is given by

1« 1
Ty 5 Tipli)

as evident from Eq. (5-5).

The branching ratio gives the partial transition probability to a particular final state
as a fraction of the total from a specific initial state. For example, the mean lifetime
of a n%meson is 8.4 x 10717 s and decays 98.8% of the time to two ~-rays, 1.17% of
the time to a y-ray together with an electron-positron pair, and 2 X 1077 of the time
to an electron-positron pair alone. The branching ratios to these three decay channels
are therefore 98.8%, 1.17%, and 2 x 107, respectively. Among the radioactive nuclei,
the ground state of the odd-odd nucleus 228 Ac at the start of the actinide series has
a half-life of 29 h and can decay by emitting an electron to 226Th, transform to %Ra
by capturing one of the atomic electrons, or decay by a-particle emission to *22Fr with
branching ratios 83%, 10%, and 0.06%, respectively.

Transition matrix element. The transition probability is proportional to the square
of the nuclear matrix element,

Mfi(M!vMi) = (JfoElOA;:|J1M1C> (5'6)

where | M, C) and | J;M;€) are, respectively, the wave functions of the initial and
final states and Oy, is the nuclear part of the transition operator (see §5-3 and §5-6)
with spherical tensor rank (A, ¢). The labels ¢ and ¢ here denote quantum numbers
other than J and M associated with angular momentum that are required to specify the
nuclear states uniquely. Since the transition may also involve the emission of a particle
such as an electron ar a nucleon, the initial and final states are not necessarily in the
same nucleus. The transition may also be induced by the interaction of the nucleus with
an external field. For this reason, the exact relation between the transition probability
W and the nuclear matrix element My; depends also on factors related to the external
field. We shall treat each type of transition separately in later sections.

The dependence of the matrix element My, on M; and My, respectively, projections
of the initial and final total angular momentum on the quantization axis, may be
factored out using the Wigner-Eckart theorem,

- Je AU
MMy, M) = (=1)/r~Mr (—A{II " M,) (JrEl|OA):C)

where (_JA{,“’: ){;) is the 3j-symbol and (J,£[|Ox||Ji¢) is the reduced matrix element

defined in Eq. (A-15). Our main interest will be in (J)Os||Ji¢), as it is invariant
under a rotation of the coordinate system.

If the measurement is not sensitive to the spin orientation of the final state, the
transition includes all the possible final states differing only by the value of M. Further-
more, if the operator is not restricted to any specific direction in space, all the allowed
values of g must be included in considering the transition. Under these conditions, the
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square of the transition matrix element reduces to

Ml = Sleues (28 wlosof

uMy
IABW
wetostaor (5 2 %)
(TrElloAlI TP (5-7)

2

uM;
A(Js, A L)
2J,+1

In arriving at the final result, we have made use of the orthogonality relation between
the 3j-symbols given by Eq. (A-12),

3 J1 J2 Js Nod2 sy A(jl,j2,j3)6 5
= S oy

g N\ My Ma/ \ My my my 2j3+1

The factor
1 forJp=A+J;

0 otherwise
expresses the angular momentum selection rule that forbids transitions where the trian-

gular relation among the three angular momentum vectors Jy, A, and J, is not satisfied.
Note also that [M;|* defined in Eq. (5-7) is independent of M,.

AT = {

5-2 Transition Probability in Time-Dependent Perturbation Theory

A connection between the transition probability and the transition matrix element may
be established using time-dependent perturbation theory. Consider a time-dependent
Hamiltonian

H(t)= Hy+ H'(¢) (5-8)

with Hp independent of time. All the time dependence is contained in H'(t). In
particular, we are interested here in the case where the strength of H'(t) is sufficiently
weak that it may be considered as a perturbation to Hj.

Let ¢.(r) represent the eigenfunction of Hg,

H0¢n(r) = End)n(r)

We shall assume that all ¢,(r) together form a complete set of orthonormal functions.
Again, we have suppressed any indications of possible dependence of ¢.(r) on spin,
isospin, and other variables so as to simplify the notation. The eigenfunction ¥{r,t)
for H, alone is the solution of the time-dependent Schriédinger equation,

AY(r,t)

Zh_@t—— = Ho'!l)(‘f‘, t)

and may be expressed in terms of ¢,(r),

P(r,t) =3 cad(r)e™ i/
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Here, the expansion coefficients,

Cp = /a&;(r)e‘E“’/”w(r,t) dv

are independent of time, since we have not yet inctuded H'(t).
For the complete Hamiltonian, the eigenfunctions ¥(r,t) may still be expressed in
terms of ¢,(r) except that the expansion coefficients are now time dependent,

U(r,t) =3 ca(t)u(r)e Ent/P (5-9)

The coeflicient c,(t) may be interpreted as the probability amplitude for finding the
system in the unperturbed state n at time ¢. On substituting the results of Eq. (5-9)
into the time-dependent Schrédinger equation for H(t),

m(")lll(r,t)

o = o+ H(0)}¥(r,1) (5-10)

we obtain the equation governing coefficients c,(t),

hZFm“ alt)i52 boa(r) €15 = (Ho + H'(1) 2 ealt)p(r)e

By taking products with ¢3(r) exp{iEit/h} on both sides of the equation and integrat-
ing over all the independent variables except t, we obtain the result

" Z{ den(t) icn(t)&}ei(a,.—sn)c/h (bu(r) ()
= ch ){ (&)l Holgn(r ))+(¢k(7')|H'(t)|¢n(7‘))}e'(E"“E")‘/” (5-11)

Since ¢n(r) is a member of an orthonormal set of eigenfunctions for Hy, we have the
conditions

(@ (r)|én(r)) = bkn (x(r)| Holgn(r)) = Enbin
On ingerting these results into Eq. (5-11), we obtain a differential equation for c,(t),
. deg(t
20 = 5 (g (D]u(1)) et

where wi, = (Ey — E,)/h.
As initial conditions, let us assume that at ¢ = 0 the system is in state ¢o{r). That

is,
1 forn=0
0) =
en(0) {o forn # 0

If the perturbation is sufficiently weak, we expect that

1 fork=20

c"(t)”{o fork#0
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for all time ¢ of interest. As a result, we can approximate Eq. (5-10) by retaining only
the n = 0 term in the sum on the right-hand side. This gives us the result

dck(t)

= (Gl H'(t)l0(t)) e** (5-12)

Furthermore, if the time variatxon of H'(t) is slow compared with exp{iwxot}, we may
take H' to be a constant. In this approximation, Eq. (5-12) can be solved explicitly
and the result may be expressed as

(| H'|$o(t)) ot
)= =S T (] — eiwro
ck(t) = E. - E, (1 — ehnot)
From this, we obtain
— COSwigl

(O = 2 o)

as the probability for finding the system in state & at time ¢ if it started from state 0
at time ¢ = 0.

The total probability to a group of states within some interval labeled by f is given
by a summation over all the final states k in the interval,

2 — COS Wgpt
glck(t)l 2%] & (r)|H'|o(r) | (B = E:D

COS wygt

3 [ a2 () a5

In the last step, the summation over all possible final states is replaced by an integration
over energy multiplied by the density of final states p(E;) for reasons that will soon
become clear.

The transition probability per unit time, W, corresponds to the rate of finding the
system in the group of final states labeled by f and may be expressed as

W= 2 Tla)l = 2 (@) i)

kef

zsmwkotp(E dE,

Since the function sin wyot/wiq oscillates very quickly except where wq = 0, only a small
region around E; = E, can contribute to the integral. In this small energy interval we
may regard the matrix element (¢x(r)|H'|¢o(r)) and the state density p(Ex) = p(Ey)
to be constant and may be taken outside the integral. Furthermore, the limits of
integration over Ej may be replaced by too under these conditions without sacrificing
too much accuracy. The final form of the transition probability per unit time becomes

W = (s (r)H oo Ep) (5-13)

where we have made use of the fact that
/+°° sin wyet
—oo Wko

dwgg=1m

This is the starting point for our calculations of transition probabilities in the next two
sections. Since Fermi called it the “golden rule of time-dependent perturbation theory,”
it is often referred to as Fermi’s golden rule.
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5-3 Electromagnetic Transition

In this section we shall deal mainly with nuclear decay through the emission of a
~-ray. The transition is caused by the interaction of the nucleus with an external
clectromagnetic field. For our purpose here, we may regard the nucleus as made of
point nucleons, each carrying a magnetic dipole moment and, in the case of protons,
a net charge as well. The charge distribution couples with the external field, causing
“electric” transitions. At the same time, interaction with the intrinsic magnetism of
each nucleon and the magnetism generated by current loops due to proton orbital
motion induces “magnetic” transitions.

Electromagnetic transitions form the dominant mode of decay for low-lying excited
states in nuclei, particularly for the light ones. The main reason is that nucleon emis-
sion, a much faster process than +y-decay, is not possible until the excitation energy is
above nucleon separation energies. As we can see later in Fig. 7-2, these are of the order
of 8 to 10 MeV for neutrons and somewhat lower for protons because of Coulomb re-
pulsion. Other possible modes are (-decay, a-particle emission, and fission. Generally
speaking, these are slower processes than <y-decays.

Besides y-ray emission, electromagnetic perturbation can also induce nuclear decay
through internal conversion whereby one of the atomic electrons is ejected. This is
nsually more important for heavy nuclei, where the nuclear electromagnetic fields are
strong and the orbiis of the inner shell electrons are close to the nucleus. Similarly,
the decay can also proceed by creating an electron-positron pair. The probability for
such internal pair creation processes is, in general, much smaller than y-ray emission
and becomes important, for example, where y-ray emission is forbidden by angular
momentum considerations. This happens, for example, in the case of transitions from
an initial state with J™ = 0% to a final state that is also 0F.

The first step in a discussion on electromagnetic transitions is to establish a connec-
tion between the transition probability W of Eq. (6-1) and the nuclear matrix element
M,y of Eq. (5-6) using first-order time-dependent perturbation given by Eq. (5-13).
The perturbation H' comes from coupling between nuclear and electromagnetic fields,
and the density of final states p(Fy) is a product of the number of nuclear and electro-
magnetic states per energy interval at Ey. Similarly, the initial and final wave functions
¢o(r) and ¢r(r) of Eq. (5-13) are products of nuclear and electromagnetic parts. In
keeping with the custom used by most workers in the field, all the electromagnetic
calculations in this section will be carried out only in cgs units.

Coupling to electromagnetic field. Our primary interest is in the nuclear part of
the matrix element of H'. For this purpose, we shall first separate H' into a product
of two operators, one acting only on the nuclear wave function and the other on the
external electromagnetic field. Since each nuclear state involved has a definite angular
momentum, it is necessary that the external electromagnetic field is also quantized and
decomposed by a multipole expansion into components with definite spherical tensor
ranks. As we shall see later, the decomposition is an important one, as the lowest order
multipole tends to dominate the transition. Both quantization and multipole expansion
of the electromagnetic field are fairly straightforward but tedious procedures. We shall
attempt here only a brief outline of the steps involved and leave the proper derivations
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to more advanced textbooks, such as Blatt and Weisskopf [32] and Sakurai {121].

We can visualize the form of electromagnetic perturbation in a nucleus in the fol-
lowing way. Consider first the simple case of a point particle carrying a charge ¢ and,
for the time being, no magnetic moment. In the absence of any external electromag-
netic field, the particle is free and the Hamiltonian consists of only the kinetic energy

term,
1
Hy = —p? -
0= 5P (5-14)
where p is the momentum. In the presence of an electromagnetic field, the momentum

conjugate to r is modified from that for a free particle by the following transformation:
q

where A is the vector potential for the electromagnetic field. The Hamiltonian for the
charged particle now takes on the form

1 2
H=—(p- %A) (5-15)
For simplicity we have not included in the Hamiltonian terms pertaining solely to the
external electromagnetic field or the effect of any electrostatic potential that may be
present to interact with the charged particles. We shall return to this point later.

The Hamiltonian of Eq. (5-15) may be written in the form of Eq. (5-8) as a sum
of two terms: a free-particle term H, given by Eq. (5-14) and a perturbation term H'
expressing the coupling with external electromagnetic field. Comparing Eq. (5-15) with
(5-14), we can make the identification

q2

chzA A

H —2—nq—1—c-(p-A+A-p)+

2
q q
_1 4.
me p+ 2mc?

-2 Ay (5-16)
mc

A-A

where we have replaced p- A by A - p using the requirement that an electromagnetic
field can have only transverse components, i.e., p = —iAV and V- A = 0, generally
known as the transversality condition. The quadratic term in A involves two photons
at the same time and may therefore be ignored in the lowest order consideration we are
interested in here.

In general, H' may be written in a more convenient form by expressing the mo-
mentum of the charged particle in terms of a current density,

P
= = g— 5-17
J=qu=¢ (5-17)

The first-order term in Eq. (5-16) becomes

H = __2._4 g (5-18)
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In addition to the electric charge carried by protons in a nucleus, the intrinsic magnetic
dipole moment of the nucleon can also interact with the external electromagnetic field.
We have seen earlier, in Eq. (4-44), in the discussion of static magnetic moments, that
the intrinsic magnetic dipole moment of a nucleon may also be expressed in the form of a
current. Consequently, it is unnecessary to change the form of H' given in Eq. (5-18) to
include the effect of nucleon magnetic moments, except that we need a new definition
for the current density J than what is given in Eq. (5-17). The most general form
of H' must also include the possibility for the charge distribution to interact with an
external electrostatic field. Such a perturbing Hamiltonian is most conveniently written
in four-component notation,

4
H =1 Y AL (5-19)
¢ n=1
where A, = (A,iV) includes a scalar potential V and J, = (J,ipc) a charge distribu-

tion p. Contributions from the fourth components are usually not important in nuclear
transitions.

External electromagnetic field. The electromagnetic field is given by the solution
to Maxwell’s equations. In a region outside any charge and current distributions, the
four-potential is obtained from the time-dependent partial differential equation,

1 9
(V2 - Eigﬁ) A“(T, t) =0

Qur primary interest is in the vector potential A(r,t), the first three components of
A,. The time dependence may be removed from the equation by expanding A(»,t) in
terms of components with definite wave number k,

Alr,t) =Y Ag(r)e™ (5-20)
k

where w = ke, with k being the magnitude of k. The spatial dependence of A is given
by the equation

(VP4 k) Ax(r) =0 (5-21)

The solution of this second-order differential equation has the familiar form
Ay(r) = Bpe*t" + Cpek T

where Bj and C} are constants to be determined by boundary conditions. Among
others, these conditions must simulate the source of the electromagnetic field. Sub-

stituting the spatial dependence of the vector potential into Eq. (5-20), we obtain the
expression

1
Alrt)= 5 }; o {brene® ") + bl e etk T} (5-22)
n

where N is a normnalization constant. Being the quantum of a vector field, each -
ray carries one unit of angular momentum. However, because of the transversality
condition V- A = 0, only two of the three components of the vector field are independent
quantities. These two components may be identified by two unit vectors €,, withn =1,
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2. This is similar to expressing ordinary light waves as a linear combination of horizontal
and vertical polarizations. At this stage, the factors by, and b}m remain as constants
related to By and Cj and must be determined by boundary conditions.

Up to now the solution we have obtained for Maxwell’s equation is purely classical in
nature. Since the form of Eq. (5-21) is identical to the equation for a harmonic oscillator,
we may think of the electromagnetic field as a collection of harmonic oscillators, one
for each frequency (or wave number k) and polarization direction . The separation
in energy between harmonic oscillator states is in units of hw = hck. It is now quite
straightforward to have a quantum-mechanical description of the electromagnetic field.
The quantity hw may be taken as the energy of a field quantum for a given wave number
and the electromagnetic field is now characterized by the number of quanta for each k
and 7. We may also interpret b}cv and by, in Eq. (5-22) as the creation and annihilation
operators, respectively, of a photon with labels (k, 7). In this way we see that the lowest
order term of H', given by Eq. (5-19), involves a linear combination of b}m and bg,. The
physical interpretation of H' is that coupling between nuclear and electromagnetic fields
makes it possible for the nucleus to create a photon when it decays from a higher state
to a lower one and to absorb a photon when it is excited to a higher state. A proper
derivation of the quantized electromagnetic field will require us to demonstrate that
b}m and by, are indeed creation and annihilation operators of photons by showing that
they have the correct commutation relations, and so on. We shall dispense with this
important step here to keep the discussion focused on the concerns of nuclear physics.

Multipole expansion of the electromagnetic field. The expansion of A(r,t)
in Eq. (5-22) is carried out, implicitly, in Cartesian coordinates. For applications to
problems with rotational symmetry, it is more convenient to express A(r,t) in terms
of operators having definite spherical tensor ranks, as we have done on several earlier
occasions. The advantage here is quite obvious. We have already seen that the nuclear
current density J may be written as a sum over terms, each carrying a definite amount
of angular momentum. Since H' is a scalar, only multipoles of the same order in both
J and A can be coupled together. For this purpose, we shall first rewrite the radiation
field in terms of the eigenfunctions of angular momentum operators,

A(r,t) = ; Ayu(r,t)

where the vector function A,,(r,t) with spherical tensor rank (), p) satisfies the fol-
lowing relations as the eigenfunction of angular momentum operators J? and Jy:

J""Aw(r, t) = A(A+ 1) Asu(r,t) JoAu(r,t) = p Ay,(r,t) (5-23)

The time dependence, given by Eq. (5-20), is sufficiently simple that we shall drop
it from now on s0 as to simplify the notation. The functions A,,(r,t) are, however,
different from spherical harmonics in that they are vector functions. They may be
expressed in terms of vector spherical harmonics, vector functions constructed from
(scalar) spherical harmonics Y, (8, 6).

Instead of the two polarization directions allowed for A(r,t) in Eq. (5-22), we have
now two different types of multipole fields satisfying Eq. (5-21). The decays induced by
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them are called electric multipole transitions, indicated hereafter as EA, and magnetic
multipole transitions, labeled M A. In terms of spherical harmonics, they may be written
in the following ways:

—1

Ay (EX ) £V % (r x V) (3 (kr)Y3(0, 6)
AMAT) = (rx V) (i (kr)Ysu(6, )

where jy(kr) is a spherical Bessel function of order A, A general solution of A(r,t) is a
linear combination of both types of terms, with time dependence given by Eq. (5-20).
Again, we shall refer the reader to standard references, such as Morse and Feshbach
[106], for a demonstration that A,,(FA r) and A,,(MA,r) satisfy Eq. (5-23).

il

(5-24)

Electromagnetic multipole transition operators. Using the operators given in

Eq. (5-24), we can write the (), ) multipole part of the perturbing Hamiltonian H' of
Eq. (5-19) as

O\(EN) = —5;%%%3(1‘) LV x (1 % V)(ja(kr)Yau(6, 6))
(5-25)
OM(MY) = =S ST (r) - (rx V) ) ¥3u(6,)

where (20 + 11 =1-3.5..-(2A + 1). The normalizations used in the definitions of
these operators are such that they reduce to those for the static moments of Eqs. (4-41)
and (5-43) in the limit ¥ — 0. For now, we shall not be concerned with the multipole
expansion of the nuclear current density J(r). Since both Oy,(EA) and O, (M) are
scalar operators in the combined nuclear and electromagnetic fields, only the (A, —pg)
multipole part of J(r) can make a nonvanishing contribution in the transition.

The spherical Bessel function in Eq. (5-25) may expanded in a power series,

(ke 1 (kr)?
2A+1)!!(1'§2,\+3+"')

The typical y-rays involved in nuclear transitions have energies E, less than 10 MeV,
corresponding to wave numbers of the order k = E, /hc =~ 1/20 fm~! or less. Since the
multipole operators act on the nuclear wave function, they cannot have contributions
coming from regions outside the nucleus. The dimension of a nucleus is characterized by
the nuclear radius R, and even for a heavy nucleus, such as 28Pb (R = ryAY/3 ~ 7 fm),
it is less than 10 fm. As a result, the dimensionless argument kr of the spherical Bessel
function is much less than unity for typical v-rays involved in a nuclear decay. The series
given by Eq. (5-26) is, then, a fast convergent one and ji(kr) may be approximated by
its first term in the expansion alone. This is called the long-wavelength limit. Physically,
it comes from the observation that, for y-rays at these energies, the wavelength is
2nhc/E,, of the order of 10® fm, much larger than nuclear dimension. As a result,
these y-rays cannot be sensitive to the details of the nuclear radial wave functions.
Under such conditions, the expectation value of j)(kr) is simply proportional to that
for its leading-order term (kr)*.

ja(kr) ~ ( (5-26)
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We are now in a position to calculate the contribution of each multipole order to the
transition probability given in Eq. (5-13). On inserting the density of final states and
using the multipole operator given in Eq. (5-25) for H', we can express the transition
probability for multipole A from an initial nuclear state | J,M,{) to a final nuclear state
’ Jfof ) as

8r(A+1) k?H!

B(X; Ji¢ — Jy€) (5-27)

where the reduced transition probability B(A; J;,{ — Js€) may be written in terms of
the reduced matrix element of the multipole operator for either electric or magnetic
transition, in the same way as we did in Eq. (5-7),

- —_— peemd t 2=
B\ J¢ — J8) ;:MKJfoélOlezM-CH 21

KIloallzOf (5-28)
It is worth noting here that the reduced transition probabilities are quantities with
dimensions. For electric transitions, the units are e*fm?*, and for magnetic transitions,
1% fm?*-2. The transition rate W is the number of decays per unit time. In relating
the numerical values of W and reduced transition probability, one must be careful with
the factors e? in electric transitions and u% for magnetic transitions. For example, the
values in Table 5-1 are obtained using the following relations:

ah

Sr(A+1) 1 ( ! ) EDH B(EA in e2m®)

NN+ )R \Ae
he 2 8r(A+1) l(i)zx+1
2Mpcr” A[(2A + 1) A \Rc

W()) =

ahe( EP+ B(MX in 3 fm™~?)

where we have used short-hand notation B(EA) for reduced electric transition proba-
bility and B(MX) for reduced magnetic transition probability. The numerical values
for e? and p% may be obtained using the relation e* = afic in cgs units.

Table 5-1: Electromagnetic transition probabilities for the lowest four multipoles.

W(E1)=1.59 x 10'5 E3x B(E1) W(M1)=1.76 x 10" E3xB(M1)
W(E2)=1.23 x 10° E5xB(E2) W(M2)=1.35 x 107 E5xB(M?2)
W(E3)=5.71 x 10* EIxB(E3) W(M3)=6.31 x 10° ElxB(M3)
W(E4)=1.70 x 10~*E3x B(E4) W(M4)=1.88 x 1075 E9x B(M4)

E, are in MeV, B(E)) in e?fm?*, and B(MJ) in pLﬁ,fm(”‘”"’).

If we take that the electric charge in a nucleus consists of point charges carried
by individual protons and the magnetization currents are due to the magnetic dipole
moments of individual nucleons and the orbital motion of protons, the electric and
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magnetic multipole operators in the long-wavelength limit simplify to the following
forms:

O\(EN) = :z;e(m Yy, (i, i) (5-29)
Ox(MY) = i{g,( Joi + ai)5or7 ) Vilr!Yaul,40)
- mzr“ (o0 igjr’l))m 10, 8) X 8),,
H 0,80 % 3D} 60

Here j, = £, + s, and

N _ [ 1le _J1lpy . _ | 5.586puy  for a proton
e(i) = {() 9:() = { 9(1) = { —~3.826py  for a neutron

the same values as given in §4-6. The multiplication symbols here indicate the angular
momentum coupled products defined in Eq. (A-10). We have omitted the derivation
from Eqs. (5-25) to (5-27), (5-29), and (5-30), as it involves a large amount of angular
momentum recoupling and properties of vector spherical harmonics. For a proper
treatment, the reader is directed to references such as Blatt and Weisskopf [32]. Note
that, for historical reasons, the definitions of the operators for the static moments of a
state differ from those for O, here by constant factors, for example, as in the case of
the quadrupole moment operator given in Eq. (4-42).

Dimensional check. It may be helpful to make a dimensional analysis of some of
the results obtained so far in this section. From Eq. (5-1), we see that W is measured
in number of transitions per unit time interval. For electric multipole transitions, the
operator Oy, (EX) given in Eq. (5-29) is proportional er®. This gives the reduced
transition probability B(£A) of multipolarity A in units of charge squared times length
to the power 2A. It is customary to measure charge in units of ¢, the magnitude of
the charge on a proton, and length in units of femtometer (fm). Electric multipole
operators are therefore in units of efm*. For magnetic transitions, we have the nuclear
magneton s, in the place of electric charge e. Because of the gradient operator, the
power for length is rednced by one compared with the corresponding electric transition
of the same order. As a result, operator Oy, (M) in Eq. (5-30) is in units of gpfm*~!

From Eq. (5-28), we find that the units for the reduced transition probabilities are as
follows:
Electric multipole A B(EX): é*fm®

Maguetic multipole A\~ B(MA): 2 fm? -2

Note that since the units for reduced transition probabilities involve e? or u%;, the
explicit values of these two quantities in conventional units must be put into the ex-
pressions in order to evaluate the transition probability W.

Besides the reduced transition probability, the only other dimensioned quantity in
the expression for W(A) given in Eq. (5-27) is the factor k®**! /K. Since k is in units
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of inverse length and # is in units of energy multiplied by time, the units of electric
transition probability is

[fm~l]2/\+l

W(EA): v

x e2[fm]**
Using the relation e2 = afic and the fact that the fine structure constant « is a dimen-
sionless quantity and fic is in units MeV-fm, we obtained the correct result,

[fm"l ]2A+1

W(EM) : Meva]

x [MeV-fm][fm}** = s}

as expected. For magnetic multipole transitions, we need only to examine the difference

between u% and e?. Since
eh

2Myc

Uy =
in cgs units, the dimension of p% is
py o €fm)’

Since B(M)) is measured in units of p2,fm**~?  we see that W(M \) also has the correct
dimension of inverse time.

Selection rules. We have stated earlier that, for y-rays with energy of the order of
a few mega-electron-volts, transitions of different multipolarities have quite different
rates. We can also see this from the energy dependence of W(A) given by the factor
k22t In terms of the ratio between two multipole transitions A and A+ 1, we find that

W +1)
W(A)
A length factor 7 is included in the calculation so as to make the ratio a dimensionless
quantity. Since nuclear size is of the order of a few femtometers, we can take r to be
1 fm for the purpose of making an estimate. This gives us the result that, for a 1-MeV
4-ray, R is of the order 3 x 107, A more precise calculation of the factor relating
transition probabilities with reduced probabilities for both electric and magnetic tran-
sitions produces the results shown in Table 5-1. Note that the difference in numerical
factor between electric and magnetic transitions of the same multipolarity is (h/2Mpc)?
femtometers squared, coming from the difference in the units for B(EX) and B(MA).

Because of the large reduction in probability with increasing multipolarity order,
the transition between an initial nuclear state with spin-parity J and a final state
J}" is usually dominated by the lowest order allowed by angular momentum and par-
ity selection rules. For transition of order A, the operator carries A units of angular
momentum. As a result, the transition vanishes unless J; = XA + J,. The angular
momentum selection rule for the Ath multipole electromagnetic transition is therefore
given by

R = ~ (kr)?

|Jf—Ja|S)\SJf+J.
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The same condition is expressed also by the factor A(Jy, A, Ji) in Eq. (5-7) and is im-
plicit in the reduced matrix element of Eq. (5-28). Together with the energy dependence
in W()), we have the multipolarity selection rule that, for allowed values of A,

W(EN) > W(E + 1)) W(MA) > WM\ + 1))

We shall not make a comparison of electric with magnetic transitions until later, as the
nature of these two operators is quite different.

The operator for an EX-transition is proportional to spherical harmonics Y),(6, ¢),
as can be seen from Eq. (5-29). Under an inversion of the coordinate system, the
transformation property of O,,(EA) follows that for spherical harmonics of order (A, ).
This gives us the transformation property under parity for EA-transitions,

O3 (EN) —— (-1)*On(EN) (5-31)

The magnetic operator, on the other hand, is related to V(r*Y,,(f, ¢)). The presence
of the V-operator introduces an “extra” minus sign under a parity transformation, and
the net result is

O\(M)) ——5— (-1’10, (M) (5-32)
Equations (5-31) and (5-32) give us the parity selection rule,

mny = (=1)* for EA\ map = (=1 for M)

where 7, and 7 are, respectively, the parities of the initial and final states. Because
of this selection rule, EA- and M A-transitions of the same multipolarity cannot occur
between the same pair of nuclear states. For example, in a 2+ — 0% transition, only
an E2-transition can take place, whereas in a 27 — 0% transition, only M2 is allowed.

The difference in the nature of electric and magnetic transition operators also plays
a role in determining the dominant mode of transition between a pair of nuclear states.
In general we find that magnetic transitions are weaker than electric ones. It is not
easy to make a direct comparison here, as electric and magnetic transitions of the
same multipolarity cannot both occur between a given pair of nuclear states because
of parity selection rules. The alternative is the following. For a given pair of nuclear
states, if both EX and M{A+ 1) are allowed by angular momentum and parity selection
rules, the EA-mode usually dominates the transition by a large factor. On the other
hand, if both M{)) and E{A + 1) transitions are allowed, the higher multipole order
electric transition may be competitive, as far as transition rates are concerned, with
the magnetic transition. This is true in spite of the hindrance factor due to energy
dependence. In fact, it is common to find both types of transitions between a pair of
states, such as in the case of 2+ to 1%, where both M1- and E2-transitions are allowed.
The mixture is characterized by the mizing ratio 8, defined by the relation

g2 = WEQ+1) J¢ = Jy8)
W(MX; J.{ — J1€)

The sign of é is given by the relative sign of the reduced matrix elements of the two
transitions where such a sign can be determined.
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The reason for the dominance of electric over magnetic transitions may be inferred
from the fact that the operators for magnetic transitions differ from the corresponding
ones for electric transitions by a gradient operator V. Since it is a differential operator,
it tends to reduce the size of the matrix element. Similar differences are also found in
other electromagnetic processes.

Internal conversion and internal pair production. Besides vy-ray emission, elec-
tromagnetic decay can also take place through internal conversion and internal pair
production. In internal conversion, an atomic electron is ejected instead of a y-ray.
The kinetic energy of the electron is equal to the de-excitation energy E, ~ E;(= E,)
minus the (atomic) binding energy of the electron. As a result, electrons emitted from
internal conversion processes have discrete energies and can therefore be distinguished
from the continuous spectrum of electrons emitted in §~-decays to be discussed later in
§5-6. Since both types of decay can take place from the same excited state in medium
and heavy nuclei, the difference makes it possible to distinguish between them.

The process of internal conversion may be visualized in the following way. When
a nucleus de-excites, for example, either by a nucleon jumping from one single-particle
orbit to another or by a change in the rotational motion of the nucleus as a whole, a
sudden disturbance is sent to the surrounding electromagnetic field. Atomic electrons,
especially those in the innermost orbits, such as the K- and L-orbits, spend a large
fraction of the time in the vicinity of the nucleus, the source of the electromagnetic field
of interest here. It is therefore probable for the disturbance in the electromagnetic field
to transfer the excess energy in the nucleus to one of the electrons and eject it from
the atomic orbit. This is similar to the atomic Auger effect where, instead of emitting
a photon when an atomic electron de-excites from a higher to a lower energy orbit, one
of the atomic electrons is ejected.

Internal conversion is important in heavier nuclei for two reasons. First, the radii
of atomic electron orbits are smaller because of the strong Coulomb fields provided by
heavy nuclei. The probability of transition is increased as a result of the larger overlap
between the wave functions of the nucleus and the inner shell atomic electrons. For
this reason, the electrons ejected come mainly from the innermost shells. Second, the
stronger Coulomb field in heavy nuclei exerts a larger influence on the surrounding.
For these reasons, the importance of internal conversion increases roughly as Z3 and
becomes competitive with «-ray emission for medium and heavy nuclei.

In nternal pair production, an electron-positron pair is emitted in the place of a
v-ray when an excited nucleus decays through electromagnetic processes. As long as
the energy of decay is greater than 2m.c? =~ 1.02 MeV, pair production is possible, at
least in principle. However, the process is not an efficient one and is usually several
orders of magnitude retarded compared with allowed «-ray emissions. Pair production
therefore becomes important only when ~-ray emission is forbidden. For example, a
0t — 0% transition is not allowed by y-ray emission, as a y-ray must carry away at least
one unit of angular momentum. In such cases, pair production (and internal conversion
for heavy nuclei) becomes the dominant decay mode. Other possibilities include such
second-order processes as emitting a pair of y-rays, which we have excluded from our
discussions.

The inverse of y-ray emission is Coulomb excitation. Here, the nucleus is excited
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to a higher state as a result of changes in the surrounding electromagnetic field. This
can take place, for example, as the result of a charged particle passing nearby. We shall
see in §8-1 that the nuclear transition matrix elements involved are identical to y-ray
transitions we have been discussing here.

5-4 Single-Particle Value

It is useful to have some feeling of the magnitude of reduced transition probability
between a pair of states. For this purpose, we shall make an estimate of the sizes of
B(EX) and B(M ) that can be expected on the average. A second motivation for doing
this is to have a basis with which we can form some judgment on observed values. As
we shall see later, this is an important function. Since transition probability W()) is
dominated by the energy-dependent factor k2**1, it is difficult to obtain an idea of the
size of the nuclear matrix element involved by looking at the numerical value of W(J).
The common practice is to compare these values with Weisskopf estimates. In fact,
these estimates are so widely used that they are often regarded as the “standard,” or
units, for measuring transition rates.

EM-transition. A calculation of the reduced transition probability requires a knowl-
edge of both the initial and final wave functions. As the first step toward establishing
an average, we shall make some assumptions about these wave functions so that a rea-
sonable estimate may be made without reference to the specific states involved in a
transition. Again, we shall adopt an extreme independent particle picture and consider
nuclear transitions to be taking place by a nucleon moving from one single-particle
orbit to another without affecting the rest of the nucleus. In the case of EA-transitions,
this means that a proton moves from an initial single-particle state | jim;) to a final
one |jymys). In this limit, the matrix element of operator O,,(EA) between many-
body nuclear wave functions | J,M,() and | J; M€ ) reduces to a single-particle matrix
element,

A
(T MEIY e(k)raYau(Or, o)l JiMiC) = (3ymyler*Yau (6, 8)ljim.) (5-33)
k=1

where we have made use of the explicit form of O,,(E)) given in Eq. (5-29) to express
the EA-transition operator as a sum of single-particle operators.

A single-particle wave function may be decomposed into a product of three parts:
a radial wave function R,e(r), an orbital angular momentum part given by spherical
harmonics Yym (6, ¢), and an intrinsic spin part x,,,. By coupling Yem(8, ¢) with x,,,
to angular momentum (j,m), we have the result

[im) = Rue(r){Ye(6, ¢) x Xx/z}jm

where 7 is the principal quantum number. The single-particle matrix element on the
right-hand side of Eq. (5-33) can now be written in terms of a product of a radial
integral and a matrix element in angular momentum space,

GrmalerYudim) = [~ B e, (1) 1o (r) 2 dr
X({Ye (8, 8) X X1 /2 };,m, 1 Y2u (0, I{Ye, (6, 8) X Xy 5}, m,)  (5-34)
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We shall now make some further simplifying assumptions so that the averages of both
quantities on the right-hand side may be evaluated without having to specify explicitly
the single-particle states involved.

The radial dependence of Eq. (5-34) is contained in the integral

(r*) = /R;ll!(r) T Rp ¢ (r) v dr

where Ry ¢,(r) and Ry (7) are, respectively, the normalized radial wave functions of
the initial and final single-particle states. The exact value of the integral depends on
the radial shapes. However, to a first approximation, it is determined by the power
A and the size of the nucleus. For the purpose of an estimate, we can simplify the
situation greatly by assuming that the nucleus is a sphere of uniform density with the
radius R = r¢A!/3. In this approximation, the radial integral reduces to

3 ra AM3 (5-35)

=573

For rp, we can use the value of 1.2 fm from electron scattering. (See Problem 5-5 for
values obtained with the more realistic harmonic oscillator radial wave functions.)

Using Eq. (5-28), an estimate for the reduced transition probability of an E)-
transition may be put into the form

Bewt.(EX) = % I M7E|OA(EX ML)
uM;

= 52(7"\>2 E ((Yl;(ew b) % X]/Z)]!ml ‘Y,\,,(B, OI(Ye (6, 8) % Xl/g)J,m,>2 (5-36)

myp

The only matrix element remaining involves angular momentum and can therefore be
evaluated using standard techniques of spherical tensors. However, there is very little
point to do this. Since the total solid angle about a point is 47 steradians, an average
of any angular dependence must be around the value 1/4x. Hence, for the purpose of
an estimate, we can take

B (EX) = 62(r’\)2i

On substituting the value of the radial integral given in Eq. (5-35) and using 1.2 fm
for 79, we obtain the Weisskopf single-particle estimate for the Ath multipole reduced
electric transition probability,

3

= 3)2(1.2)2,\142/\/3 em?

1
Bw(EX) = —
w(EX) 47r(
As mentioned earlier, this value is often used as the unit for EA-transition and is also
called the Weisskopf unit for reduced transition probability for this reason.

MM\-transition. Estimates for magnetic transitions are slightly more complicated,
as we have contributions from both nucleon intrinsic spin and proton orbital motion.
We may proceed essentially along the same line as we have done above for electric
transitions. This involves adopting an extreme single-particle model and making use
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of the last form of operator Oy, (MA) given in Eq. (5-30) to reduce the nuclear matrix
element to a single-particle matrix element. In parallel with Eq. (5-36), we have the
expression

Be (MA) = S [{Jy MsE|OM (BN M)
uMy
= A(2X + 1)(r-)2

«Z{lo-534)

x((yl/(qu&) X X1/2)j,m,'(y(»\—l)(0’ ¢) X B)Apl(yli(0’¢) X X]/z)j,m;)
oo (Y10, )% X33 g (Va0 ) X D Ve, 91X 1))}
(5-37)

Again, we shall take the nucleus to be a constant-density sphere of radius R and average
over the angular dependence. The result of the radial integral may be taken to be

O-Dy = 3 0= 4013
(r 0y = 33" A
the same as we have done to arrive at Eq. (5-35). [Strictly speaking, the factor in front
on the right-hand side should instead be 3/(A + 2) but is kept in the form given to
conform with that for E)-transitions.|

For the purpose of an estimate, it is adequate to evaluate either one of the two terms
inside the curly brackets in Eq. (5-37) and multiply the result by 2 (before taking the
square). Factors related to the gyromagnetic ratios in the first term may be replaced
by a reasonable average value, and this is generally taken to be

29, \2
M2A +1)(g, - A+1) ~ 10
For the average of the square of the angular part, we can again take the value 1/47
used earlier for EA-transitions. This gives us the result

Bw(M)) = ( /\3 o) (LA e (5-38)

as the final form of the Weisskopf estimate for reduced magnetic multipole transition
probability.

The results of Egs. (5-36) and (5-38) may be substituted into (5-27) to produce the
Weisskopf units for transition probability:

Br(A +1) 1( D+
Ww(EX) = ahe s T yim R hc) 41r(A+3

2 8r(A+1) 1/1\*"N0, 3
)A[(2A+1)"]2h( ) (A+3

) (1. 2)2AA2A/3EzA+1

Ww (M) = ahe (

= )il 2)PA~2 A(A=2/3g2r+1

Explicit values in terms of nucleon number A and transition energy E, are listed in
Table 5-2.
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Table 5-2: Weisskopf single-particle estimates for EX- and M A-transition
probabilities and widths.

Order EX M
AW I (MeV) W (s7Y) I (MeV)
1 ]102x10%  675x1078  A23ES 1315x108  207x 1078 B3
2 |728x10"  479x 107 AYAE} | 224x10"7 147 x107M ARES
3 [339x10  223x107° A2E] 1.04 x10  6.85x 1072 AY3E]
4 | 107x107%  7.02x1077 ASPE] [327x107° 216 x107% AE]
5 (240x10712 158 x107%  AMBEI | 736 x 10713 484 x 1073 4ED

E, in MeV. The E,- and A-dependent factors are common to both W and I'.

In terms of Weisskopf units, the measured reduced rates are observed to vary by
several orders of magnitude, sometimes even for transitions within a single nucleus.
This shows the richness of physics contained in electromagnetic transitions between
nuclear states. For a transition to be enhanced by an order of magnitude or more over
the single-particle values we have estimated, many nucleons must be acting together in
a coherent manner. As we shall see in Chapter 6, this leads to the concept of collective
motion in the form of nuclear vibrations and rotations.

5-5 Weak Interaction and Beta Decay

Nuclear A-decay is one of the many facets of weak interaction. In addition to transitions
between nuclear states, a variety of other phenomena involving hadrons and leptons
share the same origin. Being slower by several orders of magnitude, these weak processes
cannot be observed if there are competing reactions induced by electromagnetic and
strong interactions. For this reason, weak interactions can be studied only in cases
where these faster processes are either forbidden or hindered by selection rules.

The basic reaction involving weak interaction in nuclel may be characterized by the
decay of a neutron and a (bound) proton,

n — pt+e +U
Pbound — TL+€++Ue

(5-39)
(5-40)

introduced earlier in Egs. (2-1) and (2-2). These transitions are examples of a general
class of decay taking place in other hadrons as well. For example,

+
o {:; ::" (5-41)
[
1 {“_ NG (5-42)
e~ + 7,
5 - n+w” (5-43)
44 .0
Kt — {“++"_ . (5-44)
(LA S B o 3
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Reactions such as those given by Egs. (5-39) to (5-42) are referred to as semi-leptonic
processes, since both hadrons and leptons are involved. Some weak interaction processes
do not involve any leptons at all and are called non-leptonic processes, such as those
given by Eqs. (5-43) and (5-44). There are also purely leptonic processes, such as the
decay of a muon,

W e + T+, (5-45)

Our main concern will be the semi-leptonic mode, as nuclear 3-decay is a part of it.

Universal weak interaction. Weak interaction processes are often said to be um-
versal, as the strength of the basic process is the same for all three different types of
reactions described in the previous paragraph. This point is illustrated by the fact that
the coupling constant G, generally known as the Fermi coupling constant, has the
same value,

Gp = 1.43572(3) x 1072 J-m? = 1.16639(2) x 107"} (Ac)® MeV™? (5-46)

regardless of whether it is measured through superallowed S-decay in nuclei (see next
section and Problem 5-2), the decay of muons shown in Eq. (5-45), or other weak
interaction processes.

Weak interactions are mediated by vector bosons W* and Z°, in the same way as
electromagnetic interactions are carried by photons. However, because of their large
mMasses,

myc? = 80.36 + 0.12 GeV mzc? = 91.187 £ 0.007 GeV

the range of weak interactions is extremely short (ro = i/me ~ 1073 fm), about three
orders of magnitude smaller than the long-range part of nuclear force. For this reasan,
weak interactions may be considered as zero-range, or “contact,” interactions for all
practical purposes in nuclear physics.

Since bosons W? carry net charges, they change the charge state of a particle as,
for example, in the reactions given in Eqgs. (5-39) and (5-40). Pictorially, these two
processes may be represented by the diagrams shown in Fig. 5-1. Most weak decays

€ U, et Y,
*’ V : V
n p

Figure 5-1: Diagram showing ™ -decay of a neutron into a proton by emitting
a W~-boson and B*-decay of a (hound) proton into a neutron by emitting a
W-boson. In hoth cases, the W-boson decays into a pair of leptons.
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are mediated by charged bosons, as illustrated by the examples given in Eq. (5-41) to

(5-45). The neutral boson Z¢ is the source of neutral weak current and is responsible
for reactions such as neutrino-electron scattering:

v+e —v+e

In spite of its small cross section, such processes are important, for example, in trapping
the energy inside the outer shell of a supernova, preventing large amounts being carried
away by neutrinos immediately after the explosion (see §10-4).

On a more fundamental level, #-decay of hadrons may be viewed as the transforma-
tion of one type of quark to another through the exchange of charged weak currents. As
we have seen in Chapter 2, the flavor of quarks is conserved in strong interactions. How-
ever, through weak interactions, it is possible for quarks to change flavor, for example,
by transforming from a d-quark to a u-quark,

d—ut+e +7, (5-47)

This is what takes place in the §~-decay of a neutron. In terms of quarks, Eq. (5-39)
may be written as
(udd) — (uud) + e~ + 7,

Similarly, the A*-decay of a bound proton to a neutron involves the transformation of
a u-quark to a d-quark,
u—d+et +u, (5-48)

Diagrammatically, the processes given by Eqs. (5-47) and (5-48) may be represented
by Fig. 5-2(a) and (b). The other weak transitions given in Eq. (5-41) to (5-45) are
represented by diagrams such as those shown in Fig. 5-2(c) to (e).

When a quark decays, it does not necessarily have to result in a quark of definite
flavor. For the simple case of weak decay among the four lightest quarks, u, d, s, and ¢,
the flavor mixing in the decay product may be expressed in terms of a single parameter,
the Cabibbo angle 4.,

u—d = dcosf,+ ssinf,
(5-49)
c— s = —dsinf.+ scosé.

This is reminiscent of what we saw in §2-7 on SUs(flavor) symmetry mixing. There,
the observed pairs of neutral mesons, (n,7') and (p,w), are mixtures of the SU;(flavor)
symmetry-conserving pairs (ng, 7s) and {¢q, ¢s), respectively.

The observed weak transitions are, however, between quarks of definite flavor, for
example, u- and d-quarks, as in the decay of a neutron to a proton. The relation
given in Eq. (5-49) implies that the observed f-decay strength in reactions is not the
fundamental weak interaction coupling constant G itself, but a value modified by the
mixing angle.

It is customary to express the transformation given by Eq. (5-49) in the form of a

charged current,
+ o cosb. sinﬂc)(d)
Teak = (T T) ( ~sinf, cosf./ \s
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(2) ®
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Figure 5-2: Weak decay of quarks: (a) a d-quark becomes a u-quark by emitting
a W ~-boson, similar to a neutron decaying into a proton; (b) a u-quark is changed
into a d-quark similar to a bound proton decay; (c) an example of semi-leptonic
decay given by Eq. (5-42); (d) an example of nonleptonic weak decay in Eq. (5-43);
and (e) an example of purely leptonic decay given by Eq. (5-45).

In terms of such a current, the more general case involving all six quarks may be written
as
o Mu My Mg\ (d
Te =(@TE) | My My My || s
My My My b

where the 3 x 3 matrix is known as the Cabibbo-Kobayashi-Maskawa matrix. The nine
matrix elements are functions of three mixing angles and a phase factor. A complete
determination of all the independent matrix elements involves weak decays of the heavy
quarks as well.

For nuclear J-decay, we are mainly concerned with the transition between u- and
d-quarks. As a result, only the product between the Fermi coupling constant G and
cos @, enters into the process. The mixing angle is sufficiently small that we can ignore
it for most of our purposes. In order to simplify the notation and to avoid any possible
confusion, we shall use the symbol Gy, the vector coupling constant, to represent the
product and omit the explicit presence of the mixing angle. However, we must be aware
of the difference, for example, when we compare the value of Gp with the measured
strength of weak decays in nuclei, as done in Problem 5-2.

Parity nonconservation. One of the more remarkable properties of weak decay
is that parity is not conserved. We need to go into this point somewhat, since it
ig closely linked with the nature of nuclear f-decay operator. As described in §A-1,
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parity transformation is the operation that inverts the spatial coordinates,
(@,9,2) —5— (—z,~y,~2)

It is often described in terms of taking a mirror image of the coordinate system, as
can be seen from Fig. 5-3. Under a parity operation a scalar (S) is unchanged, but
a vector (V) of the type we normally use changes sign. Where needed, we shall refer
to such vectors as polar vectors, to distinguish them from axial vectors, to be defined
next. Examples of polar vectors are spatial location » and momentum p.

z z

(a) (b)

Figure 5-3: Parity and direction of spin. Under a parity transformation, a
right-handed rotation, shown in (a), is changed into its mirror image, a left-
handed rotation, shown in (b). The transformation in the coordinate axes is
accomplished by (z,y,2) — (—z, -y, —z) followed by a rotation of 180° around
the y-axis.

We can also construct vectors that do not change sign under a parity transforma-
tion. For example, the angular momentum vector £k = r x p does not change sign
under a parity operation, as both r and p reverse signs. Vectors that do not change
sign under an inversion of the coordinate system are called azial vectors (4). All an-
gular momentum operators, including intrinsic spin operators, are axial vectors. The
scalar product of an axial vector and a polar vector is a scalar that changes sign under
a parity operation. Such scalars are called pseudoscalars (P). There is also a fifth
category of quantities called tensors (not to be confused with spherical tensors, which
we use for angular momentum algebra) that behave differently from S, V, A, and P
under a parity transformation, but we shall not be concerned with them here.

An operator made of a linear combination of scalars and pseudoscalars, or vectors
and axial vectors, does not have a definite parity, and as a result, parity is not con-
served under its action. For strong and electromagnetic interactions, parity is strictly
conserved. That is, all such processes are invariant under spatial inversion. However,
this is not true for weak interaction.

The suspicion of parity violation in weak interaction originated from observations
made on the decay of a K*-meson. Two different modes have been observed, one
having two pions in the final state and the other having three pions, as shown in
Eq. (5-44). Since these two modes have different parities, parity nonconservation in
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weak decays was proposed as the resolution. The confirmation of this suggestion came
from observing the 3~ -decay of 9°Co [154],

0Co — ONj 4 e 47,

The ground state of odd-odd nucleus §9Co has spin-parity J* = 5%, as shown in Fig. 5-4.
A nonzero spin is essential here so that the nucleus can be polarized (that is, have the
nuclear spin aligned) along the direction of an external magnetic field. The ground
state decays predominantly (99% of the time) to the J™ = 4% excited state of SONi at

excitation energy 2.51 MeV. The decay is purely of the Gamow-Teller type (see next
section).

Figure 5-4: Decay scheme of 8Co
to °Ni. The main branch leading
to the 4*-state at 2.51 MeV in 9Ni
is a Gamow-Teller transition and is
used in one of the first experiments
to demonstrate parity nonconserva-
tion in 8-decay. (Plotted using data
from Ref. [95].)

50ni
If the spins of all the ®*Co nuclei are aligned, we have a fixed direction in space
that is defined in a natural way by the experimental setup. This direction may be
indicated by a unit vector o parallel to the alignment of the ©Co ground state spin
J. The angular distribution of electrons emitted with momentum p and energy E may

be expressed in the following form (see, for example, p. 67 of Morita {105] or p. 290 of
Eisenberg and Greiner [55] for a derivation),

o-pc
E

where § is the angle with respect to J by which the electron is emitted, E is the total
(relativistic) energy of the electron, and the parameter a gives the intensity of angular
dependence. Under a parity operation p, being a polar vector, changes sign and o,
being an axial vector, does not change sign. The product o - p in the second term of
Eq. (5-50) is then a pseundoscalar and changes sign under an inversion of the spatial
coordinate system. On the other hand, the first term (unity), being a scalar, remains
invariant. If parity is conserved in the decay, the second term of Eq. (5-50) must vanish
on account of the fact that ¢ - p —, —o - p. As a result, we expect ¢ = 0 and the
angular distribution of electrons emitted to be isotropic. Experimentally, a turned out
to be —1, indicating a maximum degree of parity violation. The same conclusion is
later confirmed by other measurements, such as the decay of pions and muons.

The result @ = —1 may also be examined from the point of view of the helicities of
the leptons involved. The helicity of a particle is defined as the projection of o, which

W(@) xl+a

=1+ a% cos § (5-50)
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we shall take here as twice the intrinsic spin s along its direction of motion

-7P ;
h = (5-51)

For a massless particle, the eigenvalues of h can only be £1. An example of a particle
with only two possible orientations is provided by the photon, which, as we have seen
earlier, can have only two linearly independent polarization directions. For electrons
and other particles with nonzero rest mass, the helicity takes on values +v/c. Particles
with positive helicity are often referred to as “right-handed” particles and negative-
helicity particles are often called “left-handed” particles. If the neutrinos are massless,
they should behave in ways similar to photons and & can have values +1. Experimen-
tally the helicity of neutrinos was first determined by Goldhaber, Grodzins, and Sunyan
[75] through electron capture (see next section) in the 0+ ground state of %2Eu leading
to the 1~ excited state of 12Sm at 963 keV,

e~ + 152Eu — v, + 152Smt(1-—) —_— v, + 152Sm(0+) + ¥

By measuring the polarization of the y-ray emerging from the decay of 32Sm to its 0%
ground state, the helicity of v, emitted in the electron capture process was determined
to be ~1. Other nuclear g-decays put the helicity of 7, to be +1, as well as h = ~v/¢
for the electrons and h = +v/c for the positrons emitted.

Two important consequences follow from these experimental observations. The
first comes from the fact that all the leptons emitted in 8-decays are observed to be
left-handed (h < 0) and all antilepton right-handed (h > 0). For reasons we shall not
go into here, operators that are scalars, pseudoscalars, and tensors produce leptons
(as well as antileptons) of both helicities under a parity transformation. Only vector
operators V' and axial-vector operators A can accommodate the observed result that
all leptons are of one helicity and antileptons are of the other value. Furthermore, since
V and A are of different parity, a linear combination of V and A is required as the
operator for B-decay. This leads to the V — A theory of S-decay. [The minus sign is
related to the fact that ¢ = —1 in Eq. (5-50) rather than +1

A second consequence of the observation that neutrinos are found only with helicity
h = —1 and antineutrinos with h = +1 is that neutrinos may be described by a two-
component wave function. In Dirac theory, wave functions of spin—% particles have four
components so as to describe both particle and antiparticle, each with projections of
spin :l:% along the quantization axis. If neutrinos are always of one helicity and antineu-
trinos always of the opposite helicity, then a two-component theory will be adequate,
as particles have h = —1 and antiparticles h = +1. However, such a simplification
also implies that neutrinos are massless, and an experimental determination whether a
neutrino has a nonzero rest mass is of fundamental interest here as well.

Fermi and Gamow-Teller operators. Since f-decay contains both a vector part
and an axial-vector part, we expect that there are two independent operators, each with
its own strength and its own radial dependence. As far as nuclear §-decay is concerned,
the situation is somewhat simpler for two reasons. The first comes from the fact that
weak interaction has very short range, much smaller than nuclear dimensions, as we saw
earlier. For this reason, the radial dependence of the operators may be approximated
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by a delta function. This leaves only the strengths, or coupling constants, of each of
the two operators to be specified.

The two coupling constants for nuclear 3-decay may be put in the form of a vector
coupling constant Gy for the vector part of the operator and a Gamow-Teller coupling
constant G4 for the axial-vector part. We have aiready seen that Gy is related to Gp,
the coupling constant underlying all weak interaction processes. The second simplifying
feature of nuclear G-decay processes is that G 4 is related to Gy. This results from the
belief that the difference between G4 and Gy is only becaunse of modifications of the
axial-vector operator in the presence of strong interaction. The vector current, which
may be indicated by a four-vector V,, is known to be a conserved quantity, i.e.,

4
Wu g (5-52)
= dz,
This is generally referred to as the conserved vector current (CVC) hypothesis and is
analogous to the continuity equation in electromagnetism.

On the other hand, the axial-vector current A, does not have such a relation,
i.e., the divergence of A, does not vanish, (This is related to the decay of pions, which
are pseudoscalar particles.) Since A, is an axial vector, its divergence is a pseudoscalar.
As we have seen in §2-7, the pion is a pseudoscalar particle and therefore is described by
a pseudoscalar field. This leads to the partially conserved azial-vector current (PCAC)
hypothesis, \

0A,
—t —q 5-53
"; Oz, On (5-53)
where ¢, represents the pion field and a is a constant. In other words, the axial current
is not conserved, but its divergence is proportional to the pion field ¢,. The weak
axial-vector current is now related to a strong interaction field through a PCAC. (For
further details, see, e.g., de Shalit and Feshbach [49] and Lee [96].)

A connection between the two weak coupling constants G4 and Gy can be made
in a similar way. This is known as the Goldberger-Trieman relation, which, for our
purpose here, may be stated in the form of the ratio between G4 and Gy,

_Ga _ fagan
A= 5 = 5
(JV MNC

where M, is the nucleon mass. The quantity f, = F/v/2 is measured to be ~93 MeV
and Fy is known as the pion decay constant. The quantity g,n is the pion-nucleon
coupling constant and its value is known empirically to he

'.’]wNIz
S 14
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From these values, Eq. (5-54) gives the result
lga| = 1.31

The measured value from nuclear J-decay is g4 = —1.259 £ 0.004 (see also Problem

5-2), in agreement with the result of the Goldberger-Trieman relation. This in turn
confirms the PCAC.
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5-6 Nuclear Beta Decay

Nuclear (-decay is the process by which a nucleus made of Z protons and N neutrons
decays to a nucleus of the same nucleon number A but with (Z+1, N¥1). A f~-decay,

A(Z,N) — A(Z+1,N—1)+ ¢ +7, (5-55)

may be regarded as the transformation of one of the neutrons in the nucleus to a proton,
and a 3*-decay,
AZ,N)— AZ~-1L,N+1)+et +u,
as that one of the protons to a neutron.
Analogous to internal conversion in electromagnetic decays, an atomic electron may
be captured by the nucleus instead of emitting a positron in F+-decay,

e +A(ZN)— AZ-1,N+ 1)+,

Except for a small difference in the energies involved, which we shall return to later,
such an electron capture process has the same selection rule as 5*-decay and is usually in
competition with it. The probability of electron capture increases as Z°, again, because
of increased strength of the nuclear Coulomb field and decreased radii of electronic orbits
in atoms with increasing proton number.

Q-values. Some care is needed in calcnlating the @-value for nuclear 3-decay and
electron capture. The @Q-value of a reaction is defined as the difference in the total
kinetic energies of the system before and after a reaction,

Q=T~T,

For a nuclear #-decay, the parent nuclens may be assumed to be at rest in the laboratory,
and the initial kinetic energy 7, in the system is zero. For the decay to take place, the
total kinetic energies in the final state Ty and, hence, the Q-value must be positive.
Since either an electron or a positron is emitted in the process, the @-value is not
simply the difference between the energies of the initial and final nuclear states. (The
neutrino mass is too small, if nonzero, to play a significant role in the considerations
here.)

A further complication comes from the fact that mass and binding energy of a
nucleus are defined in terms of those for the corresponding neutral atom, as we have
seen earlier. That is, the mass difference between the parent and daughter nuclei in a
3-decay,

AMgs = M(Z, N)-M(ZF1,N+1)

includes the mass and the binding energy of an atomic electron as well. For this reason,
the Q-value of §~-decay is given by the expression

Qp- = (M(Z,N) = M(Z + 1, N ~ 1))

as the electron emitted in the decay may be used, as far as energy calculations are
concerned, to compensate for the additional electron required to make the daughter
atom neutral. On the other hand, the @-value for 8*-decay is given by

Qp+ = (M(Z,N) ~ M(Z — 1, N + 1))c? — 2m.c
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The “additional” amount of 2m.c? is required to create the positron emitted and the
atomic electron that must be ejected in going from a neutral atom of Z electrons to
one with Z — 1 electrons.

In contrast, for electron capture, we have the relation

Qec = (M(Z,N) - M(Z - 1,N +1))¢ - B,

where B, is the ionization energy of the atomic electron captured. Since B, is of the
order of 10 eV, we may ignore it unless we are concerned with accuracies of such order
as, for example, in the case of neutrino mass measurements. The difference of 2m.c?
in the Q-values between B*-decay and electron capture is, however, important. For
example, the mass difference between "Be and "Li is 0.86 MeV/c?, less than 2m.c?
As a result, f*-decay from "Be to "Li is impossible, and the transition goes purely
by electron capture with a half-life of 53.4 days, Only a neutrino emerges from an
electron capture. Because of the difficulty in detecting neutrinos, the most prominent
signature of electron capture processes is the z-ray emitted when atomic electrons in
higher orbitals decay to the lower orbitals left empty when an inner shell electron is
absorbed by the nucleus.

In terms of binding energies, the ¢-values above correspond to the following ex-
pressions:

Il

Q- Eg(Z+1,N ~1) - Eg(Z,N) +0.782 MeV
Qo+ = Eg(Z-1,N+1)—Eg(Z,N) - 2mec* ~ 0.782 MeV (5-56)
Qec = Eg(Z-1,N+1)-Eg(Z,N) - B, - 0.782 MeV

where the amount of 0.782 MeV comes from the mass difference between a neutron and
a neutral hydrogen atom,

Transition rates for G-decay. To relate the transition probability W for a §-decay
with the nuclear matrix element involved, we shall follow a procedure that closely
resembles the ane used earlier in electromagnetic transitions. To simplify the discussion,
we shall ignore electron capture. Again, we start with Fermi’s golden rule,

2n
W = = Ha(r) H A do(m) o (Ey) (5-57)
given earlier by Eq. (5-13). The initial state is simple, involving only the parent nucleus,

lpo(r)) = |, M:C) (5-58)

and we shall assume it to be stationary in the laboratory.

The final state consists of three particles, a neutral lepton, a charged lepton, and
the daughter nucleus. For simplicity, we shall begin by ignoring any Coulomb effect
between the charged lepton and the daughter nucleus. In this limit, both leptons are
free particles and are described by plane waves traveling with wave numbers k. and k..,
respectively. The final state wave function is then a product of three parts,

le(r)) = V,. ke j— e 7| M)
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where | J; M) is the wave function of the daughter nuclear state. The two factors of
V=12 are required to normalize the two lepton wave functions. We may expand the
product of the two plane waves in terms of spherical harmonics, as done in Eq. (B-11),

ek = i VAT (2X + 1) %55 (kr) Yxo(8,0)

A=0
where k = |k| = |k.+ k,| and 8 is the angle between k and r. The spherical harmonics
Yau(8, ¢) are independent of the azimuthal angle ¢ for u = 0.

We can, again, make use of the long-wavelength approximation, as the Q-value
of the transition is typically of the order of a few mega-electron-volts. In this limit,
we only need to retain the first term in the expansion of the spherical Bessel function
Ja(kr), as we did earlier in Eq. (5-26),

(kr)*
A+ )

The final state wave function may now be written as

Ialkr) =

o) = {18 e Yot.0) w0 W) (559

This is very similar to what we have done earlier in the multipole expansion of electro-
magnetic transition matrix elements. The only difference, as we shall see later, is that
the higher order terms are retarded by even larger factors in f-decay than in the cor-
responding reduction between successive higher orders in electromagnetic transitions.

Nuclear transition matrix elements. Let us examine first the possible forms of the
nuclear part of the §-decay operator before proceeding to find the transition matrix
element. Since a neutron is transformed into a proton in f~-decay and the other way
around in §*-decay, the nuclear operator must be one body in nature, i.e., only one
nucleon is involved at a time, and must involve the single-particle isospin-raising or
isospin-lowering operator T3. Furthermore, according to the V — A theory, there are
two terms in the weak interaction, a polar vector part with coupling constant Gy and
an axial-vector part with coupling constant G 4. In the nonrelativistic limit, the vector
part may be represented by the unity operator times 7, and the axial-vector part by
a product of the intrinsic spin operator o and 4. A proper derivation of this result
requires manipulations with Dirac wave functions and y-matrices. We shall not carry
out the discussions here, as they can be found in standard references such as Morita
105].

‘ Lutting this result for the operator together with those obtained earlier for the
wave functions in Egs. (5-58) and (5-59), we can write the 3*-decay transition matrix
element of Eq. (5-57) as

A
GOS0 = MGy () + Gaoli)me()}

x{1- z'\/g(krma(e, 0)+ Ok }IAMG)  (5-60)
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For the moment, we shall be mainly concerned with the two leading-order terms in
the expression, generally known as the operators for “allowed transitions.” The higher
order terms involve spherical harmonics of orders greater than zero, and these induce
the “forbidden decays.”

For the allowed decays, the nuclear part of the f*-decay operator has the form

A

0x,(0) = Gy Y_7=(7) + Ga Y_ e (j)7:(4) (5-61)

1=l 1=1

The angular momentum carried by the first term is A = 0 and the second term is A = 1.
The transition matrix element for this f-decay operator is then

A
BN~ G T (M rMQ)
My =
A
+0alIr M3 0 ()me ()1 MiC) (5-62)

where g4 = G4/Gy. The first term here is usually referred to as Fermi decay and the
second term as Gamow-Teller decay. Transitions matrix elements of operators with
A > 1 are usually much smaller in value, as they come from the higher order terms in
Eq. (5-60). Their contributions are important only in cases where the two lowest order
terms are forbidden by angular momentum and parity selection rules.

Density of final states. The density of states in Eq. (5-57) is complicated somewhat
by the three-body final state in nuclear §-decay . Because of conservation laws, the
energy and momentum of one particle are limited in value in a two-body situation by
the amounts taken up by the other. For this reason, the two-body problem simplifies
to an equivalent one-body one. In a nuclear 3-decay, the available kinetic energy, after
taking care of the nuclear recoil, is shared between the neutrino and the electron (or
positron). As a result, continuous energy spectra of the charged lepton and the neutrino
are produced, subject only to the condition that their sum, together with the nuclear
recoil, satisfies energy-momentum conservation for the decay. Furthermore, the charged
lepton is emitted in the Coulomb field of the daughter nucleus and its wave function
is “distorted” as a result of electromagnetic interaction. This also has an effect on the
density of final states available to the charged lepton.

Since a neutrino hardly interacts with its surroundings, it may be considered as a
free particle once it is created. For such a particle, the number of states with momentum
P (= hk,), without any regard to the direction in which the particle is moving, is given
in statistical mechanics to be

1%
= W?ﬁ dp, (5-63)

where V is the same volume as that used for normalizing a three-dimensional plane
wave in Eq. (5-58). If the rest mass of the neutrino is m,, its total energy is given by
the relativistic relation

By = (m,c?)? + plc® (5-64)
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The amount E, is a part of the energy released by the nucleus in going from the initial
to the final state. The rest of the energy is taken up by the charged lepton and the
daughter nucleus.

Instead of the Q-value, it is customary to express the energies involved in a G-decay
in terms of the maximum kinetic energy of the charged lepton emitted. The reason for
this is a practical one, as the electron (or positron) energy is a quantity that can be
observed directly. The maximum value, Eq, is generally referred to as the end-point
energy in the sense that it is the point, in a plot of the number of charged leptons
observed as a function of the kinetic energy, beyond which no more particle is detected.
In terms of the end-point energy, we have the relation

Eu=E0—Ee

where E, is the kinetic energy of the charged lepton. For simplicity, we have ignored
variations of the end-point energy due to small differences in the recoil energy of the
daughter nucleus in a three-body final state. Since nuclear mass is much larger than
those of leptons, the nuclear recoil needs to be accounted for only where high precision
is required. In terms of Ey and F., the density of neutrino states in Eq. (5-63) may be
expressed as
Vv - F

dnv = m@%ﬁ{(% ~ E.)’ ~ (m,¢)}'/* dE. (5-65)
where we have made use of the result p,c = \/E2 — (m,c?)? from Eq. (5-64).

The charged leptons emitted cannot be treated as free particles, as the decay takes
place in the Coulomb field of the daughter nucleus. A good approximation may be
obtained by starting from a free particle and folding in a distortion factor F(Z, E.)
to correct for Coulomb effects. Analogous to Eq. (5-63), the density of charged-lepton
states may be written as y
= mF(Zy Ee)pz dpe (5-66)
The correction factor F(Z, E,) is known as the Fermi function. In nonrelativistic limit,
with the velocity of the charged lepton v « c, the function is related to the absolute
square of the Coulomb wave function at the origin [see also Eq. (B-50)] and has the
approximate form

dn,

T
F2E) = 1=
where z = F2raZcfv for B*-decay, with o as the fine structure constant. The general
form of the function is much more complicated and does not have a simple analytical
representation. Extensive tabulated values are available and they are the ones usually
used in practical applications. A full discussion of the Fermi function can be found in
Morita [105].
The results of Eqs. (5-62), (5-65), and (5-66) can now be put into {5-57), and we
arrive at the transition probability for an electron or positron emitted with momentum

pe(= lpel)a
W(p.)

(5-67)

% I(Jfo’fIOz\u(ﬂ)lJuM-C)lz
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X F(Z, Eo)p2(Eo — E){(Eo — E.)? — (m,c?)*}/?
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where all factors related to V, the (arbitrary) normalization volume, cancel each other,
and the summation over M; takes care of the requirement to include all the possible
nuclear final states.

Let us ignore the possible small neutrino mass for the time being. The expression
for W(p.) simplifies to

Wip) = s S IMEIOMEIMA FZ BB~ B} (568)
My

The approximation affects mainly the region where E, is very close to the end-point
energy Fq and the influence of m, is most evident. From Eq. (5-68), we see that
{W(p.)/ptF(Z, E.)}!/? is proportional to Eg — E,. A plot of the former quantity
as a function of the latter produces a straight line (except in the region of the end-
point energy) with a slope proportional to the nuclear matrix element. Such a graph,
represented schematically in Fig. 5-5, is called a Kurie plot.

PERFECT RESOLUTION FINITE RESOLUTION

Ea

J

—4% Ee
myC

ENERGY OF ELECTRONS EMITTED

Figure 5-5: Schematic diagram of a Kurie plot. The solid lines are for the case
of finite nentrino mass m,, and the dashed lines are for m, = 0. With perfect
resolution the plot, as shown in (a), is a straight line intersecting the horizontal
axis at the end-point energy Fp if m, = 0. Finite resolution of the detector
modifies the region near the end-point energy, as shown in (b).

Neutrino mass measurement. It is convenient to digress here into a few remarks
on the measurement of m,, the mass of an electron neutrino. All evidence to date
indicates that m, is small, of the order of electron-volts, although the possibility of
m,. = 0 is not ruled out either. The masses of the other two neutrinos, v, and v, are
expected to be larger; the present upper limits are, respectively, 0.5 and 70 MeV/c2.

Most direct measurements of m, make use of the §~-decay of the triton, consisting
of one proton and two neutrons. There are many reasons for favoring this reaction.
The decay

t—He+e +7,

has a half-life of 12.3 years. The @-value is low, 18.6 keV, so that the influence of &
small m, stands out more prominently than otherwise, for example, in a Kurie plot.
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The excited states of the daughter nucleus *He are very high in energy, and as a result,
the ground state is the only possible final nuclear state for the decay. In addition, the
radioactive tritium source is relatively easy to prepare. There are, however, several
difficulties associated with the measurement that are hard to overcome. The first
one arises mainly from the low counting rate near the end point, a common problem
in all nuclear 3-decays. The second one comes from the fact that the expected rest
mass energy of the neutrino is comparable to the excitation energies in atoms. As a
result, atomic effects, which are seldom a problem in nuclear measurements, become
an important issue here. For example, there are two possible final atomic states for
He, and the relative probability of forming them must be known fairly well in order
to obtain a reliable final answer on m,. Currently, there is still no agreement between
the measured values from different laboratories. One of the quoted values, ~ 30 eV/c?,
came from the first measurement of Lubimov et al. [99], and the results are shown
in Fig. 5-6. Observations of neutrinos from the supernova SN 1987a, atmospheric
neutrinos produced from cosmic rays, and those obtained from reactors and accelerators
put the possible value to be much lower, somewhere around a few electron-volts divided
by ¢?. However, the possibility of zero is by no means ruled out.
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measurements, The dashed curve z
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Total transition probability. Let us return to the question of nuclear g-decay. If
we are not interested in the distribution of charged leptons emitted as a function of E,,
we can integrate W(p.), given by Eq. (5-68), over all possible values of momentum p.
and obtain the total transition probability W,

mbc? N
W= [Wp) dp. = 2252 £(Z, Bo) > (11 ME]05, (B)10.Mic)|
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where the dimensionless function

= Pe 2(E()—Ee)2dpe
N7, B} = /F(Z'EE)(mec) mec? ] mec
L 2 g2
= i / F(Z, Ec) p(Eo — E)” dpe (5-69)

is known as the Fermi integral. Except in the trivial case of Z = 1 for the daughter
nucleus, the integral must be evalnated numerically. Extensive tables of calculated
values are available [60], and some of the typical values are plotted in Fig. 5-7.
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Figure 5-7: Fermi integral f(Z, Ep) of Eq. (5-69) as a function of the end-point
energy Ep for different proton number Z in the daughter nucleus. The long dashed
curves in the upper half of the diagram are for 3~ -decay and the short dashed
ones in the lower half are for A*-decay. (Adapted from Refs. (59, 61].)

From the transition probability, we obtain the expression for §-decay half-life,

T = In2 1 2m3 R In2
YETW T F(ZBo) mEC [T, (I MiEIOMBII M)

Instead of half-lives, nuclear 3-decay rates are often quoted in terms of ft-values, the
product of the Fermi integral f(Z, Ey) and Ty,

2n3h? n2
M | na, (T MyE1Oxu(B)1 i MLC)

As we can see from the definition, the ft-value is a more meaningful physical quantity
in nuclear f-decay studies, as it is directly related to the square of the nuclear transition

ft=f(Z,E))Thy, = (5-70)
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matrix element. The half-life, on the other hand, involves f(Z, E,), which depends in
a complicated way on the proton number of the daughter nucleus and the end-point
energy. We have already encountered a similar problem in the study of electromagnetic
decays. There, half-lives are dominated by energy dependence and the quantities more
directly related to nuclear physics are the reduced transition probabilities B()) and
transition rates measured in Weisskopf units. The ft-value in B-decay plays a similar
role as B() in electromagnetic transitions.

The measured ft-values are found to vary over many orders of magnitude, especially
when we consider both allowed and forbidden decays. For this reason, it is often more
convenient to use log ft values, the logarithm to the base 10 of the ft-values. The
distribution of measured log ft values is shown in Fig. 5-8.
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Figure 5-8: Systematics of observed log ft values. The grey area in the upper
panel shows 718 cases of 0" = 1t allowed transitions, and the remaining 1741
cases of other allowed decays are shown by the white histogram. The peak of
the distribution for the 24 cases of 0% — 0% superallowed decay is indicated
by the arrow. The 216 first-forbidden unique transitions (|J, — Jg| = 2) are
shown by the shaded part in the lower panel and the 1086 cases of other first-
forbidden transitions by the white histogram. Only 37 second-forbidden and 3
third-forbidden cases are known. The four reported cases of the highest order,
fourth, have log ft values above 20. (Based on data in Ref. {79}, selected by Singh
et al. (128].)
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Allowed (-decay. Let us return to the operator for allowed decays, given earlier
in Eq. (5-61). The Fermi term involves only the isospin-raising or isospin-lowering
operator. As a result, it is possible to carry out the summation over all the nucleons
explicitly,

A
X_; :(J) = Ty

where T lowers or raises the third component of the isospin for the nucleus as a whole.
If isospin is an exact quantum number, the matrix element for the Fermi operator can
be evaluated without having to know explicitly the wave functions involved,

A
(JrMTTogl Y- (M T To,)

=1

= \T.(T; + 1) = To(Tow F 1) 63,4, 14,87, 7,870, (10 51) (5-71)
As we have seen earlier, both the Coulomb force and the difference in the mass between
charged and neutral pions violate isospin symmetry and, consequently, affect the actual
value of the Fermi matrix element. In practice, it is found that, for light nuclei, the
necessary correction factors are uite small and, in certain cases, can be evaluated to
sufficient accuracy so that the final results are reliable to an uncertainty of 0.1% or less.
From the results given by Eq. (5-71), we find that the angular momentum and
isospin selection rules of Fermi-type %*-decay are the following:

Jp=J; (AJ =0)

Tr=T;#0 (AT =0, but T, = 0 — Ty = 0 forbidden) (5-72)
Toy=TaF1 (AT =1)

Ar =0 no parity change

In other words, Fermi decay goes primarily between isobaric analogue states where the
only difference between the initial and the final states is the replacement of a proton by
a neutron or vice versa. However, since the operator has isospin rank unity, the matrix
element vanishes if both initial and final states has 7' = 0. For this reason, the decay
is forbidden between T = 0 states.

For the Gamow-Teller operator, 3-; a(j) (), the summation over nucleons cannot
be carried out explicitly, as both spin and isospin of a nucleon are acted upon at the
same time. Unlike Fermi decays, matrix elements for the Gamow-Teller operator, in
general, cannot be evaluated unless both the initial and the final wave functions are
known. The angular momentum and isospin selection rules, however, can be deduced
from the properties of the operator itself. Since the spherical tensor ranks are unity in

both spin and isospin spaces, it is necessary that the initial and final states are related
in the following ways:

AJ=0,1 but J; = 0 — Jy = 0 forbidden
AT =0,1 but T; = 0 — T} = 0 forbidden

(5-73)
Tn[ = To, F1 (ATO = 1)

An =0 no parity change
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The last point, on the parity selection rule, comes from the fact that o is an axial-vector
operator and, consequently, cannot change the parity between initial and final states.
The absolute values of Gamow-Teller matrix elements are generally smaller than those
for Fermi transitions, as both spin and isospin are involved.

For allowed decays, the square of the nuclear tramsition matrix element may be
written as

S |5 MyE10A B M)

My
A
= Ga{yu,MfslT;u‘M,oF t ) (s MElS ol DIMO| )
I nMy 1=1
= GL{(F)* + g4(GT)"} (5-74)

There is no cross term between the Fermi and Gamow-Teller operators, as the matrix
element vanishes on summing over all the possible projections on the quantization axis.
To simplify the notation, we shall use the abbreviations for the matrix elements adopted
in the final form of Eq. (5-74).

For allowed (-decays, the ft-value of Eq. (5-70) may be written as

K

It= T ey

where the vector coupling constant Gy, as well as other universal constants, is absarbed
into the definition of the constant,

271" In 2
= m =6141.2+32s
Among the factors included, the value of the vector coupling constant Gy is perhaps
least well known. A determination of K is then one way to deduce the absolute value
of Gy. The best measured value of K is currently 6141.2 + 3.2 s, obtained from
superallowed decays after applying such corrections as the finite size and the charge
distribution of the nucleus [129]. The value of the vector coupling constant deduced
in this way is Gy = 1.41556(74) x 10752 J-m? or, in its more commonly quoted form,
Gy /(hc)® = 1,14984(60) x 10~ MeV~2. In order to obtain the Fermi coupling constant
of Gp/(hc)® = 1.16639(2) x 10~!* MeV~2, further correction factors are required (see,
e.g., Ref. [33)]).

Superallowed B-decay. Transitions from an initial nuclear state with J7 = 0% to a
final state with J} = 0+ with the same isospin T form a special class of 3-decay, as the
Gamow-Teller term does not contribute. These are known as superallowed 3-decays.
The transitions are purely Fermi and, as a result, are least sensitive to the details of
nuclear wave functions. Such decays are useful, for example, in defermining the value of
K, and hence Gy, as mentioned in the previous paragraph. Light nuclei are preferred
here, as isospin-breaking effects are smaller than in heavier ones. Superallowed (§7-
decay is often forbidden by @Q-value considerations, as Coulomb energies are higher for
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daughter nuclei with one more proton than the parent. Most examples of superallowed
(-decay are positron emitters for this reason. An example is the case of

O S "N +et + 1,

leading to the OV first excited state of **N at 2.311 MeV. The half-life of 1*O is 74 s and
the @-value of the reaction is 1.12 MeV. The ft-value is 3037.7 s, among the smallest
known. If the initial and final nuclear states are truly isobaric analogue states of each
other, the value of the Fermi matrix element may be obtained using Eq. (5-71) without
referring explicitly to the nuclear wave functions.

The determination of g4, the ratio between axial-vector and vector coupling con-
stants, requires nuclear Gamow-Teller decay, as can be seen from Eq. (5-74). The
best-known value is G

A

ga =

= —1.259 4+ 0.004
Ty

In principle, A~-decay of free neutrons is the ideal reaction to use for the purpose, as
only the nucleon intrinsic spin wave functions enter into the calculation. In this case,
the Gamow-Teller matrix element can be evaluated using the relation

3 X [l M = 3

Hmy

However, we are limited here by our knowledge of the half-life of neutrons, The value
that is quoted nowadays is T, = 614.6 + 1.3 5. Unfortunately, it belongs to the class
of data that change with time, as newer and better measurements are carried out.

Forbidden decay. From the selection rules given in Eqs. (5-72) and (5-73) and sum-
marized in Table 5-3, we see that, for allowed S-decays, the spins of the initial and
final states can be different at most by unity and the parities must be same. Tran-
sitions between states of different parity and AJ > 1 are also known to take place,
albeit with much larger fi-values (i.e., smaller probabilities). These are referred to as
forbidden decays. As we can see from Eq. (5-59), the operators for forbidden decays
involve spherical harmonics of order greater than zero.

Forbidden decays are classified into different groups by the £-value of the spherical
harmonics involved. For a given order £, the possible operators with definite spherical

Table 5-3: Selection rules and observed range of log ft values for nuclear S-decay.

Decay type AT AT Ar | logy ftisa
Superaliowed ot =0t 0 no 3.1-3.6
Allowed 0,1 0,1 no 2.9-10
First forbidden 0,1,2 0,1 yes 5-19
Second forbidden 1,2,3 0,1 no 10-18
Third forbidden 2,3,4 0,1 yes 1722
Fourth forbidden 3,4,5 0,1 no 22-24
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tensor ranks are Yu,(6,¢) and (Yy(6,¢) x o),,. The angular momentum and parity
selection rules for the ¢th-order forbidden transition are then

AJ=¢forf£1 Arm = (-1)"
The isospin selection rule remains the same as for allowed decays,
ATy =1 AT =0,1  but 7, =0 — T; = 0 transitions forbidden

as nothing is different in the isospin structure of the operators between forbidden and
allowed decays. Thus, for first-order forbidden transitions, the operators are 7 Y,(6, ¢)
(proportional to r) and (o X rY1(6, #))r, with A =0, 1, 2. Since the parity of ¥3,(6, ¢)
is =1, a parity change between the initial and final states is necessary.

The reason for the large ft-values in forbidden F-decays comes from the angular
momentum barrier that inhibits lepton emission when £ > 0. This results in a reduc-
tion in the size of the nuclear transition matrix element and, hence, an increase in the
ft-values. Typical values for the various order decays are given in Table 5-3. Distri-
butions of observed log ft values for different orders are shown Fig. 5-8. In general, it
is quite difficult to calculate the nuclear matrix elements for forbidden g-decays with
any reliability, and as a result, relatively few theoretical investigations are found in the
literature.

Charge exchange reactions. Charge exchange reactions can also replace a proton
in a nucleus by a neutron or the other way around. Although the process involves
primarily nuclear interaction, the nuclear matrix element that enters into the reaction
rate is essentially the same as that in a S-decay induced by weak interaction. Relations
between f#-decay and charge exchange reactions are therefore of interest both from the
point of making a connection between these two types of interaction and in studying
the nuclear matrix elements involved.

A typical charge exchange may be illustrated by a (p,n) or (n, p) reaction. In the
former case, a nucleus A is bombarded by a beam of protons. Among the different
possible reactions, we are interested here in the one where the proton is absorbed by
the nucleus and a neutron is emitted in exchange. The nuclear structure part of this
reaction bears strong resemblance to ™ -decay. Apart from the dynamics of scattering,
the main difference between them is that the {p,n} reaction is not restricted by Q-
value considerations leading only to final states that are lower in energy, as given by
Eq. (5-56) for the 3~-decay.

Analogous to the relation between the (p,n) reaction and B~ -decay, we have the
(n, p) reaction,

A(ZNY+n— A(Z-1,N+1)+p

as the complement of S+-decay. From a practical point of view, the reaction is dif-
ficult to study because of the scarcity of energetic neutron beams. A combination of
{p,n) and (n,p) reactions, however, allows a whole range of interesting questions to be
investigated.

Charge exchange processes may also be induced by reactions involving nuclei as the
projectile and scattered particles, such as (*He,t), (°Li,®He), and their inverses. The use
of 3He and heavier ions has the complication that both the incident and the scattered
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particle, as well as the target nucleus, may be excited in the process. In addition,
(r*,7°) and (7, 7%) reactions are also used to examine charge exchange processes, as
we shall see later in §8-6.

With pions and heavy ions, it is also possible to initiate double-charge exchange
reactions, such as (77, 7%} and (7%, 77). In such reactions, a pair of nucleons change
their charge states at the same time. These reactions are sensitive to two-bady correla-
tions in nuclei, a question of importance in nuclear structure studies. The information
is closely related to that obtained through two-nucleon transfer reactions discussed in
§8-2 and is also related to double J-decay described below.

Double fg-decay. Double (-decay is the process by which two electrons or two
positrons are emitted,

A(Z,N) — A(Z+2,N-2)+2c 427,
A(Z,N) — A(Z~-2,N+2)+2" + 20,

These reactions are the result of second-order perturbations induced by weak interaction
and are far slower than normal -decays in which only a single charged lepton is emitted.
As a result, double (-decays are expected to be long-lived, with typical half-lives of
the order of 102 years. Processes with such long half-lives may be observed only in
nuclei where ordinary (-decay and other faster reactions are forbidden by Q-value
considerations. A number of such cases are known and they can be identified by
comparing the binding energies of neighboring nuclei. For example, §2Se is stable
against §--decay to 52Br, as the @-value is —0.90 MeV. However, it is unstable against
double B~-decay to 8Kr, with a Q-value of +3.00 MeV.

It is not surprising that a number of nuclei can, in principle, undergo double 3-
decay. In general, these are even-even nuclei with large neutron excess near, but not at,
the bottom of the valley of stability. Because of pairing energy, they are more tightly
bound compared with neighboring odd-odd nuclei (see §4-9). On the other hand, a
neighboring even-even nucleus with two more protons and two less neutrons may be
more tightly bound if the symmetry energy is larger. As we have seen earlier in the
discussion of binding energies, this term is proportional to (N — Z)2. Since most nuclei
in the medium to heavy range have a large neutron excess, an isobar with two neutrons
less can often be more tightly bound as a result. For this reason, more nuclei are known
to be capable of double f~-decay than those for double 8*-decay. Double §*-decay is
possible, for example, in the case of 19%8Cd to 3¢Pd; the Q-value of 0.7 MeV is, however,
smaller than the typical double 3~ -decay values of 2 to 3 MeV.

One of the interests in nuclear double 3-decay is the question of whether the reaction
can take place without emitting neutrinos. If neutrinos are Majorana fermions, with no
distinction between particles and antiparticles, we can imagine that the neutrino from
the first 8-decay in a double §G-decay process is absorbed in the intermediate state and
that this absorption induces the emission of the second charged lepton. In such cases,
no neutrinos emerge from the decay. On the other hand, such “neutrinoless” double g-
decay processes are strictly forbidden if the neutrinos are Dirac particles, with particles
distinct from their antiparticles.

The fact that neutrinos and antineutrinos are different particles has been confirmed
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in an experiment using the reaction
neutrino +*'Cl — e~ + ¥ Ar

The source of the neutrino for this classic experiment by Davis {48] in 1955 was a reactor
which produces mainly 7,. The observed cross section for this reaction was much smaller
than one expected for Majorana neutrinos. The result therefore constitutes a proof that
neutrinos are Dirac particles.

However, in a neutrinoless double f-decay, the neutrinos are virtual particles and
may be different from the real neutrinos observed in the experiment of Davis. If virtual
neutrinos are Majorana particles, then double f-decay can take place without emitting
any physical neutrinos and can, therefore, proceed on a much faster scale, perhaps by
as much as six orders of magnitude. An important factor in support of the faster rate
is that the phase space available for the final states of a neutrinoless double S-decay is
much larger than the competing two-neutrino mode.

One way to distinguish between the two possible types of double 3-decay is the
spectrum of the electrons emitted. If no neutrinos are emitted, the sum of the energies
of the two electrons is equal to the @-value of the decay (again ignoring the small
amount of energy taken away by nuclear recoil). On the other hand, if two neutrinos
are also emitted, the sum of the energies of the two electrons has a continuous distribu-
tion given by energy-momentum conservation of the five-body final state. One recent
measurement of the double §~-decay of 32Se to ®**Kr by Elliot, Hahn, and Moe [57]
gives a limit of the half-life of the decay to be 4.4 x 10% years and an energy spectrum
of the two electrons emitted consistent with the two-neutrino mode.

Long lifetimes alone do not necessarily rule out the possibility of neutrinoless double
B-decay. As we have seen in the case of single §-decay, there is a large spread in the
log ft values, even among the allowed decays. Such a divergence in the rate is due,
primarily, to the wide range of possible values for the nuclear transition matrix element
involved. The same may also be true for double 3-decays. If the nuclear matrix elements
in double (-decays are much smaller than expected, the lifetimes of 10%° years could
even be an underestimate of the rate for the two-neutrino mode. Consequently, long
measured half-lives by themselves do not rule out the neutrinoless mode. In this sense,
the energy spectrum of the experiment of Elliot, Hahn, and Moe is a more conclusive
evidence against the neutrinoless mode than lifetime measurements,

Since we are considering very slow processes, there are also other possibilities for
double #-decay in addition to two-neutrino and neutrinoless modes. One is the weak
decay of a A-particle to a nucleon with the emission of two charged leptons. The
normal decay mode of A is to a pion plus a nucleon via strong interaction. However,
a weak branch involving leptons cannot be ruled out, especially when the A-particle is
a part of a nucleus. The other possibility is that, instead of two neutrinos, a boson,
given the name “Majaron,” may be emitted. The detection of any such events requires
measurements involving half-lives of the order of 10?° year or longer, and they are not
easy experiments to carry out.
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Problems

5-1.

5-2.

5-4.

The first excited state of **Ne at 1.634 MeV has J™ = 2% and decays to the 0%
ground state with a half-life of 0.655 ps. Find the reduced transition probability
B(F?2) in units of e*fm* and the transition rate W in Weisskopf units.

The following list of corrected superallowed ft-values in seconds are taken from
Sirlin {129]:

“O UN 30740439  mAl2Mg  3068.1 3.7
M0l -MS 3060.0+47  BmK =¥Ar  3066.6 £ 4.6
28c 542Ca 3077.5+75 BV 4TI 30747443
OMn—Cr 3069.6+4.4  Co —%Fe 3069.0+16

Find the vector coupling constant Gy from this list of results. From the value
Gy obtained, find the ratio |G 4/Gv| using the value of 615 s for the half-life of
neutron A~ -decay and an estimate of the value of f(Z, Ey) from Fig. 5-7.

. Since the end-point energy FEy is difficult to measure precisely, the Q-value of

a nuclear f-decay is often determined from the corresponding (p,n) or (n,p)
reaction. Calculate the Q-value for the superallowed §*-decay of ™Al (E, =
0.22940.003 MeV) to the ground state of Mg, given that the measured Q-value
for the 2Mg(p, n)* Al reaction leading to the ground state of %Al is —4.786 %
0.002 MeV.

The 7/2% state at 1.72 MeV in ?'Ne has a half-life of 48 fs (1 fs = 107!% )
and decays 94% of the time to the 0.33-MeV 5/2% state with a mixing ratio
§ = 0.14 £+ 0.02 and 6% of the time to the 3/2% ground state. Find the B(E?2)
and B(M1) values for the transitions involved.

. A more realistic radial wave function for nucleons than the uniform-density-sphere

model used in §5-4 to calculate the Weisskopf single-particle estimates of electro-
magnetic transitions is the spherical harmonic oscillator radial wave function.
Use the explicit forms given in Table 7-1 to evaluate the matrix element (r?) and
compare the results with those given by Eq. (5-35).

. The orbital angular momentum part of a single-particle wave function is given

by spherical harmonics Y. (8,¢). Use this together with the radial integrals
evaluated above in Problem 5-5 to calculate the single-particle values for E2-
transitions.

. The nucleus 2N decays to 12C with a Q-value of 16.38 MeV. Calculate the maxi-

mum recoil energy of the daughter nucleus. If the probability of emitting leptons
with momentum p,, up to p ~ Q/¢, is ~p? dp, given purely by phase space condi-
tions, calculate the distribution of the number of positrons emitted as a function
of energy. Ignore Coulomb corrections to the charged lepton emitted.



Chapter 6

Nuclear Collective Motion

The experimental observations outlined in the previous two chapters on energy level
positions, static moments, transition rates, and reaction cross sections provide us with
the basis for nuclear structure studies. Many of the observed properties of a nucleus
involve the motion of many nucleons “collectively.” For these phenomena, it is more
appropriate to describe them using a Hamiltonian expressed in terms of the bulk or
macroscopic coordinates of the system, such as mass, radius, and volume.

6-1 Vibrational Model

We have seen earlier in the discussion of nuclear binding energies in §1-3 and §4-9 that,
in many ways, the nucleus may be looked upon as a drop of fluid. A large number
of the observed properties can be understood from the interplay between the surface
tension and the volume energy of the drop. In this section, we shall take the same
approach to examine nuclear excitation due to vibrational motion.

For simplicity we shall take that, at equilibrium, the shape of a nucleus is spherical,
i.e., the potential energy is minimum when the nucleus assumes a spherical shape. This
is purely an assumption of convenience for our discussion here. It is made, in part, for
the reason that spherical nuclei do not have rotational degrees of freedom, and as a
result, vibrational motion stands out clearly, without complications due to rotation. In
practice, the most stable shape for many nuclei is deformed, as we shall see later in
§6-3, and vibrational motions built upon deformed shapes are also commonly observed.

Breathing mode. When a nucleus acquires an excess of energy, for example, from
Coulomb excitation due to a charged particle passing nearby, it can be set into vibration
around its equilibrium shape. We can envisage several different types of vibration. For
example, the nucleus may change its size without changing its shape, as shown in
Fig. 6-1(a). Since the volume is now changing while the total amount of nuclear matter
remains constant, the motion involves an oscillation in the density. Such a density
vibration is similar to the motion involved in respiration and, for this reason, is called
a breathing mode vibration.

For an even-even, spherical nucleus, the ground state spin and parity are 0. To
preserve the nuclear shape, breathing mode excitation in this case generates states that
are also J™ = 0*. In Fig. 6-2, we see that, in the case of doubly magic nuclei of 1°0,

205
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Figure 6-1: Time evolution of low-order vibrational modes. The monopole
oscillation in (a) involves variations in the size without changing the overall shape.
The nucleus moves as a whole in an isoscalar dipole vibration shown in (b). In
contrast, an isovector dipole vibration consists of neutrons and protons oscillating
in opposite phase, as in (¢). In quadrupole vibrations the nucleus changes from
prolate to oblate and back again, as in (d). Octupole vibrations are shown in (e).
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9Ca, 97r, and Pb, a low-lying J" = 0% state is found among the first few excited
states. Such low-energy states are often the result of collective excitation and may be
identified as breathing mode states. On the other hand, nuclear matter is rather stiff
against compression, and one expects the main part of the breathing mode strength to
be much higher in energy. The observed value depends on the number of nucleons in
the nucleus, and the peak location is usually found at around 80A~'/% mega-electron-
volts. The energy of breathing mode excitation is one of the few ways to find out
something about the stiffness of nuclear matter that are important in understanding,
for an example, the state of a star just before a supernova explosion (see §10-6) and in
the study of infinite nuclear matter (§4-12).

Shape vibration. The more common type of vibration involves oscillations in the
shape of the nucleus without changing the density. This is very similar to a drop of
liquid suspended from a water faucet. If the drop is disturbed very gently, it starts to
vibrate. Since the amount of energy is usually too small to compress the liquid, the
motion simply involves an oscillation in the shape.

For a drop of finid, departures from spherical shape without density change may
be described in terms of a set of shape parameters o, (t) defined in the following way:

R(8, 43 t) = Ro{1 + 3" anu(t)V3u(8, 9} (6-1)
Apn

where R(6, #;t) is the distance from the center of the nucleus to the surface at angles
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Figure 6-2: Observed low-lying energy level structure of doubly magic nuclei
160, 40Ca, %Zr, and 2°*Pb, showing the location of 0% breathing mode and 3~
octupole vibrational states. (Plotted using data from Ref. [95].)

(6, ) and time t. The equilibrium radius Ry here is that for a sphere having the same
volume. Each mode of order A has, in general, 2A + 1 parameters, corresponding to
p=-=X —=2+1 ..., A However, symmetry requirements reduce the number of
independent ones to be somewhat smaller. For example, since

YA‘[J(o’ ¢) = ('—1)“]/)\‘——#(0) (b)

it is necessary for
anu(t) = (=1)an—u(t)

to keep R(8, ¢;t) real. Furthermore, rotational and other invariance requirements also
impose a set of conditions on a,,(t). We shall see an example for quadrupole deforma-
tion later in §6-3.

The A = 1 mode corresponds to an oscillation around some fixed point in the
laboratory, as shown in Fig. 6-1(b). If all the nucleons are moving together as a group
without any changes in the internal structure of the nucleus, the vibration corresponds
to a motion of the center of mass of the nucleus. This is known as the isoscalar (T' = 0)
dipole mode and is of no interest if our wish is to study the internal dynamics of a
nucleus. On the other hand, the corresponding isovector (T = 1) mode, as we shall
see in the next section, corresponds to a dipole oscillation of neutrons and protons in
opposite directions, as shown in Fig. 6-1(c). This is the cause of giant dipole resonances
observed in a number of nuclei. The A = 2 mode describes a quadrupole oscillation
of the nucleus. A positive quadrupole deformation means that the nuclear shape is
a prolate one, with polar radius longer than equatorial radius. On the other hand, a
negative quadrupole deformation is one in which the nucleus has an oblate shape, with
equatorial radius longer than polar one. A quadrupole vibration corresponds to the
situation that the nucleus changes its shape back and forth, from spherical to prolate,
back to spherical and then to oblate, and then back again to spherical, as shown in
Fig. 6-1(d). Similarly, an octupole (A = 3) vibration is depicted in Fig. 6-1(e).
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The energy associated with vibrational motion may be discussed in terms of the
variations in the shape parameters o, (t) as functions of time. When a nucleus changes
its shape, nucleons are moved from one location to another. This constitutes the
kinetic energy in the vibration. At the same time, when a nucleus moves away from its
equilibrium shape, the potential energy is increased, the same as a spring is compressed
or stretched. Unless constrained, it will return to its lowest potential energy state. The
amount of energy involved in each case is related to the nuclear shape and, as a result,
the shape parameters become the appropriate canonical variables to describe the motion
{rather than, for example, coordinates specifying the position of each nucleon in the
nucleus).

For small-amplitude vibrations, the kinetic energy may be expressed in terms of
the rate of change in the shape parameters,

day, (2
T==% DJ|—*%
0

where D, is a quantity playing an equivalent role as mass in ordinary (nonrelativistic)
kinetic energy in mechanics. For a classical irrotational flow, D, is related to the mass
density p and equilibrium radius Ry of the nucleus in a liquid drop model,

_ PR
D, = 3
Similarly, the potential energy may bhe expressed as
1
V=22 Gla)l? (6-2)
Ap

Such a form follows naturally from the fact that we have assumed the equilibrium shape
to be spherical and, as a result, the minimum in the potential energy lies at a,,(t) = 0.
In this case, there is no linear dependence of V' on a,,(t) and the leading order is the
quadratic term. For small-amplitude vibrations, terms depending on the higher powers
of vy, may be ignored and we are led to Eq. (6-2). The quantity C may be related
to the surface and Coulomb energies of the fluid in a liquid drop model for the nucleus
(see p. 660 of Ref. [35]),

1

= A= A+ Dt = 221, ZE 1)

w1 AR
where v, and «ag are the surface and Coulomb energy parameters defined in Eq. (4-56).

In terms of Cy and D,, the Hamiltonian for vibrational excitation of order A may
be written as

1 l da,\t 2
= om0+ o, Tl

If different modes of excitation are decoupled from each other, and with any other
degrees of freedom the nucleus may have, H,, C,, and D, are constants of motion.
Under these conditions, we can differentiate Eq. (6-3) with respect to time and obtain
the equation of motion,

(6-3)

dZUI,\“

D=

+ C,\O!,\“(t) =0
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Comparing with the expression for an harmonic oscillator,

d*z

L T
a2 +w'z=0
we obtain the result that, for small oscillations, the amplitude a;,(t) undergoes har-
monic oscillation with frequency

= ()"

with fiw, as a quantum of vibrational energy for multipole ).

Quadrupole and octupole vibrations. A vibrational quantum of energy is called
a phonon, as it is a form of “mechanical” energy, reminiscent of the way sound wave
propagates through a medium. Each phonon is a boson carrying A% units of angular
momentum and parity 7 = (—1)*. Consider the example of vibrations built upon the
ground state of an even-even nucleus. In this case, the 0% ground state constitutes the
zero-phonon state. The lowest vibrational state has J = X and 7 = (—1)*, obtained by
coupling the angular momentum of the phonon to that of the ground state. Examples
of one-phonon octupole excitations are found in the form of a low-lying 3~ state in all
the closed shell nuclei from 180 to 2%®Pb, as shown earlier in Fig. 6-2. In terms of the
single-particle picture discussed in the next chapter, excited states may be produced
by promoting, for example, a particle from an occupied orbit below the Fermi surface
to an empty one above. Since orbits below and above the Fermi surface near a closed
shell have, in general, opposite parities (see §7-2), negative-parity states are formed
from such one-particle, one-hole excitations. We shall see later in §7-2 that the typical
energy involved in such cases is around 41A~'/3 mega-electron-volts, about 16 MeV in
180 and 7 MeV in 22Pb. As can be seen in Fig. 6-2, the observed 3~ vibrational states
are much lower than this value. One way to lower the excitation energy in this case is
to have the nucleons acting in a coherent or “collective” manner.

In nuclei such as the even-even cadmium (Cd) and tin (Sn) isotopes, the first excited
state above the J™ = 0% ground state is inevitably a 2% state and, at roughly twice
the excitation energy, there is often a triplet of states with J™ = 0*, 2%, 4*. Such
behavior is typical of nuclei undergoing quadrupole vibration. The first excited state
is the one-phonon state, having J™ = 2* of a quadrupole phonon. The two-phonon
states are expected at 2fw, in excitation energy, twice that for the one-phonon state.
The possible range of spin is from 0 to 4 (=2)). However, symmetry requirements
between the two identical phonons excludes coupling to 1* and 3* states (see Problem
6-1), and the only allowed ones are J* = 0%, 2+, 4*. If vibration is the only term in
the nuclear Hamiltonian, we expect the three two-phonon states to be degenerate in
energy. In practice, they are observed to be separated from each other by an amount
generally much smaller than hw,. We can take this as the evidence that forces in
addition to vibration are also playing a role in forming these states. The fact that the
order among these three levels is different in different nuclei implies that the nature of
the J-dependence may be a complicated one.

With three quadrupole-phonons, there are five allowed levels, 0%, 2%, 3%, 4%, and
6*. Since these states lie high in excitation energy, where the density of states is large,
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admixture with states formed by other excitation modes becomes important. As a
result, it is not always easy to identify a complete set of three-phonon excited states.
One such example, shown in Fig. 6-3, is found in *8Cd.
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Figure 6-3: Observed low-lying energy levels of 118Cd, showing quadrupole vi-
brational states up to three-phonon excitations. The spin and parity of the 1.929-
MeV state may be either 3* or 4% and of the 1.936-MeV state, 5* or 6%, with the
possibility of 47 not ruled out. The 0% state at 1.615 MeV may not be a member
of the vibrational spectrum. Vertical arrows indicate B(E2) values relative to
the observed strongest transition from each state and the dashed lines indicate
transitions with only upper limits known. (Based on data from Refs. [8, 79].)

Electromagnetic transitions. Besides energy level positions, the vibrational model
also predicts the electromagnetic transition rates between states having different num-
bers of excitation phonons. Since vibrational states have the same structure as those
for an harmonic oscillator, we can make use of the result that the transition from an
n-phonon state to an (n — 1)-phonon state takes place by emitting one quantum of en-
ergy. If nuclear vibrations are purely harmonic in nature, the electric transition operator
0,,(E)) for a vibrational mode of order A must be proportional to the annihilation
operator by, for a phonon of multipolarity (X, u),

O, (EA) o by,

Because of its collective nature, nuclear excitations induced by quadrupole vibrations
have large E2-transition rates between states differing in excitation energy by one
phonon, compared with Weisskopf single-particle estimates given in §5-4. Similarty,
strong E3-transition strengths to the ground states are also observed from octupole
vibrational states.

The matrix element of a phonon anmnihilation operator b between two harmonic
oscillator states is given by

(n'|bln) = \/1—1,6"!',.._1
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Since the reduced transition probability is proportional to the square of the transi-
tion matrix element, we find that its value between n- and (n — 1)-phonon states is
proportional to 7, the number of phonons in the initial state of the decay,

B(EAxn—n-1)xn

Because of this relation, we expect the transition probability from a two-phonon state
to a one-phonon state to be enhanced in comparison with single-particle estimates and
roughly twice the value from a one-phonon state to a zero-phonon state in the same
nucleus. Transitions between states differing by more than one phonon are higher in or-
der, as they involve simultaneous emission of two or more phonons. The probability for
such processes is much lower than that for single-phonon emission, and the correspond-
ing transition rates are expected to be small. Both points are observed to be essentially
correct in vibrational nuclei, as can be seen from the examples given in Table 6-1.

Table 6-1: Quadrupole moment and B(E2) values of vibrational nuclei.

B(E%2f —0f) | B(E%4f -27) | B(E24* - 9)| BE%2) -0f) | Q

Nucleus 1102 o2fmt| W.u. |10% e2fm*] W.u. [B(E2;2] — 0%)[10%2fm*| W.u. | efm?

SONj 188 | 135 | 23 16 1.2 0.03 | 0.22 3.0

B2Nj 1.8 12 2.6 18 1.5 009 | 0.6 8.8
102Ry 12.4 439 | 19 66 1.5 0.31 1.09 {-68
1oy 858 | 27.4 | 14 46 1.7 0.42 1.34 [-39
1204 9.69 | 30.2 | 20.0 62.4 2.1 0.21 0.65 | -37
140d 10 31 19 58 1.9 1.8 54 |-36
16cq 10.6 316 | 19.4 57.8 1.8 0.37 1.1 | -42
Vitr)rrlgtgglna.l large large 20 small 0*

Note: W.u.=Weisskopf unit. *Spherical nuclei.

Implicit in our discussion is the assumption that the vibration is an axially sym-
metric one; i.e., variations along the z- and y-directions are equal to each other, only
their ratio to that along the z-axis is changing as a function of time. This type of vibra-
tion is generally known as f-vibration. More generally, we can also have y-vibratiouns,
in which the nucleus changes into an ellipsoidal shape in the equatorial direction. In
other words, a section of the nucleus in the zy-plane at any instant of time is an ellipse
rather than a circle, as in the case of §-vibration. (The definitions for parameters f
and ~ are given later in Eq. 6-11.) In addition to purely harmonic vibrational motion,
anharmonic terms may be present in a nucleus. Furthermore, vibrations may also be
coupled to other modes of excitation in realistic situations.

If the amplitude of vibration is large, the above treatment no longer applies. In
fact, if the vibration is energetic enough, a “drop” of nuclear matter may dissociate into
two or more droplets. Such ideas are used with success in fission studies. However, in
order for a nucleus to develop toward a shape for splitting into two or more fragments,
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there must be a superposition of many different vibrational modes. Furthermore, the
various modes must be strongly coupled to each other so that energy can flow from one
mode to another. The mathematical problem involved here is not simple, but the basic
physical idea is a sound one. However, we shall not examine this topic here.

6-2 Giant Resonance

Giant resonance is a term used to describe the observed concentration of excitation
strength at energies tens of mega-electron-volts above the ground state. Both the total
values and distribution widths are found to be much larger than typical resonances
built wpon single-particle (noncollective) excitations. In the energy region where such
resonances appear, the density of states is sufficiently high and the number of open
decay channels sufficiently large that states in a narrow energy region cannot be very
different from each other in character. As a result, only smooth variations are expected
in the reaction cross sections, as can be seen from the example of the 2*Pb(p, p’)*%*Pb*
reaction shown in Fig. 6-4. The concentration of strength localized in the region of a
few mega-electron-volts is interesting, as it must be related to some special feature of
the nuclear system particular to the energy region.
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Figure 6-4: Differential cross sec-
tion of 2*8Ph(p, p') reaction with 200-
MeV protons at different scattering
angles, showing the angular depen-
dence of giant resonances excited in
the reaction. (Taken from Ref. [28].)
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For most giant resonances, the strength is found to be essentially independent of
the probe used to excite the nucleus, y-rays, electrons, protons, a-particles, or heavy
ions. Furthermore, both the width and peak of strength distribution vary smoothly
with nucleon number A, without any significant dependence on the structure of the
individual nucleus involved. For example, the location of the isovector giant dipole
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resonance in different nuclei is well described by the relation
Ey ~ 784713 (6-4)

Prominent dipole resonances, as well as other types of giant resonances, have been
observed in almost all the nuclei studied, from %0 to 28Pb, as can be seen later in
Figs. 6-5 and 6-6.

Giant resonances come from collective excitation of nucleons. As we shall see later
in §7-2, the energy gap between two adjacent major shells, is roughly 41413 mega-
electron-volts and the parity of states produced by 1plh-excitations up one major shell
is negative in general. To a first approximation, this is the cause of negative-parity giant
resonances. For positive-parity excitations there are two possibilities, rearranging the
particles in the same major shell (Ofiw-excitation) or elevating a particle up two major
shells (2hw-excitation). Other possibilities, such as excitations by four major shells
(4hw-excitation) for positive-parity resonances and three major shells (3hw-excitation)
for negative-parity resonances are less likely because of the higher energies involved.

Giant dipole resonance. Isovector giant dipole resonances have been studied since
the late 1940s. They are the J™ = 1~ excitation strength when nucleons are promoted
up one major shell. In light nuclei, the observed peaks of strength occur around 25 MeV
in energy and, in heavy nuclei, the values are lower, just below 14 MeV in ?®Pb. The
variation with nucleon number A, as can be seen in Fig. 6-5(a), is fairly well described
by the relation given by Eq. (6-4). The peak position is higher than that expected
of a simple 1hw-excitation process of 41471/ mega-electron-volts. The difference is
caused by the residual interaction between nucleons which pushes isovector excitations
to higher energies. The width of the resonance is found to be around 6 MeV without
any noticeable dependence on the nucleon number, as can be seen in Fig. 6-5(b).

An explanation of giant dipole resonance is provided by the Goldhaber-Teller model,
based on the collective motion of nucleons. Here, neutrons and protons act as two
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separate groups of particles and excitation comes from the motion of one group with
respect to the other, with little or no excitations within each group. In the dipole mode,
the neutrons are moving in one direction along some axis while the protons are going in
the opposite direction, as shown schematically in Fig. 6-1(c). The opposite phase keeps
the center of mass of the entire nucleus stationary. Since neutrons and protons are
moving “out of phase” with respect to each other, it is an isovector mode of excitation.
In contrast, if the neutrons and protons move in phase, it is an isoscalar dipole vibration,
with all the nucleons moving in the same direction at any given time. The net result,
in this case, is that the entire nucleus is oscillating around some equilibrium position
in the laboratory. Such a motion constitutes a “spurious” state and is of no interest to
the study of the nucleus, as it does not correspond to an excited state of the nucleus
involving nuclear degrees of freedom.

Sum rule quantities. One question of interest in giant resonance studies is to find
the fraction of total transition strength represented by the observed cross section. The
amount may be estimated by calculating the corresponding sum rule quantity. The
simplest one is the transition strength of a given multipolarity to all the possible final
states. The starting state is usually chosen to be the ground state, as this is the only
type that can be measured directly. The non-energy-weighted sum of the reaction cross
section is then

S = /O ~ o(E)dE (6-5)

where o(E) is the cross section at excitation energy E. Since an integration is carried
out over all the final states, the resulting quantity is a function of the initial state
only. For transitions originating from the ground state, S is the ground expectation
value of an operator related to the transition. An example is given later for the case
of Gamow-Teller giant resonance. Other sum rule quantities, such as energy-weighted
ones, have also been studied; we shall, however, restrict ourselves to the simplest one
defined in Eq. (6-5).

For isovector dipole transitions, the total strength S can be evaluated in a straight-
forward way if we make two simplifying assumptions (see, for example, pp. 709-713
of de Shalit and Feshbach [49]). The first is to ignore any possible velocity-dependent
terms in nucleon-nucleon interaction. This has heen done in a variety of other nuclear
problems as well and is expected to be of very little consequence. The second is to

neglect antisymmetrization among all the nucleons. The result is the Thomas-Reiche-
Kuhn (TRK) sum rule,

21r2h2a_1y_?_ ~ 6.0NZ

2
M, A ) MeV-fm

/Owa(E)dE:

To make corrections for antisymmetrization, an overall multiplicative factor (1 + 7) is
often included. The value of % i3 estimated to be around 0.5, depending on the model
used to simulate the effect of antisymmetrization.

For isovector dipole transitions, the total strength is known experimentally up to
around 30 MeV in many nuclei. The results are compared in Fig. 6-5(c) together with
the value of the TRK sum rule evaluated with = 0, i.e., no correction for antisymmetry
effects. As long as the actual corrections to the TRK sum rules are not too different
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from the generally accepted value of n ~ 0.5, we see that the measured giant dipole
cross sections exhaust most of the total possible strengths. Furthermore, the result is
essentially independent of the particular nucleus from which the strength sum is taken.
The large variety of nuclei included in Fig. 6-5 represents a wide spectrum of ground
state wave functions. The fact that the value of S is essentially given by the TRK
sum rule, without any specific reference to the ground state wave function of any of
the nuclei involved, may be taken as another evidence of the collective nature of the
excitation process itself.

Besides isovector dipole excitations, other giant resonances have also been observed
in recent years. Both giant quadrupole (£2) and giant octupole (E'3) resonances have
been extensively studied in a variety of nuclei. The results for the former are shown in
Fig. 6-6 as an example.
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Gamow-Teller resonance. In addition to y-rays, giant resonances have also been
observed in charge exchange reactions. For example, in the neutron spectra observed
in the %Zr(p, n)?Nb reaction induced by 45-MeV protons shown in Fig. 6-7, we see
that a sharp peak is found leading to the (J”,T) = (0%,5) state in **Nb at 5.1 MeV
excitation. The concentration of strength here is expected from the fact that the final
state in 9Nb is the isobaric analogue to the ground state of ®*Zr. The operator involved
in the reaction is similar to that in Fermi S-decay, namely, the isospin-raising operator
T,. However, since the strength is concentrated in a single state, the distribution is
essentially a delta function. The Fermi type of charge exchange strength, therefore,
does not fit into the category of a giant resonance.

Unlike the Fermi case, the Gamow-Teller strength is shared by a number of states.
However, in §-decay, the transition is allowed only if the initial state is higher in energy
than the final state. As a result, only a small part of the total strength is actually
observed, The main portion usually lies higher in excitation energy and is observed
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in charge exchange reactions. For example, in the case of the %Zr(p, n)*Nb reaction,
part of the strength appears as a “giant resonance” in the neutron spectra, as shown
in Fig. 6-7, at energies just below the isobaric analogue strength peak.
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Let us evaluate the sum of Gamow-Teller transition strength in a charge exchange

reaction as an illustration. From Eq. {5-61), we find that the operator for the axial-
vector transition has the form

A
Oar(B) =Ga 3. Y ou(k)=(k)
k=1 B

Following Eq. (6-5), we may define the sum rule strength in the following way:

Sy =G’ Ef:|<f|0m‘(ﬁi)|i)|2

where |7) and | f) are, respectively, the initial and final nuclear states. We have
removed the axial-vector coupling constant G4 from the definition of the operator
itself so as to simplify the appearance of the final result. Since we are summing over

all the final states, Sy may be transformed into an expectation value using a closure
relation,

St

G7* ;(inGT(ﬂi)liy(f]OGT(ﬂi)li)
GR* Y10 (%) £)( f1Ocr (%))
f

G410kt (8%)Oar(8%))i) (6-6)

It
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Components of the operators involved here have the following properties:
dL =(-1)to_, 1"; =7,
as can be seen for ¢, in Eq. (3-31) and for 74 in Eq. (2-20). On substituting the

explicit form of the Gamow-Teller operator into Eq. {6-6), we obtain the strength sum
for @t-transitions,

Sp o= ({130 2 (- D o (k)i (k)au(k)T-(k)]i)

k=1 p

A
(ilg_:l o? (k)7 (k) 7 (ki)

i

where we have made use of Eq. (A-19) to obtain o from Y3(~1)#o_,0,. Similarly, for
B~ -transitions,

A
5. = (% R (B ) (67)

=1
Since T4|n) = |p), 7-|p) = |n), and Ty|p) = T-{n) = 0, where |p) is the wave

function of a proton and |n) is that for a neutron, we have the results

r7-|p) = |p) 77 |n)=0
T_14n) = |n) T_Ti|p) =0

In other words, we can treat T, 7_ as the projection operator for protons and 7_71; as
the corresponding quantity for neutrons.
Using these results, we can write

¥4
Sy = (ﬂ}_:l o (k)i = 3Z (6-8)

where 7 is the number of protons in the initial state. The summation is restricted to
protons in the target nucleus, because of the projection operator 7,7_. In obtaining
the final result, we have made use of the fact that, for a single nucleon, s = %a’ and

the expectation value of o2 is 3. By the same token, Eq. (6-7) can be simplified to
S_=3N (6-9)

where N is the neutron number for the target.

Equations (6-8) and (6-9) are not very useful sum rules, as they represent, re-
spectively, the total strength if all the protons and all the neutrons are excited by
the reaction. Such processes involve extremely high energy components and cannot
be achieved in practice. Experimentally, only nucleons near the Fermi surface are af-
fected, and there is no easy way to estimate the numbers of such nucleons. However,
the difference between the two sum rules

S_ -8, =3(N-2) (6-10)
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may not depend on how high in energy the excitation strengths are measured and may
therefore be tested against observations.

A departure from Eq. (6-10) may also indicate the presence of particles other than
nucleons in the nucleus, such as A-particles, resulting from exciting the internal degrees
of freedom in nucleons. Such a component in the intermediate state has been conjec-
tured as a possibility in many other reactions. For this reason, there is a great amount
of interest in measuring the difference in strength between (p,n) and (n,p) reactions.
However, the experiments are difficult to carry out and, at this moment, the results are
still too preliminary to draw any conclusion.

The strength of Gamow-Teller excitation is related to the spin-isospin term in the
nucleon-nucleon interaction, V,.(r)e(1) - #(2)7(1) - 7(2). A good knowledge of the
giant Gamow-Teller resonance will therefore also shed light on this important term
in the interaction between nucleons inside a nucleus, The same is true of other giant
resonances as well, as each may be shown to be dependent predominantly on a particular
term in the interaction.

6-3 Rotational Model

Deformation. In the previous two sections we have assumed, for the convenience
of discussion, that the basic shape of a nucleus is spherical and excitations are built
upon such an equilibrium configuration in the form of small vibrations. There is no
compelling reason why the nuclear shape cannot be different. The interplay between
short-range nuclear force, long-range repulsive Coulomb force, and centrifugal stretch-
ing due to rotation may well favor a nonspherical or deformed equilibrium shape.

In general, spherical nuclei are found around closed shells. This is easy to under-
stand. As we shal] see later in §7-2, the single-particle spectrum for nucleons is not
uniform. Instead, the states are separated into gronps, with energy differences between
states within a group smaller than those between groups. This makes it more favorable
for nucleons to fill up each group, or shells, before occupying those in the next one. A
closed shell nucleus is formed when all the single-particle states in a group are fully
occupied. When this condition is met, the total M-value, the projection of spin along
the quantization axis, of the nuclear state is zero. Such an object is then invariant
under a rotation of the coordinate system and must, therefore, be spherical in shape.

On the other hand, for nuclei in regions between closed shells, many single-particle
states are available. In this case, it may be more favorable for a nucleus to minimize
its energy by going to a deformed shape. In general, the nuclear shape tends to be
prolate, i.e., elongated along the z-axis, at the beginning of a major shell and oblate,
i.e., flattened at the poles, toward the end. This comes from a preference, arising from
the pairing term in nuclear force, for nucleons to oceupy single-particle states with the
largest absolute m-~values, starting from m = +j. As a result, there is an increase in
the probability at the beginning of a shell to find nucleons in the polar regions. For
example, among the light nuclei in the ds-shell, we find that the deformation is positive
for 1*Ne and '?Na, with three nucleons outside the closed shell at 150. At the middle
of the major shell, around ?8Si, the deformation changes sign, as can be seen from the
negative quadrupole moment for most of the nuclei in the ds-shell with A > 28.
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For stable nuclei, departure from spherical equilibrium shape is generally small
in the ground state region. Relatively large deformations are found, for example, in
medium-heavy nuclei with 150 < A < 180 and heavy nuclei with 220 < A < 250,
as shown in Fig. 6-8. The largest deformations, or “superdeformations,” as we shall
see later in §9-2, are observed in the excited configurations of medium-weight nuclei,
created when two heavy ions are fused together into a single entity.
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Figure 6-8: Regions of deformation. Deformed nuclei, indicated by the shaded
areas, lie in regions between closed shells and among very heavy nuclei beyond
208Pb
8250

Quantum mechanically, there cannot be a rotational degree of freedom associated
with a spherical object. For a sphere, the square of its wave function is, by definition,
independent of angles—it appears to be the same from all directions. As a result, there
is no way to distinguish the wave functions before and after a rotation. Rotation is
therefore not a quantity that can be observed in this case and, consequently, cannot
correspond to a degree of freedom in the system with energy associated with it. In
contrast, rotational motion of a deformed object, such as an ellipsoid, may be detected,
for example, by observing the changes in the orientation of the axis of symmetry with
time.

Quadrupole deformation and Hill-Wheeler variables. The simplest and most
commonly occurring type of deformation in nuclei is quadrupole. To simplify the dis-
cussion, let us assume that the nuclear density is constant throughout the volume and
drops off sharply to zero at the surface. In this case, the surface radius R(6, ¢;t) of
Eq. (6-1) reduces to

R(8, $; 1) =R0{1+ i az,.(t)i’u(ﬁ,@}

p=-2
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There are five shape parameters, ag,(t) for g = -2 to u = +2.

The orientation of a nucleus in space is specified by three parameters, for example,
the Euler angles (wq,wp,wy). Since the orientation is immaterial, as far as the intrinsic
nuclear shape is concerned, we can regard the Euler angles as three “conditions” to be
imposed on the five parameters. This may be expressed formally by transforming the
coordinate system to one fixed with the nucleus,

2
Ary = Z a#VDI{JM’(wu’wﬂ’wv)
v=-2
where Dy p(Wa, wp, wy) is the rotation matrix defined by Eq. (A-5). Since there are
only two degrees of freedom left, the body-fixed shape parameters a,, have the following
properties
ay-1=az1 =0 Q3,3 = Q3.

Instead of a3 and ay4, the two parameters remaining, it is common practice to use
the Hill-Wheeler variables 8 and 7. They are defined by the relations

Q= fFcosy Qg9 =0y = —% siny (6-11)

Using 4 and v, the surface radius may be written as

R(8,¢4) = Ro{l + ﬁ”l—Z—; (cos Y(3cos? 8 — 1) + v/3sin vsin® 8 cos 245)} (6-12)

Since we are mostly interested in fixed, permanently deformed shapes here, the surface
radius in the body-fixed coordinate system is independent of time. The same is true
for parameters § and . From the definitions given by Eq. (6-11), we see that the
parameter 3 provides a measure of the extent of deformation and v, the departure
from axial symmetry. A negative value of 8 indicates that the nucleus is oblate in
shape while a positive value describes a prolate shape. This is illustrated in Fig. 6-9
for the axially symmetric case (y = 0).
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Figure 6-9: Quadrupole-deformed shapes for axially symmetric nuclei. On the
left, the oblate shape has 3 = ~0.4, and on the right, the prolate shape has
B = +04.

We have two different sets of coordinate systems here. The intrinsic coordinate
system, with frame of reference fixed to the rotating body, is convenient for describing
the symmetry of the object itself. On the other hand, the nucleus is rotating in the
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laboratory and the motion is more conveniently described by a coordinate system that
is fixed in the laboratory. Each system is better suited for a different purpose, and we
shall make use of both of them in our discussions. Following general convention, the
intrinsic coordinate axes are labeled by subscripts 1, 2, and 3 to distinguish them from
the laboratory coordinates, labeled by subscripts z, ¥, and z.

We can also see from Eq. (6-12) that there is a certain degree of redundancy in the
values of # and v. For example, with positive values of 3, we have prolate shapes for
v = 0°, 120°, 240°. However, the symmetry axis is a different one in each case: 3 for
v =0° 1 for vy = 120°, and 2 for v = 240°. Similarly, the corresponding oblate shapes
are found for v = 180°, 300°, 60°. For this reason, most people follow the (Lund)
convention in which g > 0 and 0° < 4 < 60° if the rotation is around the smallest
axis. If the rotation is around the largest axis, —120° < y < —60°, and if around the
intermediate axis, —60° < vy < 0°.

Rotational Hamiltonian. Classically, the angular momentum J of a rotating object
is proportional to its angular velocity w,

J=Tw (6-13)

The ratio between J and w is the moment of inertia Z. The rotational energy E; is
given by the square of the angular frequency and is proportional to J? as a result,

1 1
Ej=-Tuw'= = J*
eV T
By analogy, we can write the rotational Hamiltonian in quantum mechanics as

H=Y —UJ
i=1 2L;

where 7, is the moment of inertia along the ith axis. For an axially symmetric object
with 3 as the symmetry axis, the moment of inertia along a body-fixed, or intrinsic,
set of coordinate axes 1, 2, and 3 has the property

L= =1

(and I3 # Z, or else it is spherical). The Hamiltonian in this case may be written as

h K,

If we use K to represent the projection of J along the symmetry axis in the intrinsic
frame, the expectation value of the Hamiltonian in the body-fixed system is then a
function of J(J + 1), the expectation value of J?, and K, that of J,.

In classical mechanics, a rotating body requires three Euler angles («, 8,) to spec-
ify its orientation in space. In quantum mechanics, the analogous quantities may be
taken as three independent labels, or quantum numbers, describing the rotational state.
For two of these three labels we can use the constants of motion J, related to the eigen-
value of J?, and M, the projection of J along the quantization axis in the laboratory.
For the third label, we can use K.
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Rotational wave function. For the convenience of discussing rotational motion,
we shall divide the wave function of a nuclear state into two parts, an intrinsic part
describing the shape and other properties pertaining to the structure of the state and a
rotational part describing the motion of the nucleus as a whole in the laboratory. Our
main concern for the moment is in the rotational part, labeled by J, M, and K. Since
it is a function of the Euler angles only, it must be given by Dy, (e, 3,7) of Eq. (A-8),
which relates the wave functions of an object in two coordinate systems rotated with
respect to each other by Euler angles (o, 8,7). In terms of spherical harmonics, the
function Dj, x(«, B,7) may be defined by the relation

YJK(gl; d)’) = Z ’DK,,K(O’, ﬁs 7) YJM(01 ¢)
M

where Y, (6', ¢'} are spherical harmonics of order J in a coordinate system rotated by
Euler angles v, 3,y with respect to the unprimed system.

The transformation property of the D-function under an inversion of the coordinate
system (i.e., parity transformation) is given by

Dic(e, B,7) —5— (=1)"**D};_x (e, 8,7)

An arbitrary D-function, therefore, does not have a definite parity since, in addition
to the phase factor, the sign of label I is also changed. To construct a wave function
of definite parity, a linear combination of D-functions, with both positive and negative
K, is required. As a result, the rotational wave function takes on the form

/ 2J+1
iJMI()rut. = m {D}{,”((G,ﬂ, 7) + (_1)J+KDKJ—K(QY ﬂ) ’Y)} (6'15)

where the plus sign is for positive parity and the minus sign for negative parity. Since
both +K and —K appear on the right-hand side of Eq. (6-15), only K > 0 can be used
to label a rotational wave function. The value K itself is no longer a good quantum
number, but the absolute value of K remains a constant of motion for axially symmetric
nuclei. In the more general tri-axial case with I, # I, # 75, a linear combination of
|JMK) with different I values is required to describe nuclear rotation. In such cases,
only J and M remain as good quantum numbers.

To complete the wave function for an observed nuclear state, we must also give
the intrinsic part. Depending on the energy and other parameters involved, a nucleus
can take on different shapes, and as a result, there can be more than one rotational
band, each described by a different intrinsic wave function, in a nucleus. For the axial
symmetric case, the constant of motion K is often used as a label to identify a particular
intrinsic state.

Rotational band. A nucleus in a given intrinsic state can rotate with different angular
velocities in the laboratory. A group of states, each with a different total angular
momentum J but sharing the same intrinsic state, forms a rotational band. Since the
only difference between these states is in their rotational motion, members of a band are
related to each other in energy, static moments, and electromagnetic transition rates.
In fact, a rotational band is identified by these relations.
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The parity of a rotational state is given by Eq. (6-15). Because of the phase factor,
the wave function for a positive-parity K = 0 state vanishes if the J-value is odd. As a
result, only states with even J-values are allowed for a K = 0* band. Similarly, there
are no states with even J-values in a K = 0~ band. The results may summarized as

g 02 4. for K*=0*
1, 3, 5,... for K™ =0"

For K > 0, the only restriction on the allowed spin in a band is J > K, arising from

the fact that K is the projection of J on the body-fixed quantization axis, the 3-axis.
The possible spins are then

J=K, K+1, K+2,... for K>0

For the rotational Hamiltonian given in Eq. (6-14), the energy of a state is given by
h?
E;= ﬁJ(J +1) + Eg (6-16)

where Ey represents contributions from the intrinsic part of the wave function. An
example of such a band is shown in Fig. 6-10 for °Hf.

T ¥
16+ 3.15 17
oHf
14+ 257 _-®
3 - ,‘_ —
> 12+ 202 Pt
4
p= 10+ 151 e
= Ple
= ob 8+ 1.04 L B
m EH- C.g; I
+ 0. L7
§ 't I s
3] (=
1+ . .
tt’
’ﬂ’
o 1 !
0 200 300
J(J+1)

Figure 6-10: Rotational levels in 1JJHf. For a simple rotor, the relation between
E; and J(J + 1) is a curve with constant slope. The small curvature found in
the plot indicates that T increases slightly with large J, a result of centrifugal

stretching of the nucleus with increasing angular velocity. (Plotted using data
from Ref. [95].)

From Eq. (6-16) we see that the energy of a member of a rotational band is pro-
portional to J(J + 1), with the constant of proportionality related to the momentum
of inertia Z. The quantity Ex enters only in the location of the band head, the po-
sition where the band starts. Different bands are distinguished by their moments of
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inertia and by the positions of their band heads. Both features, in turn, depend on the
structure of the intrinsic state assumed by the deformed nucleus that is rotating in the
laboratory frame of reference.

Quadrupole moment. Besides energy level positiongs, the static moments of members
of a band and the transition rates between them are also given by the rotational model.
The discussions below depend on the property that all members share the same intrinsic
state and differ only in their rotational motion. Let us start with the quadrupole
moment given by the integral,

Qo = [(328 = r)p(r) av (6-17)

where p(r) is the nuclear density distribution. Since it is related to the shape of the in-
trinsic state, Qg is known as the intrinsic quadrupole moment. For an axially symmetric
object, it is related to the difference in the polar and equatorial radii, characterized by
the parameter

3 R}-RY R,
T2RI+2RE T R
where Rj is the radius of the nucleus along the body-fixed symmetric (3-) axis, Ry
is the radius in the direction perpendicular to it, and R is the mean value. To the
Jowest order, § is approximately equal to 3,/5/(167) times the parameter § defined in
Eq. (6-11) for small, axially symmetric deformations. In terms of 4,

Q=355

=1

5 (6-18)

The quantity Qg defined here is the “mass” quadrupole moment of the nucleus, as
the density distribution p(r) in Eq. (6-17) involves all A nucleons. The usual quantity
measured in an experiment, for example, by scattering charged particles from a nucleus,
is the “charge” quadrupole moment, differing from the expression above by the fact that
the summation is restricted to protons only.

The observed quadrupole moment of a state given by Eq. (4-42) is the expectation
value of the electric quadrupole operator @ in the state M = J. We shall represent
this quantity here as Q x for reasons that will become clear soon. The value of Q,x
differs from Qg, as the former is measured in the laboratory frame of reference and the
latter in the body-fixed frame. The relation between them is given by a transformation
from the intrinsic coordinate system to the laboratory system. Since this requires a
D-function, the result depends on both J and K. Inserting the explicit value of the
D-function for the M = .J case, we obtain the relation

3K - J(J +1)
T (J+1)(27 +3) o

In practice, direct measurements of quadrupole moments are possible, in most cases,
only for the ground state of nuclei. For excited states, the quadrupole moment can

sometimes be deduced indirectly through reactions such as Coulomb excitation (sce
§8-1).

Qix (6-19)
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To compare the values calculated using Eq. (6-19) with experimental data, we need
a knowledge of the intrinsic quadrupole moment @y as well as the value of K for the
band. The latter may be found from the minimum J-value for the band. For Q,, one
way is to make use of the measured value of Q, for another member. If the values
deduced in this way are available for several members of a band, they can be also
used as a consistency check of the model. Unfortunately, it is difficult to measure the
quadrupole moment for more than one member of a band. The alternative is make use
of electric quadrupole transition rates, as we shall see next.

Electromagnetic transitions. In the rotational model, electromagnetic transitions
between two members of a band can take place by a change in the rotational frequency
and, hence, the spin J, without any modifications to the intrinsic state. We shall
concentrate here on electric quadrupole (E2) and magnetic dipole (M1) transitions,
as these are the most commonly observed intraband transitions. A change in the
rotational frequency in such cases is described by the angular momentum recoupling
coefficient. There are three angular momenta involved, the spin of the initial state
J;, the spin of the final state J;, and the angular momentum rank of the transition
operator X. The recoupling is given by Clebsch-Gordan coefficients (see §A-3). For
quadrupole deformations, the size of the E2-transition matrix element is also related
to the deformation of the intrinsic state, characterized by @y. The reduced transition
probability is given by

B(E2;J, — Jj) = -I—Z—Wefo,(J.K2OlJ,K)’ (6-20)

(For a derivation see, e.g., Bohr and Mottelson [35].) For K =0, J; = J, and J; = J -2,
the square of the Clebsch-Gordan coefficient simplifies to

_3J(J-1)
(J020|(J-2)0)* = 227 + )(2J - 1)

with the help of the identities given in Table A-1. The reduced transition rate for decay
between adjacent members of a K = 0 band becomes

15 , , JUJ-1)
v = J-2) = —— ———— -2
B(E%J = J-2) = e Q57137 = 1) (6-21)
Alternatively, for electromagnetic excitation from J to J + 2,
15 , o, (J+1}J+2)
T =B M) 6-22
B(E%J — J42) = o€ Qi 7y 1) (27 4 3) (6-22)

a form more useful, for example, in Coulomb excitation. From the values of B(FE2)
deduced from a measurement of the transition rates, we can again calculate the value
of Qo. The intrinsic quadrupole moment obtained this way may be different from that
of Eq. (6-19), as it involves two members of a band. For this reason, it is useful to
distinguish the value obtained from B(E2) by calling it transition quadrupole moment
and that from Eq. (6-19), by calling it static quadrupole moment.
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Magnetic dipole transitions may be studied in the same way. The K = 0 bands
are not suitable for our purpose here, as the J-values of the members differ by at
least two units and M1-transitions are forbidden by angular momentum selection rule.
The magnetic transition operator defined in Eq. (5-30) is given in terms of single-
nucleon gyromagnetic ratios g, for orbital angular momentum and g, for intrinsic spin.
Here, we are dealing with collective degrees of freedom. Instead of g, and g,, it is
more appropriate to use g, and g,., respectively, the gyromagnetic ratio for rotational
motion and the intrinsic state of a deformed nucleus. In terms of these two quantities,
the magnetic dipole operator for K > % bands remains to have a simple form, similar
to that given by Eq. (4-49),

K‘l
J+1
where K = J3, the operator measuring the projection of J on the 3-axis in the intrinsic
frame. For a symmetric rotor, the expectation value is K, as we saw earlier.

In the same spirit as Eq. (6-20) for E2-transitions, the B(M1) value in the rotational
model is given by

p=gpd + (9 — 9g)

B(M1,J, = J;=J#1) = %(gk — g KNI K 101K (6-23)
in units of 4%, the nuclear magneton squared. From Eqgs. (6-20) and (6-23) the mixing
ratio between E2- and M1-transition rates between two adjacent members of a K > 0
band can be calculated. The quantity relates the intrinsic quadrupole moment Qq
with gyromagnetic ratios g, and g, and provides another check of the model against
experimental data.

Transitions between members of different rotation bands, or interband transitions,
involve changes in the intrinsic shape of a nucleus in addition to the angular momentum
recoupling discussed above for intraband transitions. The main interest of interband
transitions concerns the intrinsic wave function. However, we shall not be going into
this more complicated subject here.

Corrections to the basic model. On closer examinations, the energy level positions
of the members of a rotational band often differ from the simple J(J + 1) dependence
given by Eq. (6-16). Similarly, the relations between transition rates are not governed
exactly by those of Eqgs. (6-20) and (6-23). There are many possible reasons for devia-
tions from a simple rotational model. The main ones may be summarized as:

o We have seen that K is a constant of motion for a symmetric rotor. However,
rotational wave functions require linear combinations of both +K and —K com-
ponents in order to be invariant under a parity transformation. It is therefore
possible to have a term in the Hamiltonian that couples between + K, analogous
to the Coriolis force in classical rotation. The size of the coupling may depend
on both J and K in general but is observed to be negligible except for K = %
This gives rise to the decoupling term in K = % bands to be described later.

¢ The moment of inertia, which gives the slope in a plot of E; versus J{J + 1),
may not be a constant for states of different J. This is expected on the ground
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that the nucleus is not a rigid body and centrifugal force generated by the rota-
tion can modify slightly the intrinsic shape when the angular velocities are high.
Centrifugal stretching is observed at the higher J end of many rotational bands.
In general, such small and gradual changes in the moment of inertia may be ac-
counted for empirically by adding a J?(J + 1)*-dependent term in the rotational
Hamiltonian.

» Rotational bands have been observed with members having very high spin values,
for example, J = 40k and beyond. Such high-spin states occur quite high in
energy with respect to the ground state of the nucleus. As a result, it may be
energetically more favorable for the underlying intrinsic shape to adjust itself
slightly and change to a different stable configuration as the excitation energy
is increased. Such changes are likely to be quite sudden, reminiscent of a phase
change in chemical reactions. Compared with the smooth variation in centrifugal
stretching, readjustment of the intrinsic shape takes place within a region of a
few adjacent members of a rotational band. This gives rise to the phenomenon
of “backbending,” to be discussed later in §9-2.

In practice, departures from a J(J+1) spectrum are small, except in the case of K =
bands because of the decoupling term. As a result, the J{J + 1)-level spacing remain,
for most purposes, a signature of rotational band.

1
2
8,

Decoupling parameter. For odd-mass nuclei, rotational bands have half-integer
K-values. In the case of K = }, the band starts with J = } and has additional
members with J = %, %, %, ... . If the energy level positions of the band members are
given by the simple rotational Hamiltonian of Eq. (6-14), we expect, for example, the
J = 3 member to be above the J = 3 member in energy by an amount larger than
the difference between the J = 3 and J = 1 members. The observed level sequence,
however, can be quite different and, in many cases, is more similar to the example of
19Tm shown in Fig. 6-11. Instead of a simple J(J + 1) sequence, we find the J = 2
member of the band is depressed in energy and is located just above the J = % member,
the J = % member is just above the J = g member, and so on.

The special case of K = % bands can be understood by adding an extra term
H'(AK) to the basic rotational Hamiltonian given in Eq. (6-14). The term connects
two components of a rotational wave function different in K by AK for K # 0. The
contribution of this term to the rotational energy may be represented, to a first approx-
imation, by the expectation value of H'(AK) with the wave function of Eq. (6-15),

(IMK|H'(AK)JMK o,
— (D H(AK) D) + (D H(AKOID i)
+(Dlk H(AK)DSy i) + (Dl H'(AK) D)}

The first two terms on the right-hand side vanish since, by definition, H'(AK) cannot
connect two wave functions having the same K-value. For AK = 1, the last two terms
are nonzero only for K = 1.
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Figure 6-11: Rotational spectrum for the K™ = %+ band in ¥¥Tm, showing the
effect of the decoupling term of Eq. (6-25). (Plotted using data from Ref. {95].)

A term in the Hamiltonian that operates only between wave functions different in
K-value by unity may be written as

H'(A[{ = 1) ~ w1]1 = %w,(h + J_) (6-24)

where J; is the component of the angular momentum operator J along the body-fixed
1-axis and w; the corresponding angular frequency. The analogue of such a contribu-
tion is the Coriolis force in classical mechanics responsible, for example, for deflecting
movement of air mass from polar to equatorial regions on Earth to a counterclockwise
direction in the Northern Hemisphere and clockwise in the Southern Hemisphere as a
result of Earth spinning on its own axis. Since a K = % band is associated with an
odd-mass nucleus, we can view the situation as a single nucleon moving in the average
potential of an even-even core. Since the core is rotating, an additional force is felt by
the nucleon, and the interaction does not preserve the sign of K in the intrinsic frame
of reference.

The decoupling term given in this way is effective only for the K = } band. Because
of H'{AK), the rotational energy of a member of the K = % band becomes

2

h
Eyx=1/2) = ﬁ{J(J +1) + a(-1)"H2(J + 1y} + B (6-25)

where a is the strength of the decoupling term. Instead of a J{J + 1) spectrum, each
level is now moved up or down from its location given by Eq. (6-16) for an amount
depending on whether J -+ % of the level is even or odd. In cases where the absolute
value of the decoupling parameter a is large, a higher spin level may appear below one
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with spin one unit less, as seen in the F example in Problem 6-3. The signature of a
rotational band can still be recognized by the fact that one-half of the members, J = 5
%, %, ..., possess a E; versus J(J 4 1) relation with one (almost constant) slope, and
the other half with a different slope, as can be seen from Eq. (6-25).

The basic concept behind rotational models is the classical rotor. Quantum me-
chanics enters in two places, a trivial one in the discrete (rather than continuous)
distribution of energy and angular momentum and a more important one in evaluat-
ing the moment of inertia. The latter is a complicated and interesting question, as
illustrated by the following consideration.

The equilibrium shape of a nucleus may be deduced from such measurements as
the quadrupole moment. At the same time, the moment of inertia can be calculated,
for example, by considering the nucleus as a rigid body,

Tng = IMBG(1 + 30) (6-26)

where M is the mass of the nucleus and Ry its mean radius. The quantity § may be
expressed in terms of Qg using Eq. (6-18). Compared with observations, the rigid-body
value turns out to be roughly a factor of 2 too large. Furthermore, the observed value
of 7 for different nuclei changes systematically from being fairly small near closed shell
nuclei, increasing toward the region in between, and decreasing once again toward the
next set of magic numbers. An understanding of this question requires a knowledge of
the equilibrium shape of nuclei under rotation. We shall discuss this point further in
§9-2.

6-4 Interacting Boson Approximation

We have seen the importance of pairing and quadrupole terms in nuclear interaction in
a number of nuclear properties examined earlier. For many states, the main features are
often given by these two terms alone. In fact, it is possible to build a model for nuclear
structure based on this approximation. One of the advantages in such an approach is
that analytical solutions are possible under certain conditions. We shall examine only
one representative model in this category, the interacting boson approximation (IBA).

Boson operators. A good starting point for IBA is to follow the philosophy behind
vibrational models and treat the principal excitation modes in the model as canonical
variables. Here, two types of excitation quanta, or bosons, can be constructed: a J =0
quantum, or s-boson, and a J = 2 quantum, or d-boson. Both types may be thought to
be made of pairs of identical nucleons coupled to J = 0 and J = 2, respectively. Such
a realization of the bosons in terms of nucleons is important if one wishes to establish
a microscopic foundation for the model. However, it is not essential for us if we only
wish to see how the model accounts for the observed nuclear properties through very
simple calculations.

Let s be the operator that creates an s-boson and d}, be the corresponding op-
erator for a d-boson. Since a d-boson carries two units of angular momentum, it has
five components, distinguished by the projections of the angular momentum on the
quantization axis, p = -2, —1, 0, 1, 2. Corresponding to each of these boson creation



230 Chap. 8 Nuclear Collective Motion

operators, we have the conjugate annihilation operators s and d,. To complete the
definition of these operators, we need to specify the commutation relations between
them:

(sf, 8] =1 [s',8!] =[s,9]=0
(d}, d.] = b, [d,d'] = |d,d} = 0 (6-27)
[31’ dy) = [s,dL] =[8,d,} = [8‘,dL] =0
All other operators necessary to calculate nuclear properties in the model are expressed
in terms of these operators.
Using st, s, dL, and d,,, the number operators for s- and d-bosons are, respectively,

n,=s'"3 ng=d-d=Y(-1)dld_, =) dld,
u

I
where the bar on top indicates the (spherical tensor) adjoint of d and s, with
d, = (-1)"**d_, =38

as shown in Eq. (A-9). In addition, we can construct five irreducible spherical tensors
made of products of two boson operators

P=4{d-d-3.3} L= Vib(d' x d),
Q= (d' x 3), + (s! x d), — VJ(d' x d), (6-28)
Ty = (d' x d), T, = (d! x d),

where the multiplication symbol x stands for the angular momentum coupled product

(A x B,),.. =Y (rpsq|tm) A,, B,,
e

defined in Eq. (A-10).

The simple model. If we restrict ourselves to the simple case of having either active
neutrons or protons, the most general IBA Hamiltonian we can construct may be
expressed as a linear combination of the five operators given in Eq. (6-28) together
with the boson number operators. This is generally referred to as IBA-1. In this limit,
there are six parameters in the Hamiltonian,

Higay =eng + ﬂ,oP' P+aiL-L+a:Q -Q+asTh T+ asTy - Ty (6-29)

where ¢ is the energy difference between a d- and an s-boson and a; for J =0to J =4
are the strengths of the other five components in the expression. The dot between two
spherical tensor operators in Eq. (6-28) represents a scalar product, angular momentum
coupled product with final tensorial rank zero. The number operator n, for s-bosons
does not enter into the expression, as the energy associated with it is taken to be zero
and is absorbed into the definition of the energy scale. In the absence of a microscopic
connection to the nucleon degrees of freedom, these six parameters must be found, for
example, by fitting results calculated with the Hamiltonian to known data.
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In addition to energy, operators corresponding to other observables in the space
span by the s- and d-bosons can also be expressed in terms of tensor products of the
boson creation and annihilation operators. For example, the possible electromagnetic
transition operators in the space are

Ou(E0) = fo(d' x d)y + (s x3)y  Ow(M1) = fi(d' x d),,
04,(E2) = ag{(s' x d),, + (d! x 3),,} + Ba(d' x d),,
05, (M3) = fa(d' x d),, O (E4) = Bu(d' x d),,

where ay, 7o, and the 3's are, again, adjustable parameters.

One of the interesting features of IBA-1 is that it has an underlying group structure,
and as a result, powerful mathematical techniques may be applied to find the solutions.
The communication relations among the boson creation and annihilation operators
expressed in Eq. (6-27) imply that the operators form a group, the Us group, a unitary
group in six dimensions. The energy of a state corresponding to one of the irreducible
representations of this group may be expressed as a function of the six parameters in the
Hamiltonian. Once the values of these parameters are determined, a large number of
energy levels can be calculated. Examples of results for energy level positions obtained
with IBA-1 are shown in Fig. 6-12.
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Figure 6-12: Comparison of experimental (squares, circles and triangles) and
calculated level spectra (lines) in the IBA for octupole states in samarium (left)
and xenon isotopes (right). {(Taken from Ref. [9).)

The underlying group structure of IBA-1 lends itself also to three limiting cases
that are of interest in nuclear structure. The Us group may be decomposed into a
variety of subgroups. Among these, we shall limit ourselves to cases where the chain
of reduction contains the three-dimensional rotational group as one of the subgroups.
This is necessary if angular momentum is to be retained as a constant of motion.

If d-bosons are completely decoupled from the system, the Hamiltonian may be
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written in terms of s-boson operators alone,
Hsemority = 635*5 + 04)81 slas

This is the seniority scheme [49), known to be useful in classifying many-nucleon states
in the jj-coupling scheme (see §7-1). Here, pairs of nucleons with their angular momen-
tum coupled to zero are treated differently from those that are not coupled to J = 0.
From this property, we see also that IBA-1 has a pairing structure built into the Hamil-
tonian and can therefore account for many of the observed nuclear properties in which
pairing interaction dominates.

On the other hand, if all the terms related to the s-boson operator are ignored, we
obtain a system dominated by quadrupole excitations induced by d-bosons,

Hoibtimit = €ad! - d + Y ay(d' x d), - (d x d),
J

In this limit, we obtain quadrupole vibrational motion in nuclei similar to that described
in §6-1.
If we put all the parameters in Eq. (6-29) to zero except a, and ay, we obtain the
SUj limit
Hs113 =q;L-L+a,Q-Q

This has been used with success in understanding rotation-like structure in dg-shell
nuclei from oxygen to potassium. Because of the L:-term, the Hamiltonian gives a
spectrum that has an L{L + 1) dependence. If the nucleon intrinsic spins are coupled
together to S = 0 in a nucleus, we have J = L, and an L(L+1) spectrum is the same as
one with the J(J + 1) dependence we have seen earlier in rotational nuclei. The @-Q
term provides a constant in the energy for all the levels in a “band” and can therefore
be interpreted as the dependence on the intrinsic structure of the rotating nucleus. In
this way, we expect that IBA-1 can explain rotational structure in nuclei as well.

The full model. In practice, IBA-1 is found to be limited by the fact that only
excitations of either neutrons or protons can take place. To overcome this restriction,
the Hamiltonian given in Eq. (6-29) is expanded to include both neutrons and protons,
as well as interactions between them. This gives us

HIBA-Q = Hyp + pr + Vnp

where Hy, and H,, are, respectively, the neutron- and proton-boson Hamiltonians. The
interaction between these two types of bosons is provided by V,p. The most general
form, known as IBA-2, contains a maximum of 29 parameters, 9 for H,,, 9 for H,,, and
11 for V,,. This is too complicated, and a simplified version is found to be adequate
for most applications.

The IBA-2 permits a connection to be made with the underlying single-particle
basis. All the nucleons in a nucleus can be divided into two groups, those in the inert
core and those in the active, or valence, space. The core may be taken to be one of the
closed shell nuclei (to be discussed in §7-2) and may be treated as the “vacuum” state
for the problem. The nucleons in the core are assumed to be inactive except in providing
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a binding energy to the valence nucleons. Active neutron pairs and proton pairs can
be put into the space by boson creation operators acting on the vacunm. The IBA-2
therefore provides a basis to study a wide variety of nuclear structure phenomena, from
single-particle to collective degrees of freedom (for more details, see Arima and Iachello
o).

Interacting boson models belong to a more general type of approach to nuclear
structure studies sometimes known as algebraic models. We have seen evidence that
symmetries play an important role in nuclear structure. For each type of symmetry,
there is usually an underlying mathematical group associated with it. Although there
are very few exact symmetries, such as angular momentum, there is a large number of
approximate, or “broken,” symmetries that are of physical interest and can be exploited.
One good example of the latter category is isospin, or SU; symmetry, the symmetry in
interchanging protons and neutrons, or «- and d-quarks. Although isospin invariance in
nuclei is broken by Coulomb interaction, it is nevertheless a useful concept, as we have
seen earlier on several occasions. One of the aims of group theoretical approaches to
nuclear structure problems is to make use of these symmetries to classify nuclear states
according to the irreducible representations of the underlying mathematical groups.
We have seen some features of such an approach in IBA-1. A few other elementary
applications will also be made in the next chapter to classify single-particle states in the
nuclear shell model. A general discussion of algebraic models is, however, inappropriate
here, in part because of the amount of preparation in group theory required.

Problems

6-1. When two identical phonons, each carrying angular momentum XA, are coupled
together, only states with even J-values (J = A + \) are allowed. Show that this
is true by counting the number of states for a given total M, the projection of
angular momentum on the quantization axis. Use the same method to show that
when three quadrupole phonons are coupled together, only states with J™ = 07,
2+, 3+t 4, 61 are allowed.

6-2. Three rotational bands have been identified in Mg a K™ = 5/2% band starts
from the ground state (J* = 5/2%) and has three other members, 7/2% at
1.614 MeV, 9/2% at 3.405 MeV, and 11/2% at 5.45 MeV; a K = 1/2% band
with six members, 1/2% at 0.585 MeV, 3/2% at 0.975 MeV, 5/2* at 1.960 MeV,
7/2% at 2.738 MeV, 9/2% at 4.704 MeV, and 11/2% at 5.74 MeV; and a second
K = 1/2% band with four members, 1/2* at 2.562 MeV, 3/2% at 2.801 MeV,
5/2% at 3.905 MeV, and 7/2% at 5.005 MeV. Calculate the moment of inertia and
the decoupling parameter, where applicable, for each band.

6-3. The following energy level positions in mega-electron-volts are known for two
rotational bands in *F: 1/2+ 0.000, 1/2~ 0.110, 5/2+ 0.197, 5/2~ 1.346, 3/2
1.459, 3/2% 1.554, 9/2+ 2.780, 7/2~ 3.999, 9/2~ 4.033, 13/2* 4.648, and 7/2*
5.465. Calculate the moment of inertia and the decoupling parameter for each
band. Comment on the likelihood of the 11/2% level at 6.5 MeV to be a member
of the 1/2*-band.
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6-4.

The ground state of '3Eu is known to be 3~ with an electric quadrupole moment
of 4+3.16 x 10%efm?. Find the intrinsic quadrupole moment of the nucleus for
the ground state and deduce the value of § defined in Eq. (6-18), the difference
between 3 and R,. What is the shape of this nucleus?

. The {ollowing E2-transition rates appear in a table of nuclei in terms of natural

line width I" for the K == 0% band in ?Ne: 2* (1.63 MeV) — 0% (ground)
6.3 x 1074 eV, 4% (4.25 MeV) — 2% (1.63 MeV) 7.1 x 1072 eV, 6 (8.78 MeV)
— 4+ (4.25 MeV) 0.100 eV, and 8* (11.95 MeV) — 6 (8.78 MeV) 1.2 x 1073 eV,
From the information provided,

(a) find the moment of inertia of the band,

(b) find the intrinsic quadrupole moment of the band, and

(¢) predict the quadruple moment of the 2+ member.



Chapter 7

Microscopic Models of
Nuclear Structure

The nucleus is a quantum-mechanical many-body system. Powerful and elegant meth-
ods have been developed over the years to handle such problems. Several factors,
however, contribute to make the nuclear many-body problem somewhat unique. First,
the interaction is complicated and still unknown in many aspects. Second, rotational
symmetry imposes the condition that each observed state has a definite spin. Thus
angular momentum coupling becomes an important issue in any practical calculations.
Finally, even in the heaviest nucleus, the nucleon number is not large enough to be
treated as an infinite system where many simplifications can be applied.

A nucleus is made up of neutrons and protons. It is therefore natural to adopt
a Hamiltonian based on nucleons, interacting with each other through a two-body
potential. The eigenfunctions obtained by solving the Schrodinger equation may be
used to calculate observables and the results compared with experiments. In principle,
such a calculation is possible once the nucleon-nucleon interaction is given. In practice,
special techniques are needed and we shall examine a few of the more basic ones.

7-1 Many-Body Basis States

To describe a nucleus using nucleon degrees of freedom, we need to express the wave
functions in terms of those for individual nucleons. The first step in a microscopic
calculation for the nuclear many-body problem is then to find a suitable set of single-
particle wave functions. Antisymmetrized products of such functions form the basis
states for our many-body system made of A nucleons.

Mathematically, we can take any complete set of functions as the basis states.
However, the Hilbert space is in general infinite in dimension, and truncation of the
space to a small finite subset is essential in any practical calculations. The selection
of this truncated, or active, space depends on the basis states chosen. For this reason,
selection of the basis states is an important step in a calculation. As we shall see in
the later sections in this chapter, a well-chosen single-particle basis wave function can
greatly simplify the problem.

235



236 Chap. T Microscopic Models of Nuclear Structure

Matrix method to solve the eigenvalue problem. Our calculation is centered
around the solution to the many-body eigenvalue problem

HU,(r;,ry,...,7a) = EUu(ry,m,...,74) (7-1)

where E, is the energy of the state with wave function ¥,(7y,79,...,r4). The Hamil-
tonian consists of a sum of the kinetic energy of each nucleon with reduced mass p;
and the interaction between any two nucleons,

A h2 )

1=1 2/1‘1‘ 1#7

To simplify the notation, we shall not make any explicit reference here to the intrinsic
spin and other degrees of freedom and we shall use r, to represent all the independent
variables of the system pertaining to nucleon i. From the eigenfunctions obtained,
we can find other properties of the system by calculating the matrix elements for the
corresponding operators, such as those given in Chapter 4.

For many purposes, it is more convenient to solve Eq. (7-1) using a matrix method.
In this approach, we start with a complete set of basis states for the A-particle system,
{®e(ry,72y...,74)} for k=1,2,..., D, where D is the number of linearly independent
states in the Hilbert space. For mathematical convenience, we shall assume that the
basis i3 an orthogonal and normalized one. Any eigenvector Uo(r,7a,...,74) may be
expressed as a linear combination of these D basis states,

D
\I’a(r}a"'%"':rA): ZC;:@;‘(TI,TQ,...,TA) (7_3)
k=1

Here Cf are the expansion coefficients for the ath eigenfunction. In principle, the
solution to Eq. (7-1) is independent of the basis states chosen: in practice, the ease
of solving the problem depends critically on the choice. As mentioned earlier, this is
especially true if we wish to truncate the active space to a manageable one. We shall
return to the question of truncation in the next few sections.

Once the basis is fixed, the unknown expansion coefficients C¥ in Eq. (7-3) may be
found by proceeding in the following way. First, we multiply both sides of Eq. (7-1)
from the left with ®7(ry,7;,...,74) and integrate over all the independent variables.
In terms of Dirac bra-ket notation, the result may be expressed as

(®;lr1, 72, A H|Wolr1, ey - 74)) = Eo(®ilry, 7a,. . P a)|Walry,ra,. .. ,74))

Using the expansion given in Eq. (7-3) and the orthonormal property of the basis wave
functions, the expression can be reduced to

D
Y. HuCf = EoCy (7-4)

k=1

where H,; is the matrix element of the Hamiltonian between basis states ®, and @y,

H]k = <(I>j(1'1) L TR irA)‘Hl(pk(rh'rQV s ,T'A))
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In terms of matrices, Eq. (7-4) may be written as

Hy Hip; - Hypy (C} %3
H:n szz H:w C:? —E, C:é’ (7-5)
Hp, H'Dz R H;JD C;B Ci’)
The eigenvalues E, are the roots of the secular equation,
Hy - Eq Hy, Hip
det H.21 Hy - E, H‘2D -0
H.m H;)z e HDD‘_ E,

Once an eigenvalue E, is found, the coefficients C2, i = 1, 2,..., D, may be obtained,
in principle at least, by solving Eq. (7-5) as a set of D algebraic equations. This gives
us the eigenvector corresponding to E,. The complete set of eigenvectors for o = 1,
2,..., D may be viewed as a matrix {C®} that transforms the Hamiltonian from the
basis representation into a diagonal one. In this way, the eigenvalue problem posted by
Eq. (7-1) is solved by diagonalizing the Hamiltonian matrix {H,:}. Powerful numerical
techniques are available to handle eigenvalue problems by matrix diagonalization [153].

Single-particle basis states. In microscopic nuclear structure calculations, the basis
states {@;} for many-body wave functions are usually constructed out of products of
single-particle wave functions ¢;(r,). To ensure proper antisymmetrization among the
nucleons, a many-body state is often written in the form of a Slater determinant,

di(r1)  di(ra) -+ di(ra)

@k(rl,rz,...,m)=\/—%_4—_'det ¢>2(:r,) ¢>2(.7‘2) ¢2(:TA)

ba(r1) ¢A(T2) pa(ra)

where the factor (A1)~ is required for normalization. Different sets of single-particle
states form different many-body basis states. The choice of single-particle wave func-
tions therefore determines the type of many-body basis states that can be constructed.

The single-particle spectrum is an infinite one. It is bound at the low-energy end
by the ground state but extends to infinity at the other end. This is very similar to
the energy spectrum of a harmonic oscillator. In fact, we shall see that the harmonic
oscillator is often used as the starting point of nuclear single-particle wave functions.
If we select a set of states with single-particle energies close to those found in actual
nuclei, it is possible to truncate the Hilbert space based on energy considerations.
Partly for this reason, it is more convenient to take as basis states the eigenfunctions
of a single-particle Hamiltonian,

h(ri)gr(r,) = exdu(r,)

Here ¢ is the single-particle energy. We shall see an example of h(r,) in Eq. (7-10)
of the next section. In terms of such a single-particle Hamiltonian, the many-body

(7-6)
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Hamiltonian in Eq. (7-1) may be expressed in the form

A A
H= Zl h(r;) + Zl V(r,r;) {7-7)
= i#j=

where V(r;, r,) is the residual two-body interaction, the original nucleon-nucleon inter-
action V,, in Eq. (7-2) minus contributions already included in A(r,). We shall not be
concerned here with the technical question of transforming the Hamiltonian from the
form given by Eq. (7-2) to that in (7-7). One method is given in §7-3, and the formal
procedure is given in §7-5. On the other hand, it is clear that if we choose h(r;) such
that a large part of the effect of the two-body interaction in Eq. (7-2) is included, the
residual interaction V{r;,r,) will be sufficiently weak that, in some cases, it may even
be adequate to ignore it. This gives us various independent particle models. Alterna-
tively, we can make use of the energies €, to reduce the Hilbert space to a manageable
size and solve the eigenvalue problem with the residual interaction in the truncated
space. An example is the spherical shell model described in §7-5.

7-2 Magic Number and Single-Particle Energy

The best evidence for single-particle behavior is found in closed shell nuclei, *He, 160,
0Ca, 921, and 2%Ph, These are nuclei with proton number Z = 2, 8, 20, 40, 82 and
neutron number N = 2, 8, 20, 50, 82, 126. They have special features, such as:

o Energies of the first few excited states are higher than those in nearby nuclei, as
shown in Fig. 7-1.
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o Single-neutron and single-proton removal energies,

Sﬂ(ZvN) = EB(ZwN)_EB(ZvN_l) (7'8)
Sp(Z,N) = Eg(Z,N)— Eg(Z-1,N) (7-9)
are much larger than those in the neighboring even-even nuclei, as shown in

Fig. 7-2.

¢ The intrinsic shape of the ground states is spherical, as can be seen from observations
such as electromagnetic transitions.
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Figure 7-2: Neutron and o-particle separation energies for stable nuclei as a
function of nucleon number A. The values are calculated from a table of binding
energies.

These properties are sufficiently prominent that the sequence of numbers, 2, 8, 20,
40(50), 82, and 126 are known as magic numbers. One of the early achievements of nu-
clear physics was in explaining the cause of these magic numbers using an independent
particle model, based on a Hamiltonian that is a slight extension of that for a simple,
three-dimensional harmonic oscillator.

Independent particle model. We saw in the previous section that an independent
particle model is one in which the residual interaction is ignored. In this approximation,
the nuclear Hamiltonian is a sum of single-particle terms,

A
H = Z h(r,')
i=1

Physically, we can think of a nucleon i moving in a potential »(r,) that is a good
representation of the average effect of the two-body interaction the nucleon has with
all the other nucleons in the nucleus. If ¢ is the kth eigenvalue of this Hamiltonian,

h(r)¢i(r) = exdr(r)
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the many-body Hamiltonian in the independent particle model may be rewritten in
terms of the single-particle energies

H=3% ean
%

Here the summation on k is over all single-particle states and ny is the number operator
measuring the occupancy of single-particle state k.

In this picture, the magic numbers arise because of the fact that the nuclear single-
particle spectrum is not a smooth one. Instead, they are grouped into “shells” with
relatively large energy gaps between shells. When each group of states is completely
filled, the Fermi encrgy of the nucleus is just below one of these large energy gaps. The
ground state of the nucleus is made up by filling all the single-particle states below
the Fermi level. To form an excited state in such an independent particle model, a
nucleon must be promoted from an occupied single-particle state below to an empty
one above. Since the gap is large, it takes more energy to excite the nucleus. For this
reason, nuclei satisfying this condition for both neutrons and protons are also called
closed shell nuclel. With all the orbits filled, the ground state of the nucleus is tightly
bound and spherical in shape, as explained at the beginning of §6-3.

Harmonic oscillator single-particle spectrum. We can construct a simple model
to see why energy gaps appear in the single-particle spectrum. A one-body Hamiltonian
may be written in the form

hi{r) = —%VQ + v(r) (7-10)

where 7 is the coordinate of the nucleon and p is its reduced mass. For mathematical
convenience, we shall assume for the moment that the potential v(r) is a central one
that depends only on the magnitude of » but not on its direction. A good approximation
of such a potential is given by the harmonic oscillator well,

v(r) = jpuwipr? (7-11)

where wy is the frequency. This is a reasonable assumption for the bound nucleons. To
provide binding, the potential must have a minimum, and near this minimum it must
have a quadratic dependence on the spatial coordinates. Such a form is well represented
by that given in Eq. (7-11). Examples of single-particle radial wave functions generated
by such a potential are shown in Table 7-1. We expect that the radial dependence may
not be realistic near the nuclear surface, especially for single-particle states around the
Fermi energy. However, this is not a problem for us here.

For an isotropic, three-dimensional harmonic oscillator potential, each (major) shell
is characterized by N, the number of oscillator quanta. All states belonging to a given
shell are degenerate with energy

en = (N + 3 )hw (7-12)
For each shell, the allowed orbital angular momenta are

£=N, N-2,...,1,0r0
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Table 7-1: Harmonic oscillator radial wave functions.

3y 1/4 3 /.59 1/4
Ru(r) =2(%) e Rl,,(r)=,/%("7) A

24 (y7\ /4 23 7,3\ 1/4
Rulr) =\ (%) e Ru) =5 (%) G-ty

B O\, 24 5\ 1/4
=i — —vrif2 =L 5 _ 2y pp—urtf2
Rys(r) 105(1.—) r’e Ryy(r) 15<1r) (3 —vri)re
2 (AN 25 /yT\1/4
= A [ — ~ur? /2 Y Bd T 2\ 2,=ur2/2
Riy(r) \/945( - ) rle Rau(r) 105(7r) (- vr2)r2e
3 7,3y 1/4
R3,(r) = 3_5_ (%—r.) (.IZQ —5ur? + l/21‘4) e—ur7/2

Note: As approximate single-particle wave functions for a nucleus, the oscillator
parameter, v = muwy/%, may be taken to be A~'/3 femtometers squared.

(See, e.g., p. 818 of Ref. [46].) Since each nucleon also has an intrinsic spin s = 1, the
number of states, Dy, i.e,, the maximum number of neutrons or protons a harmonic
oscillator shell can accommodate, is given by

N41
Dy=2 Y (2+1)=2) k=(N+1)}(N+2)
allowed ¢ k=1
where the factor of 2 in front of the summations is to account for the two possible
orientations of nucleon intrinsic spin. The total number of states, Dy, up to some
maximum number of harmonic oscillator quanta, Ny., is given by a sum over all
N-values to Np.x,

N,
max 1
Drax = Z Dy = §(Nmax + 1)(Nmax + 2)(Nmax + 3)
N=0

1
TSt 3(Mmax +2)° (7-13)

In arriving at the final result, we have made use of the identity
n
Y okt=in(n+1)(2n+1)
k=1

From Eq. (7-13) we obtain the values D,,, = 2, 8, 20, 40, 70, 112, 168,. .. for Ny.x =0,
1,2,...

The harmonic oscillator frequency wy is related to the size of the nucleus and,
hence, to the nucleon number A. The expectation value of 2 in a state of Nhwy can
be obtained from that for the harmonic oscillator potential energy,

<~;—uw§1‘2>N = %(N + %)hwo



249 Chap. 7 Microscopic Models of Nuclear Structure

where the factor % on the right-hand side comes from the fact that, for a particle in
a three-dimensional harmonic oscillator well, the average of potential energy is half of
the total energy. Using this relation, we obtain the expectation value of 72 in a state
with NV harmonic oscillator quanta to be

(ry,y = ETL:—o(N +3) (7-14)

The mean-square radius of a nucleus made of A nucleons is given by the average over
all occupied harmonic oscillator states for both neutrons and protons,

2 2 Nmax 2 Nmax 3 h
(R = =~ Z D, =7 EG(N+1)(N+2)(N+5)E (7-15)

where the factor 2 in front of the summations arises from the need to consider both
neutrons and protons. For simplicity, we shall assume here that neutron and proton
numbers are equal to each other. The final result is obtained by substituting the explicit
values of Dy given in Eq. (7-13) and (r?)y in (7-14).

The summation over N in the final form of Eq. (7-15) may be carried out with the
help of the mathematical identity

Z ( n{n+ 1))
together with those for 3_ k% and ¥ k given earlier. The result is

Nmf(N +DIN+2)(N+3) = H(Nmax + 1)(Nnax + 2)*(Nenax + 3)
N=0D

Niax>p1 %(Nmax + 2)4

In the limit of large Npax, we obtain the result

2 h1
RY) = —— o+ 2)
(R = e (Vo +2)
which relates the square of the nuclear radius to the value of Ny

Alternatively, we can use this relation to express fwg, a quantum of harmonic
oscillator energy, in terms of Nmax,

1 B 1
AR 3¢

The number of nucleons A can also be related to Npax using Eq. (7-13),

hwo = Niax + 2)* (7-16)

Ninax
A=2) Dy=%(Npu+2)°
N=0

where the factor of 2 is used to account for the fact that each harmonic oscillator state

can take a neutron as well as a proton with a given spin orientation. On inverting the
relation, we obtain the expression

(Nmax + 2) = (gA)l/3 (7~17)
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Combining the results of Eqgs. (7-16) and (7-17), we obtain

5 1 h? 173 \43
“o = Zﬂ(rz)i(i )

h? 3(314)1/3
— nl(reA)4\2

5/3\'/3 A?
T ___A—l/a ~4 A—1/3 -~
4(2) e 1 MeV (7-18)
where we have adopted a constant-density sphere model to convert (r2) to 3(roA/%)?,
as done in Eq. (4-20), and used ry = 1.2 fm to arrive at the final result, invoked earlier
to characterize the energy required to excite a nucleon up one major shell.

Spin-orbit energy. Let us go back to the question of magic numbers. From Eq. (7-13),
we find that the first part of the sequence, 2, 8, 20, and 40, is accounted for by,
respectively, filling up harmonic oscillator shells with either neutrons or protons up to
Nmax = 0, 1, 2, 3. This gives us an indication that the harmonic oscillator potential is
a reasonable starting point for understanding the structure of single-particle states in
nuclei. However, deviations are found beyond Ny., = 3. To correct for this, additional
terms must be introduced into the single-particle Hamiltonian beyond what is given by
the harmonic oscillator potential of Eq. (7-11).

The departure of the sequence of magic numbers from the values given by Dyax
in Eq. (7-13) is explained by single-particle spin-orbit energy, suggested by Mayer and
Haxel, Jensen, and Suess in 1949 (see Ref. [102]). If the potential that binds a nucleon
to the central well has a term that depends on the coupling between s, the intrinsic
spin of a nucleon, and £, its orbital angular momentum, the single-particle energies will
be a function of the j-value of a state as well. Since j = s + £, two possible states
can be formed from a given ¢ and the energies of the two are different, depending on
whether s is parallel to £ (; = ¢ + %) or antiparallel to £ (j = £ — %) The source
of this single-particle spin-orbit term may be traced back to the spin dependence in
the nucleon-nucleon interaction. For our purpose here, we shall, for simplicity, take a
semi-empirical approach without any concern for the origin.

Let a be the strength of the spin-orbit term. The single-particle Hamiltonian of
Eq. (7-10) now takes on the form

B a1, a2
hir) = ——2—12V + juwpr® +as- £ (7-19)

where the parameter a may depend on the nucleon number A and can be determined,
for example, by fitting observed single-particle energies. When the spin-orbit term is
included, the single-particle energy of Eq. (7-12) becomes
+ial forj =€+ 1
ene, = (N + 2)hw 2 2
N ( 2) o{—%a(€+l) forj=10-1
The splitting in energy between the j, = £+  single-particle level and the j. =€~
level is a{2¢ + 1)/2. However, the centroid energy of the two groups is not affected.
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For a < 0, a single-particle state with j = j, = E+% is lowered in energy. Since the
amount of depression increases with increasing é-value, a j-state for large ¢ may be
pushed down in energy by an amount comparable to fiwg, the energy gap between two
adjacent harmonic oscillator major shells. As a result, the j,-states of the largest £in a
shell with N oscillator quanta may be moved closer to the group of states belonging to
the N — 1 shell below. [In practice, as we shall later in Eq. (7-29), one needs also an £°-
dependent term in the single-particle Hamiltonian to lower the centroid energy of states
with large ¢-values so that the j.-states are prevented from moving up to join the states
in the harmonic oscillator shell higher up.] Because of spin-orbit splitting, we find that
the j = % single-particle states for £ = 4 in the N = 4 shell are depressed sufficiently
in energy that their location is closer to the N = 3 group. As a result, the j = % states
join those of N = 3 to form a major shell of 30 single-particle states instead of 20. For
this reason, we have 50 instead of 40 as the magic number for neutrons. Similarly, the
magic number 82, instead of 70, is obtained if the j = 121 states of the £ = 5§ group in
the N = 5 shell are lowered in energy to join the N = 4 group. By the same token, the
magic number 126 is formed by summing all the particles in the N < § shells (totaling
112) together with those filling the j = 12:5 orbit (which accommodates 25 + 1 = 14
identical nucleons) from the major shell above. Following this line of reasoning, the
first magic number beyond the known ones is 184.

A point to he noted here is the absence of a doubly magic (both N and Z magic
numbers) nucleus with Z = 50. Because of Coulomb repulsion, nuclei beyond *°Ca
must have an excess of neutrons over protons to be stable and the amount of neutron
excess required increases with Z. For ®Zr (Z = 40), we find that the neutron excess
is N — Z = 10 and for *™Pb (Z = 82), the excess increases to N — Z = 44. To form a
stable nuclens with Z = 50, we expect a neutron excess somewhere between 10 and 20.
The next higher magic number after 50 is 82. Since N = 82 gives too large a neutron
number for Z = 50, a doubly magic nucleus with Z = 50 cannot be constructed. In
spite of this, we do find that the element Sn (Z = 50) has more stable isotopes than
those nearby. Other properties of the stable tin isotopes also support the observation
that empirically Z = 50 is one of the magic numbers, producing nuclei that are more
tightly bound than their neighbors.

Superheavy nuclei. The heaviest closed shell nucleus known is 2*Pb with Z = 82
and N = 126. Calculations indicate that the next stable proton number may be 114
becanse of the large separation in single-particle energy hetween two groups of proton
orbits, one consisting of 1hgyz, li1a/2, and 27/, and the other of 3p3;; and 2 f7/5. There
is a similar separation for the neutron orbits but the energy gap is smaller and no clear
indication for a neutron subshell at N = 114 is found among empirical evidence. Since
Z = 114 is not too far from the end of the actinide series at Z = 103, there is some
possibility that a “superheavy” element with A = 298 (Z = 114 and N = 184) can
be made in the laboratory. Alternatively, we may use the known magic number of
126 as the proton number and end up with A = 310 as the possible candidate for a
superheavy nucleus, Many experimental attempts have been made to find these nuclei
and to discover a new group, or “island,” of stable nuclei around the next set of magic
numbers. As an important step in this direction, the element Z = 112 and N = 165
was created in the laboratory, as we shall see later in §9-1.
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Figure 7-3: Schematic diagram of single-particle energy spectrum for spherical
shell model. The lowest three major shells, 1s, 1p and 2s1d, are the same as those
produced by a three-dimensional, isotropic harmonic oscillator well. The higher
major shells include also the orbit with the largest j-values lowered in energy from
the harmonic oscillator shell above by spin-orbit energy.

Spectroscopic notation. We shall end this section with a description of the standard
nomenclature for (spherical) single-particle orbits in nuclear physics. Each orbit is
identified by three labels, NV, ¢, and j. The convention is to use spectroscopic notation
with a single letter s, p, d, f, g, h, %, 7, ... tostand for £=0,1,2,3,4,5,6, 7, ...,
respectively. The j-value is indicated as a subscript following the letter and the label for
major shell is given as a prefix. It is customary to replace N, the number of harmonic
oscillator quanta in a major shell, by n, the number of nodes in the (modified) radial
wave function. There are at least two conventions to number n, depending whether
one counts the node at the origin. We shall follow the one with n = 1, 2, ... for the
first time (one node), the second time (two nodes), and so on for a particular é-value to
appear in the sequence of single-particle orbits arranged in ascending order according
to energy. For example, the single-particle orbit with the lowest energy is £ = 0 without
a node in the wave function. It is called the 1sy/5-orbit. A higher £ = 0 orbit found
in the N = 2 shell is labeled 2s,/;. The next higher £ = 0 orbit at N = 4 is the
3s1/2, and so on. Figure 7-3 gives a more complete illustration of this way of labeling
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the single-particle orbits. The alternate convention is basically the same except that
instead of starting with 1 for the first occurrence of a particular f-value, it starts with
0. Both conventions are equally well used and some confusion may arise on occasion.
Furthermore, both conventions are different from that used in atomic physics and in
certain quantum mechanics textbooks.

7-3 Hartree-Fock Single-Particle Hamiltonian

In its most elementary form, the nuclear Hamiltonian, as given earlier in Eq. (7-2),
is a sum of two terms, one coming from the kinetic energy of the individual nucleons
and the other from the mutual interaction between nucleons. There is no fundamental
one-body potential as, for example, in the case of electrons in an atom where the
Coulomb attraction from the nucleus provides a one-body interaction. When this is
coupled with the fact that the two-body interaction between nucleons is fairly strong,
it is not easy in general to truncate the Hilbert space involved down to sizes suitable
for practical calculations. We saw in the previous section that one way to solve this
difficulty is to make a transformation of the single-particle basis wave functions so that
the single-particle energies reflect a large part of the nucleon-nucleon interactions. One
of the aims of the Hartree-Fock approach to the nuclear many-body problem is to find
a single-particle representation such that the residual interaction is small.

Variational calculation. For the purpose of discussion, we shall start with an arbi-
trary set of single-particle states as the trial functions. The final result is, in principle,
independent of this choice; in practice, it is advantageous to take a set that is convenient
from a mathematical point of view, such as harmonic oscillator wave functions.

In the absence of a two-body residual interaction, the ground state is given by the
configuration with the lowest A single-particle states occupied and the Fermi energy
¢p is determined by the highest occupied single-particle state. The wave function | ®;)
for a system of A nucleons is a Slater determinant constructed out of this set of single-
particte wave functions. To simplify the notation, let us use |¢1¢;---P4) to represent
the Slater determinant given by Eq. (7-6). Thus, we have

|®o) = |p1cp2 - - Pa) (7-20)

If | ®p) is the true ground state wave function of the system, it must satisfy the varia-
tional condition

(1 PalH|p1pa - da) =0 (7-21)

That is, the function | @) is one that produces a minimum in the energy. The aim of a
Hartree-Fock calculation is to find a set of single-particle states that, as far as possible,
fulfills this condition.

Since variations on the bra (®o| are not independent of those on the ket |®o),
Eq. {7-21) is equivalent to the condition

(6| H|®o) =0 (7-22)

In other words, the aim of Eq. (7-21) can be achieved by a variation of either the bra or
the ket alone. There are two possible ways to carry out the operation on a many-body
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wave function. Either we can modify the single-particle wave functions themselves such
that Eq. (7-22) is satisfied or, alternatively, we can keep the single-particle basis fixed
and alter ®y by adding to it small amounts of Slater determinants made of products
of different A single-particle states. As long as there is a complete set of states and all
possible variations are applied, these two methods are equivalent to each other.

We shall take the latter approach for our derivation here. With a fixed single-
particle basis, each many-particle basis state may be labeled by the single-particle
states occupied. For example, the trial ground state wave function &, in Eq. (7-20)
is one with the lowest A single-particle states occupied (and those above empty). A
different many-body wave function will have a different set of occupied single-particle
states. A linear combination of two or more such many-body basis states then means
that some of the single-particle states are partially occupied, and the occupancies of
these states take on fractional value between 0 and 1 as a result.

Let us label the basis, for instance, by numbering all the single-particle states with
an index r = 1, 2, ..., d in ascending order according to single-particle energy e,.
A many-body basis state may be specified in this case by giving the indices of the
occupied single-particle states. Thus, the lowest many-body state, as far as the sum of
single-particle energies is concerned, may be represented as

[y =11,2,..., A)

Such a scheme of displaying a many-body state is sometimes referred to as the occupancy
representation.

A variation on |®g) may be carried out by mixing a small amount of | ®,; ), made
by promoting a particle from single-particle state ¢ below the Fermi energy to single-
particle state k above. Such a state may be represented as

1Bke) = |1,2,...,t-1,t+1,..., A, k)

Many-body states constructed in this way, by promoting a nucleon from an occupied
single-particle state below the Fermi level of the A-nucleon system to an unoccupied
state above, are called one-particle one-hole states, or 1plh-states for short. Other vari-
ations, involving two-particle two-hole (2p2h) and more complicated types of excitation,
can also be considered, but we shall ignore them here.

An arbitrary variation consisting of all possible 1plh-excitations may be written in

the form
16B) = 3 ke Pe)
kt

where 7 denotes the amount of each component in the variation. To ensure that the
variations are carried out in small steps, the absolute value of 17, must be kept to be
much smaller than unity. If we restrict ourselves to 1plh-excitations, Eq. (7-22) may
be written as

S ke (Pre| H|Bo) =0
ke

Since different 1plh-components, represented by different occupied single-particle state
k and empty single-particle state ¢, are independent of each other, it is necessary that
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each term in the sum vanishes. From this requirement, we obtain the condition

A
(Pt H|®o) = ‘I’k2|2h )+ Y Vir,r)|®) =0 (7-23)
1#7=1

For the one-body part of the Hamiltonian, the only possible nonvanishing contribution
comes from cases where the left- and right-hand sides of the matrix element differ by no
more than the single-particle state of one nucleon. Similarly, for the two-body part of
the Hamiltonian, only matrix elements with occupied single-particle states on the two
sides of V(r;, r;) differing by no more than two can be nonvanishing. Upon integrating
over all the single-particle coordinates other than those acted upon by the operators,
the condition expressed in Eq. (7-23) for a one- plus two-body Hamiltonian reduces to

(klR(r)[) + 3" (kr{V (ry, ma)ltr) = 0 (7-24)

where the summation is over all the occupied states.

The first term in Eq. (7-24), (k|h(r)|t), is the matrix element of the one-body part
of the Hamiltonian between smgle—partlcle states |¢) and | k). Similarly, the matrix
element of the two-body part, (kr|V(r|, 72)}tr), is between two antisymmetrized two-
particle states, |kr) and |fr), given by

k) = 2| G} S| = Z5{l tr o) = L tromutra))}
(7-25)
) = |4t | = Slladmnt) - 1aroae)

Using these results, the two-body matrix element in Eq. (7-24), the second term on the
left-hand side, may he expressed explicitly in terms of single-particle wave functions in
the following way:
(kr|V(ri,ma)tr)
= Hpu(r)en(r2) — 6, (r)d(ra)|V (r1, )| @e(r1)8, (12) = 6 (r1)de(72) )

= (Br(r) e (r2)|V (1, )| bu(r1) (12)) = (dr(r) 8. (r2)|V (r, 72) |60 () 8u(r2))

where we have made use of the symmetry relation

(b1 (r2)IV (r1, 72)|0e(r1) e (2)) = (S, (1) (ra )]V (1, T2) b (11) Pe(2))

The derivation from Eq. (7-23) to (7-24) may be carried out in a more elegant way using
second-quantized notations. However, we shall not do it here because of the amount of
preparation needed to introduce the notations.

Hartree-Fock Hamiltonian. 1t is perhaps more instructive to write the relation
expressed by Eq. {7-24) in an operator form. For this purpose, the left-hand side of the
equation may be regarded as the matrix element of a ene-body operator, as it operates
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only on the single-particle state k to its right (or the single-particle state ¢ to its left).
However, V(r;,73) is a two-body operator, and we shall see how to “reduce” it to
one-body.

Let us distinguish between two sets of single-particle states here by using Greek
letters o, B3, ... to indicate the original, or trial, single-particle states and the Roman
alphabet, r, s, ..., for the Hartree-Fock single-particle states that satisfy Eq. (7-24).
A two-body interaction potential may be expressed in the original basis as an operator
in the following way:

Y V(rur)) = [0 Vapys (76| (7-26)
17 afivé
where
Vtxﬂ‘yb’ = (aﬂ’v(rhrZ)"ﬂS)

is the matrix element of V(r;, ry) between antisymmetrized and normalized two-body
wave functions |af) and |yé), such as those given in Eq. (7-25). Using this form of
the two-body potential, we can write the lefi-hand side of Eq. (7-24) as the one-body
matrix element of the following operator:

hup = h + Z Z (r]eB) Vaﬂ76<76"r> (7-27)

r afyé

This is the Hartree-Fock single-particle Hamiltonian operator. The left-hand side of
Eq. (7-24) is the matrix element of hyr between single-particle bra |k) and single-
particle ket |¢). The quantity (tja8) in Eq. (7-27) is 2 one-body operator since it is
the overlap of a two-body ket with a one-body bra. Except for the implied antisym-
metrization in the two-body wave function, we may take the quantity as

(rlaB) ~ (r|a)| B)

The second term of hgr in Eq. (7-27) may be interpreted as the average one-body
potential, or the mean field, experienced by a nucleon as the result of (two-body)
interactions with each one of the other nucleons in the nucleus.

It is also possible to write Eq. (7-24) as an eigenvalue equation using the operator
form given in Eq. (7-27),

hity+3 3 (rlaB)Vapys(1blrt) = e t) (7-28)

T oaffyb

where ¢, is the Hartree-Fock single-particle energy. The solution provides us with a
transformation from the set of basis states [a), | 8),..., used as the trial wave func-
tions, to the eigenstates of the Hartree-Fock single-particle Hamiltonian k), |£),...,
defined by Eq. (7-28).

The calculation is not as straightforward as it may seem on the surface. To find both
(rlaB) and (vé|rt) in Eq. (7-28), or the equivalent quantity of (kr|V|tr) in Eq. (7-24),
we need an a priori knowledge of the solution, as these matrix elements are evaluated in
the Hartree-Fock basis that forms a part of the end result of the calculation. This means
that the calculation must be carried out iteratively starting with an arbitrary set of
single-particle wave functions, such as harmonic oscillator wave functions. Using these
trial functions, we can evaluate all the necessary matrix elements and solve Eq. (7-28)
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approximately using the trial functions for |r) and [t}. The solutions obtained are
only a first approximation, as we have not used the proper wave functions to evaluate
the matrix elements to start with. On the other hand, the results represent a better
approximation of the “true” Hartree-Fock wave functions than the trial wave functions
used as the input. Now we can make improvements by using the first approximation
results as the input and carrying out the calculation again. The process is repeated
until self-consistency in the solution is achieved; that is, the solutions obtained are
essentially identical to the wave functions used to evaluate the matrix elements.
Hartree-Fock calculations have been used extensively to study low-lying states in
nuclei, as, for example, that for 2Pb shown in Fig. 7-4. However, since each nuclear
wave function is made of a single Slater determinant, it does not correspond to a state
with definite spin and isospin., In order to use them to calculate quantities that can
be compared with experimental data, states of good J and T must be projected out
of the Hartree-Fock wave function. We shall not go into the technical detail of how
to carry out the projection or extensions of the topic to projected Hartree-Fock where
the variational calculation is carried out after spin and isospin projections. The self-
consistent single-particle basis obtained here is, however, important for understanding
nuclear ground states as well as the nuclear shell model to be discussed in §7-5.
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7-4 Deformed Single-Particle States

So far, we have taken the effective one-body potential arising from the average interac-
tion of a nucleon with all the other nucleons in the nucleus to be spherical. This is a
reasonable assumption only if the equilibrium shape of the nucleus itself has the same
shape. As we saw earlier in §6-3, for many nuclei, a deformed shape is actually more
stable. For these nuclei, it is more appropriate to use a deformed average potential well
to generate the single-particle basis states.
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Deformed single-particle Hamiltonian. Let us again assume axial symmetry for
simplicity. Instead of Eq. (7-19), we can adopt a semi-empirical single-particle Hamil-
tonian of the following form:

h(r)=ho+hs+al-s+be’ (7-29)

Here hy is the spherical part, generally taken to be the Hamiltonian of an isotropic
three-dimensional harmonic oscillator similar to that given in Eq. (7-10),

h2
ho = —E-IJVZ + Lpwlr?

The deformation is produced by hs and is often taken to be that due to a quadrupale

field,
h6 = "%%scﬂwgﬂ v 12_71 }/20(9y ¢)

where 84sc, to be defined later in Eq. (7-32), provides a measure of the departure from
a spherical shape. We have already encountered the other two terms in the single-
particle Hamiltonian. The spin-orbit term a £ - s, given in §7-1, is required to account
for the magic numbers, and the term b £? is used to give the proper ordering of single-
particle states in the spherical limit. Deformed single-particle states, produced as the
eigenvectors of the Hamiltonian given in Eq. (7-29), are often referred to as the Nilsson
states or Nilsson orbitals.

Labels for deformed single-particle states. With a deformed Hamiltonian, the
spin 7 is no longer a constant of motion and a new set of labels must be found to
identify a single-particle state. As we have seen earlier in §6-3 in a discussion of the
rotational model, the third component of j remains a good quantum number for axially
symmetric nuclei. This gives us §2, the projection of j on the body-fixed quantization
axis (the 3-axis), as one of the labels.

The wave function of a Nilsson state may be expressed as a linear combination of
spherical harmonic oscillator states | N£jQ2),

INQ) =" Cne| NEIR) (7-30)
4]

as deformation mixes spherical orbits. The expansion coefficients Cn¢; depend on the
value of the deformation parameter ... In the limit of zero deformation, the states
become identical with those in the spherical case used in the previous sections. If
admixtures between spherical states belonging to different major harmonic oscillator
shells are not permitted in constructing the deformed single-particle basis, N, the
number of harmonic oscillator quanta remains a constant of motion and may be used
as one of the quantities to describe a deformed state.

Labels N and € alone cannot uniquely specify a deformed state; two additional
quantities, nz and A, are commonly used. The origin of these labels may be summarized
in the following way. For large deformations, we can ignore the effects of the £ - s and
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£? terms and treat hp + hs in a cylindrical coordinate system. The Hamiltonian of
Eq. (7-29) can now be written as

hZ
h= —EV2 + tu{wiz) + wi(z] + ©3)} (7-31)
where the oscillator frequency along the symmetric axis has the value,

w3 = Wy 1- %6080 = E)‘(l - %6()“)

and in the directions perpendicular to it,

wi = UJOV 14 %‘Susc = w(l + %‘%sc)

In terms of w; and ws, the deformation parameter 6,4 is given by the relation

60sc = u (7—32)

w

where the average frequency
W= Hw; +ws 4+ ws) = 2w + ws) & wy

may be taken to be the same as wy, the harmonic oscillator frequency in the spherical
case. The parameter 6., is very similar but not identical to 8 of Eq. (6-11). For an
axially symmetric nucleus, it can be shown! that

B= % v }?6"% + O(‘szsc) = 105780 + 0(63“)

The difference between b here, § of Eq. (6-11), and & of Eq. (6-18) is that 6., is given
in terms of the harmonic oscillator frequencies for different directions, whereas § and
& are given in terms of the values for various radii. All three ways of parametrizing
quadrupole deformation are used in the literature. To first order, 8o & 6 = 0.94543.
More detailed relation between these two quantities are given in Ref. [35).

In the limit of large deformation, the single-particie energy of a deformed state may
be expressed in terms of the number of oscillator qnantum n; along each of the three
principal (body-fixed) axes,

Fyman = (713 + %) h(JJ3 + (TL2 -+ %) hw2 + (n, + %) hwl
= (n3+%) hws + (ny + 1) hwy (7-33)
where, for the axially symmetric case under discussion here, ny = n;+n, is the number
of quanta in the direction perpendicular to the symmetry axis. Since the total number

of harmonic oscillator quanta is fixed, we have

N=mn3+n,

!See, e.g., Eq. (2.82) of Ref. [119]
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The label n3 (or ny) is a good quantum number in this limit and may be used as a
label for Nilsson states even in cases where the deformation is not large.

When the term a £- 8 is included, states with different projections of orbital angular
momentum on the symmetry axis are no longer degenerate. As a result, in the limit of
large deformation, the projection of the orbital angular momentum along the symmetry
axis,

A= :i:nl,i(nl —2),...,:*:1,0
may be used as the fourth label. The set of four labels [Nn3\(}} completely specifies
a deformed state within one major shell. Examples of the variation of energy with
deformation for the low-lying Nilsson states are shown in Fig. 7-5. More complete
results can be found, for example, in Ref. {95].
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Figure 7-5: Low-lying Nilsson single-particle energies, the eigenvalues of the
Hamiltonian given by Eq. (7-29), as a function of deformation parameter 8,s..

Many-body states in the Nilsson scheme. The Nilsson orbitals for a deformed
nucleus may be thought of as the equivalent of Hartree-Fock single-particle states in
the spherical limit. The major difference, apart from the shape of the potential, is that
a Hartree-Fock calculation starts with a nucleon-nucleon potential. In contrast, the
Nilsson model, in its most elementary form, adjusts the deformation parameter to fit
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the nuclear shape. Furthermore, the Hamiltonian given by Eq. (7-29) is a very simple
and intuitive one. The fact that it works so well in describing a wide range of nuclear
properties has led to a number of interesting developments in nuclear structure. Some
of these will be discussed in §9-2.

For an independent particle approximation in the deformed basis, we can ignore
the residual interaction. The nuclear Hamiltonian is then a sum of the single-particle
Hamiltonian given in Eq. (7-29) for all the active nucleons. The single-particle states
may be divided into three groups: the core states, the valence states, and the empty
states. To restrict the size of the Hilbert space for a calculation, we shall take some of
the single-particle states as permanently filled with nucleons. Since these nucleons are
never excited, the only role they play is to provide an average (deformed) potential for
the rest of nucleons. In other words, they form an “inert core” for our active nucleons.
This is a reasonable assumption if we put, for example, nucleons in the lowest few states
as the core, as it takes more energy to promote these particle to the unoccupied states
than the range of excitation energy of interest to us.

By the same token, single-particle states that are far above the Fermi energy are not
of interest, as any excitations to them will take more energy than we are concerned with.
As a result, these states will not, for all practical purposes, enter into our calculations
and we may as well leave them out. These form the empty states. The remainder are
the active states. They are made of single-particle states near the Fermi level, both
occupied ones from which nucleons can be excited and unoccupied one into which the
excited nucleons can be put,

Since the single-particle Hamiltonian h(r) is the result of the valence nucleons in-
teracting with the core, the value of the deformation parameter depends on the shape of
the core. Since the core itself is left out of the calculation, we have no way of determin-
ing the deformation parameter 6, within such an independent particle approach. As
we shall see in §9-2, the equilibrium shape of the core is usually considered separately,
in the same manner as determination of the moment of inertia T is outside a simple
rotational model, as we have seen in §6-3.

For a given value of 8, the single-particle energies are given by the eigenvalues of
the deformed Hamiltonian eguation (7-29) and some of the low-lying ones are shown
as a function of 8. in Fig. 7-5. Nilsson orbits are degenerate in energy with respect
to the sign of 2, and as a result, each orbit can accommodate two identical nucleons,
one with positive value of 2 and the other with 2 negative. To construct the ground
state configuration of n active nucleons, we proceed by filling up the lowest available
single-particle states with active nucleons. Since the order of Nilsson states eyn,ip i8
different for different deformations, as can be seen in Fig. 7-5, the many-particle states
formed depends on the value of §,5.. Let us illustrate this point using a few specific
examples.

Examples of Nilsson model calculation. For simplicity we shall examine the
ground state spin of a few nuclei at the beginning of the ds-shell. For these, we can
take '0 as the inert core and the ds-shell as the active space. In a spherical basis, the
1ds/a single-particle energy is the lowest one among the ds-shell orbits, as can be seen
in Fig. 7-5 for b, = 0. In this case, we expect that the lowest energy configuration
of nuclei in the beginning of the ds-shell, from 70 to %Si, is made up by filling the
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1ds/2-orbit with nucleons. The even-even nuclei are not of interest here, as the ground
states must have J* = 0% because of pairing interaction. For an odd-mass nucleus,
the ground state spin in an independent particle model is given by that of the single-
particle state occupied by the unpaired nucleon. Consequently, nuclei °F, Ne, !Ne,
and 2Na are expected to have J™ = %+ for their ground state spins if they are spherical.
Experimentally, they turn out to be different and have, instead, values %+, %+, %Jr, and
3+ respectively.

In the deformed basis, the observed values are understood in the following way. The
nuclej in the lower half of the ds-shell are known to be deformed and have predominantly
prolate spheroidal shapes (axially symmetric with 8, > 0). From Fig. 7-5, we see
that, for positive deformation, the positions of deformed orbitals above the %0 core
(N = Z = 8) are Q[Nn3)] = 3[220), 3[211], $[211], in ascending order according to
energy. Since each Nilsson orbit can accommodate two identical nucleons, the ground
state configurations of the four nuclei in question are those shown in Table 7-2.

Table 7-2: Examples of using Nilsson orbitals.

Nucleus | Proton configuration | Neutron configuration | K = 3, Q;
19 3[220)! 32200 3
19Ne 12202 L2200 i
2Ne 1220 122023 [211)! 3
BNe 1[220)28[211]? 1i220)23f2m1)? 3

Note: Occupancies are indicated by the superseripts.

With deformed single-particle states, we do not have a definite spin j for each
nucleon. As a result, it is not possible to couple the angular momenta of all the active
nucleons to form the nuclear ground state spin J. Instead, we shall proceed in the
same way as we did in the case of rotational model. Since the projection of j on the
body-fixed 3-axis is a constant of motion, the sum

K=YQ,

for all the active nucleons is also a constant of motion. Using the fact that K is the
projection of J on the 3-axis, the ground state spin of a deformed nucleus must have
spin J = K. This is the same argument used earlier to deduce spin in the rotational
model. From the last column of Table 7-2, we find that K = 1 for F and '°Ne and
K = { for ?'Ne and *Ne. Hence J = } for the first two nuclei and J = 2 for the second
pair, in agreement with observation. If the deformation were oblate (8osc < 0), the
unpaired nucleon would have been in orbitals ${202], 5%[202], 1[220], and 3(220] instead,
and the ground spins of the nuclei would have been £, 3, 3, and }, in contradiction to
the observed values.

The residual interaction in the deformed single-particle basis is, in principle, small.
However, for any detailed properties of nuclei, we need to go beyond the independent
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particle model. We shall discuss this topic in the next section for the spherical case. In
a deformed basis, the mathematics involved is far more complicated, as we no longer
have the simplicity of rotational symmetry, and hence spherical tensors and angular
momentum algebra, to help us.

7-5 Spherical Shell Model

We have seen in the previous three sections that independent particle models, using ei-
ther spherical or deformed basis, are able to account for a number of nuclear properties.
For more precise information, it is necessary to include the residual interaction in our
study. Since the independent particle states are already good approximations, we can
make use of them as the basis for our more detailed studies. The role of the residual
interaction may be viewed as introducing configuration mixing among such states so
that the wave functions, now made of linear combinations of these “basis” states, give
a better description of the actual physical situation.

The many-particle space spanned by different products of the single-particle states
is infinite in dimension. To carry out any practical calculations, it is necessary to
truncate the Hilbert space to a finite one. Since our choice of single-particle states and,
hence, the many-body basis states is based on physical grounds, such as the Hartree-
Fock approach discussed in §7-3, we expect that reasonable approximations to the
true nuclear wave functions can he achieved in a relatively small part of the complete
space. Furthermore, we saw earlier in §7-2 that single-particle orbits are separated into
“shells” because of the large energy gaps between groups of orbits. This provides us
with a natural way to select the active space. For this reason, the approach is given
the name shell model. In principle, a shell-model calculation can also be carried out
in a deformed basis. However, mathematical convenience makes the approach viable
mainly in the spherical limit, and this is what we shall restrict ourselves to.

There are three steps that must be carried out before we can perform the calcu-
lations: the choice of a single-particle basis, the selection of an active space, and the
derivation of an effective interaction. These three steps are intimately related to each
other, as we shall see from the discussion following.

Selection of the shell-model space. In the spherical shell model, each nucleon has
an intrinsic spin 8 and occupies a state of definite orbital angular momentum £. The
many-body basis states formed by putting A nucleons into single-particle states are
coupled together to form states with definite total angular momentum J and isospin T
There are two ways to carry out the angular momentum coupling. In the LS-coupling
scheme, the orbital angular momentum £, and the intrinsic spin s; of each one of the
nucleons are first coupled separately to total orbital angular momentum L and total
intrinsic spin S:
4 A
L= Zl, S = Z 8;
1=1 i=1

The total angular momentum, or spin, of the state is the vector sum of L and S,

J=L+8



§7-5 Spherical Shell Model 257

Alternatively, in the jj-coupling scheme, the orbital angular momentum and the in-
trinsic spin of each nucleon is coupled together first to form the nucleon spin j,,
ji = ei + 8,
then the nuclear spin
A
J=3 3,
1=1
is obtained by summing over the spins j; of individual nucleons.

In a spherical basis, the Hamiltonian is invariant under a rotation of the coordinate
system and J is a good quantum number. Furthermore, isospin T is also a constant
of motion if we ignore symmetry-breaking effects due to electromagnetic interaction.
For these reasons, Hamiltonian matrix elements between states of different J and T
values vanish. If the many-body basis states are grouped together according to their
(J,T) values, the Hamiltonian matrix in the complete shell-model space appears in a
block-diagonal form; that is, only square blocks of matrix elements along the diagonal
corresponding to a given set of (J,T) values are different from zero. The calculation
can therefore be carried out separately within the subspace of a specific (J,T') of the
full shell-model space. In this way, angular momentum coupling greatly reduces the
size of the Hilbert space in which a calculation has to be carried out.

To truncate the Hilbert space, we can follow the same procedure as outlined in
the previous section for a deformed basis. The nucleons are divided into two groups,
core nucleons and valence nucleons. The single-particle states are separated into three
categories, core states, active states, and empty states.

In most nuclear structure investigations, we are primarily interested in a few low-
lying states. As a result, only nucleons in single-particle states near the Fermi surface
are directly involved. The rest of the nucleons are in low-lying single-particle states
and they are seldom excited. For all practical purposes, they can be assumed to form
an inert core. Their contributions to the Hamiltonian may be separated into two parts.
The first is a constant term in energy, made of single-particle energies and mutual
interaction between nucleons in the core. Such a constant can usually be absorbed into
the definition of the zero point of the energy scale for the A-nucleon system and may
be ignored. The only exception occurs in calculations such as those involving the total
binding energy of the nucleus. The second is the binding energies of the active nucleans
provided by the core. The single-particle energy of an active nucleon consists of the
kinetic energy as well as the average interaction energy with all the other nucleons,
including those in the inert core. Contributions from the core nucleons cannot be
ignored here but can be easily accounted for in the definition of single-particle energies
for the active nucleons. The net result is that the effect of the core in a shell-model
calculation may be included without explicitly considering the nucleons in it. In this
way, the single-particle states occupied by the core nucleons may be left out of the
active space.

Similarly, there are single-particle states so bigh above the Fermi energy that any
many-body basis states having nucleons occupying these states will be very high in

energy. If our interest is confined to the low-lying region of a nucleus, it is unlikely
that there can be any significant contributions from these basis states. Such a set of
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single-particle states is therefore essentially always empty for our purposes and, as a
result, may also be ignored.

The only remaining single-particle states are the few near the Fermi energy and they
form the active, or valence, space from which reasonable approximate wave functions
of the nuclear states of interest can be constructed. The aim of the nuclear shell model
is to solve the eigenvalue problem in the space constructed out of single-particle states
in the active space alone,

Effective Hamiltonian. What is the appropriate Hamiltonian to be used in a shell-
model space? We have implicitly assumed a Hartree-Fock single-particle basis for this
section. As aresult, we have already made a transformation of the nuclear Hamiltonian
from its fundamenw.. form given by Eq. (7-2), consisting of a single-particle kinetic
energy term and a nucleon-nucleon interaction term, to that of Eq. (7-7), made of
single-particle Hartree-Fock energies and residual interaction. Mathematically, we need
to make another transformation here from the infinite-dimensional space, specified by
all the Hartree-Fock single-particle states, to a finite, truncated shell-model space.
Physically, we need to find an effective Hamiltonian such that when the active shell-
model space is restricted to a manageable size, the effect of the states ignored in the
calculation may be accounted for in an efficient manner.

A formal definition of the effective Hamiltonian H.g may be made in the following
way. Let P be an operator that projects out a finite shell-model space of dimension
d in which we wish to carry out the calculations. If the “true” Hamiltonian is H, the
eigenvalue problem in the complete Hilbert space may be written as

H‘I’,‘ = E,"I’,‘

where E; is an eigenvalue and W, is the corresponding eigenvector of H. An ideal
effective Hamiltonian is one that satisfies the condition

Hgﬂ'P‘IJi = E,P\I/,' (7—34)

In other words, an effective Hamiltonian is one which produces the same eigenvalues

and eigenfunctions as those obtained by solving the problem in the complete space

using the true Hamiltonian. In general, it is impossible to satisfy this condition for all

d eigenvalues in the truncated shell-model space. This is, however, not a problem, as

we are interested only in a small number of low-lying states that is much less than d.
The effective Hamiltonian may also be written as a sum of two terms,

Heg = Ho + Ve (7-35)

where the one-body part, Hy, may be taken, in our case, to be a sum of Hartree-Fock
single-particle Hamiltoniaus,

H() = Zh(r‘) = Zf,'n,'

Here ¢, is the energy and n, the number operator for single-particle state i.
It is understood that single-particle energy ¢;, defined in Eq. (7-28), also includes
contributions from the core nucleons. In practice, it is common to replace ¢, by the
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observed energy level positions of single-particle states in the region of interest. The
empirical values of ¢, may be found, for example, in nuclei one nucleon away from
closed shells where some of the low-lying states are made predominantly by the cou-
pling of one nucleon or one hole to the ground states of the closed shell nuclei. Such
states are, in principle, exactly the ones described by Hartree-Fock eigenvectors. If a
realistic Hamiltonian is used in the Hartree-Fock calculation, one may expect to ob-
tain essentially the same eigenvalues as the experimental energies. For nuclei away
from closed shells, correlations other than 1plh also play an important role, and the
Hartree-Fock states may no longer be good approximations of the eigenstates of the
complete Hamiltonian. The strength of each single-particle state, in this case, may
be shared by several {observed) nuclear states, as can be seen, for example, from the
spectroscopic factors of one-nucleon transfer reactions (see §8-2). In such cases, the
choice of empirical single-particle energy may not be straightforward.

We shall assume that the effective interaction V,g remains two-body in character,
although there is no reason to rule out three-body and higher order terms caused by
excitations to basis states outside the shell-model space. Such terms are believed to be
small in general and may be ignored.

A formal solution of the effective interaction problem may be abtained in the fol-
lowing way. In addition to the operator P, which projects out the active part of the
space from the complete many-body space, we shall also define an operator @ which
projects out the rest of the Hilbert space, such that

P+Q=1 (7-36)
Being projection operators, they have the properties
P2 =p Q2 = Q

To economize on notation, let us write the eigenvalue equation in the complete space
as

HY = EY (7-37)
and
H=H+V
On applying operator P from the left to both sides of Eq. (7-37), we obtain
PHY = PEV (7-38)

Using Eq. (7-36) and the fact that £ is a number and therefore commutes with operator
P, we can express Eq. (7-38) as

PH(P + Q)¥ = EPY

or
PHPY + PHQY = EPY (7-39)

Similarly, instead of P, we can apply @ from the left to both sides of Eq. (7-37) and
obtain an equation similar to Eq. (7-39), except with the roles of P and @ interchanged,

QHPY + QHQY = EQVY (7-40)
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Equations (7-39) and (7-40) may be regarded as two coupled equations for P¥ and
QU.

We can now proceed to solve these equations by expressing QV in terms of PV.
Equation (7-40) may be put into the form

EQVY - QHQVY = QHPY

This can be rewritten as
(E-QH)Q¥ =QHPVY¥

or 1

JU =
@ E-QH
We must be careful with the order of operations in such a “formal” solution, as not all
the operators commute with each other. Furthermore, the meaning of having operators
in the denominator, (E — QH)™!, needs to be clarified and we shall do this later.

Substituting the “solution” for Q¥ given by Eq. (7-41) into (7-39), we obtain the
result

——QHPY (7-41)

= EPV¥
PHP\I!+PHE, QHQHP\II E

or

P{H+ H———QH}P¥ = EP¥ (7-42)

E - QH
It is useful to recall that the Hamiltonian has the form H = Hy + V, where Hy is a
one-body operator and V' is a two-body potential. In terms of Hy and V, Eq. (7-42)
becomes

P{Hg 4V 4 (Ho+ V)= Q(Ho + V)}P\Il = EPY (7-43)

E - QH
We are now in a position to simplify this equation and put it in a form that can be
compared with Eq. (7-34).

If all the single-particle states are chosen to be eigenfunctions of h(r) and our
truncation of the many-body Hilbert space is carried out by restricting the number of
active single-particle states, we have the commutation relation

PHy = H,P

Since P and Q are mutually exclusive, i.e., PQ = QP = 0, we can eliminate the last two
Hy’s on the left-hand side of Eq. (7-43). Among the three Hy’s in the expression it is easy
to see that the one furthest to the right does not make any contribution to the equation,
as QHoP¥ = 0. The Hy to its left occurs in the product P{Hy(E — QH)~'QV}PV.
Since everything to the right of this Hp acts on states in the space projected out by
@, the term is equivalent to PHyQ(E — QH)~'QV PV and vanishes because PH,Q =
HyPQ = 0. Upon eliminating these two Hy's, Eq. (7-42) may now be written in a form
that can be compared with Eqs. (7-34) and (7-35),

P{Hy+V +V QV}PY = EPY

1
E-QH
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From the comparison we identify that

1
Veg—V+VE_QHQV (7-44)
This is still a formal solution and its usefulness lies mainly in the possibility of making
an infinite series expansion for (E — QH)~!. This is an advantage, as it permits an
order-by-order calculation of the effective potential.
An equivalent way of writing the second term on the right-hand side of Eq. (7-44)
is the following:

1
V=VQe——r—o-s
E QHQ QE—HO—QVQV
In a Hartree-Fock single-particle basis, it is likely that the expectation values of the
residual interaction V' are smaller than those for Hy and perhaps smaller than those
for £ ~ Hy as well. As a result, the following condition may be true:

1
oV <1

Under such conditions, we can make use of an infinite series expansion of operator
(E — Hy +QV)~! in powers of (E — Ho)”‘QV,

VQ-ETI—{%_—I?—VQV = VQE QV+VQE 7 QVE_lHOQv
+VQE—1H0QVE —-IHOQVE—IHOQV o
= VQ g(E—_EFOQv)"
The effective interaction of Eq. (7-44) can now be expressed as
V=V + VQ:L;I( HOQV)" (7-45)

If the series converges, we have a method to evaluate the effective interaction to any
order of accuracy desired. Furthermore, since Hy is diagonal in the basis states we have

chosen,
Ho|¥;) = (}: e,)[\I!.-)

where ¢, are the single-particle energies and the summation is over all the occupied
single-particle states in | U) and operator Hy in the denominator may be replaced by
a sum of single-particle energies.

There is, however, no known proof that the series is actually convergent. Further-
more, it is not easy to carry out the calculation in practice beyond the third order or so
in a nontrivial P-space. In spite of these difficulties, the effective interaction, obtained
by using Eq. (7-45) to roughly second order, has been shown to give shell-model results
that are in good agreement with a variety of experimental data, if we start with a
realistic potential that fits the free nucleon-nucleon scattering data.
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The procedure outlined above to find the effective interaction in a shell-model space
is also known as a renormalization procedure, as it “renormalizes” an interaction for
the complete Hilbert space to one suitable for the truncated space. We have now
a complete set of procedures that can generate a effective interaction in a truncated
shell-model space starting from one between free nucleons. The steps involved are
the following. Using free nucleon-nucleon interactions, we construct an interaction for
bound nucleons. This allows us to carry out a Hartree-Fock type of calculation to
obtain a physical single-particle basis and a residual interaction in the space. Finally,
we use the renormalization procedure outlined above to find an effective interaction to
be used in a manageable shell-model space.

The complete process from nucleon-nucleon potential to an effective interaction is
very involved and has been proved on many occasions to be useful in nuclear structure
investigations. However, for certain practical applications, simplifications are needed
and several semi-empirical approaches have been developed to obtain effective shell-
model interactions.

Two-body matrix elements. In a finite active space, a two-body operator is com-
pletely specified if all the independent two-body matrix elements in the space are given.
This may be seen in the following way. In the absence of antisymmetrization and an-
gular momentum coupling, a many-body wave function |1,2,...,4 >, expressed as a
product of A single-particle wave functions, can always be written as a product of the
wave function for A — 2 particles and that for two particles,

'1,2,...,k,...,t,...,A > not antisym.
=|1a21--~ak"1:k+11---vt"'1)t+11---vA > not antiaym lkat>not antisym.

As we can see from Eq. (7-6), antisymmetrization requires the many-body wave function
written as a sum of different products of single-particle states. As a result,

'1,2...]‘;...!...‘4 > antisym.

= Z C(A—-?)(Z)lluz"'k_ 1»k+1 t- 1,t+1"'A >nnhsym I’C,t >anhsym.

(4-2)

The factor Cia_ay2) is known as a two-particle fractional parentage coefficient and
expresses the “fraction” of the antisymmetrized A-body wave function coming from
the product of (A — 2)- and two-body wave functions. For our purpose here, we need
not be concerned with the exact values of these expansion coefficients, as we shall not
be doing any actual calculations with them. In terms of C(s_3)(2), we can express the
many-body matrix element of a two-body operator (3(2) in the following way:

<12 AIO@),2- A>
= 22 Y Cu-yarCu-ne

(A-2) (A-D)
2y i1

x<1 K =1LKE+1-t'=1,¢+1- A1 k=1,k+1 t—=1,+1.- A >
x< k' t10(2))k, t >
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Since the overlap of [1'-- &' - Lk'+1---t' = L,t' +1---A' >and |1---k— L,k +
1--+t—1,£+1-.--A > vanishes unless all A — 2 single-particles states are the same
on both sides, we find the result that the A-body matrix element is zero if more than
two single-particle states are different from each other, a result we used earlier in going
from Eq. (7-23) to Eq. (7-24). If, on the other hand, no more than two single-particle
states are different from each other, the A-body matrix element can be expressed in
terms of two-body matrix elements < &/, t’|é(2)|k,t >, Thus, if all the matrix elements
in two-particle space are given, we can calculate any Hamiltonian matrix elements in
the shell-model space. This is equivalent to saying that the effective interaction Vg is
completely specified within the active space. We have already seen an example of this in
Eq. (7-26), where we defined the two-body part of the Hamiltonian for a Hartree-Fock
calculation in terms of V..

The two-body matrix elements required here are, however, slightly different from
Vagys, @8 we wish to work in a subspace with definite spin J and isospin 7. For
this purpose, it is convenient to have the defining two-body matrix elements for the
interaction given also in terms of two-particle states with definite J and 7. In this
scheme, an antisymmetrized and normalized two-body matrix element may be written
as

WIT = (rsJT|V|tuJT)

where |rsJT') is an antisymmetrized and normalized wave function for two particles,
one in single-particle state r and the other in state s, similar to that given in Eq. (7-25).
The additional feature here is that the two single-particle wave functions are angular
momentum coupled together to final spin J and isospin T". The two-particle wave func-
tion | tuJT ) is defined in the same way, except that the single-particle states involved
are t and u, instead of r and s. In terms of two-body matrix elements, the effective
interaction can be written in the form

Vg =Y, | rsJTYWIT (tuJT)|
r;;‘u
in analogy with Eq. (7-26). Since the nuclear Hamiltonian is a scalar in spin and isospin,
only two-body matrix elements diagonal in J and T are nonvanishing.

Other symmetries of the nuclear Hamiltonian can also help to reduce the number
of independent two-body matrix elements required to define an effective interaction in
a finite shell-mode space. Because of time-reversal invariance, the matrix elements may
be taken to be real and symmetric, i.e.,

Wreta = Wi, (7-46)
Furthermore, since the wave functions are antisymmetrized, two functions differing only
by a permutation of the two single-particle wave functions involved are related to each
other by a phase factor,

|rsJTY = (=1)*+2=7=T| srJT)

This is made of a combination of three separate factors: a minus sign due to the
permutation of two fermion states, a factor (~1)/2+/2-T due to isospin recoupling of
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the two single-particle states as given by Eq. (A-11), and a similar factor (~1)7+%-/
for recoupling the spins. Because of these relations, we have the following symmetries
among two-body matrix elements:

wiT = (_1)jr+1.—J—TWJT — (_1)]!+Ju'J—TWJT - (__l)Jr"'J-—Jl—JuWJT

ratu sriu raut 7 srut

(7-47)

Because of Eqs. (7-46) and (7-47), the number of independent two-body matrix elements
required to define an effective interaction in a finite shell-model space may be sufficiently
small that one may be able to determine them empirically by fitting all the required
matrix elements to the available data in the same space.

Semi-empirical effective interaction. Let us use a simple example to illustrate
the semi-empirical approach to effective interaction. Some of the low-lying levels in
calcium isotopes, 4'Ca to **Ca, may be approximated by a shell-model space made of
the 1f7/5-orbit alone. The inert core here is the “*Ca nucleus, and the 40 nucleons filling
the 1s-, 1p-, 1d-, and 2s-orbits are not to be excited. All the active nucleons in this
case are neutrons. Since a fr7;-orbit can take a maximum of 2j + 1 = 8 neutrons, the
active space is completely filled when we come to *3Ca.

The binding energy difference between *'Ca and **Ca provides us with the single-
particle energy for the 1f;/;-orbit,

€17, = —8.36 MeV

In a similar way, we can calculate the binding energy of the two neutrons in *?Ca
with respect to the *°Ca core. The result, —19.84 MeV, is different from twice the
value of €7, = —8.36 McV because of residual interaction between two neutrons.
This provides us with one piece of experimental information required to determine the
effective interaction. Since the ground state of Ca has J = 0 and 7 = 1, we obtain
the two-body matrix element for (J,T) = (0,1) from the binding energy of **Ca with
respect to **Ca after removing contributions due to the single-particle energies of the
two neutrons,

01 — -
Wil it faatfays = —19-8433 — (2 x —8.3627) = —3.12 MeV

Because of antisymmetrization requirements, two neutrons in fr/5-orbit can only be
coupled to J =0, 2, 4, 6. As a result, three additional two-body matrix elements are
needed to complete the definition of the effective interaction in this simple shell-model
space. These can be found from the energy level positions of the J = 2, 4, 6 excited
states in **Ca known to be, respectively, at 1.5247, 2.7504, and 3.1893 MeV above
the ground state. The corresponding two-body matrix elements, therefore, have values
—1.59, —0.366, and 0.0714 MeV.

To simplify the notation, we shall drop the superscript for isospin, as we are dealing
with neutrons only, and the subscripts 17/, as this is the only orbit with which we are
concerned in this example. The complete effective Hamiltonian for the 1f7/5-neutron
shell model is given by five pieces of information, one single-particle energy and four
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two-body matrix elements,

€= —8.36 MeV Wi= -3.12 MeV W= —1.59 MeV
W= -0.366 MeV W8=0.0714 MeV

With these five pieces of input obtained from *!Ca and *?Ca, we are now in a position
to calculate all the energy levels in the 1f;/; shell-model space from 43Ca to **Ca.
The calculated results for #*Ca to *6Ca are listed in Table 7-3. The binding energies
with respect to the *°Ca core are given in the first row and the excitation energies in
the remaining rows. In addition, the calculated binding energies for ¥’Ca and *®Ca are
found to be, respectively, 68.58 and 80.29 MeV, compared with the measured values
of 63.99 and 73.94 MeV. When we examine the six binding energies in more detail,
we find the difference between the calculated and observed values gets progressively
further apart as the number of active neutrons increases from three (A = 43) to eight
(A = 48). In fact, it is easy to show that the difference is roughly proportional to the
factor n(n — 1)/2, the number of neutron pairs in the 1f;/;-shell model space. This
means that the effective interaction deduced from the difference between *2Ca and
40Ca turns out to be a little too strong. If we reduce the contribution due to binding
energy of 2Ca in the effective Hamiltonian by 0.21 MeV, i.e., increasing each one of the
five two-body matrices by 0.21 MeV, the caiculated binding energies change to 27.64,
38.58, 46.26, 56.83, 64.20, and 74.44 MeV for 3Ca to *®Ca, in much better overall
agreement with the observed values. (On the other hand, if the difference were linearly
proportional to the number of active neutrons, the cause would have to be attributed to

Table 7-3: A shell-model calculation in the 1 f7/5-space for the energy levels
of calcium isotopes

43Ca 44Ca,
J  Experimental Calculated | J Experimental Calculated
1 Ep=2178 Ep=2827| 0 FEp=3891 FEp=3983
8 0.37 0.28 2 1.16 1.52
3 0.59 1.31 4 2.28 2.51
4 1.68 1.77 4 3.05 2.75
% 2.09 2.05 6 3.28 3.19
5 2.75 3.12 8 5.09 5.30
4508, AGCa
J  Experimental Calculated | J Experimental Calculated
! Ep=4632 FEp=4835| 0 Ep=25.72 Ep=>5998
% 0.17 0.28 2 1.35 1.52
g 1.43 1.31 4 2.58 2.75
% —_ 1.77 6 2.97 3.19
2 — 2.05
B — 3.12
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the single-particle energy instead.) Such overall shifts in the defining matrix elements,
in general, do not affect the excitation energies.

The calculated energy level positions of the excited states in *Ca to 46Ca are also
compared with experimental values in Table 7-3. There are obviously more excited
states in these nuclei than the ones listed. Since our model space is restricted to the
1fyj2-orbit alone, only observed levels belonging to this model space may be used in
the comparison. In principle, one can identify a 1f;/;-level by measuring the angular
distribution of one-nucleon transfer strengths (see §8-2). In practice, the identification
is not always simple, as substantial admixtures from other single-particle states, such as
2py/2 and 2py s, are expected. The comparison between calculated and observed values
in the table must therefore be viewed with the simplicity of the model space used for
this illustrative example in mind. In fact, the agreement is better than we could have
expected.

A second nontrivial but still relatively simple example is the 1p-shell, consisting
of nuclei from He and 5Li to °0. The inert core here is the “He nucleus, with two
protons and two neutrons completely filling up the 1s)/5-orbit. All single-particle states
above the 1p-shell, starting from the ds-shell, are empty. In this space, there are
two valence orhits, 1psj; and 1pyje, in the jj-coupling scheme. The one-body part
of the effective Hamiltonian is therefore defined by two single-particle energies, €1,
and €y, ,,. Because of the symmetries given in Egs. (7-46) and (7-47), the number
of independent two-body matrix elements required to determine the two-body residual
interaction for a given J and T is d;7 = n(n+1)/2, where n is the number of two-particle
states with spin-isospin (J,T). The total number of two-body matrix elements in this
shell-model] space, as can be seen from Table 7-4, is ¥ ;7 dyr = 15. The complete 1p-
shell effective interaction therefore comprises a total of 17 parameters, 2 single-particle
energies and 15 two-body matrix elements. It is not possible to find 17 energy levels
in mass 5 and 6 nuclei to specify the effective Hamiltonian, as we have done earlier for
the simpler case of 1f7/; shell-model space. On the other hand, since all the 1p-shell
states in nuclei from A =5 to A = 16 can be calculated from these 17 parameters, we
can use any 1p-shell data among the available ones in any of these nuclei. In fact, more
than 17 pieces of experimental information can be identified in this mass region and a

least-squares procedure may be used to deduce the values of the parameters that best
fit the data.

Table 7-4: Allowed two-particle states in 1p-shell.

T=0 T=1
J=1 J=2 J=3|J=0 J=1 J=2
195 1 — 1 1 — 1
lpf/2 1 — —_ 1 — —_
1pas21p1y2 1 1 — — 1 1
Total 3 1 1 2 1 2
dir 6 1 1 1 3
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This was done by Cohen and Kurath {45). The calculation serves two useful pur-
poses. The first is to demonstrate that the idea behind a semi-empirical effective
Hamiltonian is a sound one. Once the 17 parameters are determined from fitting a
given number of pieces of data, the effective Hamiltonian obtained may be used to cal-
culate the shell-model values corresponding to the data used. Since a fitting procedure
was used, the calculated results are not necessarily identical to the observed ones used
as input. The quality of the agreement serves as a measure for the validity of such an
approach. Normally the success of a least-squares fit to some functional form is given
by the value of the x? for the overall fit and the standard deviation for each indepen-
dent parameter obtained. A small x2, among other things, indicates that the functional
form used to make the fit is reasonable. Here we are dealing with a highly nonlinear
least-squares fitting procedure involving matrix calculations. It is therefore not easy
to give a figure of merit, analogous to the role of x?-values, for the functional form
used. The fact that the calculated results agree well with the original input is a good
indication of the power of the effective Hamiltonian approach. A second use of the 17
parameters obtained from the fit is that we now have an effective 1p-shell Hamiltonian
that can be employed for investigating other nuclear properties in the same space. This
has been used extensively with success.

A similar project for the ds-shell composed of nuclei from 70 to “°Ca has also been
carried out [147]. Here, the valence orbits are 1ds/s, 1dsss, and 2sy/2. The effective
Hamiltonian is given by 3 single-particle energies and 63 two-body matrix elements
(see Problem 7-6). The calculated results represent some of the best description of the
low-lying states in nuclei from mass 18 to 40.

Examples of shell-model results. It is useful here to give some other examples on
what 2 microscopic shell-model calculation can produce. Instead of introducing new
physical phenomena, we shall make use of observations that are already familiar. In
§6-1 we have seen that some of the excited states in certain nuclei can be understood
as collective vibrations of nucleons. There, the observed properties were described in
terms of harmonic vibrations of the collective coordinates a,,(t), the shape parameters.
One of the nuclei exhibiting such properties is ®Ni. The ground state spin-parity of
62Nj is 0%, typical of an even-even nuclens, and the first excited state is 2+ at 1.17 MeV.
A triplet of states, 0%, 2%, and 4%, is observed at slightly less than twice this energy at
2.05 to 2.34 MeV. These three groups of states are interpreted as quadrupole vibrations
built upon a spherical nucleus with the ground state as the zero-phonon state, the first
excited state as the one-phonon state, and the triplet of 0%, 2%, and 47 states as
the two-phonon states. The E2-transition rates, given earlier in Table 6-1, also confirm
this interpretation. Here, we shall take a microscopic approach and treat ®2Ni using the
shell model. The valence nucleons are taken to be the six neutrons outside a 6Ni core
and the shell-model space consists of single-particle orbits 1f5/3, 2ps/2, and 2py;. The
three single-particle energies are taken from *’Ni. The low-lying energy level positions
calculated with an effective interaction, obtained using a renormalization procedure, are
compared with the observed values in Fig. 7-6. It is seen that the energy level positions
obtained indeed display the typical structure of a vibrational nucleus, in agreement
with observation.

Using the eigenvectors obtained, we can calculate the electromagnetic properties
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of the states involved. Here we encounter the question of an effective operator in
a truncated shell-model space. For a quadrupole vibrational nucleus, the dominant
electromagnetic transitions are £2 induced by charged currents. Since electric currents
in a nucleus are usually associated with the motion of protons, our calculated results
using the bare charge of active nucleons in the space, i.e., the free nucleon values used to
define electromagnetic operators in §5-3, will be zero, as we have only active neutrons.
This is clearly a problem caused by the truncation procedure. In other words, the
transition operators must also be renormalized before we can expect to obtain any
reasonable calculated values in a truncated space. For electromagnetic operators, the
usual practice is to give an effective charge to neutrons (as well as protons) and adjust
its size to fit the observed E2-transition rates and quadrupole moments, as we shall see
in the next example.

A second example is the low-lying positive-parity states of ®Ne shown in Fig. 7-7.
Here we see that the energy level positions display a rotational structure with E;
essentially proportional to J(J +1) up to J = 8. For a shell-model calculation, we can
take %0 as the inert core and the four valence nucleons, two protons, and two neutrons

Table 7-5: Values of B(E2;J — J-2) between K = 0% band members in ?*Ne,

Experimental [4] Shell model,* | Rotation model,
Ji Jp| efmt W.u. e?fm? e?fm?
2 0 67+4 208%13 48 57
4 2 72+£7 225425 58 83
6 4 65+10 202430 43 91
8 6 30+4 9.2+1.3 28 96

Note: *An effective charge of e, = 1.5¢ and e, = 0.5¢ is used.
1 W.u. (Weisskopf unit) = 3.2 e*fm? for 20Ne.
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Figure 7-7: Comparison of the observed energy levels for the two lowest observed
K = 0% bands in **Ne with the results of a shell-model calculation in the 1ds;-,
1dy/5-, and 2s,p-space using a renormalized effective interaction.

are in single-particle orbits 1ds/3, 1das2, and 2s;/,. The results also give a reasonable
description of the energy level positions, as can be seen in the figure. For the calculated
E2-transition rates listed in Table 7-5, an effective charge of 0.5e is used; that is, the
charge of an active proton is 1.5¢ and that of an active neutron is 0.5¢. Here we see
again that a microscopic interpretation of a collective phenomenon can also be made
in terms of a very small number of active nucleons in a highly truncated active space.

Effective operator. The reasons behind the large effective charge for F2-transition
operators may be traced to the relatively small number of active nucleons used in the
calculations. Although the energy level positions are well accounted for, the small
number is inadequate to produce the large enhancements seen in the E2-transition
rates for collective states. Since the deformations here, whether in the equilibrium
shape as in the case of Ne or in the form of shape vibration as in the case of 92Ni,
are predominantly quadrupole in nature, it is not surprising that we find the difference
between the effective and real charge for E2-transitions to be most pronounced. Since
collective motion involves the action of a large number of nucleons, including some of
those considered to be a part of the “inert” core in the shell-model calculations, a large
effective charge is required. It is also interesting to note that such large enhancements
due to core nucleons can be accounted for by essentially an overall factor in the form
of an effective charge. The possibility of making the corrections in a simple way lends
support to the idea behind renormalizing the operators.

Another demonstration of effective operators can be found in the square of the
charge form factor F?(q), obtained, for example, from electron scattering off nuclei. As
we have seen earlier in §4-1, the charge form factor is the Fourier transform of the charge
distribution in a nucleus. The measured values for 2C and 'O are shown in Fig. 7-8.
For Y2C we see that there is only one minimum in F?(q) at around g = 1.5 fm~!. This
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is exactly what is expected from the Fourier transform of the density of a nucleon in
the 1p-shell (see Problem 7-7). On the other hand, two minima are observed in '¢O.
A simple shell model puts the active nucleons for the ground state of 1°0 also in the
1p-shell. The appearance of the second minimum implies that there is a substantial
admixture of configurations having nucleons excited into the ds-shell. If we insist on
carrying out the form factor calculation for 1*O using only active nucleons in the 1p-shell
space, a correction factor, for example, in the form

fry=1-¢""
must be introduced, This gives the observed second minimum without having to invoke
configurations involving the ds-shell into our shell-model space. Such a correction factor
may be regarded as a renormalization of the operator for charge form factor. The

effective operator produced as a result simulates the shape of the ds-shell form factor
for valence nucleons in the 1p-shell.
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Figure T-8: The square of charge form factors for 1>C and '60 obtained from
elastic electron scattering. A single minimum in F2(q) for 12C is expected on the
ground that the active nucleons are in the 1p-shell. The second minimum in 60
shows the presence of active particles in higher single-particle orbits. (Plotted
using data from Refs. [127, 117].)

Not every operator requires a large renormalization as we have used above for elec-
tric quadrupole transitions. For example, Gamow-Teller transitions throughout the
ds-shell have been found to be given by the bare operator without noticeable modifica-
tions [39]. This may be related to the fact that S-decay is not a collective phenomenon
like, for instance, E2-transitions.

Besides effects due to truncation of the shell-model space, renormalization of the
excitation operators from their bare nucleon values may also be required because of
mesonic and other degrees of freedom in nuclei. When a nucleon is embedded inside
a nucleus, we expect such processes as the exchange of virtual mesons to be different
from the situation when the nucleon is a free, isolated particle. In recent years one
of the interesting developments in the nuclear shell mode] has heen in the direction of
obtaining such renormalization effects from field-theoretical approaches. In this way, a
better and more fundamental understanding of the behavior of nucleons inside a nucleus
may be reached.
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Because of its direct connection with the individual nucleon degrees of freedom
in a finite nucleus, the shell model can also be used to “simulate” data for testing
other models. This is similar to numerical simulations used in many other fields to
supplement data and to help us to probe aspects of nature that are difficult to examine
experimentally. Such numerical “experiments” do not substitute actual observations
involving real nuclei. However, they provide a convenient avenue to test our models
and our understanding of the physical situation and are useful as a tool to further our
knowledge of nuclei.

7-6 Other Models

In the previous chapter we have seen that certain nuclear properties can be understood
from a macroscopic point of view in terms of the collective degrees of freedom. Al-
ternatively, one can start from the individual nucleon degrees of freedom and try to
understand observed phenomena from a microscopic point of view, as we have been
doing in this chapter. Calculations starting from the individual nucleon degrees of free-
dom are attractive, as we can make connections with the interaction between nucleons.
This, in turn, allows us to make contact with the fundamental strong interaction be-
tween nucleons. Unfortunately, the nuclear many-body problem, similar to many-body
problems in other branches of physics, is not simple to solve. For this reason, several
techniques, in addition to the ones described above, have been developed so that we
may be able to examine certain specific aspects of some problems in a more convenient
way. It is perhaps useful to mention some of these very briefly here, even though both
the scope of this book and the background knowledge required preclude any detailed
discussions.

If we are concerned only with a limited range of behavior in a few special states, it
seems superfluous to invoke the nuclear shell model and solve the complete eigenvalue
problem. As we have seen earlier in the discussion on Hartree-Fock techniques, 1plh-
(one-particle one-hole) excitations in a many-body system can be handled with relative
ease. This is an advantage, as 1plh-excitations constitute the dominant components
in a variety of processes. For example, nuclear states that have large 1pl h-components
are strongly excited by electromagnetic processes, such as inelastic electron scattering,
and by strong interaction probes in the form of intermediate-energy nucleon scatter-
ing, such as the ones described later in §8-4. One of the primary concerns in such
studies is to establish the correct correlations between different 1plh-components so
as to be able to produce, for example, the observed strong enhancement in strengths.
One of the difficulties here is to have the proper ground state wave function upon
which we can build the excitations. A simple independent particle model is often inad-
equate, as correlations resulting from residual two-body interaction are largely absent.
The random-phase approximation (RPA) solves this problem by concentrating only
on certain types of important correlations and is thus able to account for the strong
1plh-excitations observed in many nuclei with a relatively simple calculation. A more
detailed discussion of RPA can be found in Fetter and Walecka [62].

The idea behind independent particle approximation can also be generalized by
including other types of correlation. Since one-body terms are so much easier to handle
than two-body residual interactions, it is preferable to incorporate, as much as possible,
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the effect of nucleon-nucleon interaction into the mean field experienced by individual
nucleons. There is a large variety of mean-field theories. One of the attractive features
here is that the approach can also be extended easily to a relativistic one (see, e.g., Ce-
lenza and Shakin [43]). Although we have limited ourselves to nonrelativistic quantum
mechanics here, many aspects of nuclear structure and nuclear scattering, especially
those involving intermediate- and high-energy probes, require a relativistic treatment.
For this reason, mean-field theories are becoming an increasingly more important tool
in nuclear studies.

Besides vibrations and rotations, nuclei also display clustering behavior. The sim-
plest example is the decay of the ground state of ®Be into two a-particles. One expla-
nation of this phenomenon is that nucleons prefer to form a-particle clusters in nuclei.
Since the binding energy per nucleon of an a-particle is approaching the maximum
value that can be attained inside a nucleus, there is relatively little force of attraction
left between different a-particle “clusters.” In the case of *Be, binding energy actually
favors the formation of two separate a-particles. For this reason, the ground state of
8Be is unstable toward a-particle emission, even though it is stable against S-decay and
nucleon emission. Another example is the observation of nuclear “molecular” states,
such as in the separation of an excited Mg nucleus into two *2C clusters [38]. For a
shell model to split a group of nucleons into two or more separate clusters, a single-
particle basis, far larger than anything one can contemplate in practice, is required.
Special techniques such as the generator coordinate method [148] and the two-centered
shell model have been developed for studying such phenomena.

We have seen from shell-model studies that the presence of energy gaps in & single-
particle level spectrum is important in understanding nuclear structure. The most
naive collective models, however, ignore this feature, as only smooth variations with
nucleon number and other macroscopic properties of nuclei are incorporated into the
picture. Improvements to the collective models can be achieved if local variations
due to shell closures can be included. Such “shell” corrections are essential since, as
deformation grows, the energies of individual single-particle states are modified in such
a way that the energy gaps observed for spherical nuclei disappear and new ones at
different nentron and proton numbers appear. For example, such shell corrections have
been found to he important in improving the vibrational model description of some of
the bulk properties in nuclei {108]. We shall see an example of such “shell” corrections
in §9-2 for the case of superdeformed nuclei.

For illustrative purposes, we have separated nuclear properties into collective and
single-particle behaviors. In practice, both types of phenomena are present in the same
nucleus. Furthermore, they can couple with each other to form states with both types
of behavior coexisting with each other. What we have mainly done so far is to examine
the two extremes separately so as to illustrate the underlying physics. Specific states are
identified as being either single particle or collective depending on which one of these
two extremes dominates the property of the state. In fact, states that can be identified
in such a simple manner constitute only a minority among the multitude of known ones.
For the bulk of states, all physical principles are at play. A thorough understanding

of nuclear structure will require us to examine these states as well; however, we shall
ignore them here.
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Problems

7-1.

7-3.

7-5.

If 22 Mg is a spherical nucleus, what are the most likely spin, parity, and isospin of
its ground state? If, instead, it is a deformed nucleus with prolate deformation,
what are the most likely spin and parity?

. The nuclei $He, §Li, 170, YF, 41Ca, 41Sc, 23Pb, and 23Bi may be considered to

be made of a neutron or a proton outside a closed shel] core. Use an independent
particle model to deduce their ground state spin and parity. From this information
calculate the ground state magnetic dipole moment of each nucleus. Do the same

for the one-hole nuclei of 3H, 3He, 12N, 130, K, $Ca, 27Tl and %IPb.

The energies of 170 with respect to the %0 core are —4.15 MeV for the 5/27 state,
—3.28 MeV for the 1/2* state, and +0.93 MeV for the 3/2* state. Assuming these
values are the single-particle energies of the ds-orbits, use an independent particle
model to find the relative energies of the lowest 1/2%, 3/2%, and 5/2% states in
39Ca with respect to the *°Ca core.

. The ds-shell single-particle energies with respect to O core are €452 = —4.15

MeV, €251/2 = —3.28 MeV, and €437y = 4+0.93 MeV. A particular effective inter-
action has the following set of two-body matrix elements for (J,T) = (0,1):

(1ds2, 1ds2; J = 0,T = 1|V |1dss, 1dsp; J = 0,7 = 1) = —2.0094 MeV
{1ds/z, 1dspa; J = 0,T = 1|V |1dy3, 1dass; ) = 0,7 = 1) = —3.8935 MeV
(1dsj9,1dsjo; J = 0,T = 1|V|281/2,281/2,J 0,T =1) = —1.3225 MeV
(Ld3jp, 1d3je; J = 0,T = 1|V|1dypp, 1dgpp; J = 0,T = 1) = —0.8119 MeV
(1dajs, 1d3ja; J = 0,T = 1|V|2s1)9,2512;J = 0,T = 1) = —0.8385 MeV
(25172, 28172 J = 0,T = 1|V|251/3,281/2;J = 0,T = 1) = —2.3068 MeV

(a) Calculate the ground state binding energy of 'O with respect to %0 and
compare the result obtained from a table of binding energies. What are the
excitation energies of the two other 0F states in this space?

(b) Obtain the ground state wave function of 30 and use it to calculate the
relative probability for finding a neutron in the 1ds/3, 2sy/,, and 1d;/, single-
particle states in ¥0. The results are essentially the spectroscopic factors
for one-neutron pickup reactions.

If the wave function of the lowest 17+ state in 80 is
[J"=1% T=1) = |lds281y9;J" =1, T =1)

find the magnetic dipole moment of this state.

. Use the same method as outlined in Problem 6-1 to show that when two nucleons

are in an orbit with spin j, the allowed J-values for two-particle states are 0, 2,

,2j—1forT=1and J =1,3,5,...,2j for T =0. Construct a table
similar to Table 7-4 to give the number of states of each J and T for two nucleons
in the three ds-shell orbits, 1ds/), 1d3/s, and 2s;/3. Use this information to show
that the total number of two-body matrix elements required to define a two-body
potential in the ds-shell is 63.
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7-7. The explicit forms of the radial wave function for a spherical harmonic oscillator
potential well are given in Table 7-1. Use these to show that the form factor,
the Fourier transform of the radial density pae(r) = |Rne(r)|%, is positive for the
1s-orbit in the region ¢ = 0 to infinity [i.e., no node in F?(q)] and changes sign
once at ¢° = 6v for the 1p-orbit [one node in F?(g)]. For the 1d-orbit, the sign
changes twice, i.e., there are two nodes in F*(q).



Chapter 8

Nuclear Reactions

A large fraction of our knowledge on the properties of nuclei is derived from nuclear
reactions. When an incoming particle is scattered off a target nucleus, the outcome
depends on a combination of three factors: the reaction mechanism, interaction between
the projectile and the target, and the internal structure of the nuclei involved. Different
probes complement each other in what we can learn from an investigation. Furthermore,
it is often possible to select the bombarding energy and the reaction in such a way that
we can focus on particular aspects of the problem, as we shall see in a few examples in
this chapter.

Nuclear reaction is a large subject by itself. We can give here only an overview
of some of the more important topics. In order to highlight the basic points, it may
be necessary to sacrifice some of the details in our discussion. For some of the more
established topics, such as Coulomb scattering, excellent review articles are available.
These will be referred to at the appropriate places. For some of the fast developing
topics, only the current literature can provide us with the latest information.

8-1 Coulomb Excitation

When a projectile carrying a charge ze approaches a target consisting of Z protons, the
strength of the Coulomb field between them may be characterized by the Sommerfeld
number of Eq. (4-64),

1 12Z¢?
228 - a2zt
v

n= [47r60 hv
where v is the velocity at which one particle approaches the other when they are still

separated by large distances and « is the fine structure constant. Classically, the
distance of closest approach R, is given by the condition

1 12Z¢?
[471’60] Re =%;w2 (8-1)

where p is the reduced mass of the projectile. In terms of 5, we have the result
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From this expression, we see that the Sommerfeld number may be viewed as the ratio
between %R, and the reduced de Broglie wavelength,

A 1h &

w o ap mw

A small ) means that the Coulomb field is weak compared with the available kinetic
energy in the scattering. Under such conditions, the wave function of the incident
particle is not greatly medified by the Coulomb field and Born approximation applies.
In Coulomb excitation we are, however, primarily interested in the opposite limit, with
7> 1. In this case, the two particles are never close enough to each other for nuclear
force to play a role, and excitation of the target or the projectile nucleus is accomplished
through Coulomb interaction. Such a process is known as Coulomb excitation. Because
of its intrinsic interest, the subject is also treated in a number of standard quantum
mechanics texts, such as Merzbacher {103] and Messiah [104].

There are several reasons why Coulomb excitation is of interest in nuclear physics.
First, the reaction mechanism is well known and may be regarded essentially as the
inverse of electromagnetic decay discussed in §5-3. Second, experimentally, very strong
Coulomb fields can be created by bombarding nuclei with a beam of heavy ions. Finally,
when this advantage is coupled with the precision that can be achieved in charged

particle experiments, we have a powerful tool for investigating certain properties of
nuclei.

Multipole expansion. We shall follow the approach used in §5-3 and treat electro-
magnetic interaction between the projectile and the target as a perturbation to the
nuclear Hamiltonian. The contribution of Coulomb excitation may be written as

2

H'(t) = [—1-] _Ze monopole term
dmegl [rp(t) — 7|

where r,(t) is the location of the projectile at time ¢ and r that of the target nucleus.

It is necessary to take away the contributions from the “monopole term” here, as it can

only deflect the projectile without exciting any of the internal degrees of freedon;. Fo-

simplicity, we shall not be concerned with this term from now on.

In the region r, > r, the perturbation H'(t) may be expanded in terms of spherical
harmonics using the relation

Irp(t) -7 ;),};_A 2A+1 *+1(t)y*“(6 DIVl 85) &2
as we have done earlier in §4-6. In the above expression, quantities pertaining to the
target state have the form 7'Y,.(6, ¢), the same as O,,(E)), the operator for EX
excitation given in Eq. (5-25). We can take advantage of this similarity to make a
connection between Coulomb excitation and electromagnetic decay.

Furthermore, the reaction is reminiscent of electron scattering off nuclei discussed
in §4-1. There we found that, since the scattering is due primarily to electromagnetic
interaction, the cross section is proportional to that for point-particle scattering. Nu-
clear effects enter as form factors modifying the purely point-particle results. In this
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spirit, the Coulomb excitation cross section, from an initial state i to a final state f,
may be expressed as

doy 1 of do
(dQ)p - 2J;+1 M%‘lPM,M'l ((Td)point (8-3)

where J; is the initial spin of the target nucleus and M, and M; are, respectively, the
projections of the initial and final spins on the quantization axis. The square root of
the constant of proportionality is given by the expression

1 oo .
Prym, = gﬁ/ (JrMEIH' (8)| T M,C) e Pr B0/ g

The integral may be written as a product of two parts, a nuclear transition matrix
element and an integral independent of the nuclear states involved.

On substituting the expansion of Eq. (8-2) into H'(t), we reduce Py, to a sum
over products in the following form:

4imze 1
Py, = —= z;# 1 T M OM(ENLMC) Sy (EA)

The matrix element (J;M£|Ox,(EN)|J,M() gives the dependence of the cross section
on nuclear wave functions and may be related to the reduced transition probability
B(EX; J){ — J;€) for E)-transition given in Eq. (5-28). The integral over time is
contained in the factor S),(E)) and may be expressed as

+o0 ‘ _ 1
S*”(EA)=.[m oHEs El)t/h,-;‘f‘(t)Y/\“(am¢P)dt

Because of the spherical harmonics in the integrand, the integral is a function of the
scattering angles; however, it is independent of the nuclear wave functions involved.
The derivation of Sy,(EA) is basically quite simple, even though the actual steps are
complicated by angular momentum couplings. The final form, given by Alder et al.
[6, 7] may be expressed in the following manner:

1
S)«#(E)\) = wykp(%ﬂvo)y:&x(gs Q) (8_4)

where p, the “adiabaticity parameter,” is related to the energy required to excite the
target nucleus from an initial state at energy £; to a final state at £,

E; - E;
= N—— 8-
0=\ (8-5)

The quantity F),(8, g) is an integral having the form

+oo gelennhz+2) (coshz + ¢ + iv/e? — Isinh z)*

= d
Fou(b,0) /_co (€ coshz + 1) » v

where € = (sin 26)~1.
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The spherical harmonics in Eq. (8-4), with § = 7 and ¢ = 0, may be written
explicitly in terms of A and p,

/2,\ + 1/ (A= )X+ p)!
, (A4n)/2
A“(%W,O) = ( 1

=m0+ !

for A+ p = even

otherwise

The differential scattering cross section for Coulomb excitation in Eq. (8-3) now reduces

to

do = [ 2ze af (E'/\ o)

—) = — | B(EM J; 8-6
Here a = %R,, half the distance of closest approach given in Eq. (8-1). The angular

dependence is contained in the differential

df (B, 4r? ‘
f(dQ = (2/\ +1)3 Z‘Yl\l‘(zﬁ 0)F (6, 9)‘ (dg)polnt

The integral

§(Br,0) = [ 121D 4o

is the total excitation cross section in the classical limit. Explicit values for different
multipole order A are shown in Fig. 8-1 for the limiting case of 7 — oo.
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So far we have discussed only electric multipole excitations. Magnetic multipole
excitations are also present in a Coulomb excitation. The form of the differential
cross section for the magnetic case is similar to that for electric multipoles given by
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Eq. (8-6), except that B{E)) is replaced by the corresponding B(M)), the reduced
transition probability for magnetic multipole A. Differences in the angular distribution
between M A- and FA-transitions are contained in the differences between df (M ))/d2
and df (EX)/dQ. These are also given in Alder et al. [6, 7], and the values for low-order
magnetic multipoles are plotted in Fig. 8-1.

Multiple scattering. Coulomb excitation is useful in creating excited states in the
target or projectile nucleus. Because of the intense electromagnetic fields accompany-
ing heavy-ion scattering, states up to very high spin can be excited, as shown later in
Fig. 9-2. However, the probability drops rapidly with multipolarity order. An exami-
nation of Fig. 8-1 shows that, for example, the probability of F4-excitation is reduced
by about two orders of magnitude compared with E2-processes. Furthermore, the
strengths for higher multipole transitions are weaker in general, as the nuclear ma-
trix elements involved are smaller in size. This is evident also from, for example, the
values of single-particle estimates given in §5-4. As a result, multiple low-order excita-
tions may become competitive with a single higher multipolarity transition in exciting
high-spin states.

Consider a hypothetical even-even nucleus with low-lying level scheme shown in
Fig. 8-2 as an example. On the left of the diagram, we have first-order processes
promoting the nucleus from the 0% ground state to 2+ and 4% excited states. Since
E2 Coulomb excitations are so much stronger than FE4-excitations, a succession of
two E2-processes may be comparable or even stronger in strength than a single E4-
transition to reach the 4% excited state. In fact, because of large reductions in the
sizes of the integral f(),p) with increasing A, multiple processes through successive
low-multipolarity Coulomb excitations may become the preferred path for a nucleus to
reach final states of relatively high spins.

There is another class of second-order process shown on the right of Fig. 8-2. In
this case, the first excitation brings the nucleus to, for example, a particular magnetic

4+
E2
— = == £ 5§
N
E2 E2 E2
0+

Figure 8-2: Low-lying energy level spectrum of a hypothetical even-even nucleus
showing first-order and second-order Coulomb excitation processes.
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substate M of a J™ = 2% level. Instead of proceeding to a higher state, the second
“scattering” takes the nucleus to a state having a different M-value for the same 2*
level. This is known as reorientation effect. Such a process is sensitive to the expectation
value of O(E2) of the level involved, the 2*-state in the example here. The matrix
element, in this case, is related to the quadrupole moment of the excited state. As
a result, the quadrupole moment of an excited state may be deduced from the cross
section of Coulomb excitation. The value obtained depends somewhat on the nuclear
model used; however, this is not a serious problem in general, as reliability of the
calculation may be checked against several other properties of the nucleus at the same
time. Besides electric quadrupole moments, magnetic dipole and electric hexadecapole
(2*) moments can also be deduced through second-order Coulomb excitation processes.
In this way, the static moments of excited states are determined for a large number of
nuclei.

8-2 Compound Nucleus Formation

We have seen in the previous two chapters that single-particle and collective degrees of
freedom form the two extreme points of view on nuclear structure. A parallel situation
exists in nuclear reaction studies in terms of the two limiting situations of direct reaction
and compound nucleus formation. In the former case, one assumes that only one
mucleon, or a cluster of nucleons, in the projectile interacts with one of the nucleons,
or a cluster, in the target without exciting the internal degrees of freedom in any of
the clusters or the rest of the nucleus. The basis for taking such a direct reaction
point of view is the short time, of the order of 1072? s, it takes for the projectile and
the target to interact once with each other. Since this is comparable to the tramsit
time for an incident particle with kinetic energy greater than the order of 1 MeV per
nucleon to travel over a distance on the order of the nuclear diameter, the probability
for interacting more than once is small. On the other hand, if the incident energy
is much lower, the projectile and the target may “fuse” together for a long time, for
example, of the order of 10" 5. In this case, a compound nucleus is formed as the
intermediate state. In this section we shall be mainly concerned with reactions involving
compound nucleus formation. We shall return to a discussion of direct reactions in the
next section.

Reaction channel. It is often possible to arrive at the same final state of a reaction, or
exit channel, starting from different combinations of projectile and target. For example,
consider the reaction

p+1Ca — n+ %S

The final state in this case consists of a neutron plus a *8Sc nucleus. The same exit
channel can also be reached by scattering neutrons from a *Sc target. The n + %S¢
system here constitutes a different incident channel from p + ®Ca.

Since we are dealing with microscopic objects, time-reversal invariance holds. Thus
the reaction p + *®Ca — n + *8Sc may also take place with time order going in the
opposite direction, n + *Sc — p + ®Ca, and the roles of incident and exit channels
are reversed. On occasion it may be more convenient to speak of a reaction channel
without specifying whether it is an incident channel or an exit channel.
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For a reaction involving two particles, we need three sets of quantum numbers
to label the channel in an unambiguous way. For instance, in the exit channel we
need a set of labels to specify the wave function of the emerging particle, a second set
to identify the wave function of the residual nucleus, and a third set to describe the
relative motion between these two particles, as illustrated in §B-4. Returning again
to the *Ca(p,n)®Sc example above, the reaction can also leave the *8Sc nucleus in
an excited state. Since the wave function for an excited state of *8Sc is different from
that for the ground state, we have a different exit channel, distinguishable from the
ground state channel by the wave function of the residual nucleus. Furthermore, the
wave function for the relative motion of the two particles may be decomposed in terms
of partial waves, each with a definite orbital angular momentum £. In principle, each
partial wave forms a different reaction channel. On the other hand, the orbital angular
momentum between two particles is not usually observed in a reaction, and we may
sometimes wish to refer to a reaction channel as the sum of all the partial waves instead.

At low incident energies, where the kinetic energy is less than 1 MeV per nucleon,
the de Broglie wavelength is longer than the dimension of a typical nucleus. Under
such conditions, the scattering cannot be very sensitive to the details in the structure
of nuclei involved. Once the two nuclei in the incident channel come into contact, their
nucleons have the time to interact with each other by coming into contact many times.
As a result, the identities of the two original nuclei are lost. For a short time, these
two nuclei form a single entity, a compound nucleus. After formation, memory of the
entrance channel is no longer retained because of the numerous intervening interactions.
Subsequent evolution of the system is determined primarily by the amount of excitation
energy available in the system. At low energies, the lifetimes for such systems are
relatively long, as the number of open exit channels is small. As a result, the width I
of a compound nuclear state is narrow. At the same time, the density of states at such
low energies is small so that D, the mean spacing between neighboring states, is large.
With D > I', we find that isolated resonances dominate the reaction cross section.

Scattering cross section. One of the important features of a compound nucleus
reaction is the absence of any dependence between formation and decay of the system.
Let o4 be the cross section for forming a compound nucleus A through an incident
channel a. The decay of N to a particular exit channel 3 with final state consisting
of particles b and B is characterized by transition probability Wy or partial width
I'g = hWg. There may be several such channels open, for example,

decay product exit channel

N — a+ A o
— b+ B i}
— c+C Y
—_

The total width of the decay is given by the sum of all the partial widths,

P=T,+Tg+T+--- (8-7)
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and I/T" is the probability for A decaying through channel . The reaction cross
section from an entrance channel o to an exit channel § is given by the product of the
probability to form the compound nucleus A and that for A to decay through 3,

I

Opa = 00—1—; (8-8)

To make further progress, we shall make use of some of the results given in §B-4,

Let us assume that in each reaction channel there is a radius R,, the channel radius,
outside which there is no interaction between the scattered particle and the residual
nucleus (ignoring the long-range Coulomb interaction here for simplicity). Thus, in
the outside region (r > R.), the particles may be considered to be free and the wave
functions are given by plane waves {or Coulomb wave functions in the more general
case). In the inside region (r < R,), the situation is complicated because of interaction
between nucleons in the two components, and there is little hope of obtaining a rea-
sonable solution. At the boundary r = R, the logarithmic derivative of the modified
radial wave function u, of each channel,

r du,
Pec = (EE;)T=R,, (8-9)

must be continuous from the inside to the outside region. In general, p. is complex.

In a scattering problem, we are primarily interested in the asymptotic behavior of
the system. The only information of the wave function for » < R, we need is contained
in the value of its logarithmic derivative at the boundary. In other words, as far as the
outside region is concerned, the information of the inside region is completely contained
in a set of logarithmic derivatives, and the values of these derivatives may be used as the
“boundary conditions” to fix the asymptotic wave function of interest to the scattering
problem. In the absence of better knowledge, we can take the logarithmic derivatives
as parameters characterizing the inside region. This method of treating scattering is
akin to that used in solving electrostatic problems, where we exclude regions containing
sources and replace them by appropriate boundary conditions. In this way, the problem
is reduced to a more manageable one.

To simplify the discussion further, we shall assume that only s-wave scattering
is different from zero and, as a result, a single logarithmic derivative py is adequate

to specify the problem completely. In this case, the reduced radial wave function of
Eq. (B-10) has the asymptotic form

’lLo(T‘) ~ {e—:’kr . noeikr}

The quantity 7o = exp{2i6p} is the inelasticity parameter and 6;, the complex phase
shift for £ = 0. By taking the logarithmic derivative of ug(r) and equating it to gy at
r = R,, we can relate 7y to po,
_fM+ iche-zikm

Po — 7ch

Using Eq. (B-19), we obtain the elastic scattering cross section

To

| 2mre _ _ _2tkRe

el 7!' 2
=—- = e -
ot = gl =l = gl po — ikR, (8-10)
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From Eq. (B-40), we arrive at the expression for the reaction cross section

'—4kR¢£}po
Rpo)? + (Spo — kR,)?

T T
o™ = —(1-|nl?) = -11
If po is real, corresponding to the case of scattering from a real potential, o™ vanishes,
as expected. Furthermore, since the reaction cross section cannot be negative, the
absolute value of 7 must be less than or equal to unity. This, in turn, implies that the
imaginary part of p; must be negative.

Breit-Wigner formula for isolated resonances. For a reaction of the type de-
scribed above, the cross section has a resonance structure similar to that of an alter-
nating current electric circuit. The maximum of 6™ occurs at Rpgy = 0, where Rpy is
the real part of gg. Let E, represent the energy where this takes place. The real part
of po may be expanded as a power series in E around E,,

Rpo = a(E — Eo) +---

where a is a parameter characterizing the leading-order term of the real part of p.
Similarly, the leading order of the imaginary part of pp may be expressed in terms of a
(positive) parameter b,

gpo = —b E

The two cross sections in Eqgs. (8-10) and (8-11) near resonance energy E. may now be
written as

el T letkRe _q _ 2ikR. 2
7 K2 o(E — E,) —i(b+ kRy)
re s 4kR.b
o =

k2 {a(E - E)} + (b + kR.)?

in terms of parameters a and b.
We now make the following identifications:
b+ kR, _ 2kR, b

I, Ire=2-
a a a

r=2

where I is the total width and I, is the partial width for the entrance channel. The
total reaction width is then
Fre - Z n
1o
and the total width is I' = I, + I'"®. This allows us, in turn, to rewrite Eqs. (8-10) and
(8-11) in the following way:

o _ T 2kr _q _ s ? 8-12
ot = 5le 1 (E—E’c)—i%F ( )
o = T ra (8-13)

k2(E — E )2+ (i)
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The cross sections are expressed here in terms of the relevant widths instead of param-
eters a and b as we have done above,

The elastic channel has two parts, a nonresonating part with amplitude proportional
to 1 —exp{2ikR.} and a resonating part containing an energy-dependent factor (E—E,)
in the denominator. The contribution of the nonresonating part corresponds to a
smooth background in the cross section and is usually called shape-elastic or potential
scattering. At E = E,, the elastic cross section is dominated by the resonating part,

P r?
* BB B+ (T

cel

This is called compound elastic scattering cross section, as it differs from shape-elastic
scattering by the fact that a compound nucleus is formed before the system returns to
the entrance channel.

We can now go back to Eq. (8-8) and calculate o, the cross section for forming the
compound nucleus through entrance channel . Since shape-elastic scattering does not
involve the formation of a compound nucleus, we can ignore it here. The cross section

for compound nucleus formation is, then, a sum of compound-elastic and reaction
contributions,

bl p e T+ 12 7r rr,
TRE-E)N+GAIE R(E-BY+QI)

(8-14)
where we have made use of the fact that I' = I',+I""™. The cross section for the reaction
from entrance channel ¢ to exit channel 4 given in Eq. (8-7) may now be written as

R _7L Fﬁ[‘a
T R E-EY G

This is known as the Breit-Wigner one-level formula.

Overlapping resonances. So far the discussion has been confined to the low-energy
region where the density of states is small. The idea of compound nucleus formation
applies also at higher energies where individual level width is comparable to or greater
than the average level spacing (I" 2 D). Since rescnances are now overlapping each
other, it is more meaningful to examine the average values of the various cross sections
that enter into the scattering.

Assuming that the cross section to form a compound nucleus for a particular state
is still given by the Breit-Wigner form of Eq. (8-14), we can define an average in a small
energy interval W in the following way:

L jE+W2 7 rr: g 27 ;
Ta=w E-w/2 ; K (E—E)+ (-;—1"‘)2 TRwW ZF

where I'* is the total width of the ith resonance and I'; is the partial width for decaying
into channel . The summation is over all the resonances in the energy interval W
centered at E. The interval must be small enough that the underlying conditions for
the resonances are not too different from each other and yet are large enough so that
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W > I'*. Our discussion is still limited to s-wave scattering for simplicity. We shall
not attempt a more general discussion here, as it will also involve angular momentum
coupling factors.

Using the fact that the number of levels in the interval is given by W/D, where D
is the average level spacing, we can define a mean width,

= D,
n:W;Q

The quantity I'o/D is known as the (s-wave) strength function and the average com-
pound nucleus formation cross section may be expressed in terms of it,
~_n, T
Oq = 7{)3 4 T)-
This quantity may be related to pg, the logarithmic derivative of the wave function at
r = R, given by Eq. (8-9). Since the density of states is now high, the probability for
the compound nucleus to decay through the entrance channel is small. We can say that
the nucleus appears to be “black” to the incident channel.
In the limit of a completely absorptive nucleus, the wave function of the interior
region may be approximated by an incoming term, ug(r) ~ exp{ixr}, alone. As a
result, py is purely imaginary and may be written as

(8-15)

po = —ikR,

where k is the wave number for r < R.. On substituting this value into Egs. (8-10) and
(8-11), we obtain the average value of the compound nucleus formation cross section
for channel ¢ in the energy region

T 4kk i
To = g B — 8-1
7 k2 (k+k)  kk (8-16)
since k € k for low-energy scattering from an attractive potential well. Comparing
this expression with Eq. (8-15), we obtain the result,

Furthermore, no resonance can be expected from Eq. (8-16).

In practice, resonances are observed at high energies. These are due primarily to
coupling of a large number of small resonances, for example, to a state in the vicinity
that is strongly excited due to some special features in the nuclear structure. Such
a strongly excited state is often called a doorway state. The decay of a compound
nucleus in the high-energy region depends on the number of accessible final states and
is therefore dominated by the density of final states and other statistical considerations.
This is the subject of Hauser-Feshbach theory, for which we shall refer the reader to
the original literature [82].
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8-3 Direct Reaction

Stripping and pickup reactions. A good example of a direct reaction is a (d,p)
process in which a deuteron, with more than a few mega-electron-volts of kinetic energy,
incidents on a target nucleus. In the exit channel, a proton is observed. Since the
deuteron is a loosely bound system of a proton and a neutron, we can envisage that the
neutron is captured into one of the single-particle orbits of the target nucleus without
disturbing the rest of the nucleons, and the proton continues on to become the scattered
particle. The process may also be viewed as one in which a neutron is “stripped” from
the projectile. For this reason, the reaction is known as a one-neutron stripping reaction.
States in the final nucleus that are strongly excited by such a reaction are those formed
predominantly by a nucleon coupled to the ground state of the target nucleus. Other
stripping reactions, such as (¢, p), transfer two nucleons from the projectile to the target.
Even more complicated reactions, such as those involving the transfer of a cluster of
nucleons, are also possible. To qualify as a direct reaction, both the target nucleus and
the internal structure of the cluster transferred must be undisturbed by the reaction.
The residual nucleus is simply the coupled product of the cluster and the ground state
of the target nucleus. This condition is generally difficult to meet for transfer reactions
involving large numbers of nucleons.

The complement of a stripping reaction is a pickup reaction. In this case, one or
maore nucleons are taken away from the target nucleus without changing the structure
among the rest of the nucleons. A good example is the reaction **Ca(*He,*He) ¥Ca.
The states in the residual nucleus, 3*Ca here, strongly excited by a pickup reaction
are the one-hole states, i.e., those formed by removing one of the particles in 4°Ca and
leaving the remaining 39 nucleons unchanged in their relative motion.

Born approximation. The scattering cross section in a direct reaction, stripping as
well as pickup, may be obtained using first Born approximation. The reaction mech-
anism is relatively straightforward here because of the simple relation between initial
and final nuclear states underlying the direction reaction assumption. The Schridinger
equation for the process may be written in the form of a standard second-order differ-
ential equation,

(V24 K)(r) = 23V (r) i) (8-17)

where k? = 2uFE/h%, with E as the kinetic energy in the center-of-mass system. A
formal solution of Eq. (8-17) for the outgoing wave function may be expressed in terms
of a Green’s function G(r, '), as done in §B-6,

P(r) = ekr % f G(r, "YW (r')¥(r') d®r’ (8-18)

where we have chosen k; to be along the direction of the incident particle and the

function exp{ik; - v} is the solution of the homogeneous part of Eq. (8-17), i.e., for
V{r)=0.
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We shall take the Green’s function here to have the explicit form

1 eklr—r]

G(r,r') = (8-19)

T e — |
It satisfies the equation
(VP4 E)G(r,r') = 8(r — 1)

More generally, we can include in the defining equation for G(r,7') a part of V (r), for
example, the part representing the average effect of the target nucleons on the incident
particle. This is similar in spirit to the mean-field approach used in nuclear structure
investigations to obtain the single-particle states for shell-madel calculations in §7-3.
To keep the discussion simple here, we shall take the Green’s function to have the
elementary form given by Eq. (8-19).

Using Eq. (8-19), the formal solution for the scattering wave function of Eq. (8-18)
may be written as

tkjr—r'|

: © € ’
r)=ehr - Lo V(w(r') d’
¥(r) so | T )
We shall take the range of potential V(r') to be short. The effect of a (long-range)
Coulomb interaction may be included as a part of the Green’s function or the optical
model potential to be discussed in the next section. In this limit, we may approximate
the argument of the exponential function in the asymptotic region by the first two

terms in the expansion
iklr— 7| = kyr2-2r-9 477
= kr—ks v +0("%)
~ kr—kp-r

where k; = kr/r is taken along the direction of the emerging particle. The formal
solution of the scattering equation now becomes

P(r) et T - _pet / e~k TV () () 8 (8-20)
2rh? T
where we have taken |r — /| ~ r, correct in the asymptotic region where the scattered
particle is observed.
Comparing Eq. (8-20) with the asymptotic form of the scattering wave function
given in Eq. (B-5), we obtain the scattering amplitude

16) =~ [ F TV (Y () dr (8-21)
2rh

This is only a formal, or integral equation, solution for the scattering amplitude, as the

expression involves an unknown function ('), the solution to the scattering equation.

Equation (8-21) is useful in that it provides us with a starting point to expand scattering

cross section in terms of a Born series. In the (first) Born approximation, the unknown
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function ¥{r') in Eq. (8-21) is replaced by its first term in Eq. (8-18), and we obtain
an approximate form of the scattering amplitude,

~ 1 —ikey 1y ik T g3t )
(& o) e V(r')e d*r (8-22)

This result may be used to find the differential scattering cross section for stripping
and pickup reactions.

The expression in Eq. (8-22) can be simplified further by expressing the results in
terms of the momentum transfer vector,

q=k,—-kl

and by expanding the plane wave in terms of spherical harmonics as in Eq. (B-10),
e = Vit Jan (20 + 1) jo(gr') Yuo(6") (8-23)
]

where j¢(gr') is the spherical Bessel function of order £. The angle #' is between vectors
q and ' and is one of the variables of integration in Eq. (8-22). The scattering angle
6, on the other hand, is between vectors k; and k,.

Angular distribution. The discussions in the previous paragraph ignore the internal
structure of particles participating in the scattering. Since in stripping and pickup
reactions we are dealing with a change in the nuclei involved, the wave functions of both
the initial and final nuclei must enter into the expression for the scattering amplitude.
Let us take the asymptotic forms of the initial and final wave functions of the scattering
system to be

‘I’,‘ — C’k"rq),'
‘I’] - etk;-'l‘q,j

where ®; is the product of the internal wave functions of the incident particle and
the target nucleus and ®; that of the wave functions of the scattered particle and the
residual nucleus. To simplify later discussions, plane waves exp{ik; - r} and exp{ik;-r}
are used to describe the motions of the particles in, respectively, the incident and exit
channel. Physically, this means we are assuming that the particles do not interact with
each other (except in the small region where the reaction takes place). As we shall
see in the next section, it is more reasonable to consider also effects, such as Coulomb
interaction, by using an optical model.

As a concrete example, let, us take the case of **Ca(d, p)**Ca. For this reaction, we
have

b,
b,

{#(d) x (*Ca)}
{#(p) x $(*'Ca)}

where ¢{(d), ¢(p), and ¢(**Ca) and ¢(*!Ca) are, respectively, the wave functions describ-
ing the internal structure of the deuteron, proton, and ground states of **Ca and *'Ca.

I
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The multiplication symbols here imply that the wave functions are coupled together to
some definite values in angular momentum and isospin.

In the spirit of direct reaction, the deuteron wave function may be taken as the
(weakly) coupled state of a proton and a neutron,

¢(d) = {6(p) x ¢(n)}

To simplify the argument and avoid complications due to angular momentum recou-
pling, we shall treat the proton purely as a spectator in the entire scattering process.
If the neutron is captured into a single-particle state of the target nucleus with orbital
angular momentum ¢, the wave function of the residual nucleus may be expressed as

6y, ("Ca) ~ {d(n)$(“Ca)Yeum, (¢',4')}

where spherical harmonics Yy,m, (¢, ¢') is the orbital angular momentum wave function
of the single-particle state in which the neutron is captured. Using these wave functions,
the scattering amplitude for *°Ca(d, p)*'Ca may be written as

1) ~ —sts [ 17 ({8() x GW)(°Ca)Yem (¢, 61}
xV(r)|{g(°Ca) x (8(p) x ¢(n))}) &' (8-24)

The role of the potential V(') here is to strip the neutron from the deuteron and put it
into the residual nucleus. For our purposes, it may be approximated by a delta function
at the nuclear surface,

V(r') = Vo b(r' — R) (8-25)

to simplify the derivation. Here R is the radius of the residual nucleus. The meaning
of this approximation is that the neutron is stripped off the incident deuteron and
captured by the *°Ca on contact. The strength V; represents the probability for such
a process to take place and may be treated as a parameter related to the absolute
magnitude of the scattering cross section.

Once we integrate Eq. (8-24) over the coordinates of both nucleons and “°Ca, no nu-
clear wave functions are left in the expression. The exponential factor may be expanded
in terms of spherical harmonics using Eq. (8-23), and the first Born approximation scat-
tering amplitude of Eq. (8-22) reduces to

2€+1

Q

£8) voZ

je(qR) / Yuo(0)Y;,, (6, ¢') sin ¢/de’ dy

20 + 1
= Vo z —— Je(qR) 8er, 60

2 20, + 1
= —2Vaity ; je(aR) (8-26)

In integrating over the angular variables, we have made use of the orthonormal condition
of spherical harmonics given in Eq. (B-18). The only angular dependence remaining at
the end in Eq. (8-24) is contained in the argument of the spherical Bessel function, as we
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shall see in the next paragraph. Since we have used a plane wave here to approximate
the solution to the scattering equation, it ia known as the plane wave Born approxi-
mation (PWBA). A more rigorous derivation can be found in standard references on
direct reactions such as Tobocman [137] and Satchler [123].

From Egs. (8-26) and (B-7), we find that the differential cross section for direct

The momentum transfer depends on the scattering angle ¢ as shown in Eq. (4-13),

g= \/k? + k% — 2k.ky cos 6 ~ 2k sin (-g—) (8-27)
where we have taken k = k; = ky, valid if the incident energy is sufficiently high. The
angular distribution is characterized by the angular momentum transferred and given by
the factor [jo,(2kRsin(}6))|?, as shown in Fig. 8-3. For example, since jo(p) ~ sin p/p,
we see that, for an ¢, = 0 transfer, the angular distribution peaks at 0°. For higher
¢,-value transfers, there is no longer a maximum at 0°, as can be seen, for example,
from ji(p) ~ sinp/p? — cosp/p for £, = 1. As the value of ¢, is increased, the first
maximum in the angular distribution shifts to successively larger angles, as the first
peak of |ji,(p)|? appears at successively larger values of p with increasing ¢;. This is a
feature observed in direct reactions, as can be seen, for example, in the 2°Ne(d, n) *'Ne
reaction shown in Fig. 8-4.

Figure 8-3: Spherical Bessel func-
tions j¢(p) and characteristic angu-
lar distribution of stripping reac-
tion given by jZ(p). The plots are
made as functions of p = ¢R, with q
being the momentum transfer. The
relation with scattering angle 4 is
given by Eq. (8-27).
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Although the PWBA method correctly gives the essential features in the angular
distribution of direction reactions, it lacks predictive power. This is, in part, due to
distortion of the incident and scattered waves as a result of the average, or “optical,”
potential experienced by the incoming and scattered particles, as we shall see in the next
section. Furthermore, there does not seem to be an easy way to derive the interaction
strength V; of Eq. (8-25), and as a result, the magnitude of the angular distributions
cannot be deduced from PWBA. A more accurate picture of the scattering is given by
the distorted wave Born approximation (DWBA) where, instead of plane waves, more
realistic wave functions are used for the relative motion between the projectile and the
target nucleus and between the scattered particle and the residual nucleus.

8-4 The Optical Model

Besides compound nucleus formation and direct reaction, we may also be interested in
the average result of a reaction at some fixed bombarding energy. For such purposes, it
is possible to invoke the analogy of an optical wave passing through a “cloudy” crystal
ball. In a nuclear reaction, the scattered wave may be divided into two categories:
elastic scattering, in which only the direction of the wave propagation is changed, and
inelastic scattering, in which the particles are scattered into an exit channel different
from the incident one. The former may be compared with refraction of optical waves
and the latter with absorption due to the fact that the crystal ball is cloudy.

The aim of the optical model is to find a potential that describes smooth variations
of the scattering cross section as a function of incident energy E and target nucleon
number A. The scattering itself may be quite complicated; however, if we are only
interested in the averaged properties, away from resonances and states strongly excited
by direct reactions, it is possible to simplify the situation by a large extent. The basic
idea is very similar to the mean-field approach we have seen in the previous chapter for
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nuclear structure studies.

To simplify the discussion, we shall for the most part consider only elastic scat-
tering. There are two main sources of contribution to the cross section. The first is
potential scattering, described earlier in Eq. (8-12). The second comes from multiple
scattering with intermediate states involving the excited states of nuclei participating in
the scattering. Not all such scattering returns the system back to the incident channel
and, as a result, some of the incident flux is lost. Rather than trying to calculate the
cross section for each one of the inelastic channels exactly, we shall attempt to represent
their average contributions by making the potential complex. The same idea can also
be extended to scattering between hadrons in general, but we shall not do it here. Qur
primary concern will be with nucleon-nucleus scattering, and we shall return later for
a brief discussion on applying the optical model for pion-nucleus scattering.

There are three aspects of an optical model potential we shall touch upon in this
section. First, we shall give a formal derivation so as to make a connection between the
optical model potential and averaging over contributions involving a large number of
intermediate states. Second, semi-empirical forms of the optical model potential have
been used over the years with great success for low-energy (< 200-MeV) scattering, We
shall give an example here to provide some feeling of the form of the optical model
potential used in practice and its dependence on incident energy and other variables.
Third, we wish to make some contact to scattering at the nucleon-nucleon level by
giving a “microscopic” foundation to the optical model potential.

Formal derivation of the optical model potential. Consider the case of a free
nucleon scattering off a micleus made of A nucleons. Let rg represent the coordinate
of the projectile and r;, for i = 1,..., A, those of the A nucleons in the target. To keep
the notation simple, we shall suppress any explicit reference to spin and other degrees
of freedom. Our aim is to solve the Schriodinger equation,

H(rgiry,ra, . ra)¥(rosr,re, ., 74) = EU(rgiri, 1y, .., 74) (8-28)

with boundary conditions appropriate for scattering. As usual, it is impossible to solve
exactly the many-body problem, and we shall seek an approximate solution adequate
to understand the average results in a scattering.

For the time being we shall ignore the necessary antisymmetrization between the
projectile and the nucleons in the target. The Hamiltonian for the complete system,
consisting of the projectile and the target nucleus, may be separated into three parts,

A
H(‘I‘g; ri, T, ..., T'A) =Ty + 2: V(’I‘o,) + HA(‘I‘l, L T T'A) (8—29)

i=1
where rg, = rg — 7;, for i # 0, is the relative coordinate between the projectile and the
ith nucleon in the target. The operator Ty describes the kinetic energy of the projectile
and Ha(ry,7y,...,74) is the Hamiltonian operating only among the nucleons in the
target. The interaction between the projectile and the target nucleons is provided by

the potential V' (ry,).

We shall assume that the A-hody eigenvalue problem for the target nucleus has
already been solved and that a complete set of solutions {®;} is available for the
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Schrodinger equation:

HA(T], L T TA)QI(,‘I: ra,..-, T'A) = 6,(1’,'(7'1, LTI TA) (8-30)

Furthermore, we shall take that ®, is normalized to unity and is a part of an orthogonal
set of eigenfunctions. The general solution for the complete system, including both the
projectile particle and the target nucleus, may be expressed as a linear combination of
the products of x, (o) and ®,(ry,7s,...,74),

\I’(ro; T,72,... ,TA) = Z X‘.(To)q)J(Tl, r2,..., TA) (8-31)
g

where x,(ro) is the wave function of the projectile. If our primary interest is in elastic
scattering, the only part of ¥ that is of interest to us here is x,®,, where both the target
nucleus and the projectile are in their respective lowest energy states. Our problem
here is to obtain x, (as ¥ is assumed to be already known).

We shall first construct an equation for x, using the method of projection opera-
tors. The approach is very similar to that used earlier in §7-5 to find a renormalized
Hamiltonian in nuclear structure calculations when the active space is reduced to a
small subset of the complete shell-model space. Let P be a projection operator for the
ground state of the target. We may write P as

P = [®o){®o] (8-32)

with the understanding that any integration to be carried out is over the coordinates
of the target nucleons only. When P acts on the wave function of Eq. (8-31), we obtain
the result

P =y,
We may also define an operator ¢} that projects out the rest of the states,
Q=1-P
It is easy to see that
P = PV QW = Qv PQY = QP¥ =0 (8-33)

as P and Q are operators projecting out different parts of the complete space.
Since P + Q = 1, the Schrédinger equation (8-28) may be written as

(E-H)(P+Q)¥ =0 (8-34)

On multiplying from the left by P and making use of the relations given in Eq. (8-33),
we obtain PV in terms of Q¥,

(E — PHP) PV = (PHQ) Q¥ (8-35)
Similarly, on multiplying Eq. (8-34) from the left by Q, we obtain
(E-QHQ)QY =(QHP)PY¥
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This result may be used to express Q¥ formally in terms of PV,

QY QHPPY

- F-omg

When this “solution” for Q¥ is substituted into the right-hand side of Eq. (8-35), we
obtain an expression for P¥,

1
E—-QHQ
On multiplying this equation from the left by (®y] and integrating over the coordinates

of the target nucleons with the help of the explicit form of P given in Eq. (8-32), we
arrive at a relation for x,,

{E-PHP-PHQ QHP} PV =0

1
E-QHQ

This is the equation we must solve to obtain y,.

The zero point of the energy scale is still arbitrary at this point, and we may set it
at the ground state of the target nucleus. In other words, we can choose ¢, in Eq. (8-30)
to be 0 to simplify the form of Eq. (8-36). With this definition, we have the result

{E — (@0l H|%o) ~ (2| HQ QH|®0)} x, = 0 (8-36)

HA‘PQ = 6()@0 =10

Equation (8-36) can now be written as
1
E — Ty = (2o|V|®o) ~ (BolV Q=77 RV |P0) X = 0 (8-37)
E-QHQ

where V = T, V(ry,) is the potential acting between the projectile and target nu-
cleons. In arriving at the result, we have made use of Eq. (8-29) and the fact that Ty
operates only on the projectile coordinates and therefore cannot act on ®;. This gives
us the relation

QTo|®o) = ToQ| o) =0

The operator (E — QHQ)™! in Eq. (8-37) is meaningful only in the sense of an infinite
series expansion of the form

1 1 1 1 1
FooAg = Bt FUHQ pRHQpQHQ -]

The physical meaning of each term in this expaunsion may be interpreted in the following
way. Each time the Hamiltonian acts between a pair of nucleons, there is an interaction,
or “scattering,” between these two particular nucleons. The product QHQ implies that
the interaction takes place with the target nucleus in one of its excited states. Higher
power terms, such as (E"'QHQ)", represent multiple interactions of order n. The last
term of Eq. (8-37), therefore, contains multiple scattering to all orders weighted by
energy factor E~! to the appropriate powers.
We can put Eq. (8-36) into the familiar form of an eigenvalue equation,

(B~ To = V(ro))xo =0 (8-38)



§8-4 The Optical Model 295

where the equivalent potential is given by

1

Vira) = (2lV|%0) + (2olV Q5575

QV|®o) (8-39)
Since we have not yet made any approximation in arriving at Eq. (8-38), we do not
have any better chance of solving it than the original equation given by Eq. (8-28).
The aim of an optical model is to replace the equivalent potential V(ry) by an optical
model potential Uype, such that the equation

(E -To - Uopt)Xo =0

can be solved.

In general V(7y) is nonlocal; that is, the potential acting at one point of space may
depend on the value of the wave function at a different point. The actual eigenvalue
equation takes on the form

(B = To)xo(ro) = V(ro)xo(ro) + [ £(ro,r)xo(rt)dr

where f(r,7y) is a function of both ry and ry. This greatly complicates the problem
and, in practice, one often approximates the potential with a local one. Furthermore,
the derivation here may have given the impression that all the scattering into the Q-
space eventually returns the target to the ground state. This is certainly not true in
general. To represent the loss of flux from the incident channel by scattering that ends
up in other exit channels, the optical model potential is usually complex.

Phenomenological optical model potential. The origin of the optical model po-
tential is the average interaction between nucleons in the projectile with those in the
target nucleus. It is, in principle, possible to derive the potential from nucleon-nucleon
interaction. Before carrying out such a calculation, it is useful to take a more phe-
nomenological approach to the problem, in part, to anticipate the type of results we
can expect to obtain.

Based on the fact that the range of nuclear force is short, we expect the radial de-
pendence of an optical model potential Ugy(r) to follow closely the density distribution
in a nucleus. For this reason, a two-parameter Fermi form given earlier in Eq. (8-21),

1
f(ryro,a) = 1T oxp{(r — o AR)]a)

is often used. In optical model studies this is known as the Woods-Saxon form. The
potential is complex in general,

Uvol(r) = —{Vﬁf(ra T, a\l) + iWof(T, Tws u’w)} (8'41)

In a semi-empirical approach, V5 and Wy, the depths of the real and imaginary parts of
the potential well, are taken as free parameters to be determined by fitting experimental
data. If we assume the radial dependence of both parts, f(r,7,,a.) and f(7, 7w, aw), to
follow the form given by Eq. (8-40), we may take the radii r, and 7, and the surface
diffuseness a, and a,, also as adjustable parameters.

(8-40)
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The potential given by Eq. (8-41) is only the wolume term, in the sense that it
depends on the distribution of matter in the whole nucleus. In addition, optical model
potentials are known to have a spin dependence. When a nucleon is scattered from a
nucleus, the result is sensitive to the relative orientation of the nucleon spin before and
after the scattering. One way to measure such a dependence is through the analyzing
power parameter A,.

Let us define the transverse polarization of the incident and scattered nucleons as
positive (or up) if they are oriented in the same direction as the unit vector

kxk

" TRTRT
given in Eq. (B-6) and negative if they are aligned opposite to #. Here, k and k' are
the wave vectors of, respectively, the incident and scattered particles. Writing the cross
section for scattering from positive initial polarization to both positive and negative
final polarization as ¢, and from initial negative polarization to both positive and
negative final polarization as o_, the analyzing power is given by the ratio of their
difference to their sum,
Oy — 0O
A4 = oy +o_
For elastic scattering, the same information can also be obtained by starting from an
unpolarized incident beam and measuring the difference between the cross sections
leading to positive and negative polarization for the scattered particle. The result,
normalized in the same way as Eq. (8-42), is called polarizetion.
The fact that A, is nonzero in general in nucleon-nucleus scattering is strong evi-
dence for the presence of spin dependence in the optical model potential. A spin-orbit
term may be used to represent such an effect,

(8-42)

2
Usolr) = o - £ (mh, -) %{V,% SO, oo 1) + z'w,dir F0 T )} (8-43)
Again there are six parameters, Vi, T4y, @y, Wy, T4y, and a,., to be adjusted to fit
scattering data. Note that the square of the pion Compton wavelength, (h/m,c?)?, is
roughly 2 and the approximate numerical value is often used in its place.

The reason for using derivatives of the volume density distributions as the radial
dependence comes from analogy with the Thomas spin-orbit potential for the force felt
by atomic electrons in the Coulomb field of a nucleus. For an electron, the spin-orbit
term originates from the interaction of its intrinsic magnetic dipole mnoment p, with
the magnetic field B(r) it feels because of its own orbital motion around the nucleus.
The value of B(r) may be found by a Lorentz transformation of the electrostatic field
E(r) provided by the nucleus, stationary in the laboratory, into a frame of reference at
rest with the orbiting electron. The result is

1 L dV
B(r) = —mv x E(r) = et dr
where the factor inside the square brackets is needed to convert the expression from
cgs to SI units. The orbital angular momentum of the electron is given by

h=rxp=mrxun)
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To relate to an electrostatic potential V(r), we have made use of the relation

av r
E('I') = —-(-i';- ;

The spin-orbit interaction energy for an atomic electron is then given by

eh? dV

W(r)=-p.-B(r)= oy

ol
where we have made use of the fact that the dipole moment g, is given by (eh[c]/m.c) o.
Equation (8-43) has the same form. The use of pion mass m, instead of that of the
electron may be regarded as a convention for the definition of the spin-obit potential
well depths V, and W,. For the same reason, the electron charge is inappropriate and
is absorbed into the definition of the well depths.

For charged particle scattering, a Coulomb term may be included in the optical
model potential. The form is usually obtained by approximating the target nucleus as
a uniformly charged sphere,

1 12Zé? r?
[—4“0] R (3 — _R;;’) for r < R,

2
[——1—} 2Ze for r > R,
dmegt T

Uc(r) =

where R, is the Coulomb radius. The quantities z and Z are, respectively, the charge
numbers of the projectile and the target nucleus. It may be tempting to treat R, as a
free parameter also. In practice, the scattering results are not sensitive to the details
of the Coulomb potential, and it is quite adequate to use the value R, = 1.2A4!/2 fm.

The complete phenomenological optical model potential is the sum of volume, spin-
orbit, and Coulomb terms:

Uopt(r) = Uyol(7) + Uso.(7) + Uc(r)

The total number of adjustable parameters is 12 if we do not include R.. In a typi-
cal scattering experiment, the angular distribution of the differential scattering cross
section, as well as analyzing power and other quantities, where possible, is observed.
The number of independent pieces of data is usually greater than 12 and there is no
difficulty to obtain a complete set of the parameter values by fitting calculated optical
model results to the measured quantities. A large amount of information has been
accumulated in this way, and we have now a fairly clear picture of the energy and mass
dependence of these parameters for proton scattering off nuclei up to a laboratory en-
ergy of 200 MeV. One of the sets obtained by fitting proton scattering data on a variety
of nuclei from A = 40 to A = 208, and laboratory proton energy from 80 to 180 MeV
[126], is given in Table 8-1 as illustration.

There are, however, several problems associated with the phenomenological ap-
proach. The first is that, although we have a good picture for proton scattering, the
knowledge does not extend to other projectiles. For example, even the neutron optical
model potential is not as well known, as there are far less experimental data available for



298 Chap. 8 Nuclear Reactions

Table 8-1: Proton-nucleus scattering optical model potential parameters
for 40 < A < 208 and proton laboratory energy 80 < 7, < 180 MeV (126].

Vo= 105.5(1 -0.1625InTp) + 16.5(N ~ Z)/A
1.125 + 0.0010T, for T, < 130 MeV
ry = (except T, < 180 MeV for Ca)
1.255 for T, > 130 MeV (except Ca)
ay = 0.675 + 3.1 x 10747,
Wo= 6.6 +0.0273(T, — 80) + 3.87 x 10~5(T,, - 80)°
Tw = 1.65 — 0.00247T,,
ay = 0.32 + 0.00257,

Vio. = 19.0(1 - 0.166InT}) ~ 3.75(N — Z)/A
T4 = 0.920 + 0.030541/3
0.768 ~ 0.00127;, for T}, < 140 MeV
flov = {0.60 for Ty > 140 MeV
Wao= 7.5(1 -0.248InT,)
o = 0.877 + 0.0360A1/3

gy = 0.62

Note: Vo, Wo, Vao, Wso. and T, are in mega-electron-volts; 7y, ay, 7oy,
Qyy Tayy Qgyy Tsw 8Nd a4y are in femtometers.

neutron-nucleus scattering. Because of its phenomenological nature, the approach does
not lend itself easily to extrapolation to regions where experimental data are scarce.
The second is that the forms of radial dependence used in Eqs. (8-41) and (8-43) are
found to be inadequate as we move to higher bombarding energies. One remedy is
to use more complicated expressions involving additional parameters; however, on aes-
thetic grounds alone, this is not desirable. Finally, the parametrization is not unique.
The 12 parameters are interdependent in a complicated way, and there are often other
sets of values that can also provide an equally good description of the data.

Microscopic optical model potential. An optical model potential for nucleon-
nucleus scattering represents the average interaction between the incident nucleon and
nucleons in the target nucleus. It is, therefore, a function of the nucleon-nucleon in-
teraction. A microscopic model of the potential may be constructed by convoluting
the fundamental nucleon-nucleon interaction with the nuclear density. Such a folding
model has been known to be quite successful in describing nucleon-nucleus scattering
data if an appropriate nucleon-nucleon interaction is used as the starting point. For
simplicity we shall restrict ourselves to the case that the incident particle is a nucleon
and ignore any internal structure it may have. The first term of Eq. (8-39) suggests
that we may be able to approximate the nucleon-nucleus optical model potential by
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Figure 8-5: Radial shapes of the
volume term of a proton-nucleus opti-
cal model potential at different bom-
barding energies. The upper curves
are the real part and the lower one
the imaginary part of the potential.
The results are calculated using a
folding procedure with a Paris poten-
tial as the interaction between nucle-
ons. {Adapted from Ref. {139].)
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the integral

A
Uopt(r()) ~ (@O(rla Py, ey T‘A). Z V(rﬂl)!éﬂ(rh L TR T'A)) (8'44)
=1

where the integration is taken only over the target nucleons.

One must be careful here with antisymmetrization between the incident nucleon and
the one in the target nucleus with which it interacts. Let us consider the simplest case
in which the incident nucleon undergoes only one interaction with one of the nucleons
in the target. When a nucleon emerges from the scattering, there is no way to identify
whether the observed particle is the same one as the incident nucleon or the one in the
target nucleus with which it interacted. Both possibilities must be included. For this
reason, the matrix element on the right-hand side of Eq. (8-44) should be a sum of two
terms, /
(®o]V|Do) = (Doltp|@o) + (Polts| Do) (8-45)
where t,, is the operator for the direct part of the reaction in which the scattered nucleon
is the same one as the incident particle and t; is the operator for the exchange part in
which the incident nucleon is absorbed by the target nucleus and the scattered particle
is one of the nucleons originally in the target. We shall see later that the difference
between the contributions from these two terms is important in understanding the
radial shape of the optical model potential at high energies.

For the nucleon-nucleon potential V(ry,), it is tempting to take a naive approach
and replace it by a free nucleon-nucleon interaction ohtained, for example, from nucleon-
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Figure B-6: Radial shapes of the real and imaginary parts of the spin-orbit term
of an optical model potential for proton-nucleus scattering at different hombarding
energies. The calculation is based on a folding procedure using a Parig potential
for the interaction between nucleons. (Adapted from Ref. [24].)

nucleon scattering. This is known as impulse approzimation (IA) and, in practice, is
found to be too crude to fit experimental data on nucleon-nucleus scattering. Just
as with nuclear shell-model calculations, an effective nucleon-nucleon interaction is re-
quired here, as one of the two interacting nucleons is embedded in the nucleus. The
requirements on the effective interaction are somewhat less stringent than in the cor-
responding shell-model case. It is usually possible to approximate the nuclear medium
as an infinite nuclear matter to simplify the calenlations. To take care of the fact that
a real nucleus has a large surface region, with density varying from very small to sat-
uration value in infinite nuclear matter, a density-dependent effective potential is often
used. In other words, the operators ¢, and ¢; in Eq. (8-45) are made to be functions
of the miclear density p. The effective potential in different regions is calculated using
nuclear matter of appropriate densities. Furthermore, the free nucleon-nucleon inter-
action itself is energy dependent and, as a result, both ¢, and ¢ are functions of the
bombarding energy as well.

In terms of single-particle wave functions ¢;(r;), the target nucleus density may be
expressed as the following operator:

A
p(r) = |Po)(Bo] ~ Y ¢;(r)ei(r) (8-46)

i=]
Using this, the optical mode! potential may be related to an integral over the function
A 4
f(ro,m) = 3 di(P)to(ro, v; p, E)u(r) + 3 65 (P)te(r, 7o; oy E)i(ro) (8-47)
i=1 =1

constructed by convoluting, or “folding,” the nucleon-nucleon interaction between the
incident and the target nucleons with nuclear density. In order to emphasize the de-
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Figure 8-7: Real part of the volume
term of a proton-nucleus optical model
potential at different bombarding ener-
gies. The upper curves are the direct
part of a microscopic potential given
by Eq. (8-48) and the lower curves are
the exchange part given by Eq. (8-49).
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pendence on nuclear density and bombarding energy, we have put p and E explicitly
into the arguments of ¢, and t;.

The direct term of such an optical model potential is relatively easy to evaluate, as
the integral involving the first term of Eq. (8-47) may be expressed as

Uy(ro, E) = [ p(r)to(ro, .0, E) d*r (8-48)

For p(r) we can use the approximate form given in Eq. (8-46). However, the same
transformation cannot be carried out for the exchange term, as the two single-particle
wave functions have different arguments, » and ry. As a result, the contribution of the
exchange term is nonlocal in general. A “local momentum” approximation is usunally
used to reduce the exchange term to the following simpler form:

Ugu(ra, E) = [ plro, )ts(r, 70, p, Ei(kira - ri)d’r (8-49)

where

A
pro,m) =3 9] (r)és(ro)

in analogy with Eq. (8-46). Here, jo(£) is the spherical Bessel function of order zero.
At laboratory energy below 200 MeV, the folding potential produces results very
similar to those derived from phenomenological approaches. At higher energies, how-
ever, the Woods-Saxon radial shape used in the semi-empirical approach is found to
be inadequate. From folding potential calculations we find that, as the bombarding
energy is increased, the radial shape of the volume term in the optical model potential
changes to a “wine-bottle” shape, as shown in Fig. 8-5. The shape for the spin-orbit
potential, shown in Fig. 8-6, however, retains essentially the same form as given by
Eq. (8-43). The shape changes in the volume term come from the differences in the
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energy dependence of the direct and exchange parts of the folding potential. As il-
lustrated in Fig. 8-7, the direct part is repulsive and the exchange part is attractive.
Since the exchange part has a slightly sharper energy dependence than the direct part,
the cancellation between repulsive and attractive parts, when we sum the two terms to
produce Uype, produces an energy dependence that cannot be represented by a simple
Waoods-Saxon form, In Fig. 8-8 the results for the elastic scattering of 362-MeV protons
off a “°Ca target are given as an illustrative example to show that a microscopic opti-
cal model potential is quite capable of describing intermediate-energy proton-nucleus
scattering to very large momentum transfers.

3
10 T T T T T T
] 40{:otp.p)'w(: B
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Figure 8-8: Differential cross section for elastic scattering of 362-MeV protons off
40Ca, The continuous curve is the calculated result using a microscopic optical
model potential. The diffraction-like pattern is typical in scattering at small
angles found in many different types of processes [68).

Besides elastic scattering, an optical model potential is also useful in understanding
the cross section for other types of reactions. For example, in cases where the scattering
is dominated by direct reaction, contributions from potential scattering and multipole
scattering to the same final state are regarded as “background” and the effect may be
represented by an optical model potential. The reduction in the incident flux because
of other open reaction channels is taken care of by the imaginary part of the potential.
From a slightly different prospective, we can view the optical model potential as an
average potential that “distorts” both the incident and scattered waves from their
plane wave states we saw in the previous section. The contributions of a direct reaction
to specific states may be regarded as terms in addition to scattering due to the optical
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model potential and favors only specific final states. This is the essence of DWBA for
direct reaction. The scattering is separated into two parts, a “background” given by the
optical model potential and a direct reaction contribution because of special features
in the final state involved. The calculated results obtained this way, as we shall see in
the next section, have been found to give a fairly good description of the observed cross
sections.

8-5 Intermediate-Energy Nucleon Scattering

In §8-3 we saw that direct reaction is a good way to investigate certain aspects of
nuclear structure as well as interaction between free and bound nucleons. The main
reason is that the reaction mechanism is relatively simple. This is especially true in
nucleon-nucleus scattering when the incident energy is in the intermediate range.

Intermediate-energy nucleons are usually taken to mean those with laboratory ki-
netic energy in the range of 100 to 1000 MeV. At much lower energies, the transit
time of a nucleon through a nucleus is sufficiently long that multiple scattering may
take place frequently enough to complicate the reaction. At much higher energies,
good resolution is difficult to achieve and the increased production rates of pions and
other secondary particles make the condition unfavorable for studying nucleon-nucleus
interaction.

We shall again restrict ourselves to reactions involving two-body final states to
simplify the analysis. Our main emphasis is on proton inelastic scattering, commonly
referred to as (p,p’) reactions, and charge exchange reactions induced by nucleons,
namely, (p,n) and (n, p) reactions. Furthermore, we shall ignore elastic proton scatter-
ing here, as some of the primary interests are already covered in the previous section in
the discussion of optical models. Besides scattering cross sections, observables related
to changes in nucleon spin orientation can also be measured, as we have seen in §3-7;
however, for simplicity, we shall not discuss them here. Very interesting data can also
be obtained by scattering antiprotons from nuclear targets. The information helps us
to understand the connection between nucleon-nucleus reaction and the internal de-
grees of freedom of nucleons. An example of the differential cross section for scattering
off 12C is shown in Fig. 8-9. Unfortunately, a meaningful discussion of the topic of
antiproton-nucleus scattering requires additional preparations than what we wish to do
here.

Scattering amplitude. We saw earlier in Eq. (8-21) that scattering amplitude in
(first) Born approximation may be expressed in terms of the matrix elements of the
nucleon-nucleon interaction potential between initial and final states of the nucleon-
nucleus system,

A
O AL ML LA DTS PACHLXCHL R

=1

(8-50)

where p is the reduced mass of the scattering nucleon and x, (ro} and Xk, (o) are,
respectively, the wave functions of the incident and scattered nucleons in the Born
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Figure 8-9: Differential cross sec-
tion for proton (triangles) and an-
tiproton (circles) scattering off 12C
at 46 MeV incident energy. Figure
(a) is for elastic scattering and (b)
is for inelastic scattering leading to
the 2% state at 4.44 MeV excitation.
The solid curves are obtained from a
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coupled channel calculation and the
dotted curve is a theoretical one for
elastic scattering. (Taken from Ref.
[72].)
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approximation. The wave functions ®,(ry,7,...,74) and &;(r(,7y,...,74) describe

the initial and final nuclear states.

There are three distinctive parts that enter in a calculation of the scattering am-
plitude f(8) here. First, we need an optical model potential with which we can solve
for functions xx,(ro) and x4, (ro). In this way, the effect of anything other than those
due to direct reaction may be accounted for on the average. This is the spirit of the
distorted wave approach mentioned at the end of the previous section. Second, we need
a potential V(ry,) that supplies the interaction between a free nucleon and a nucleon
embedded in a nucleus. It is this potential that induces the direct reaction over and
above the “background” produced by the optical model potential. Third, we must have
bath the initial and final nuclear wave functions ®; and @y, in particular the relation-
ship between them. All three parts are related to the fundamental nucleon-nucleon
interaction.

Let us start with the purely nuclear structure problem of relating the initial and
final states of the target nucleus. For simplicity, we shall restrict ourselves to targets
made of even-even nuclei where many of the studies have been carried out. For such
targets, the spin and parity of the ground state of the initial nucleus are 0t. The
angular momentum transferred to the nucleus as a result of the scattering, in this case,
is given by the spin and parity of the final nuclear state. Our basic assumption in
Eq. (8-50) for the scattering amplitude is that the incident nucleon interacts with only
one of the nucleons in the target nucleus. In the case of a (p,p’) reaction, the process
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may be thought of as one in which the incident proton excites the target nucleus by
promoting one of the nucleons to a higher single-particle state. For a (p,n) reaction,
the incident proton is captured and one of the neutrons in the target is ejected in the
process. In either case, we find that states strongly excited by the these reactions are
those made predominantly of one-particle one-hole (1plh) excitations built upon the
ground state of the target nucleus.

The relation between initial and final nuclear wave functions may be expressed in
terms of a “transition density.” In the form of an operator, the 1plh-transition density
of interest here may be written as

Py (1plh) = zaph|¢p ¢h|

0

where ¢, (r) is one of the occupied single-particle states in the target nucleus and ¢,(r)
one that is empty before the scattering. In principle, we should also couple |¢,){¢x]
to some definite spin and isospin so that the operator p, (1plh) is 2 spherical tensor
of definite ranks. However, we shall dispense with this complication in the following
discussion to simplify the argument.

If a state | (1plh) J™) is made up entirely of a linear combination of 1pl h-excitations
built upon the ground state, we can impose the normalization condition

|((1p1h) J"|p.(1p1h)|ground state)l2 =1

on the transition density operator. In this way, the state | (1plh) J™ ) may be expressed
in terms of the transition density operator acting on the ground state wave function,

|(1p1h) J™) = p,,(1plh)|ground state) = Y an|d,){dn]ground state)

ph

As we have seen in §7-5, such a 1plh-state is an eigenstate of the Hamiltonian in the
limit that the two-body residual interaction can be ignored.

In general, an eigenvector of the nuclear Hamiltonian contains other components
as well. The wave function of the final nuclear state, in general, has the form

|q)f(7'1,1"2,... Zaph2|¢p(r1 ¢h ’I',)I(I) (7’1,1‘2, o A))
+ other components (8-51)

where ®; and ®; are, respectively, the initial and final nuclear wave functions. From
this, we obtain the expansion coefficients a,; for the 1plh-transition operator

A
Aph = E(Qj(rla T2,..., rA)'¢p(rt)><¢h(rl)|¢1(rlv T2y ’TA))
1=1

The transition density is a quantity between two specific nuclear states, and as such,
it is independent of the probe and the reaction mechanism. For this reason, the same
transition density enters into all other 1plh-excitation pracesses between the same pair
of nuclear states. This gives us the opportunity to check the quantity obtained in a
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(p,p') reaction against, for example, electromagnetic transitions and inelastic electron
scattering. For (p,n) and (n, p) reactions, the transition densities are related to J-decay
rates and cross sections of charge exchange reactions induced by other probes such as
pions and light ions.

So far we have considered the scattered nucleon in a (p,p') reaction to be one and
the same as the incident nucleon and distinguishable from those in the target. As we
have already seen in the previous section, this is only the direct part of the scattering
amplitnde which, with the help of Eq. (8-51), may be expressed as

fol8) = - 2:h2 > apr{xx, (ro)bp(P)IV (70, 7)l Xk, (o) (7)) (8-52)
ph

The result is obtained after integrating over the coordinates of all other nucleons in
the target not involved in this particular scattering. Components other than those
related to one-particle one-hole excitation of the target ground state disappear from
the expression, as they do not contribute to the direct reaction amplitude in the limit
that only 1plh-excitations are allowed. Their importance comes mainly in terms of
their total weight in @, and, consequently, the fraction of 1plh-components present in
the state and the overall size of the scattering amplitude f,(6).

To ensure proper antisymmetrization, we must also include an exchange part to
the scattering amplitude. In analogy to Eq. (8-52), this may be written as

(6) = 21 Sl o)V (o ()l (859

Both f5(8) and fg(8) are two-body matrix elements involving ejther the incident nu-
cleon or the scattered nucleon and one of the nucleons in the nucleus. The reason we
can reduce the amplitude to such a simple form comes from the direct reaction assump-
tion that only a single interaction takes place between the incident nucleon and one of
the nucleons in the target, with the rest of the nucleons acting merely as “spectators”
in the reaction.

Nucleon-nucleus interaction potential. What is an appropriate interaction po-
tential V(rg,7) to use in Egs. (8-52) and (8-53) for the scattering amplitudes? The
simplest approach is to apply an impulse approximation and equate the interaction
with one occurring between free nucleons. As we have seen earlier in optical model
potentials, this turns out to be too crude an assumption because of the influence of
the nuclear medium on the target nucleons. For a semi-empirical approach, we can
take a phenomenological one-boson exchange potential consisting of a sum of Yukawa
forms, each with a different range. The strength of each term in such a potential may
be taken as an adjustable parameter to reflect the fact that we do not have a complete
knowledge of the interaction between free and bound nucleons. An example of such a
potential is the Michigan three-Yukawa (M3Y) potential [29]. With a sum of only three
Yukawa terms, fairly good descriptions have been provided for the observed differential
cross sections in many (p,p’) reactions.

A more realistic approach is to nse an effective interaction based on free nucleon-
nucleon scattering with corrections for the influence of the nuclear medium. An example
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is the one developed by Franey and Love [65]. Alternatively one can take a nuclear
matter approach and develop a density-dependent potential, as described earlier for
optical model potential studies. In both cases, good descriptions of the observed results
up to very large momentum transfers have been obtained for both differential scattering
cross sections and spin observables.

Let us recapture what is happening when an intermediate-energy nucleon is scat-
tered off a nucleus. Before the incident nucleon is within the range to interact with
one of the nucleons in the nucleus, it is in the field of the nuclear optical model poten-
tial. The wave function of the incident nucleon is modified by the average potential.
Once the projectile is in the range of the nuclear force of the target, the interaction
promotes one of the target nucleons to a different single-particle state. When the scat-
tered nucleon leaves the region, it travels again through the field of an optical model
potential. The three steps of a calculation—optical model potential, nucleon-nucleon
interaction, and nuclear wave functions—are distinct parts of the problem and may be
treated quite independently of each other. On the other hand, all three are the results
of interaction between nucleons and can be calculated from the same nucleon-nucleon
interaction potential. It is therefore possible to solve the problem in a self-consistent
manner and obtain all three parts from a given nucleon-nucleon potential. This is an
interesting development, as there are only rare occasions in many-body problems that
such an approach can be carried out in practice. Partly because of this possibility,
a large amount of work, both experimental and theoretical, has been carried out in
intermediate-energy nucleon-nucleus scattering.

Relativistic and other effects. In addition to the above interests, intermediate-
energy nucleon-nucleus scattering may also be used to understand the underlying re-
action mechanism. For example, above we have implicitly assumed a nonrelativistic
Schrédinger approach. However, the kinetic energy of the incident nucleon here is a
large fraction of its rest mass energy, and as a result, relativistic effects may be im-
portant. Besides simple kinematic effects that require Lorentz invariance in the place
of Galilean invariance, we may also need to replace the Schrodinger equation with a
Dirac equation. The main difference here may be viewed in the following way. In
the Schrédinger approach, the nucleon, being a spin-% particle, is described by a two-
component wave function to account for the fact that the intrinsic spin of a nucleon
can either point up (projection along the quantization axis +1) or down (projection
—%). In a relativistic quantum-mechanical treatment, a four-component wave function
is required to describe a spin-% particle, with the upper two components describing the
two possible directions of the nucleon spin and the lower two components accounting
for the two possible directions of the antinucleon spin. A fully relativistic treatment of
the nucleon-nucleus scattering, therefore, differs from the Schrodinger approach by the
presence of the two lower components.

At low energies, the influence of the lower components on the behavior of the
nucleon is very small and may be replaced by spin-dependent terms in the potential,
as we have done earlier. At higher energies, such a simple substitution may not be
adequate and the Dirac equation may have to be solved for the scattering. There
are indications that, for certain observables in intermediate-energy nucleon-nucleus
scattering, particularly those related to changes in the polarization direction between
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incident and scattered nucleons, a relativistic treatment is needed (see, e.g., Celenza
and Shakin {43] and Danos, Gillet, and Cauvin [47] and references therein).

One possible interest in charge exchange reactions is to relate strong and weak
interaction processes, as mentioned earlier in §5-6. Intermediate-energy (p,n) and
{n, p) reactions are ideal here, as the reaction mechanism is sufficiently simple and the
nuclear matrix elements involved are the same as those in nuclear §-decay. Apart from
kinematic factors, the only distinction between nuclear f-decay and charge exchange
reactions induced by intermediate-energy nucleons is expected to be the difference in
their “coupling” constants. If this is true, the ratio between these two processes should
be independent of the target nucleus used, and this indeed is found to be the case. Asa
result, sum rule and giant resonance studies have been extended into charge exchange
processes, as we have seen earlier in §6-2.

Alternatively, intermediate-energy nucleon-nucleus scattering can be viewed as a
good way to obtain information on the interaction between free and bound nucleons.
This is made possible by the fact that two of three ingredients in a reaction calculation
may be checked by other means. For example, we have seen that the optical model
potential is the same one as that entering into elastic scattering. From the success in
describing elastic scattering, we can establish the validity of an optical model potential
before using it in either (p,p’) or charge exchange reactions. We have also seen that
the nuclear structure question involved in the scattering process is identical to those
occurring in other reactions. By comparing the transition density with, for example,
intermediate-energy inelastic electron scattering, we have a fairly reliable way to find
out whether the nuclear structure information is correct. The net result is that the
interaction V(r,rp) in Egs. (8-52) and (8-53) becomes the least well known part of the
three and may therefore become the primary focus of a study. Furthermore, different
transitions are sensitive to different parts of the interaction potential. By carefully
selecting the initial and final states, it is possible to emphasize a particular aspect of
V(r,ry) for examination.

Finally, if we are confident of all three points above, we can start to ask the finer and
more detailed question of whether there are any exotic effects related to, for example,
the internal degrees of freedom of nucleons. The energy involved here is certainly high
enough that, for example, intermediate states involving the excitation of a nucleon into
a A-particle can take place, particularly in view of the strong Pss-resonance in the
pion-nucleon channel. Since a A is a distinguishable particle from a nucleon, it does
not suffer from the effect of the Pauli exclusion principle due to the presence of other
nucleons. Instead of particle-hole excitations, we can imagine A-hole excitations to
take place. There is already some evidence that such nonnucleonic degrees of freedom
may be present in the observed data.

8-6 Meson-Nucleus Reactions

Interaction of mesons with nucleons and nuclei provides us with one way to understand
the exchange of virtual mesons between nucleons. We have seen earlier in §3-6 and
§3-9 that such exchanges are responsible for the long- and intermediate-range parts
of the nuclear potential. Meson scattering is also of interest from the point of view
that they are bosons. Since bosons can be absorbed and created in the reaction, we
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expect to learn something new about scattering that cannot be achieved with baryons
and leptons. It is an integral part of hadron-nucleus scattering studies and forms an
essential element of our understanding of hadrons.

Experimentally, intense sources of pions are available from “meson” factories, such
as LAMPF (Los Alamos Meson Physics Facility), SIN (Swiss Institute for Nuclear
Research), and TRIUMF (Tri-University Meson Facility) (see, e.g., Ref. [109]). There
are two features that are special to pion scattering. The first is the strong Ps;-resonance
that produces a A-particle from a pion and a nucleon. As we have seen in §2-6, the
strength of this resonance at pion laboratory energy of 195 MeV is so overwhelming
that pion-nucleus reactions at energies below a few hundred mega-electron-volts are
dominated by the formation of A-particles. The second is that pions have three charge
states, 7%, 7% and w~. As a result, single-charge exchange as well as double-charge
exchange reactions are possible. The study of pion-nucleus reactions can be carried out
in a variety of ways, including pion absorption, elastic and inelastic scattering, as well
as charge exchange reactions.

Pion absorption. There are two different types of pion absorption studies that can
be made, stopped pion and fast pion. In order to enhance the probability, the pion to
be absorbed must be slowed down sufficiently such that it is essentially at rest with
respect to the nucleus. One way to “stop” a n~ is to capture it first in an atomic orbit
to form a w-mesic atom. It may happen that the ™ is initially occupying one of the
higher “electronic” orbits of the atom. If this is true, the negative pion will eventually
cascade down to a low-lying orbit through atomic electromagnetic decay. Since the
pion mass is far larger than that of an electron (m, = 300m,), the Bohr radius is much
smaller. As a result, the wave function of a low-lying 7~ in an atom has a significant
overlap with that of the nucleus, as we have seen earlier in the analogous situation of
muonic atoms in §4-5. However, being a hadron, a pion behaves quite differently from
a muon, particularly in the nuclear medium. Because of strong interaction, a pion is
readily absorbed by the nucleus once it is close enough for the short-range force to be
effective.

When a 7~ is absorbed, all its rest mass energy of ~140 MeV is transferred to
the nucleus in the form of excitation energy. Since this is about 16 times the average
binding energy of a nucleon in a nucleus, it is difficult for a single nucleon to take
up the full amount and conserve momentum at the same time. It is therefore likely
that a cluster of nucleons, such as an a-particle cluster, is involved. Alternatively, the
internal degrees of freedom within a nucleon may be excited. Even though the peak
of the lowest energy resonance, the A-channel, is still far away, the small possibility
remains an important consideration.

In contrast to stopped pions, the absorption of “fast” pions may be defined as a
reaction involving an incident pion and no scattered pion,

T+ A A

Since the incident particle carries both energy and momentum, it is again impossible
for a single nucleon in the nucleus to absorb the pion and conserve both energy and
momentum at the same time. From the relatively large eross sections observed in the
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reaction
at+d—-p+p

we can conclude that the two-nucleon process is important in the absorption of fast
pions by nuclei. This idea is also corroborated by the relatively large cross sections
observed for (n*, pp) reactions on nuclei in general. Since it involves two nucleons,
fast-pion absorption is sensitive to two-particle correlations in nuclei and, as a result,
is one of the ways to make such studies. A concise review of the subject can be found,
e.g., in Ashery and Schiffer {11].

The inverse of pion absorption is pion production. When a nucleus is bombarded by
electrons, protons, or other particles, pions are produced if sufficient energy is available.
The reaction usually results in final states with three or more particles. Furthermore,
many other exit channels are also open at these energies, and as a result, both the
measurement and the analysis are complicated. For this reason, we shall not be con-
cerned with such reactions here. An example of the pion production cross section in
nucleon-nucleon scattering was shown earlier in Fig. 3-4.

Pion scattering. Pion scattering studies may be divided into three categories: elas-
tic and inelastic scattering, single-charge exchange (SCX) reactions, and double-charge
exchange (DCX) reactions. Alternatively, because of the strong Pjs-resonance, mea-
surements are often divided into three groups, depending on whether the energy is
below the resonance, on the resonance, or above the resonance. We have already seen
in §4-5 that there are strong on-resonance enhancements of the 7% +p and 7~ +n crass
sections over those for 7~ + p and 7% + n scattering. This made it possible to use pion
scattering to distinguish between neutron and proton density distributions in a nucleus.
We shall be mainly interested here in the other aspects of pion-nucleus scattering.

At energies no higher than 50 MeV, far below the Ps3-resonance, the average inter-
action of pions with nuclei may be represented by an optical model potential. There are
several different possible ways to construct such an average potential for pion-nucleus
scattering. An example is that given by Stricker, Carr, and McManus [133]. It makes
use of the fact that, at such low energies, the scattering is dominated by s- and p-partial
waves.

Let us examine first the amplitude for pion-nucleus scattering in the limit that only
s- and p-waves are contributing. Since pions are isospin ¢ = 1, pseudoscalar (J* =07)
particles, pion-nucleon scattering amplitude may be expressed in terms of the isospin
operator t for the pion and 7 for the nucleon and approximated as

f,“v =bo+b1t‘T+(Co+Clt'T)k'k’ (8-54)

where k and k' are, respectively, the initial and final pion wave number vectors. The
coefficients by and by are related to s-wave scattering from a nucleon followed by ab-
sorption on a neighboring nucleon, and the coefficients ¢y and ¢; are related to the
corresponding p-wave process. These coeflicients are complex in general, as pions can
be absorbed by nucleons. Their values may be found, for example, by fitting calculated
results to experimental data on r-mesic atoms.

The pion-nucleus optical model potential that generates a scattering amplitude of
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the form of Eq. (8-54) may be expressed as the operator

P
Uopt(r) = = —/;'-

{0+ BEY - 9 - {L)etr) + con)v
s ~V(r) + B2 1V20(r)} (8-55)

where p is the reduced mass of a pion. The kirematic factors

hiw —14 hw
M, P2 =7 o,

n=1+

come from transformation between frames of reference attached to the center of mass of
the pion-nucleon system and the pion-nucleus system. They are functions of the total
pion energy fiw and nucleon mass M. The other factors,

b(r) = p1{bop(r) — exbr1bp(7)} B(r) = pyByp*(r)
c(r) = py {eop(r) — exc16p(r)} C(r) = p;'Cop?(r)
L) = {1+ TNer) + CONT 50l = pal) = 1)

may also depend on e, the charge of the pion. The neutron, proton, and nucleon
densities in the nucleus, p.(r), pp(r), and p(r), are normalized, respectively, to NV, Z,
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and A. These factors express various first-order correlations between nucleons in a
nucleus. Second-order correlations in s-waves are included in Eq. (8-55) through the
factor

where kg, the Fermi momentum of a nucleon in a nucleus, is taken to be 1.4 fm~!. A
typical set of parameters for 50-MeV incident pions has the values

A=1.4

bo=—0.0574+0.006; fm co=0.75 +0.03;  fin® (8-56)
b;=—0.134-0.002i fm €=0.42840.014 fm®

Bo=—0.02 +0.25; fm? Co=0.36 +1.2i fm®

As can be seen from examples shown in Fig. 8-10, such an optical model potential gives
a good description of experimental data on elastic scattering of both 7t and 7~ off a
variety of nuclei at low energies.

At pion energies far above 200 MeV, the influence of Ps3-resonance diminishes and
the nucleus becomes much less absorptive to pions, as can be seen from the exam-
ples shown in Fig. 8-11. In the energy range 300 to 800 MeV, pion-nucleon scattering
is dominated by many overlapping resonances. In this case, we expect that the cross
section for pion-nucleus scattering at comparable energies may be understood by convo-
luting these resonances, using nucleon Fermi motion inside the nucleus as a smoothing
function. However, not enough data are available yet for a more detailed discussion.

2]
(o]

n
[«
T

TOTAL CROSS SECTION (fm?)
.y
[e]

PIN A "

i i i

o 560 000
PION ENERGY IN MeV

Figure 8-11: Total scattering cross section of pions off *He, Li, and 12C show-
ing the strong reaction near the Pys-resonance and smooth variations at higher
incident pion energies. (Adapted from Ref. [23].)

Measurements of pion scattering from nuclei are limited by the energy resolution
that can be achieved with pions. The problem is caused partly by the fact that the
incident pions are produced by high-energy protons striking a thick target made of
heavy elements. Energy selection is accomplished by passing the broad spectrum of
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particles produced through electromagnetic fields. Both the limited initial flux and
the short lifetimes of pions put stringent limitations on what can be achieved. The
same difficulties are also present in the detection equipment, as the pion energies we
have here are still relatively low for some of the more efficient detection techniques to
work well. As a result, measurements of pion-nucleus scattering are usually carried out
on light nuclei where the low-lying nuclear levels are well separated in energy. Both
elastic and inelastic data are available, and they have been useful in complementing
the information obtained with other probes.

Charge exchange reactions. Pion scattering involving the exchange of one unit
of charge, (n*,n°) and (x~,7°), are among the most extensively studied w-nucleus
reactions. Examples of (n+, 7°) scattering off 1*C and ®Ni at different angles are shown
in Fig. 8-12 as examples. Except around the Pj3-resonance, the processes are similar
to (p,n) and (n,p) reactions and their results are often compared. At energies above
the resonance, {1~ 7°) reactions have some advantage over competing (n, p) reactions,
as intense intermediate-energy neutron beams with well-defined energies are difficult
to obtain. On the other hand, the particle emerging from an SCX reaction is 7°, a
neutral particle that is usually detected by the y-rays produced in its decay through
the reaction 7° — y++. This puts some constraint on the types of SCX measurements
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Figure 8-12: Energies of 70 observed in (n+, 79) single-charge exchange reactions
induced by 500-MeV pions on *C and %°Ni at scattering angles indicated. The
continuous curveg are polynomial fits to the background (taken from Ref. [16}).
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that can be carried out.

There are two different double-charge exchange reactions that can be studied with
pions, (%, 7~) and (r~,7%). They are interesting for two reasons. First, these pro-
cesses must involve at least two nucleons and are therefore useful for investigating
nucleon correlations inside a nucleus. Second, the nuclear matrix element that enters
into the scattering cross section is related to double §-decay, a process important for un-
derstanding the nature of weak interaction itself, as described in §5-6. For all practicai
purposes, DCX reactions are unique to pions. A nucleon, being an isospin-% particle,
can only induce SCX reactions. The only way to induce DCX with conventional nuclear
probes is to use heavy ions. Here we have the complication that the probe itself can be
excited by the reaction as well.

Because of the small cross section, DCX studies tend to be concentrated on strong
transitions leading to isobaric analogue states in light nuclei separated by a pair of
neutrons or protons. The main interest has been centered around effects involving
the internal degrees of freedom of the nucleons. The results seem to indicate that an
important role may be played by processes involving intermediate states with nucleons
excited to become A-particles. The prospects of using DCX to relate strong and weak
interactions and to understand nucleon correlations are quite promising. As illustration,

examples of inclusive pion double-charge exchange reaction cross sections are shown in
Fig. 8-13.

15 T T T ! ! ! '
| Hi g X 304{}{ "%t X
1o § ii T 2ol
% ! 1
= st 7 1oF
'ﬂ; L B
E .'1!.
Z 15 T T T ' ! L]
{
5| i 2080 e ¥ ) i 8o} {{ 208t ™ )X
NE 1o} i il e 1
- 140
s\ &, '
Bug T
. ) i
00' 100 200 0

PION KINETIC ENERGY (MeV)

Figure 8-13: Inclusive pion double-charge exchange reactions (x*,m~) and
(7=, 7%) on 1™Rb and 2M8Pb at incident pion enerzy 240 MeV. The emerging
pions are detected at 8, = 130°. The smooth curves are classical estimates of
Hufner and Thies [86] based on Boltzmann equations (taken from Gram [77)).
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Kaons and other mesons. In addition to pions, kaons have been available for scat-
tering off nuclei. Kaons are “strange” mesons involving either an s-quark (K~ and K°,
strangeness S = —1) or an 3-quark (K* and K°, S = +1). Conservation of strangeness
requires that, when a K~ -meson is absorbed by a nucleus, one of the nucleons changes
into a “strange” baryon such as a A-particle (mac? = 1115.6 MeV) or a Z-particle
(mgoc? = 1192 MeV). The nucleus A becomes a hypernucleus yA* in the process. Be-
cause of the large kaon mass (~500 MeV/c?), the nucleus is left in a highly excited
state, much more so than the case of pion absorption. On the other hand, since there
is no light baryon with § = +1, a K*-meson cannot be absorbed by a nucleus. Many
new and different avenues of study are opened up when we use a hadronic probe with
nonzero strangeness. In terms of new insights into nuclear structure problems, this is
similar to what studies of nuclei far away from the valley of stability can provide us.

Besides pions, interaction between nucleons is also mediated by other mesons such
as p and w. For this reason, reactions of these mesons with nucleons and nuclei are
of interest. The difficulty is an experimental one; there does not seem to be any easy
way to produce intense beams of mesons other than pions and kaons. Some of the
information on the interactions of p and w with nucleons, and baryons in general, must
be obtained from their production rates in the decay of heavier particles.

Problems

8-1. Show that in the scattering of particle a, with mass M,, off target nucleus b, with
mass M,, the momentum transfer ¢ from a to b has the same form in both the
laboratory and center-of-mass coordinates.

8-2. Use a table of binding energies to calculate the Q-value for the '?°Sn(d, p)!*!Sn
reaction leading to the ground state of '2}Sn.

8-3. For a Yukawa potential V(r) = Vpe~"/™ /r, with range ro = /mc given in terms
of the mass m of the boson exchanged, find the angular distribution for elastic
scattering in first Born approximation due to the potential. Show that in the
limiting case of a zero-mass boson, the result is identical to Rutherford scattering.

8-4. The angular distribution of an ¢ = 2 transfer, 22Ne(d, n)*'Na reaction leading
to the J™ = 5/2* state at 2.14 MeV in *Na peaks at 36° for deuterons with
center-of-mass energy 6.0 MeV. Use a plane wave Born approximation to deduce
the radius of 2!Na. Compare the result with that given by R = 1.2A'/3 fm.

8-5. Show that, for direct reactions in a plane wave Born approximation, only ¢ = 0
transfers have maxima in the differential scattering cross section at scattering
angle 8 = 0°. For £ > 0 transfers, the forward direction is a minimum and the
first maximum in the differential cross section occurs at increasingly larger angles
with increasing £-values of the transfer.

8-8. Calculate the radius of the lowest orbit of 7~ in a m-mesic atom with Z protons in
the nucleus. Assuming a two-parameter Fermi form Eq. (4-22) for the distribution
of nucleons in the nucleus, find the overlap between the wave function of the 7~
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8-7.

8-8.

and the nucleus consisting of A nucleons. Take ¢ = 5.0, z = 0.5 fm, Z = 50, and
A =120

Find the angular distribution of neutrons emerging from a (n,n) reaction on
28ph, If the incident energy is sufficiently low, multiple scattering may take
place. Assume that each neutron suffers two clastic collisions with the nucleons
in the target nucleus before leaving and that the angular distribution of each
scattering is given by [jo(qR)[?, where R is the radius of the target nucleus. Take
the incident neutron energy to be 10 MeV in the center of mass and ignore any
energy dependence in the scattering cross section.

Show that for low-energy, hard-sphere scattering, the cross section is equal to
47 R?, where R is the radius of the potential well.



Chapter 9

Nuclei under Extreme Conditions

For the most part, we have been looking at stable nuclei and their low-lying excited
states. This is, to a large extent, dictated by the availability of data. Until quite
recently, most measurements have been confined to nuclei that can be easily made into
targets and, as a result, the studies are restricted essentially to those in the valley of
stability. With heavy-ion accelerators and radicactive beams, a large number of new
species can now be examined in the laboratory. When this is combined with improved
detection techniques that allow many aspects of the reaction to be measured at the
same time, we enter into a new era of nuclear physics.

9-1 Overview of Heavy-Ion Reactions

The term heavy ton is generally used to mean nuclei heavier than 0. For nuclei with
A > 16, the internal structure becomes sufficiently complex that, when two heavy ions
scatter off each other, many reaction channels are open. If, in addition, one of the ions
involved is an unstable one, as it is possible in radicactive beam experiments, a number
of “exotic” studies can be made. In this section, we shall look at some of the general
features of reactions involving complex nuclei before going on in the later sections to
examine a few of the more exciting phenomena in detail.

Nuclei far away from the valley of stability. When two heavy ions are fused
together into a single entity, the result is usually a neutron-deficient system. As we have
seen in Chapter 1, nuclei must increase their neutron excess with increasing nucleon
number to stay stable. For example, below Z = 20, the ratio of neutron to proton
numbers for stable nuclei is N/Z =~ 1. For medium heavy nuclei such as zirconium
(Z = 40), N/Z ~ 1.3, and for lead (Z = 82), N/Z =~ 1.5.

The composite system formed by fusing two heavy ions takes on the average N/Z
ratio of the two. The only exception is that a few nucleons may be discarded during
initial stages of the reaction. As a result, the neutron excess is much smaller than
the value appropriate for the combined system. For example, when two 33Zr nuclei are
joined together, the composite system is '§0Hg. Since the lightest stable mercury isotope
is 19Hg, it implies that the composite system is “deficient” by roughly 16 nentrons.
The fact that ¥*°Hg is unstable toward #*-decay with a half-life of 2.9 s for the ground
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state is another indication that we have a neutron-deficient nucleus at the edge of the
valley of stability. The possibility of making such proton-rich species gives us a new
window to study nuclear physics. Furthermore, a number of different projectile-target
combinations can be used to reach the same final nucleus, providing us with a chance
here to examine such nuclei from different angles and to see if their properties can be
understood from what we have learned from stable nuclei.

In practice, direct fusion of two heavy ions is not the normal way to create neutron-
deficient nuclei. The reason comes from the “extra” energy required to penetrate the
Coulomb barrier. As a result, the composite system is usually in a highly excited
state, with a large amount of excess energy as well as angular momentum. Many decay
channels are open under such circumstances, and the probability of decaying into other
nuclei by particle emission or fission becomes high. To enhance the formation of the
desired compound nucleus, it is preferable to select a reaction that can carry away some
of the energy and angular momentum by emitting a few nucleons and ~y-rays. In this
way, neutron-deficient nuclei are made up to the point where proton emission begins
to dominate the decay mode.

To make neutron-rich nuclei on the other side of the valley of stability, radioactive
beams may be used. When a beam of high-energy particles strikes a thick target, a large
variety of nuclei is produced. Since the environment is highly nonequilibrium, many of
the species created are unstable and far away from the valley of stability. With suitable
projectile and target combinations, it is possible to enhance the production of selected
unstable particles. For example, nuclei such as 3He (7172 = 122 ms), 20 (ry), = 2.3
s), and 32Sn (71, = 40 s) are produced in abundance in this way, and they have far
more neutrons compared with their stable counterparts of *He, 0, and ?°Sn, As we
shall see in the next chapter, neutron-rich nuclei are important also in the synthesis
of elements beyond A ~ 56 in supernova explosions. Indeed, the condition to make
radioactive beams is very similar to the environment under which certain heavy nuclei
are created in an exploding star. For this reason, astrophysics interests have often been
one of the motivations for constructing these facilities, such as the Isotope Separator
On Line Facility for Production of Radioactive Ion-Beams (ISOLDE) at the European
Laboratory for Particle Physics (CERN); the Unstable Beam Facility at the Institute
for Nuclear Study (INS), University of Tokyo; the Exotic Beam Facility at Argonne
National Laboratory (ANL); the Isotope Separation Accelerator (ISAC) Facility at
TRIUMF, Canada’s national meson research facility; and the Radioactive Ion Beams
at Louvain-la-Neuve, Belgium.!

In addition to neutron- and proton-rich nuclei, heavy-ion beams can also be used to
create superheavy nuclei, We have seen earlier that nuclei beyond 28Pb are unstable
because of the Coulomb repulsion between the large numbers of protons, In fact, the
only ones we find outside the laboratory are those with lifetimes comparable to or
longer than the age of the solar system or decay products of such long-lived nuclei.

In general, lifetimes of nuclei beyond 2%Ph decrease with increasing nucleon num-
ber. However, as we have seen in §7-2, it is quite possible that, because of shell struc-
ture, a region of relative stable nuclei may be found beyond the heaviest one we are

! For more information on ISOLDE, see littp://www.cern.ch/ISOLDE; on INS,http://npsunt.ins.u-tokyo.ac.ip; on
the Exotic Beam Facility, http://www.phy.anl.gov/div/crigina/yellow-book; on ISAC, http://www triumf.ca/isac
/lothar/isac.html, and on Louvain-la-Neuve, http://www.cyc.ucl.ac.be/CYC/rib/rib-en.html.
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aware of so far. Since it is unlikely that any such nuclei are stable (otherwise they
would have been discovered), the only way we can detect their presence is through
their decay scheme to lighter ones. As a result, it i3 necessary to make first the lighter
nuclei below the superheavy ones before we can make the identification. Furthermore,
from a practical point of view, the only way to build up to the superheavy “island”
of relative stability is go one step at time. A recent addition to such a list is the
element (A,Z) = (277,112), created at GSI (Gesellschaft fiir Schwerionenforschung,
Darmstadt, Germany) using a beam of }3Zn on a 23Pb target [84]. The identification
of the element is through a sequence of a-particle decays, as shown in Fig. 9-1. With
radioactive beam facilities, additional means to create such particles become available
as well.

Figure 9-1: Identification of element
112 by its a-particle decay chain. Two
such chains, each with a different set
of a-particle energies, have been re-
ported, one ending at 33INo and the
other at Z33Fm [84].

Coulomb effects. Another interesting aspect of heavy-ion reactions is the strong
Coulomb field created in the process. First, we saw in §8-1 that the strength of Coulomb
excitation is proportional to the product of charges carried by the projectile and the
target. With heavy ions, we are able to increase the charge of the projectile by a large
factor over that of light ions. For example, if 225U is used, the Sommerfeld number 5 of
Eq. (4-64) is increased by a factor of 92 over that for a proton. As a result, low-energy
heavy ions are the projectiles of choice for Coulomb excitation reactions. An example
is given in Fig. 9-2, where many high-spin states in 2*®U were first found by Coulomb
excitation using a beam of %Bi at 5 to 6 MeV per nucleon.

Second is the interest at slightly higher energies. If the projectile has sufficient
energy to tunnel through the Coulomb barrier of the target nucleus, a compound nucleus
of charge Z = Z, + Z, is formed. If the sum of the two proton numbers is greater than
137, the inverse of the fine structure constant, a very interesting situation in quantum
electrodynamice may develop as a result. To see this, let us return for the moment
to the simple problem of hydrogen-like atoms with a single electron outside a nucleus
having Z protons. Nonrelativistically, the energy levels are given by the solution to the
Schrédinger equation as

B - ( 1 )2 mee‘_Z_z__a"’mcczz_2
" 47eq oK% n2 2 n?
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Figure 9-2: States in 228U observed in Coulomb excitation using a beam of 209Bi
jons at 1130 and 1330 MeV. (Adapted from Ref. [142}.)

where n is the principal quantum number that labels the atomic energy levels. The
lowest state is 1s (n = 1, £ = 0). For a hydrogen atom, we have Z = 1 and the ground
state has energy

The factor a’m,c?/2 = R, is known as the Rydberg energy, the ionization energy for
a hydrogen atom in the ground state.

More generally, we can solve the Dirac equation for a hydrogen-like atom assuming,
for simplicity, a point nucleus of charge +Ze. In this case, we obtain instead the total
energy for the ground state of the system,

Ei, =m.?\1 = (Za)?, (9-1)

where « is the fine structure constant. For Z = 1, this also yields a value of 13.6 eV
for the ionization energy of a hydrogen atom, as expected. For Z > 1, the expression is
valid up to some critical value Z,, = 1/ &~ 137. The limitation is usually not a problem,
as all the known nuclei have Z values much less than Z.,. Even among the man-made
elements, the highest Z-value known so far is 112, as we saw earlier. However, in
heavy-ion collisions, it is possible for the compound nucleus, formed by fusing two
heavy nuclei, to have a Z-value far in excess of 137. In this case, a supercritical field is
created as a result.

Some corrections to the result Z, = 137 are necessary, as nuclei are not point
charges. The exact value depends somewhat on the charge distribution inside a nucleus.
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For a uniform charged sphere of radius reasonable for nuclei, a result of Z,, < 200 is
obtained. This higher value can also be exceeded in heavy-ion collisions.

The physical meaning of a supercritical field may be seen from the following ar-
guments. As the charge number of a nucleus is increased, the eigenvalues of atomic
levels decrease from those given roughly by Eq. (9-1) until the critical value is reached.
When this happens, the 1s-level becomes degenerate with the negative-energy contin-
uum filled with equal numbers of electrons and positrons. The charge-neutral vacuum
is no longer the state of minimum energy. To lower the energy, positrons are released
and the remaining vacuum becomes a charged one. This phenomenon is referred to
as the “spontaneous” decay of the neutral vacuum. Experimentally, the presence of a
supercritical field may be identified by the appearance of narrow positron peaks when
two heavy nuclei collide with each other. However, in spite of initial hopeful signs, no
positive identification is known to date.

High spin and large deformation. We have seen in §1-3 that, when two heavy
ions approach each other, it is possible for the combined system to acquire angular
momentum in excess of 100f. The experimental arrangement of interest to us here
is one that the relative kinetic energy between the two particles is still quite low but
sufficient for one to tunnel through the Coulomb barrier of the other. Since the impact
parameter here is comparable to the sum of their radii, we have essentially a grazing
collision, as shown schematically in Fig. 9-3. In such cases, only a small number
of nucleons in the projectile and the target are in close proximity of each other for
nuclear interaction to take place between them, and consequently, it takes some time
to transform the relative kinetic energy in the system into internal excitation. At the
mean time, the energy appears in the form of rotational energy, as if the projectile
and target nuclei are revolving around each other. The composite nucleus may be said
to be still rather “cool” in the sense that most of the nucleons remain in their lowest

Grazing collision /

Close collision

Coulomb excitation O

Figure 9-8: Schematic diagram showing the different possibilities in a heavy-
ion collision. At low energies, Coulomb excitation dominates. At slightly higher
energies, the ions come into contact with each other and we have grazing collisions.
At even higher energies, head-on collisions become possible.
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single-particle states.

The time available for two heavy ions to overlap each other and coalesce in a heavy-
ion scattering under such conditions is very short. To gain some perspective, we can
make an order-of-magnitude estimate of the amount it takes for the two nuclei to go
around each other once, For simplicity, let us assume that the relative speed between
the two ions is 1/15 of the speed of light, corresponding to about 5 MeV /nucleon in
energy. If the centers of two ions are 10 fm apart, the time to go around each other
once at speed c/15 is on the order of 107! to 10~2° 5. Compared with the interaction
time of the order of 1072 to 10~ s, we see that the two systems do not have enough
opportunity to reach an equilibrium with respect to each other. This is quite different
from the case of of a normal compound nucleus formation and, consequently, the two
ions maintain more or less their original shapes. The resulting intrinsic shape of the
composite system is highly deformed, as shown schematically in Fig. 9-4. For this
reason, it is not surprising that some of the largest deformations are found in heavy-ion
collisions at relatively low energies.

Figure 9-4: Schematic diagram show-
ing a grazing collision between two heavy
ions. Without adequate time to equili-
brate, the two ions retain more or less
their original shapes and revolve around
each other to conserve the large amount
of angular momentum in the composite
system.

The most likely channel for the composite system to decay is fission. If for some
reason that fission is inhibited, a part of the excess energy may be discarded by nucleon
evaporation and y-ray emission. The angular momentum carried away by emitting a
nucleon is, however, quite small on the average. The amount may be estimated using
an approximation that the maximum angular momentum £, carried away by a nucleon
is given by fikR, where k is the wave number of the nucleon and R is the radius of the
composite system. For a neutron, the average kinetic energy is around 2 MeV, as it is
difficult for an individual nucleon to acquire much more energy in the collision of two
heavy ions, regardless of whether the composite system is fully equilibrated or not. For
nucleon number A around 150, the value of £, obtained in this way is around 2% (see
Problem 9-2). The average angular momentum actually carried away by a nucleon is
lower than this value and is more likely to be ~1%. The same is also true for y-rays, as
the probability decreases rapidly with increasing multipolarity.

At the end of nucleon and ~-ray emissions, there can still be a substantial amount
of angular momentum left in the remnant nucleus, and this appears in the form of
nuclear spin. If the excitation energy is relatively low, such high-spin states are likely
to be members of a yrast band, a rotational band consisting of the lowest member in
energy of each spin. Once the nucleus is in one of these states, all subsequent decays
proceed predominantly through +y-ray emission from one yrast level to the next one just

below, as we have seen earlier in §6-3. The process of populating a yrast band is shown
schematically in Fig. 9-5.
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Figure 9-5: Schematic diagram
showing the formation of yrast lev- jn /n )//n ’y/n
els. The composite system cre-

ated in a heavy-ion collision con-
tains large quantities of excess en-
ergy and angular momentum. The
amounts carried away by neutron,
a-particle, and ~-ray emissions are
very limited and the nucleus is &
likely to be left in a high-spin }, {, %)’
state, often a member of the yrast e
band. Thereafter, the nucleus de- ;y

cays through +y-ray cascade from
one member of the band to the
next.
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ANGULAR MOMENTUM

The maximum angular momentum that can be attained by a nucleus depends on
several different considerations. For light nuclei, the limiting factor is the highest spin
to which the valence nucleons can be coupled together. For example, in the 1p-shell,
the maximum allowed J is 5 for six particles coupled together to T = 0. In the ds-
shell, the maximum value is J = 14 for 12 active nucleons. In heavier nuclei, both the
number of active orbits and the average spin of single-particle orbits are larger. For
such nuclei, the maximum value is more likely to be limited by other considerations,
such as stability against fission.

High-spin nuclear states usually lie quite high in excitation energy, in part due to
the amount of energy associated with rotation. Since the density of states in snch
regions is high, the lifetimes of most states are short because of the large number of
open decay channels. As a result, it is usually impossible to resolve individual levels.
The yrast levels are, however, the exception, as their decays are dominated by ~y-ray
transitions within the band and, as a result, their lifetimes are long compared with
other levels in the vicinity. The narrow widths of these y-rays stand out against the
background made of the decays of short-lived levels in the same region.

The highest J-values are observed in nuclei with “superdeformed” bands. These
are formed when two heavy ions are fused together into a highly deformed shape, with
the ratio between polar and equatorial axes as large as 2. Such a configuration is
usually not the lowest one in energy and is therefore not commonly found in ground
state bands. The high-spin members can be “foliowed” by observing the v-ray cascade
from one member to the next until the lowest energy members of the band merge into
those made predominantly of ground state configurations.

When a nucleus is in a state with very high J-values, it is almost classical in the
sense of the correspondence principle. Further progress in experimental techniques may
lead to identifications of even higher spins and thus allows us to trace the development
of a nucleus from a purely quantum-mechanical state to a classical one. This may
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also be of interest to the study of the transition from quantum-mechanical to classical
description of physical phenomena in general.

Deep inelastic scattering. If the collision energy is slightly above the Coulomb
barrier between a pair of heavy ions, many reaction channels are open and compete
with each other. In such cases, it is usually impossible to investigate each type of final
state individually and the inclusive cross sections are studied instead. The reaction
is often referred to as deep-inelastic collision, similar to the situation of high-energy
electron scattering discussed earlier in §4-4. The cross section is large here, especially
for the heavier nuclei (¢ ~ 10 to 20 fm?). The reaction is often accompanied by the
transfer of as many as 20 nucleons from one nucleus to the other. At the same time, up
to 100 MeV of kinetic energy and 50h of angular momentum are shifted from relative
motion to excitation energies in the final nuclei.

Since many nucleons are involved here, it is possible to adopt a statistical mechanics
approach to study the collective degrees of freedom associated with the process. A good
starting point for such a macroscopic view is the master equation

%Pn(t) = S WanPo(t) = Wonn Pa(1)] (9-2)

m

where P,(t) is the probability that, at time £, the system is in a group of closely
related states n and W,,, is the transition probability per unit time from the group
of states m to the group n. The mecaning of Eq. (9-2) is simply that the probability
of finding a group of states is given by the difference between the sum of those for
transferring into the group and those for leaving the group. This is the usual approach
used in studying transport phenomena. For the transport description to be valid for
the collective degrees of freedom of interest here, the time scales involved in the system
must satisfy the condition

tequ Kt K tpoincaré

where t.q, is the time it takes for the noncollective degrees of freedom to reach equi-
librium with respect to each other, t,n is the time required for the collective degrees
of freedom to reach equilibrium, and tpyincare i8 the Poincaré recurrence time, the time
for the system to return to its original point in phase space. The condition imposed on
the relation between different time scales is necessary here, as we are using the master
equation to deal only with the collective degrees of freedom for a system of two heavy
ions. This requires that the noncollective degrees of freedom of the system, such as
single-particle excitations, have reached an equilibrium already and do not participate
in the transport process. The extent to which these conditions are met and the degree
of success for a transport theory description of deep-inelastic collisions can be seen
in the agreement between the calculated results and experimental observation of the
collision of 3¢Xe on 2°Bj at 1130 MeV laboratory energy shown in Fig. 9-6.

As an alternative to statistical mechanics methods, we can take a microscopic view
and treat individual nucleons as the basic components. The entire deep-inelastic colli-
sion process is, in this case, governed by the time-dependent Schridinger equation (B-1)
and described by a wave function ¥(r, ). As the two heavy ions approach each other,
they collide and evolve into the final state. A general solution to Eq. (B-1) is, however,
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Figure 9-6: Double-differential cross
section for the reaction !36Xe on 209Bi
at Ej,,=1130 MeV. Each curve is the
sum over a final energy bin of 50 MeV
wide centered around the value indi-
cated. Solid lines are the measured
values of d’c/dE dZ integrated over
center-of-mass angles 25° < 4 < 75°
and dashed lines are the calculated re-
sults using a transport theory. (Taken
from Ref. [92].)
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impossible for the complicated case of two heavy ions scattering off each other. One
way to simplify the calculations somewhat is to use a time-dependent Hartree-Fock ap-
proach and take the time-dependent differential equation (B-1) as a difference equation
that gives the changes in the wave function, AW(»,t}, in the time interval At,

AU(r,t) = ;EH ¥(r, t)At

At a given time t, we have a system of A, + A; nucleons whose motions are given by
the Hamiltonian H. The difference between the wave function at time ¢ and t + At,

A¥(r, t) = U(r,t + At) — ¥(r,t)

is the result of the action of the Hamiltonian on the system in the small time interval
At. By solving the difference equation, we obtain the changes in the wave function
A¥(r,t) and, thus, the wave function ¥(r,t+ At) describing the system at time t + At.
In this way, the time evolution of the system may be traced out in small steps. The
Hamiltonian equation is, however, still a very complicated one to solve in view of the
large number of nucleons involved. A further simplification is to invoke the Hartree-
Fock approximation, which gives a fairly realistic description of the nuclear physics, as
we have seen for the time-independent case in §7-3.

Ultra-relativistic collisions. At the other end of the energy scale we have heavy-ion
collisions at ultra-relativistic energies. This is a topic of interest to both nuclear and
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particle physics. Let us examine the reasons for putting the enormous investment into
this particular effort by looking into the energy densities involved.

In a nucleus of radius R = 1.2A%/3, the energy density is given by

o My? 3
PA =S W ~ 130 MeV/fm
For three quarks confined in a nucleon of radius r ~ 1 fm, the value is even higher,
roughly 250 MeV/fm®. If heavy ions are made to collide with each other at center-of-
mass kinetic energy far larger than their total rest mass energy, for example, in excess
of several hundred giga-electron-volts per nucleon, the energy density is even higher.

We can get a sense of the implications of such large energy densities from the fol-
lowing considerations. In nuclear scattering, we seldom have to be concerned with the
chemical compound from which the target is made (except for, of course, practical
considerations of making and supporting the target in an actual experimental setup).
This is hecause, in typical nuclear scattering experiments, the energy involved is on
the order of mega-electron-volts. Chemical binding energies are, on the other hand,
measured in electron-volts. For this reason, we do not need to include any chemical
considerations in nuclear physics, except in special cases such as neutrino mass mea-
surements using tritium fg-decay. The same is true in the analogous situation of particle
physics experiments in which the typical energy involved is GeV or higher. In these
cases, nuclear binding energies are irrelevant for all practical considerations. (The only
possible exception is in high-energy lepton scattering discussed in §4-4.)

At ultra-relativistic energies, we expect the “bags” that confine quarks inside
hadrong to become irrelevant, in the same way as chemical binding in nuclear experi-
ments and nuclear binding in particle physics experiments. When two heavy ions are
in a situation that the quarks inside their nucleons are essentially “free,” we have a
chance of creating a state of matter in a finite volume that is quite different from nu-
clear matter. It is expected that the region is dominated by quarks, antiquarks, and
gluons. For this reason, it is generally referred to as a quark-gluon plasma, or QGP
for short. In addition to interests in quantum chromodynamics, this state of matter is
likely to be similar to that which existed at the beginning of the “big bang,” postulated
in cosmology as the event that gave birth to our universe. The study is, therefore, a
question of central importance in cosmology as well. Since we are now entering into a
region with little or no observational data, many new and unexpected things can hap-

pen and they, in turn, will lead us into new areas of physics we have not yet thought
about.

9-2 High-Spin States in Nuclei

One of the modern interests in nuclear physics is high-spin states and the associated
large deformation found in medium and heavy nuclei. We have seen earlier that pairing
force is a dominate feature in nuclear interaction. As a result, two identical nucleons
have a strong tendency to couple to angular momentum zero. Because of this, all
even-even nuclei have J™ = 0% for the ground state. To build up any large spin values
requires many nucleons to break away from this trend and align their spins more or
less in the same direction. Such an alignment, in turn, implies large deformation, in
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contrast to nearly spherical shapes found by putting particles pairwise in +m and —m
magnetic substates.

We saw earlier in §6-3 that collective states, under appropriate conditions, form
rotational bands. In fact, it is usually through such band structures that rotational
features are identified. In general, the spin of a state cannot be measured directly.
Instead, it is deduced from such observations as the multipolarities of transitions to
states of known spin. A simple example is one that decays by electromagnetic radiation
to a state with J™ = 0*. If the transition is known to be E2 from, for example, the
angular distribution of the y-rays emitted, we can identify the spin-parity of the state
to be 2% using angular momentum conservation. {For decays to final states other than
0%, the procedure is more complicated and usually requires transitions to more than
one state of known spin and parity.) The high-spin values we are interested in here
are usually deduced from a sequence of strong decays from one member of a band to
the next one lower in energy. In the simple case of an even-even nucleus with the last
member of the band known to be 0% and all the decays being E2, the sequence of
decays identifies the members of the band to be 0%, 2+ 4%, ... | as we have seen earlier
in §6-3 for K = 0 bands. If n such (correlated) E2-decays are observed in a nucleus, the
highest member of the band must have J = 2n. Many examples have been observed in
the laboratory and the largest spin value known now exceeds 60%.

Because of pairing, spherical shape and small deformation dominate low-lying
states. The kind of large deformation we are interested in here is usually found slightly
above ground state configurations. However, the excitation energies involved, other
than rotational, cannot be too large, or else the system is unstable toward fission and
it will not be possible to observe the high-spin states. The question why large defor-
mation occurs at such low excitation energies is an interesting one. However, before we
can address this problem, let us examine first some of the evidence for assuming that
alignment is an important feature underlying large deformation.

Band crossing and backbending. One of the interesting observations made on
high-spin states is the presence of small but sudden changes in the moment of inertia
of certain nuclei. On a plot of E; as a function of J(J + 1), the changes are usually
too insignificant to be noticed. However, if the moment of inertia Z is plotted against
the square of the frequency of rotation, local variations are amplified. A group of these
may appear in the form of a Z-shaped curve, as shown in Fig. 9-7, and hence the
name “backbending.” To make such a plot, we need the local values of the rotational
frequency w and moment of inertia. The former is not a quantity that can be measured
directly but may be inferred by making an analogy with classical rotational frequency
through, for example, the relation

dE

NS

for a K = 0 band. The value may be approximated by the difference between the
energies of two adjacent members, E; and Ej_,

hw = AF
AJI(T +1)

hw

J

1
T §(EJ ~Ej3) (9-3)

J-2
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Figure 9-7: Backbending in **Dy. When the energy of each level in the band
is plotted against J(J + 1), a typical rotational spectrum is found, with a slow
variation of the momentum of inertia due to centrifugal stretching. However,
when the relation is examined in more detail in the insert by plotting 2Z/h?
against (fiw)?, a sudden change is observed around J = 20, indicating a shift in
the intrinsic structure of the nucleus. (Plotted using data from Ref. [14].)

Similarly, the local value of the moment of inertia may be found from the relation

2T 4J-2
K2 E;~E;,

and calculated from the energy difference between two adjacent members.

A simple explanation of the phenomenon may be made using the idea of band
crossing, Consider a nucleus having two rotational bands, A and B, each with a slightly
different moment of inertia and band head position. It may happen that, below some
energy E., members of band A lie below the corresponding ones of band B, and the
other way around above E,. On a plot of E; versus J{J +1), the two curves cross each
other, a relatively common occurrence in medium and heavy nuclei. If the structure
of the two bands are quite different from each other, there will not be any coupling
between them and each one appears as a separate entity. This is also true even when
the structure of the two bands are similar if members of the two bands with the same
J-value are well separated in energy, as the coupling between them is expected to
be weak. The exception occurs around E,., where the “unperturbed” positions of the
states in the two bands with the same J" are almost degenerate in energy. In this
case, even a very small interaction can cause mixing between them, as we saw earlier
in the analogous sitnation of isospin mixing in §4-8. The result is strong mixing in a
few adjacent states and appears as a local variation of Z. Since the moments of inertia
are very similar between the two bands, there will not be any strong indications of the
change, for example, in a plot of E; versus J(J + 1), as one moves across E.. One way
to amplify the sudden variation is to use a more sensitive plot, such as 2Z/h? versus
(hw)?, shown as an example in the insert of Fig. 9-7.
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From the point of view of rotational alignment, it may be more instructive to
view the same explanation from the following perspective. Consider again a low-lying
rotational band in an even-even nucleus for simplicity. The intrinsic state is formed
mostly by zero-coupled pairs of particles filling up the lowest available (deformed) single-
particle states. As we move up in angular momentum, the rotational energy increases.
At some point, it may be more advantageous instead to increase the spin value by
breaking a zero-coupled pair and aligning the angular momenta of the two (identical)
particles to the maximum possible value of (2§ — 1) (as the value 25 is forbidden by the
Pauli principle). This is more likely to take place in medium and heavy nuclei where
the particles are occupying single-particle states with large j-values. In such cases, the
energy required to break a pair may be less than the increase in the rotational energy at
large J-values. This picture is confirmed by other observations, such as changes in the
single-particle occupancy in the region of backbending. Since the structure is modified
by breaking a zero-coupled pair, we may view the situation as one that the rotational
band is now taking on a different intrinsic shape. From a band-crossing point of view,
this new intrinsic state is one that actually belongs to another rotational band that
crosses the present one. We shall see soon that alignment of single-particle angular
momenta is an important ingredient in forming high-spin states.

Superdeformation. In §6-3 we saw that rotational bands are associated with nuclei
having nonspherical intrinsic shapes. To reach the kind of high spin values of interest
here, deformation much larger than the usunal ones found in ground state rotational
bands is needed. In recent years, highly deformed shapes with the ratio of semi-major
to serni-minor axes around 2:1 have been observed in a number of nuclei, starting from
182Ce [111) and 152Gd [113] in the 1980s. These are the superdeformed bands where spin
values beyond 60f have been identified. From the measured lifetimes of and transition
rates between members of the bands, one can infer that the value of 3, the deformation
parameter defined in Eq. (6-11), reaches values around 0.6. If we take a first-order
approximation that 8., of Eq. (7-32) is roughly equal to 3, we find that the frequency
ratio of w; to ws is 2:1. Since the ratio of the root-mean-square radius in each direction
is proportional to that for the inverse of the oscillator frequencies,
< rf >« r% >e 'r§ >12= ~1— : i : —1—
Ww; Wy w3

we obtain the ratio < r} >Y¥%< r? >1/2= 2 : 1 for an axially symmetric nucleus.
Even larger deformations with axis ratio of 3 : 1, the case of hyperdeformation, have
been speculated to exist. However, at the time of writing, there is no known definitive
experimental confirmation for such exotic states.

In the ground state region, the deformations are much smaller, typically with 3 <
0.3. The presence of large deformation at relatively low excitation energies raises two
questions. The first is that, since they are so different, how can such large deformations
be excited, or populated, in an experiment. The second question is concerned why such
“unusual” states can be observed at all in a region with high level-densities. In other
words, why are they not admixed with other configurations nearby and buried as small
components among the multitude of others at roughly the same excitation energies?
Instead, members of the superdeformed bands have relatively long half-lives and the
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7-rays emitted in transitions from one member to ancther stand out as sharp lines over
and above the background from a large variety of sources.

Heavy-ion reaction has been the method of choice to excite superdeformed bands
and high-spin states. The bombarding energy is usually kept as low as possible so that
only a minimum amount of excess energy is put into the system. At the same time,
the incident energy must be high enough for the ions 1o penetrate the Coulomb barrier
with sufficient probability for the results to be observed. Except for small amounts
carried away by nucleons and ~-rays emitted in the reaction, the bulk of the angular
momentum in the collision remains with the compound nucleus formed. For example,
132Ce is produced by the reaction 'Mo(*8,4n)!%2Ce using & 155-MeV %S beam [122].
Similarly, 52Dy is populated by the reaction '°Sn(%S,4n)!*?Dy with a 170-MeV %S
beam [124]. The known superdeformed bands in these nuclei are shown schematically
in Fig. 9-8 using data from the Evaluated Nuclear Structure Data File (ENSDF) [79)
and Ref. [91].
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Figure 9-8: Schematic diagram showing the superdeformed bands in 132Ce and
152Dy, The spin values of bands SD-2 and SD-3 are only observed relative to
an unknown band head marked as J in each case. (Plotted using data from
Refs. {79, 91].)

The deformation of a rotational band is not a quantity that can be observed directly.
The usual way to deduce its value is to make use of the intrinsic quadrupole moment
Qo and moment of inertia Z. For a constant-density ellipsoidal nucleus, these two
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quantities are related to the deformation parameter # of Eq. (6-11) by the relations
I =~ 2AMyRI(1+0.318)+0(8%)

3
~ ——=ZR3B(1+0.368) + O(F°
Qo I 2B(1+ 0.365) + O(5°)
(See Problem 9-5.) If the spins of the states are known, the (transition) quadrupole
moment may be deduced by measuring the lifetimes of the members. For example,
Eqs. (6-21) and (6-22) can be used for the case of a K = 0 band to find the reduced
transition rates B(E2; J — J—2) and their values are related to the intrinsic quadrupole
moment Qp through Eq. (6-21). Alternatively, we can use Table 6-1 and Eq. (6-21) to
give the result
J(J-1)
=183 x 10°E}e’Q} ——
W X0 B QG Y@ = 1)
where E, is the transition energy in mega-electron-volts. This gives us the quadrupole
moment @y in uniis of femtometer squared directly in terms of the observed transition
rate W measured in units of inverse seconds.

Dynamic and kinematic moments of inertia. The more likely situation in su-
perdeformation studies is that only the transition energy E, is known. In this case, the
nature of the band may be deduced using the dynamic moment of inertia

dJ, d2E\"!
I(z) = h'g(; = ﬁ.2 (sz ) (9-4)

where J, is the projection of total angular momentum on the rotation axis? in units of

f and is given by
Jo =4/J(J+1) - K?

Similar to what we did earlier in Eq. (9-3), we can find the value of I» using the
observed vy-ray energies emitted in the decay from one member of the band to the one
just below. For a J to J — 2 transition, we can approximate dJ; as

AL =JIT+)-K = \JU-2)(J 1) - K? ——>

J~+00

For dw in Eq. (9-4), we can use the approximation

Aw = %A(hw)
_L
2k
1 1
= S{B(J > J=2) =B -2~ J-4)} = AP,

1
—T=w 35, (By — Eu-) (Eg-2 — Ej-4)

The net result is that

4
{2) 2
z J oo h AE‘Y

(9-5)

2Since deformation parameter v = 0° here, the rotation is around the smallest axis, taken to be
the z-axis here.
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independent of the actual value of the spins involved.
A related quantity, the kinematical moment of inertia,

h( dE \ 7 J
W= (82 ) = .

is also used on occasion to characterize rotational bands. At high spin values, we have
J. = J, and I reduces to be the same as the classical expression for the moment of
inertia (the static moment of inertia) given in Eq. (6-13). By differentiating Eq. (9-6)
with respect to w, we arrive at a relation between Z() and 7*),

70 = 7 4,92
dw

For a rigid rotor, all three moments of inertia, Z, IV, and Z?, are independent of the
rotation frequency w and the second term on the right-hand side vanishes. This leads
us to the conclusion that, for a rigid rotor,

I =10 =T = IMRY(1 + 36) (9-7)

where we have made use of the value of the moment of inertia for a rigid body given
by Eq. (6-26).

The combination of Egs. (9-5) and (9-7) provides us with a way to estimate the
deformation of a band and to see if it is superdeformed without knowing the spin values.
Let us use #Zr as an example. In the reactions %¥Ni(*Si,2pn)*Zr at bombarding
energy of 128 MeV and %8Ni(%28,a2p)*Zr at 135 MeV, a group of nine transitions, with
E, = 2716, 2599, 2435, 2272, 2114, 1959, 1808, 1663, 1526 keV, was found [89]. From
the intensities of and coincidences among the y-rays, one can identify that they come
from E2-decays, cascading down from one member of a rotational band to the next
one just below. However, without transitions observed going to states with known spin
and parity, the absolute values of the spin and parity of the band members cannot
be established. Using Eq. (9-5) to calculate the values of I and Eq. (9-3) for hw,
the values of I(?) are plotted as a function of hw in Fig. 9-9. We see that the results
are fairly constant, around 25 hi?/MeV or slightly above. In contrast, the values for
a normal band (band 3) in the same nucleus, shown as crosses, decrease rapidly with
increasing value of fiw. To have a feeling of the size of deformation, the value for a
rigid rotor with & ~ 0.6 is also shown in the plot for comparison. A value of # == 0.53
for the superdeformed band is established subsequently by measuring the lifetimes of

the states. The (-value is also consistent with a cranked Woods-Saxon calculation to
be discussed below.

Shape coexistence in nuclei. One of the unique features of superdeformed bands
is that the decays are going mainly to states within the band. In contrast, normal
deformed bands have much more “side feedings,” or interband decays. The obvious
explanation is that superdeformed bands have very different structure from nearby
states, especially in view of the fact that they exist in a region of high level densities.

At the same time, we saw above that the spin values involved are high and the
moments of inertia are large for the superdeformed bands. The combination of these
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Figure 9-9: Comparison of the values of (2} deduced for a superdeformed band
(circles) and those of a normal band (asterisks) in 34Zr. The value for a rigid
rotor with § ~ 0.6 is shown as a straight line for comparison. (Plotted using data
from Ref. [89].)

two factors means that most of the excitations are in the form of rotational energy.
The intrinsic state underlying the band must be fairly low in energy relative to the
ground state configuration. The interesting question here is how can such very different
structures coexist in the low-lying regions of nuclei. In other words, what are the reasons
for quite different intrinsic shapes to have very similar energies. Earlier, we saw that,
primarily because of pairing, the lowest configurations in nuclei tend to be spherical
in shape or nearly so. Here, in superdeformed bands, we find that highly elongated
shapes can also be quite low in energy.

In principle, one can perform a microscopic calculation similarly to what was de-
scribed in §7-5 and see if there is a group of states at relatively low excitation energies
with large quadrupole moments and strong E2-transition rates among themselves. It
is obvious that many active particles are needed to build up the high spin values of
interest here. Furthermore, to reproduce the large deformation, an enormously large
number of (spherical) single-particle basis states is required. Such a calculation is out
of the question in practice, and a significant part of the theoretical effort in superde-
formation studies is devoted to finding suitable alternatives in understanding the new
phenomena.

It is actually fairly simple to demonstrate why we can have highly deformed con-
figurations that are relatively stable. We have seen that one of the important reasons
for the existence of closed shell nuclei *He, 10, "Zr, and ®Pb is the large energy
gaps in the spherical single-particle spectrum shown in Fig. 7-3. In fact, nuclei with
either neutrons or protons filling up all the single-particle orbits up to one of these
large energy gaps are also relatively stable. Based on this observation, we find that one
of the necessary conditions for stable deformed nuclei is large energy gaps in deformed
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single-particle spectra.

For this purpose, we shall consider only axially symmetric nuclei and, to further
simplify the calculation, make use of the harmonic oscillator single-particie Hamiltonian
in Cartesian coordinates we saw earlier in Eq. (7-31),

h?
- _ﬂv'l + Lp{wizd + Wi (2l + 23))

The eigenvalues are given by Eq. (7-33). For our purpose here, it is more instructive
to express the result in terms of the deformation parameter 8, of Eq. (7-32)

o = (N +§ = s )

where N = n3 + n,, with n3 the number of oscillator quanta along the symmetric axis
and n; the number along the two other axes. The results are shown in Fig. 9-10. Since
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Figure 9-10: Single-particle energies of an axially symmetric harmonic oscillator
Hamiltonian in units of fwp, showing the existence of shell structure at large
deformations that are different from the spherical case. The starting point of
superdeformation, with frequency ratio w) w3 = 2: 1, is marked as “SD.”
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we have not included terms depending on £* and £ - s, the orbits are degenerate with
respect to {2 as well as orbital angular momentum. We see that, at large deformations,
beyond those shown in the Nilsson diagram of Fig. 7-5, there are new shell structures
in the form of large energy gaps in the single-particle spectrum. This happens for both
prolate and oblate deformation. The degeneracies, corresponding to magic numbers in
the case of the spherical shell model, are marked for the special cases of 6,sc = +0.6,
corresponding to w) : w3 = 2 : 1, and 8y = —0.75, for wy : w3 = 1:2. The fact that
shell structure in this simple case happens to match with those for superdeformation
is purely coincidental. In any actual applications, a far more realistic single-particle
Hamiltonian must be used and several correction factors applied before one can make
comparisons with observations.

Nilsson-Strutinsky approach. Since a complete microscopic understanding of su-
perdeformation is impossible, some practical and reliable alternatives must be found to
analyze the physics behind the experimental observations. Most of the work is based
on the method of Strutinsky [134] and Myers and Swiatecki [108] (referred to hereafter
simply as the Strutinsky method, following general practice in the literature). We are
interested here, among others, in the question of why large deformation can exist at
low excitation energies in certain nuclei. For this purpose, we shall calculate the equi-
librium shapes of nuclei for different deformations and see if there are minima in the
energy surface far away from the spherical limit. Our main concern here shall primarily
be with the basic approach, leaving the detailed methods to the literature (see, e.g.,
Refs. [1, 146, 56]).

From a computational point of view, the simplest way to solve a nuclear many-
body problem is to take a macroscopic approach as, for example, we have done for
binding energies using semi-empirical mass formulas in §4-9. The major shortcoming
in following such a line of investigation is the failure to account for local departures
from smooth trends. In the case of binding energies, the Weizacker mass formula, for
example, is able to provide a good description of the general trend but failed to account
for the sharp increases near closed shells. For superdeformation studies, it is essential
to make the “shell corrections,” as we are involved with phenomena that depends on
the detailed nuclear structure in deformed single-particle orbits.

Among the methods in use, the Strutinsky approach is perhaps best developed
among several similar ones. In broad outline, the calculation is divided into two parts,
a macroscopic part, involving the bulk parameters of the system, to account for the
smooth variations, and a microscopic part, involving individual nucleon degrees of
freedom, to make corrections for local variations, such as those coming from shell
closure. In terms of energy, such a division may be expressed as

E= Emacro + 6 Emicro (9'8)

The macroscopic part, Fnaco, may be obtained from, for example, a liquid drop model.
Let us use Egio tO represent the contributions from the microscopic part. If we
average Emicro over local variations, the result is a part of the smooth trend and must
have already been accounted for by Fracro. For this reason, the second term on the
right-hand side of Eq. {9-8) is

0Emicro = Emyero — <Emicro)
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By taking out the smoothed value (Enicro) in the microscepic result, we avoid any
double counting.

Macroscopic calculation. In §4-9, we saw that a crude liquid drop model in the
form of a Weizacker semi-empirical calculation can achieve an overall accuracy of a few
percent using a set of parameters obtained from fitting known binding energies. For the
special case of the variation in energy as a function of deformation we are interested in
here, the model can be further simplified in the following ways. Since nuclear matter
is fairly stiff, we expect the volume term in Eq. (4-56) to be unchanged by deformation
and it may be ignored. Its contributions may be incorporated into the definition of the
zero point of our energy scale. Similarly, symmetry and pairing contributions may be
left out of the calculations if we are not interested in the variations with neutron and
proton numbers. Analogous to what we did in §4-11 for fission, the major contributions
to deformation come from surface and Coulomb terms. On the one hand, deformation
increases the surface area compared with a sphere of the same volume. On the other
hand, the Coulomb energy is decreased when the protons are pushed further away from
each other as a result of the shape change. The macroscopic energy for a deformed
nucleus with N neutrons and Z protons is then

Emarro(N Z def) = surfnce(N Z def. ) + ECoulomb(N Z def)

The shape of the nucleus can still be parametrized using Eq. (6-1),

R(0,6) = Ro{1+ T anuYo(6,8))

Ap
where, for simplicity, we have taken out dependences on time ¢. For all practical

purposes, only the lowest few multipoles, A = 2, 4, are necessary and this is used in
most of the known calculations.

We have seen on many earlier occasions that the nuclear density does not drop
off sharply at the nuclear surface, as implicitly implied in Eq. (6-1). To account for
a diffused surface region, Dudek [54] uses the following formula for the surface energy

term:
=Ir-7'|/a
_ 3, flr= e
B, ) =~ [ v () T

where a characterizes the diffuseness range. When a — 0, we recover the sharp-drop-off,
constant-density form. The quantity

B - (N—Z)2
Co =t F\N¥Z

is the effective surface energy parameter with a, and x, as adjustable parameters. As
before, the volume remains to be

4n
V=?@
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with average radius Ry = rA'/3. Similarly, the Coulomb energy may be written as

2
Emmmﬂ%Zﬁﬁ)=1(3ze){/ﬁT/ﬁ# 1

2 \47R} lr — 7|

— =P =T"{/aqen
e [ (1 ) T
20 gen jr— |

where age, has the value 0.99/ V2.

Microscopic contributions. The contributions from the microscopic part is taken
to be a sum of proton and neutron single-particle energies. We have seen earlier in
§6-1 that, for example, the energy of a state can be reasonably represented by single-
particle contributions alone by considering each nucleon to be moving in the average
field generated by the interaction with all the other particles. If the potential V in the
single-particle Hamiltonian

h? -
{—%V2 + V} i = €Y

is well chosen, any residual interaction remaining between particles is expected to be
small and may be ignored. Such a mean-field approach has been shown to be quite
adequate for a variety of nuclear phenomena and the calculations involved are far
simpler than a fully microscopic one.

In the case of deformed nuclei, the potential must also reflect the fact that the
mean field is deformed. One way to do this is to use a Woods-Saxon potential together
with a Coulomb term for protons,

— 147
V= Vivs + V&3 + “—2—3'VCoul

Here, 73 is the projection of the isospin operator on the symmetry axis. To account for
deformation, the Woods-Saxon potential differs slightly in form from that of Eq. (8-40)
for optical model potentials. The radial dependences used for the volume and spin-orbit
terms are, respectively,

1+ &{(N = 2)/(N + 2)}

Viws(r,def.) = 1+ exp{dg(r,def.)/a}
Vg (rdef) = —A[— (Vs def) x p) - 8.2
ws\T,det.) = me ws\r,det.) X p Y

where dg(r,def.) represents the perpendicular distance of a point located at = to the
nuclear surface given by Eq. (6-1), p = ihV is the linear momentum operator, and s is
the spin operator. The other four quantities Vj, &, a, and A are adjustable parameters.
For 58 < Z < 74, Werner and Dudek [145] adopt the values

Vo = —49.6 MeV a=0.7fm
_ { +0.86 for protons A= { 36 for protons

—0.86 for neutrons 35 for neutrons
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The form of the Coulomb term is taken as

3,7
Veou(r, def.) = Ze -L—i—r——
T lr—r|

where the subscript T reminds us that the integral is over the (deformed) nuclear
volume (for protons).

Shell corrections. The single-particle energy ¢; found by solving the eigenvalue equa-
tion 2 )
5.0. + T
{"%"V2 + Vivs + VWS D) 3VCouI} i = ey (9'9)

contains some of the contributions already included in the macroscopic term Foacro
We must find a way to remove the parts already accounted for before we can calculate
the value of 8 Fico needed in Eq. (9-8).

Since the contributions are single particle in nature, it is convenient to separate

them into proton and neutron components. Traditionally, they are indicated, respec-
tively, by using symbols 7 and v,

8B icre = 6Emicro(7r) + 6Emicro(”)

According to the prescription of Strutinsky,
z z
6Eman(r) = Yelm) = (YL elm),

N N
6Emicro('/) = Ef,(l/) <Z€'( )>shell

The parts already included in E,,., are obtained by integrating over the locally aver-
aged, or smoothed, level density (e) for the single-particle spectrum

(; e,~>she" = /_F:o ej(e) de

One way to smooth the single-particle spectrum {¢;}, obtained from a realistic mean-
field calculation, is to expand the level density in terms of Hermite polynomials H,.(z),

Ee-"’ Z ComHi (us)
m=0
where m is the order of the polynomial, and
e—e

¥

1
1y
o = (-1) T (m)2) for m even
0 for m odd

U =
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The smoothed Fermi energy is given by

Av) ()
N =/ gle,v)de Z=/ gle,m) de

The values of parameters p and 7 are adjusted until the final results are essentially
independent of small changes in them. In Ref. [145], they are taken to be p = 6 and
v = 1.2hwy, with hwp given by Eq. (7-18).

Rotation and Routhian. So far in all the discussions, we have stayed in the body-
fixed frame of reference and ignored any effect rotation has on the nucleus. At the high
spin values we are interested in here, the nucleus is spinning at angular velocities at
which the Coriolis force plays an even more important role than what we have seen in
§6-3 for K = } bands.

Formally, we can take care of rotation by applying a transformation to change both
the Hamiltonian and the wave function from the body-fixed intrinsic frame of reference
to one that is stationary in the laboratory. Let us write the time-dependent Schrédinger
equation in the laboratory system as

dy

A rotation by angle wt around axis w can be accomplished by the operator
T(wt) = e 7*
In the new system, the time-dependent Schrodinger equation takes on the form

dy’
th— = (h — hw - j)¢'
7 = NV
For a transformation from a laboratory to a body-fixed intrinsic frame of reference that
is rotating around the z’-axis of the intrinsic frame, the result is

L dy o
‘lh—‘;“— = (h - RWJIF)'Q!)

In other words, to account for rotation, the Hamiltonian in the intrinsic frame of refer-
ence becomes
h“ =h — hwjy

It can be shown that h“ has the properties of a Hamiltonian and satisfies the following
eigenvalue equation:
(h = hwja )Yy = €Y (9-10)

The procedure in arriving at h* is very similar to that used by Routh in classical
mechanics to handle cyclic variables, such as angular variable {76]. For this reason, €
is often referred to as the Routhian.

The eigenvalue equation in the body-fixed frame of reference, Eq. (9-9), is relatively
simple to solve. In the laboratory frame of reference, the nucleus is rotating at some
frequency w and the rotation can, in principle, be quite complicated to deal with.
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Instead, we can solve Eq. (9-10) using a suitable value for w. In this case, nucleons
appear as independent particles moving in an average field that is rotating with the
frame of reference. The approach belongs to the general one of a cranking model and,
for this reason, h¥ is also called a cranked Hamiltonian.

The contribution of rotation to the macroscopic term Emacro{N, Z,def.) is quite
simple, as the calculation is purely classical. This gives us the result

E%.o(N,Z,def.) = E4Z3 (N, Z,def.) + (N, Z, def.) w?

where E“=! is the macroscopic energy we had earlier in the absence of any rotation.
Equation (9-8) now reads as

E=E*, (N, Z def.) + 6E%, (N, Z,def.) (9-11)

with 6E%...(N, Z,def.) calculated using the single-particle Routhian ¢, obtained by
solving Eq. (9-10). In fact, instead of energy, it is more convenient in many cases
to convert all the energies into the corresponding Routhians and consider the total
Routhian instead of £ in Eq. (9-11).

If we calculate E, or the equivalent Routhian, for different sets of values of the
deformation parameters, we obtain the variation of energy for the rotating nucleus as
a function of the parameters. The minimum of such a potential energy surface gives us
the deformation the nucleus prefers to settle in at a given rotation frequency. In this
way, superdeformation may be understood by a relatively straightforward calculation.

9-3 Phase Transition and Quark-Gluon Plasma

At ultra-relativistic energies, our interest in heavy-ion collisions turns to the properties
of matter under extremely high energy densities. The only occasion that such conditions
have existed in nature is during the short time interval of a fraction of a second after
the big bang that gave birth to the universe. For this reason, the topic is of interest to
cosmology as well. The same condition is also important to quantum chromodynamics,
because of the passibility of freeing quarks from their confined state inside hadrons and
transform them into a new phase in which many quarks and gluons are present in a
plasma-like state, the quark-gluon plasma.

To create such a state of matter, it is necessary to involve energies much higher than
anything we have encountered so far in the laboratory. For the Relativistic Heavy-lon
Collider (RHIC) at Brookhaven National Laboratory (BNL), collisions of gold nucleus
on gold nuclens can reach an energy of almost 40 TeV in the center of mass. In the
cage of the Large Hadron Collider (LHC) at CERN, energies of 3 TeV per nucleon are
possible. This gives a center-of-mass energy in excess of 10% TeV for collisions of lead
on lead.

Most of the other high-energy accelerators are designed for electrons and protons.
The few that can accelerate more complicated particles are limited to lighter ions and,
often, lower energy than what we are interested in here. Even when the energy is
sufficient, light-ion reactions are not expected to create a sufficiently large region of
quark-glion plasma that can be observed. For these reasons, most of the experimental
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data available so far can only give us some rough guidance on what we can expect from
RHIC and LHC. We shall briefly review what we have learned from these observations
and extrapolate from them what are the initial set of experiments to be carried out at
RHIC and LHC once they are in operation. We shall also describe some of the results
from lattice gauge calculations to see what are the predications we can make based on
our theoretical understanding of the physics of strong interaction.

Transformation of nucleons to quark-gluon plasma. A complete understanding
of the strong interaction should include also a knowledge of the conditions under which
nucleons are transformed into a state in which quarks are no longer confined. Currently,
our knowledge of QCD is not yet quite adequate to carry out this task. To get some
idea of the possible conditions for the transition to take place, we can make use of the
bag model. There are many versions of the model, and together they have been quite
successful in explaining a large number of phenomena in particle and nuclear physics.
For our purpose here, we are not concerned with the details that distinguish one bag
model from another. It is adequate for us to regard the “bag” as a phenomenological
entity that provides an inward pressure of magnitude B to keep, for example, the three
quarks confined inside a nucleon.

If the pressure of “quark matter” inside the bag is increased to such an extent that
it exceeds B, confinement will no longer be possible and we have a new phase of matter,
made of quarks and gluons. This can happen if, somehow, the temperature becomes
very high, or the baryon number density becomes very large, or a combination of both.
To get some qualitative estimates, let us consider each one of these two possibilities
separately using the bag pressure B as the parameter.

If we treat quarks and gluons as massless, noninteracting gas molecules, there are
two extreme situations that allow simple estimates to be made on the conditions for a
phase transition. The first is the case of zero temperature, and our interest here is to find
the critical baryon density required for a transition to take place at this temperature.
The pressure in this case comes solely from the effect of the Pauli exclusion principle
between the quarks. For a relativistic Fermi gas in volume V', the density of states, the
number of states in an interval of momentum dp, is given by

V
N = g(—z;r—)a—ha‘lﬂ’ p2 dp
where g is the degeneracy. For simplicity, let us ignore the contributions from anti-
quarks and gluons. To simplify the discussion further, we shall restrict the number of
quark flavors to the lightest two, on the ground that d- and u-quarks dominate at zero
temperature. In this limit, the degeneracy for quarks is

9q¢ = Neolor X Nspm X Navor =3 X 2x2=12

The number of quarks filling up all the states up to the quark Fermi energy ey is given
by the integral

V SF/C 9
Nq = QQW4ﬂA pdp
|4

_ vV a
9a 672(hc)3 F
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For massless quarks, the energy carried by each one is pc. From this, we obtain the
total energy

1

Vv epfe
E,, = g”(21r)3h3 Tr/ p3cdp

9787 (hc)® 87r2(hc)3 *
The pressure in a relativistic noninteracting gas is given by

1E
P=3v

If we equate the pressure from degenerate quarks P, with the bag pressure B,

1E, 1,

P= €F=B

T3y T 2472 (hc)?

as the condition for phase transition, we obtain the critical Fermi energy

2 3 1/4
= (M0 )
9q

The critical baryon density estimated in this way is

npe=bnge=toe 100 g _S(ﬂ_)l“(ﬁ)w
©T 37T 3V T 36mr%(he)® P 3\ 24n2 hc

where we have made use of the fact that the baryon number of quarks is — . By adopting
a reasonable value for the bag pressure, (h*c® B)Y/4 = 200 MeV, we obtam a result of just
over 400 MeV for the critical Fermi energy of quarks, e¢p.. In terms of baryon density,
np.e = 0.7 fm~3, about five times higher than the value of 0.14 fm™3 for nucleons under
normal conditions. Other calculations put the zero-temperature critical baryon density
for the guark-plasma phase to be up to 10 times the normal miclear matter density.

The second extreme condition is high temperature. For simplicity, we shall consider
here the sitnation where quark and antiquark are equal in number, and as a result, the
baryon density vanishes. Our noninteracting quarks and antiquarks can be treated
as two separate Fermi gases, and the gluons as a Bose gas. The number density, or
occupancy probability, for each quantum state is given by the expression

1

T = G £ 1

where the plus sign in the denominator is for fermions and the minus sign is for bosons.
The chemical potentials ;2 vanishes for the gluons, as well as for quarks, since we are
taking the baryon density to be zero. The total number of particles (quarks, antiquarks,
or gluons) and the total energy for each type in volume V are obtained by summing
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over the contributions from each state k. On replacing the summations by integrations,
we obtain the results

Vv o 4rp’dp vV (kT\® (> 2%dz
N = = g—ro
/ )/

- g(21rh)3 e T 11 9972 \ e ert1
V(o 4npicdp vV (kT\® (= 2dz
E = / =925 ) #T [
g(27rh)3 o e 11 9972 \ e kT 0o ert1l

where we have made use of the assumption that all the particles are massless and,
hence, ¢ = pc. The integrals over z can be found in, for example, Landau and Lifshitz
[94]. For quarks, we have the values

vV (kTY?
Nq = g"2—7a3 (—7—1) X§1.202

he 2
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where the factor 1.202 comes from the Riemann zeta function ((3) = 1.202.. ., obtained
when we integrate over 2. The same results apply to antiquarks as well. For gluons,
we have

v (kT\®
Ng = 99-2—;5 (——) x 2 x 1.202

he
vV (kT\? nt
Eg = ggﬁ (E) kai—f;

with g, = 16 for gluon degeneracy. The total energy is a sum of the contributions from
quarks, antiquarks, and gluons:

E = E,+ E;+ E,

If we again equate the pressure

P=3v
with the bag pressure (f%c*B)/4 = 200 MeV, we obtain a temperature kT ~ 140 MeV.
Other calculations put the value to be as high as 250 MeV.

The region for both T # 0 and np # 0 is more complicated to estimate than
either one of the two extremes we studied above. A reasonable conjecture is that the
changes from one to the other should be smooth. Schematically, the phase diagram is
represented by that shown in Fig. 9-11.

Lattice gauge calculations. In principle, quantum chromodynamics can provide
us with some better guidance on the question of transition to QGP than the simple
arguments presented above. The major difficulty here is a practical one in carrying out
the calculations. First, the equations generated from QCD considerations are nonlinear,
and as a result, cannot be put into a form that can be quantized easily. Second, the



344 Chap. 8 Nuclei under Extreme Conditions

Hadronic
Matter

}

normal

nuclear Baryon Density
matter

Temperature (MeV)

Figure 9-11: Schematic diagram showing the different phases of matter.

interaction involved is strong and we cannot make use of perturbative techniques to find
approximate solutions that are reliable. One possible alternative is to take a Feynman
path integral approach [63] and formulate the problem numerically on a lattice. Since
QCD is a gauge theory, a theory that is invariant under a local gauge transformation,
we have a lattice gauge calculation. Numerical solution of (continuous) problems by
formulating them on discrete lattices is a powerful technique and has been applied
successfully to a large variety of problems in, for example, condensed matter physics,
fluid mechanics, and engineering. Here, we want to adopt a similar approach, except
that the computations are complicated by the fact that gauged fields are involved. In
fact, even the power of most modern computers remains to be the main limitation on
the types of results one can obtain so far.

In quantum mechanics, the usnal way to find the evolution of a state from an initial
point in space and time {r;,t,) to some final point (v, ts) is to solve the time-dependent
Schrodinger equation. The solution may be represented formally as

|rp by >= e HE )/ g ¢, > (9-12)

where H is the Hamiltonian operator. In the Feynman path integral approach, we take
a different route by evaluating, instead, the classical action

S=/ldeT

Here L is the Lagrangian of the system and the integral is over space and time, as well
as over any other independent variables in the system. The value of S usually depends
on the path over which the integral is taken from point 1 to point f. It can be shown
that the matrix element of the operator on the right-hand side of Eq. (9-12) is given



§9-3 Phase Transition and Quark-Gluon Plasma 345

by the relation

< rlle—iH(t!—t,)/ﬁlri >= l E eaS
all paths

where the factor 1/Z represents all the necessary constants and normalization factors.
The physical meaning of the equation is that time evolution is equivalent to averaging
over all possible paths, each one weighted by the action. This is very similar to ensemble
averaging in statistical mechanics, and for this reason, the whole approach is sometimes
referred to as statistical field theory.

In general, the integral for S is not easy to evaluate, especially for the nonlinear
QCD Lagrangian we are interested in here. However, if we take a similar approach as
used in numerical integration, great simplifications may be achieved. In this scheme,
each path is divided into a large number of small “segments.” Within each segment, it
is possible to replace the integrand by some reasonable average value of L within the
small interval, such as that evaluated at two ends of the interval. In this way, the whole
space is “transformed” into a lattice of points, and the contribution of each segment
to the integral is the product of the average value of the integrand and the size of the
segment. The complete integral becomes a sum of the produets in all the segments.

Next, we must evaluate the integral once over each one of the infinite number of
possible paths. In the case of ensemble averaging in statistical mechanics, the infinite
sum is usually carried out analytically by changing it into a derivative of, for example,
the partition function. This is not possible here, as the integrand is a complicated
nonlinear function. The alternative is to make use of the idea of statistical sampling.
In other words, we shall choose the paths randomly and evaluate the action only over
the chosen ones. If a sufficiently large sample is taken, our average value should be an
accurate representation of the true one. Our task is now turned into a Monte Carlo
one on a lattice, and powerful techniques of Monte Carlo calculations may be applied.

Every possible simplification is important here, as the problem is greatly compli-
cated by the fact that we are involved with gauge fields and that quarks are fermions.
To maintain gauge invariance, the values of the fields at one lattice point become de-
pendent on those at other points. Even with the most powerful computers in the world
at the moment, several further approximations must be made before we can obtain any
results. For example, in QCD we have both quarks and gluons, each one described by a
field that is a continuous function in space and time. However, in a lattice calculation,
only the values of the functions at the lattice points are evaluated. Let us use a to
represent the lattice spacing, the distance between two adjacent points on the lattice,
and for simplicity, we shall assume that a is the same in all spatial directions and along
the time axis by some suitable choice of units. The accuracy of any calculated results
clearly depends on the size of a and this, in turn, is given by the number of lattice
points taken in the (3-+1)-dimension space. Many of the results obtained so far have
been limited to fairly modest lattice sizes, such as 12 points in each direction. Even
with such limited lattices, a full QCD calculation involving all eight gluons and six
flavors of quarks is not possible. Many results are obtained with the gluon fields alone,
without the quarks playing any “dynamical” roles.

In spite of the limitations imposed by the available computing power, lattice gauge
calculations have provided us with valuable insight into what we can expect from the
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relation between hadronic matter and QGP. For example, calculations carried out with-
out dynamical quarks show a first-order phase transition at critical temperature around
kT = 260 MeV. The results with dynamic quarks are less clear, in part, because of the
uncertainties due to finite lattice size. Depending on the fermion masses adopted in
the calculation, the phase transition can be either first- or second-order. There is also
the possibility of hadronic matter crossing over smoothly to QGP without undergoing
a phase change.

The interest in lattice gauge calculations is not limited to transition from hadronic
matter to quark-gluon plasma. Since it is possibly the only way to carry out the
calculations “exactly,” it is often quoted as the only fundamental formulation of QCD
[93]. Many achievements have been recorded in understanding the low-energy regime,
such as hadron spectroscopy, and in determining some of the parameters in the standard
model of particle physics, such as the possible determination of the strong coupling
constant and certain Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In many
ways, it can also tell us what may lie ahead of the standard model. The strong demand
of computational power for such calculations has stimulated novel developments in both
hardware and software and has, in many ways, led advances in computing technology.

High-energy nucleon-nucleon scattering. In ultra-relativistic collisions, the re-
action is mostly inelastic and there is adequate energy to create a large variety of
secondary particles, In the absence of any new physics, the cross section for nucleus-
nucleus scattering i3 expected to be multiples of that for nucleon-nucleon scattering at
equivalent energies. To recognize that a region of quark-gluon plasma is created in the
process, the signal must appear over and above the complex background coming from
ordinary nucleon-nucleon scattering. For this reason, we need to review briefly what is
known of nucleon-nucleon scattering at high energies, The subject is a vast one, touch-
ing upon many parts of nuclear as well as particle physics. Our interest is limited to
the effect it has on the cross section for nucleus-nucleus scattering at ultra-relativistic
energies.

In high-energy proton-proton scattering, from which we obtain most of the infor-
mation on nucleon-nucleon scattering, it is known that the total reaction cross section
rises slowly with momentum p. In terms of the Mandelstam variable® s, the empirical
results for total and elastic cross sections in the range of center-of-mass energy 3 GeV
< /3 < 100 GeV may be expressed as [83]

Ol = (48.0 £ 0.1) 4 (0.522 % 0.005)(In p)? 4 (—4.51 £ 0.05)Inp

(11.9+ 0.8) + (26.9 £ 1.7) p~ 12! + (0.169 + 0.021)(In p)?
+(~1.85£0.26)Inp

il

Oelastic

with p in units of GeV/c. The numerical value is around 40 mb (4.0 fm?) for Gt
in the energy range. The observed result for inelastic cross section at 100 GeV/c is
31.3 +£ 1.2 mb. The measured values are shown in Fig. 9-12.

IMandelstam variable s = (£/c)?, where £ is the total energy of the two colliding particles in the

center of mass. In natural units, ¢ = 1 and, as a result, /3 is often used ta represent £ and we shall
follow this convention.
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Figure 9-12: Cross sections in high-energy proton-proton scattering in mb (=
10! fm?) plotted using data from Ref. [22]. Inelastic scattering, the difference
between total and elastic, dominates the reaction and the secondary particles
produced are made mainly of mesons, baryons, and antibaryons.

Most of the inelastic cross section goes into production of mesons and baryon-
antibaryon pairs. The number of secondary particles produced is given the name mul-
tiplicity. At high energies, the multiplicity also increases roughly logarithmically with
s. Since only charged particles can be measured most readily in an experiment, the best
known value is the charge multiplicity Ny, the average number of secondary charged
particles produced in a pp-collision. The variation of N, with energy may be repre-
sented as [135]

N = (0.88 £ 0.10) + (0.44 + 0.05) In s + (0.118  0.006)(In s)? (9-13)

Around /5 ~ 20 GeV (p,,, ~ 100 GeV/c), the value of Ny, is around 6. The measured
results are shown in Fig. 9-13. Most of the secondary particles are (charged) pions. If
we assume equal numbers of 7%, #%, and 7~ are produced on the average, we obtain
the total multiplicity to be around 9.

Another quantity of interest in high-energy collisions is the momentum distribution
of the secondary particles. This is usually discussed in terms of the rapidity variable

_ 1 (E+pc i
y=73 In (——————E — PLC) (9-14)

where E is the (relativistic) energy and p, the longitudinal momentum. In the center
of mass, y = 0 when p; = 0. The range of y is therefore bound by

RS SOy S N
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Figure 9-13: Average charge multiplicity as a function of energy. Asterisks
represent data from Refs. [135, 107, 25] and the smooth curve is calculated using
Eq. (9-13).

where pr = (/p2 + p2 is the transverse momentum and (E/¢)? = p}. + p} + (mc)?. At
high energies, do/dy is essentially constant except at both extreme values of y.

Since y requires measurements of two quantities, £ and p,, it is often more conve-
nient to make use of the pseudorapidity

g\ 1 lpl+m)
=~In{tan=-) = -In
! ( 2) 2 (Ipl—m

that depends only on the scattering angle #. If the particle energy is high, y and 7 have
approximately the same value.

Nuclear stopping power and transparency. For the past 10 years or so, experi-
ments have been carried out with heavy ions at relativistic energies. The two principal
facilities are the Alternating Gradient Synchrotron (AGS) at BNL and Super Proton
Synchrotron (SPS) at CERN. Beams from proton to gold are available at AGS up to
29(Z/A) GeV/c in energy per nucleon and from proton to lead at SPS up to 400(Z/A)
GeV/c. The corresponding center-of-mass energy for gold on gold at AGS is /5 < 5
GeV, and for lead on lead at SPS it is /s < 17 GeV.

We can separate high-energy nucleus-nncleus collisions into two energy regions.
The first is the “pure QGP” region where all the nucleons are converted into quarks
and gluons. It is estimated that the energy required is /s > 100 GeV/nucleon. At
the AGS and SPS energies, we are still in the second region, the “baryon-rich QGP”
region. Here, a substantial fraction of the initial energy in the collision is converted into
producing hadronic matter. The process may be discussed in terms of the “stopping
power.” The opposite way of looking at the same question is “nuclear transparency,”
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the lack of interference when one nucleus passes through another during a collision.
One way to have some idea of the stopping power is to consider E,4, the energy in
a small cone around the beam axis. The angle is chosen such that particles within
the cone are essentially those from the initial projectile without having undergone any
energy loss. In the case of complete stopping, the reaction cross section should peak at
E,q = 0. Observations at SPS energies show that the maxima occur at small values of
E.4, consistent with stopping power of around 90% [131].

A large nuclear stopping power implies a baryon-rich environment, as there is not
enough energy for nucleons left over from the collision to move away from the central
region. This is the situation with experiments at AGS and SPS energies. There are
indications for increasing nuclear transparency with higher energies and larger mass
numbers of the ions. Thus at RHIC and LHC energies, we expect the remnant nucleons
to have adequate energy to move away fast enough for the central region to last for
relatively long time scales (~ 10~?* s) as a baryon-free region of quark-gluon plasma.

Signatures of quark-gluon plasma. If a quark-gluon plasma is formed, how can we
recognize it? The major difficulty here is that our probe cannot be placed anywhere
inside the region. In part, this is because we can at best create a very small volume
of this new form of matter with radius measured in femtometers. At the same time,
we cannot expect any experimental apparatus to survive the extreme temperature and
energy density inside the region where the QGP is present. All “signatures” of QGP
must therefore be inferred from the consequences in terms of the particles—baryons,
mesons, photons, etc.—we normally encounter in subatomic physics. Based on existing
observations, experimental as well as theoretical, the following measurements seem to
offer the best possibilities (150, 81, 131].

Strangeness production Since nucleons are made of u- and d-quarks, the strangeness of
the initial state in a heavy-ion collision is zero. Heavier quarks, such as strange (s) and
charm (c), can also be produced in a reaction if there is sufficient energy. (We shall
ignore the even heavier b- and t-quarks, and their antiquarks, in this discussion.) To
conserve flavor quantum number, these quarks must be created in the form of quark-
antiquark pairs of the same flavor.

Consider first the production of strange quarks. The results are usually discussed
in terms of ), the ratio of s3 to u@ and dd,

uii:dd:s5=1:1:A

In pp-collisions, the value of A is found to be around 0.1 at center-of-mass energy
Vs ~ 5 GeV and rising slowly to about 0.2 at /s = 50 GeV. The value obtained
from proton-nucleus collision is, within experimental uncertainties, consistent with this
trend of values. For silicon on silicon and sulfur on sulfur, the values are almost a
factor of 2 larger, around 0.3 at 5 GeV and almost 0.4 at 20 GeV [131]. We have seen
earlier in Eq. (9-13) that the average multiplicity in pp-collisions increases with energy.
In nucleus-nucleus collision, the increase is even faster, as more energy is available in
the center of mass. However, strange particle production is observed to grow faster
than nonstrange particles. For example, the ratio of (K* + K~)/(a* + 7~) at 200
GeV/nucleon is found to be a factor 2 larger in nucleus-nucleus collisions than in pp-
collisions. As for mesons with two strange quarks, such as ¢ consisting predominantly
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of 53, the production in sulfur+-uranium is found to be a factor of 2 to 3 higher relative
to that in proton+tungsten (and proton-proton) collisions (3].

If strange quarks are in thermal equilibrium with their lighter counterparts, as
expected in a quark-gluon plasma, the ratio of strange to nonstrange mesons is given
essentially by that of their respective Boltzmann factors exp{—m,c?/kT}. Here m, is
the mass of the quark involved. Since the temperature of the plasma is comparable
to the mass difference between strange and nonstrange quarks, an enhancement of
strange meson production is expected compared with nonequilibrium situations, such
as in proton-proton and proton-nucleus collisions. However, this is not the only possible
explanation for strangeness enhancement. As we shall see soon, we do not yet know of
any unique signature for QGP, one for which we can rule out any possible alternative
explanations. For this reason, strangeness enhancement remains only one possible way
to identify QGP.

Suppression of J/1- and y'-production In the case of charm meson, J/¥ has the unique
advantage that it decays into a pair of leptons, e*e™ or ut ™, with very narrow width,
as we have seen in §2-6. This makes it relatively easy to identify the meson, especially in
terms of its decay into a muon pair. The background comes mainly from the Drell-Yan
process, conversion of a quark-antiquark pair into a lepton pair through the intermediate
stage of a virtual photon (see Fig. 9-14 ahead). Since the production of a lepton pair by
this mechanism is known to be given by the product of the projectile and target atomic
numbers, the ratio of muon pair production from J/1-decay to that of the background
becomes a measure of the relative production rate of J/v. The results show that the
cross section for J/y-production is lower in nuclens+nucleus collisions than in proton-
nucleus collisions [17]. This is opposite to the case of a strange meson where the
production is enhanced. Furthermore, the effect is more pronounced for collisions that
are more central (i.e., head-on), as measured by the increase in the transverse energy
Er.

The explanation in terms of QGP is that the cross section of J/y-production is
lowered because of color screening. That is, when charm quarks are created in a
collision, they must be made as ¢ pairs to conserve color and charm quantum numbers.
However, if the production takes place in & QGP medium, the interaction between ¢ and
¢ is diminished by the presence of the other quarks, similar to the Debye screening of
electric charge in quantum electrodynamics. This makes it more likely for the pair to be
split into two separate entities. In addition, there is also a chance for the charm quarks
to thermalize with the medium and, thus, decrease further the likelihood of ¢ and ¢ to
emerge as a single meson. The relation with Er comes from the inverse temperature
dependence of Debye screening length. As temperature rises, the attraction between c
and ¢ decreases and the chance of dissociation for the ¢ pair increases. Since larger Fr
implies a more central collision and more energy (higher temperature) in the collision
region, it is not surprising that the observed J/y¥-production rate is decreased.

Again, the above explanation based on the presence of QGP is not the only one.
In fact, a ¢ pair can also be separated through interaction with ordinary nucleons as
well. Since a J/v-particle produced in heavy-ion collisions has to travel through, on
the average, a larger region filled with nucleons than in pp-collisions, the observed rate
is expected to be lower also for this reason. Furthermore, the ratio of ¥/ to J/¥ has
been observed as well, and its variation with Er does not seem to follow that expected
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of a QGP scenario [18].

Two-particle interferometry When two identical particles are located close to each other,
there is an interference between them, similar to that for optical waves in a double-slit
experiment. This phenomenon may be used to deduce the extent of a source of particles.
The principle was first applied in 1956 by Hanbury-Brown and Twiss to measure the
angular diameter of a star using the correlation between two photons originating from
the source. For this reason, it is known as the Hanbury-Brown-Twiss effect. The
correlation exists only for a chaotic source and is absent for a coherent one [150].

The correlation of interest in our case is in the intensity of two identical particles
measured in coincidence. By taking two particles at different energy-momentum values,
the correlation becomes a Fourier transform of the phase space of the source. As a
result, a correlation function of the following form may be constructed [131):

Co(@Qr,Qr, Qo) =1+ Ae—(QFR:+QE R1+Q3r%)/2

where A measures how chaotic the source is, with A = 1 for a complete chaotic one
and A = 0 for a coherent one. The longitudinal, transverse, and time components of
the momentum difference between the two particles, Q, = p, — p2.u, are represented
respectively by subscripts L, T, and 0. When such a function is fitted to the experi-
mental data, we obtain measures of the longitudinal (R;) and transverse (Rr) extent
as well as the temporal duration (7) of the source for the two particles.

In the case of heavy-ion reactions, two-particle correlations have been measured
for pions and kaons. When two heavy ions collide, a small region of high energy and
particle density is created. The particles interact strongly with each other as they
are squeezed together. When the compression ceases, the region expands and the
interaction intensity decreases. Eventually, the interaction will stop, or freeze out. It
is likely that most pions and kaons are produced near this stage of development in
a heavy-ion reaction. As a result, two-particle correlation “measures” the size of the
volume and the time when freeze-out occurs and, thus, provides information on the size
and energy achieved in the interaction zone. For example, if there is a phase transition,
the latent heat will lead to larger expansion in size.

The results to date from fixed-target measurements indicate that the source size is
larger than the radius of the projectile, indicating that the system expands before freeze-
out. The time between the onset of expansion and freeze-out is about 5 fm/c alang the
longitudinal direction and less than 2 fm/c along the transverse direction. However, no
long-lived intermediate state can yet be identified from two-particle correlation studies
[81].

Thermal radiation In a QGP, large numbers of photons, both real and virtual, are
produced through quark-antiquark annihilation,

g+d—7+g
and quark-gluon scattering,
g+ra—rtyg g+i—7+1¢

Reactions such as g + § — -y -+ v are also possible but the probability is much smaller,
as they are purely electromagnetic processes. Unlike hadrons, photons interact only
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weakly with quarks, gluons, and hadrons through electromagnetic interaction. As a
result, there is a high probability for photons to emerge from the interaction zone
without suffering any collisions. In contrast, hadrons have mnuch shorter mean free
path and undergo many interactions before leaving the region. For this reason, they
reflect mainly the condition near freeze-out. Photons measured in heavy-ion collisions
are therefore expected to be related more directly to the thermodynamic state of the
QGP created than hadrons.

Photons are also produced in high-energy collisions from a variety of reasons other
than reactions within a QGP. These include processes such as the decay of neutral
mesons 7° and 7. For our purpose here, we are interested only in the signal over
and above such “background” events. Analyses have indicated that the QGP photons
may have a cubic dependence on the temperature and a quadratic dependence on the
variation of multiplicity as a function of rapidity. However, experiments so far have
not seen anything above the expected background photons. Theoretical investigations
suggest that none is to be expected until we reach the conditions in experiments to be
carried out at RHIC and LHC.

Dilepton production Similar to photons, leptons also do not interact strongly with the
constituents in a QGP. As a result, one can infer the conditions of the plasma by
observing the leptons emitted as well.
Lepton pairs £¥£~ are produced by quark-antiquark annihilation through a virtual
photon,
q + § — virtual photon — ¢+ + ¢~

For all practical purposes here, we can limit the leptons to electrons and muons. The
process is very similar to that of Drell-Yan. The main difference is that, in a Drell-
Yan process, both the quark and antiquark come from the nucleons participating in
the collision process. In contrast, our interest here is in the leptons produced by the
collision of a free quark and a free antiquark in QGP. The difference is illustrated by
the two diagrams shown in Fig. 9-14.

In a nucleus-nucleus collision, the Drell-Yan cross section scales with the number

q !
d AN t AVAVAVAVAN
T N g Y r

Figure 9-14: Dilepton production from the Drell-Yan process in nucleon-nucleon
collision (left) and quark-antiquark annjhilation between free quarks (right). In
the Drell-Yan process, the quark and antiquark ceme from the colliding nucleons.
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of nucleons involved and forms a dominant part of the lepton pairs produced. There
are also other sources of lepton pairs, such as #*#~ annihilation and decay of neutral
mesons. Qur concern is with the lepton pairs produced in a QGP. The cross section
depends on the temperature of the plasma and, hence, the initial condition that cre-
ates it. Theoretical investigations have shown that the production rate increases with
temperature. At temperatures below 300 MeV, the cross section is too small to be
seen above those coming from the dominant part by the Drell-Yan process. Once the
temperature is above 300 MeV, there is a chance that one can isolate the leptons from
QGP. However, one must again wait for experiments to be conducted at RHIC and
LHC to reach such high temperatures.

Problems

9-1. Show that
Ey, = m.c\J1 - (Za)?

gives the ionization energy of 13.6 eV for a hydrogen atom.

9-2. If a neutron with 2 MeV of kinetic energy is evaporated from a composite system
made of two heavy ions consisting of a total of 150 nucleons, find the maximum
angular momentum carried away using the relation ¢,,, = iikR.

9-3. Two %Zr nuclei approach each other with kinetic energy 200 MeV in the center
of mass. Calculate the total angular momentum in the system assuming that,
in the absence of any interaction between them, they will pass each other at a
distance of 10 fm between their centers.

9-4. The following ~-ray transitions, with energies given in kilo-electron-volts, were
once identified in '*¥Er: 2+ — 0% 192, 4% — 2+ 335, 61 — 41 443, 8t — 6% 523,
10* — 8% 579, 12+ — 10* 608, 14 — 12% 510, 167 — 14 473, 18+ — 161 566,
20% — 18% 658, 22t — 207 738, 24 — 22% 803, 261 — 24+ 843, 28+ — 267
855, 30t — 28% 871, and 32+ — 30* 902. Plot the excitation energy as a function
of J(J + 1) and calculate the moment of inertia for each state. Use this result
to plot 2Z/h? as a function of h*w? and see if there is any sudden change in the
moment of inertia, generally known as “backbending.”

9-5. For an axially symmetric nucleus with density given by

ofr) = { o for 1 < Ro(l+ BYso(0,0))

0 otherwise

show that the intrinsic (charge) quadrupole moment up to second order in defor-
mation parameter J is given by
3
©= T

and the moment of inertia about the z-axis is given by

I=XiMR}(1+0.318)

ZR23(1 +0.368)
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to first order in 8. Here M is the mass of the nucleus and R; is the radius of a
sphere having the same volume, and pp may be found from normalization.

9-6. Use Eqgs. (6-18) and (6-12) to show that
= 0.950 + 0.154% + O(5%)

where & is the deformation parameter defined by Eq. (6-18).



Chapter 10

Nuclear Astrophysics

On a bright sunny day, one cannot help but be amazed at the enormous amount of
energy outpouring from the sun. At a distance of 1.5 x 10!! m, the amount of electro-
magnetic radiation received by the earth is 1.4 kW/m?, corresponding to a total output
of 1026 J/s. The primary source of this energy is fusion of hydrogen into helium. The
sun is only one of the billions of stars in our galaxy and our galaxy is, in turn, one of the
billions in the universe. Besides burning hydrogen, some stars are converting helium
into !2C, and thence to even heavier elements. We shall see that the evolution of a
star is intimately related to the thermonuclear reactions taking place inside. Except
for hydrogen, some of the helium, and small amounts of deuteron and a few other light
nuclet, all other nuclei are made in stars. Understanding stellar evolution, therefore,
requires a good knowledge of nuclear physics. At the same time, nuclear physics is
incomplete without a clear idea of how all the nuclei are created. We shall begin with
an overall picture of nucleosynthesis and the connection between nuclear physics and
stellar evolution. Details on some of the topics are given in the remaining sections.
The subject of nucleosynthesis is the central theme of several books as well as a large
number of review papers.! Our aim here is only to examine some of the problems of
particular interest to nuclear physics.

10-1 Brief Overview of Stellar Evolution

Most modern views of cosmology are in agreement with the idea that the universe began
with an explosion, or “big bang,” some 10 to 20 billions years ago. The uncertainties
in the models are connected mostly with the very beginning of time, within the first
fraction of a second or so. For nuclear astrophysics, there is hardly any need to be
concerned with such early times. At the end of approximately the first 3 min [144],
about three-fourths of the baryon mass in the universe is in the form of protons and
the rest in the form of ‘He. Traces of deuteron, He, and "Li are also present but their
abundances are down by several orders of magnitude compared with protons (4 to 5
orders for deuteron and *He and 10 orders for "Li). The exact amounts of the three less
abundant primordial elements are important if we wish to understand the conditions
that existed in the first few minutes. However, for stellar evolution and nucleosynthesis
we can, for most practical purposes, ignore their presence.

1For a recent review, see Ref. [141).
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Big-bang nucleosynthesis. The variety of nuclei we observe today in the interstellar
space comes from a combination of two different sources. The first is the primordial
proton and helium together with minute amounts of other light nuclei. The second is
made up of material blown off stars that have ended their lives. We shall start with
the first one, as it supplies the bulk of the raw material to form stars.

For proton and helium, the relative abundance is observed to be roughly 3 to 1 in
mass. This is essentially determined by the neutron-proton mass difference of 1.29 MeV
and the deuteron binding energy of 2.23 MeV. When the universe was at temperatures
far above that equivalent in energy to the rest mass of an electron, kT = m.c? or
T ~ 6 x 10° K, electrons and neutrinos were in thermal equilibrium. In such an
environment, neutron 3~ -decay to proton,

n—p+e +70,
is balanced by electron capture of protons,
e +p-ntur,

The abundance of leptons keeps neutrons and protons in thermal equilibrium. Since
the chemical potentials of the two species of nucleon are nearly the same, the ratio of
neutron to proton numbers is essentially given by

Nn
e~ QT

r

Here, @ is the neutron-proton mass difference in terms of rest-mass energy. As the
universe expands, the temperatnre drops and the electron capture rate decreases. When
the value falls helow ~10'° K, it becomes impossible to maintain a balance between the
two weak interaction processes and we no longer have a thermal equilibrium between
neutrons and protons. The weak interaction is said to be “frozen.” At the weak
wnteraction freeze-out temperature of T,, ~ 10" K, the ratio between the number of
neutrons and protons is given by exp{-Q/kTw} ~ 0.22, with 18% of the baryons
appearing as neutrons and 82% as protons.

Below the weak interaction freeze-out temperature, free neutrons decay into protons
with a half-live of about 10 min. For a neutron to survive much longer time periods,
it must be captured by other nucleons to form a bound nucleus. Since most of the
nucleons in the universe are in the form of free protons and neutrons at this stage,
the most likely candidate to be formed is the deuteron, a bound nucleus made of a
proton and a neutron. Unfortunately, the binding energy of a deuteron is very small
and this constitutes the major bottleneck in preserving primordial neutrons from §--
decay. Because of the short range of nuclear force, bound nuclei can be made from free
neutrons and protons only through random collisions that bring some of them into close
contact with each other. The probability of such encounters drops drastically for three
or more particles. This leaves us with the deuteron as the only likely bound system
that can Le made in any significant amount. On the other hand, the small binding
energy means that deuterons can also be destroyed easily in random collisions with
other particles. The most likely event is with photons, as there is something like 10°
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for each nucleon. For this reason, photodisintegration constitutes an important sink
for any deuterons created when the temperature is still sufficiently high.

On further cooling, some deuterons can exist long enough to capture a proton to
form 3He. In turn, 3He can capture a neutron and transform it into ‘He. We see that
once the temperature is sufficiently low for deuterons to last long enough to undergo
proton and neutron captures, free neutrons are transformed into bound ones and the
total number of neutrons in the universe stays more or less constant until the start of
stellar nucleosynthesis at much later stages in the evolution of our universe.

Both He and B are unstable with half-lives on the order of 10722 s. As a result,
further nucleosynthesis beyond *He by single-nucleon capture is blocked. Together with
the fact that *He has the largest binding energy per particle among all the nuclei in-
volved in this discussion, we find that o-particles become the main reservoir of neutrons
at the end of big-bang nucleosynthesis. The exact amount of *He and, hence, the num-
ber of neutrons, available for later nucleosynthesis in stars depends on the condition
existing in the short time between weak interaction freeze-out and when deuterons can
exist for a sufficiently long time to capture another nucleon. The observed helium in
the interstellar medium is between 22% and 28% by weight (with the remainder taken
up by protons). This must be close to the amount that existed before stars began to
process the primordial material and blow some of the resulting heavier elements into
the interstellar medium at the end of their lives. Furthermore, since the universe is
observed to be electrically neutral, we can also safely assume that the total number of
electrons is the same as the combined number of free and bound protons.

Stellar nucleosynthesis. With all the neutrons locked inside nuclei, the only way for
stars to make new species of nuclei is through charged particle reactions. The most
likely process is to combine two protons into a deuteron, together with a positron and
an electron neutrino, as protons are the most abundant nuclei by far and have the
lowest Coulomb barrier. However, the average temperature of the universe now is far
too low for two protons to overcome the Coulomb barrier between them and come close
enough together for nuclear reactions to take place.

We can make an order-of-magnitude estimate for the kinetic energy required to
bring two protons to be close enough for nuclear force to act between them. For
simplicity, let us take the range of nuclear interaction to be 79 ~ 1 fm. The Coulomb
energy of two protons separated by this distance is
€ ahe

Ec‘—‘ [E]T—o' = TO-=14 MeV

This is equivalent to the thermal energy of a particle at temperature
= -E.kﬁ 2% 1010 K

where k = 8.62 x 107! MeV/K is the Boltzmann constant. This is three to four orders
of magnitude higher in value than the condition existing in the interior of the sun where
we know that proton burning is taking place.

There are two reasons why nuclear reaction between protons can start at much
lower temperatures. The first is that the fraction of particles with thermal energy £ at
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temperature T is given by a Maxwell-Boltzmann distribution

AN 2 B _epr

N = Ve 9E
The long exponential tail ensures that there is a small fraction of the particles with
kinetic energies much higher than kT, The second reason is that, since the collision
is a quantum-mechanical process, the probability of tunneling is important for any
exothermic process, such as proton burning.

In addition to kinetic energy, a high concentration of particles is also essential to en-
sure reasonable probability for nuclear reactions to take place. If uniformly distributed,
the proton density in the universe is far too low for fusion to take place in any significant
way. (Even inside an interstellar “gas,” the average density is only about one particle
per cubic centimeter, lower than that in a good vacuum chamber on earth.) Both the
high temperature and high density required to initiate nuclear reaction actually come
as a result of gravitational collapse of primordial matter. However, this cannot happen
if the material thrown out from the big bang is distributed uniformly in space. On
clear nights, and away from brightly lit cities, we find that stars are concentrated only
in certain parts of the sky, the Milky Way. This is only because we are located toward
the edge of our galaxy. In fact, ours is a member of a local concentration of galaxies.
If we look beyond the local group, the distribution of galaxies actually turns out to be
fairly uniform. The uniformity is also supported by the isotropic distribution of the 3 K
microwave background radiation of photons. If the density is uniform everywhere, the
gravitational force felt by a particle will be the same in every direction and there will
not be any tendency to coalesce into clusters. In the recent mapping by the Cosmic
Background Explorer (COBE),? an intrinsic anisotropy of the order of 1 part in 108 is
observed, and this is found to be adequate for local concentrations of gravity to pull
matter together to form planets, stars, and galaxies.

From hydrogen to finite nuclei. Gravitational contraction of matter, dispersed in
the universe by the big bang, provides both the concentration of particles and initial
energy to start hydrogen burning, the process of converting protons into ‘He (and small
amounts of heavier nuclei). The reaction produces also two positrons to conserve charge
and two neutrinos to conserve lepton number. We shall see in §10-3 that the conversion
takes place in several separate steps, as the probability is essentially nil for four protons
to be converted directly into an a-particle.

Once hydrogen burning starts, there is a supply of nuclear energy to heat up the
star and raise the temperature. Part of the energy produced is radiated into space. We
shall not be concerned with the rate of radiation, as it depends on the radial distribution
of temperature in a star. One point to note is that, with the higher temperature, there
is now a thermal pressure to stop further gravitational contraction. A second point
is that, because of higher Coulomb barriers, nucleosynthesis does not proceed beyond
YHe until later stages in the evolution of the star. In other words, the star is now in a
hydrostatic equilibrium and the condition persists until the hydrogen fuel is exhausted.
The amount of time it takes to consume all the available protons depends on the stellar

2For more details, see http://www.gsfc.gov/astr/cobe/cobe.home.htmi.
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mass. For our sun, the present status has been going on already for roughly 5 billion
years and is expected to remain in more or less the same state for another 5 billion
years or so. In more massive stars, the temperature is higher. This leads to much
faster rates of nuclear reaction, and the life span of the hydrogen burning stage can be
as short as millions of years.

When the hydrogen fuel is used up in a star, production of nuclear energy from
fusing protons into *He stops and the temperature drops. Without adequate thermal
pressure to offset gravity, contraction starts again. However, since the outer layer of the
star is cooler and less dense, nuclear reactions are slower and some hydrogen remains
when the inner core begins to shrink. As a result, the interior of the star goes to a higher
temperature beyond that required for hydrogen burning while the outer layer remains
essentially unchanged. When the temperature in the stellar core reaches the value to
initiate helium burning, nuclear fusion stars again, with helium replacing hydrogen as
the fuel. Since the energy released from the interior region is at a higher temperature,
it causes the outer layer to expand. As the radius of the star increases, the surface
temperature drops, shifting the peak of radiated energy to the longer wavelengths.
The result is a red giant.

Helium burning requires a temperature on the order of 108 K. Since ®Be is unstable
and lives only for 73 = 6.7 x 10717 s, the conversion takes place mainly through the
triple-a reaction

*He + *He + *He — C + v

The 12C produced can capture another a-particle to make *0,
‘He +°C - °0 +

Further o-particle capture produces even heavier nuclei, However, as we move to
heavier and heavier nuclei, the Coulomb barrier increases in height. This calls for higher
temperatures that can come only from further gravitational contraction, as shown in
Table 10-1. Since this is more likely to take place first at the center, the inner parts
of the star go to higher temperatures and densities, and evolve faster through different
stages, than those outside. The net result is that the star develops into an onion-like

Table 10-1: Different stages of stellar nucleosynthesis

Fuel Temperature Main product
T (K) kT (MeV)

proton 2 % 107 0.002 4He, 1“N

‘He 2 % 108 0.02 12¢,160

2¢ 8 x 108 0.07 160 20Ne,24Mg

160 2 % 10° 0.2 20Ne,288i,328

20Ne 1.5x10° 013 160,24Mg

8si 35x10° 03 A == 56 nuclei

A £ 56 supernova A > 56
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gtructure, with each successive inner layer undergoing a later stage of evolution, as
shown later in Fig. 10-6.

Nucleosynthesis by a-particle capture produces mainly 4n nuclel. Through colli-
sions, decays, and the presence of small amounts of protons, neutrons, deuterons, and
3He, other nuclear reactions participate also in the process and these produce nuclei
outside the 4n sequence. Partly for this reason, the relative abundances are lower for
species other than the 4n nuclei.

The release of fusion energy stops at A ~ 56 where the binding energy per nucleon
peaks in value, as we saw earlier in Fig. 1-2. This takes place first in the stellar core
and most of the nuclei are in the form of %Fe and %Ni, the two most stable 4 = 56
isobars. Further evolution of the star depends even more critically on its total mass
than any of its early stages. If the value is more than 8 times solar mass, there is
enough gravitational energy left in the core at the end of fusion to turn the star into a
supernova. The explosion sends shock waves through the outer layers, which are still in
the earlier stages of nucleosynthesis. The condition created in this way by a supernova
explosion is highly nonequilibrium, making it possible for nuclear reactions to take
place that require energy input instead of the purely exothermic ones we have seen so
far. The environment reminds one of heavy-ion collisions in which a large number of
reaction products are created, including those with A > 56,

For smaller stars, the collapse will not be as catastrophic. One possibility is that
the star ends its life as a white dwarf, a small star with fairly high temperature but
very little energy output. Alternatively, it can turn into a brown dwarf, slowly radiating
away the small amount of energy still remaining in the star.

For the purpose of nucleosynthesis, we are interested in the material ejected in a
supernova explosion. In addition to protons and helium nuclei left in the surface regions,
heavier elements created in the evolution of the star are also sent into the interstellar
space. These are mixed with the primordial protons and helium nuclej to form the
raw material for future generations of stars. The relative abundance of elements in the
golar system, shown in Fig. 10-1, gives clear evidence that the material has already
gone through several generations of stellar formation and explosion.
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Figure 10-1: Relative abundances of elements in the solar system normalized
with respect to that for silicon as 105 (42].



§10-2 Rate for Nonresonant Reactions 361

10-2 Rate for Nonresonant Reactions

In a region where there are no resonances, the cross section for nuclear reactions is
expected to vary smoothly with energy. This is the most likely situation in nucleosyn-
thesis where the kinetic energy involved is very low compared with those encountered
in nuclear excitations. Except for the few cases where there happen to be states near
the threshold with the same quantum numbers as the reaction channel of interest, the
reaction is nonresonant. In this case, the cross section o(£) as a function of energy £
may be written as a product of three factors,

o(E) = %e—%mm/"S(E) (10-1)

where v is the relative velocity between the two nuclei, ¢ is the speed of light, and
a the fine structure constant. The inverse energy dependence comes from geometric
considerations. As we have seen in the case of nucleon-nucleon scattering in §3-8, the
low-energy cross section is given by the square of scattering length a. Similar to the de
Broglie wavelength A = fi/p, the scattering length is inversely proportional to velocity v
and, hence, the cross section at low energies is, to a first-order approximation, inversely
proportional to £. The exponential factor gives the probability, or penetration factor,
for a nucleus with proton number Z; to tunnel through the Coulomb barrier of a nucleus
with proton number Z;. The factor 7 = Z;Zyac/v is the Sommerfeld number given in
Eq. (4-64).

To simplify the notation and to display the energy dependence explicitly, we shall
define a quantity b by the relation

e—2nZ;Z:ac/u = e~b/\/i (10‘2)

Since we have assumed that there are no resonances involved in the reaction, the nuclear
structure cannot have any large variations as a function of energy in the region. Let us
represent any effect nuclear structure has on the reaction cross section by S(E). From
Eq. {10-1), we can write

S(E) = Ee'VEo(E)

It is known as the S-factor and we shall see later that it is a convenient quantity in
discussing nonresonant reaction rates in nuclear astrophysics.

Unlike laboratory experiments in which the velocities of the projectile and target
particles are fixed both in magnitude and in direction, the stellar environment resembles
that of a hot gas. Nuclear reactions are initiated through random collisions of the
particles involved. Since the rate of a particular reaction depends also on the frequency
of collisions between two types of particle, we can define a reaction rate A as the product
of relative velocity v and cross section o. In a hot gas, the particles have a Maxwellian
distribution p(v) in velocity. On averaging over the possible values, we obtain the result

A= /D a(E)up(v) du
o S(E) ~b)VE ( In )3/2 —pv?f(2KT) 4, 2
= i — v mvid

I}

‘/;—8; (Elf)a/z /000 S(E)exp — {% + “}E} dE (10-3)
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where the reduced mass p may be approximated as
_ AlA;
PEATT A

with A; and A; as the nucleon numbers of the two nuclei involved. For p(v), we have
made use of the Maxwell-Boltzmann distribution

32
p(v)dv = (ﬁ%) e T 410 oy

for a gas at temperature T and with molecular mass p.
Since S(E) is assumed to be essentially independent of energy, the variation of the
integrand in Eq. (10-3) is given by the exponential of

E b
f(E)=H:+ﬁ

The maximum of this function occurs at

The value 23
Erax = ($04T) (10-4)

is therefore the place where the nonresonant reaction rate for charged particles reaches a
maximum. Since the energy dependence in the integrand is a product of two exponential
terms—exp ~ { E/kT'}, which decreases with energy, and exp{—b/ \/E}, which increases
with energy—the only effective part of the integral is a small region around Ey... In
fact, the integrand may be approximated by a normal curve {44] centered around Epax
with a width A = 41/ EpsxkT/3 (see also Problem 10-4). Schematically, the dependence
is shown in Fig. 10-2.

Probability

Temperature

Figure 10-2: Rate of nonresonant nuclear reaction for charged particles in stellar
environment. The prabability for nuclear reaction is represented by the shaded
area (multiplied by a large number to make it visible) resulting from a product
of the Maxwell-Boltzmann distribution in the kinetic energy of the particles and
the exp{-b/VE} dependence of the Coulomb penetration factor.



§10-3 Conversion of Proton into Helinm 363

10-3 Conversion of Proton into Helium

The sun is classified as a young star with an age somewhere around the middle of its
hydrogen burning phase. The radiant energy comes from fusing four protons into a
helium nucleus. The actual process, however, takes place in several distinct steps, as
direct conversion of four protons into “He, being a four-body reaction, is extremely
unlikely.

The first step is to make a deuteron through the reaction,

ptp—d+et +u, (10-5)

As we have seen earlier in Table 10-1, the reaction starts around stellar temperature
2 x 107 K. In energy units, it is only 2 keV, far lower than the binding energy of a
deuteron. As a result, we do not have to be concerned with photodisintegration as a
sink for the deuterons created as, for example, in the case of big-bang nucleosynthesis
described in §10-1. Once the density of deuterons is sufficiently high, conversion to 3He
through a (p, ) reaction,

p+d—3He+7

becomes important. From this point onward, there are several competing routes to
change the product into *He.

PP-chains. One possibility is that two He nuclei may collide with each other, initi-
ating the reaction
SHe +%He — ‘He+p+p

This is know as the PPI-chain. Since it takes three protons to make each one of the
two 3He nuclei required for the production, a total of six protons are involved on the
left-hand side of the reaction. On the right-hand side, there are two free protons. The
net result is that four protons are converted into a *He nucleus. In the process two
positrons, two neutrinos, and two -y-rays are emitted.

A second possibility is for the 3He to react with one of the *He nuclei left over from
the big bang or produced in the star. This leads to the reaction

‘He + *He — "Be + v (10-6)
Through electron capture, the "Be is converted into a "Li,

e~ + Be — TLi+ v,
By capturing a proton,

p+ Li — “He + ‘He
two *He nuclei are produced. This is known as the PPII-chain. Again, the net result is
the conversion of four protons into a “He, as the starting point is a *He, made originally
from three protons, a *He, and a proton (as well as an electron).

Instead of electron capture, the "Be produced in Eq. (10-6) can be changed into a

8B through a (p,y) reaction,
p+Be = B+
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Being unstable, ®*B decays by §*-emission into a ®Be with a half-life of 770 ms,
83 4 *Be+ e + v,
Since ®Be is unstable with respect té a-decay,
8Be — ‘He + ‘He

we end up again with two *He nuclei. This is the PPIII-chain, and it converts four
protons into a *He through one proton capture, one #*-decay, and one a-decay. The
reactions involved in all three PP-chains are summarized in Table 10-2.

Table 10-2: Proton-proton chains to convert protons into helium

Reaction Q-value(MeV)

Common to all chains

p+p—d+ettu, 1.442

d+p— He + v 5.493
PPI-chain

YHe + "He — ‘He +p +p 12.859
PPIl-chain

3He + “He — "Be + v 1.586

"Be+e” = Litny 0.861

"Li+ p - ‘He + *He 17.347
PPIII-chain

"Be+p - B+ 0.135

8B — ‘He +'He + et + v, 18.074

CNO cycle. In addition to the three PP-chains, protons are also converted into ‘He
through the more elaborate CNO (carbon-nitrogen-oxygen) cycle shown schematically
in Fig. 10-3. Even for a young star, there are always some heavier elements present
alongside with the dominant components of protons and *He nuclei. In addition to
primordial sources, the interstellar medium is also filled with heavy elements blown off
from massive stars that have already gone through their life cycles. Because of the
presence of 12C, it is possible to have a different but fairly efficient process for proton
burning.

Let us concentrate first on the main part of the CNO cycle represented by the circle
in the middle of Fig. 10-3. If we start at the top, from 12C, the cycle may be viewed as
a chain of four (p,~) reactions to capture four protons one after another and convert
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Figure 10-3: Carbon-nitrogen-oxygen {CNO) cycle of nucleosynthesis showing
the different reactions involved in converting protons into *He.

two of them into neutrons by S+*-decays. The six reactions involved are

p+1C - BN4q

BN BC+ g+
p+3C — MN+4q
p+14N —_ 150_‘_7

PO — PN+g*+r.
p+PN = "Cta

The net result is again four protons converted into a *He together with two positrons
and two electron neutrinos, the same final result as the PP-chains. The only exception
is that '2C is used as the catalyst here.

There are several side chains to the main CNO cycle that are also of interest. The
3N produced in the (p,7) reaction on >C may be converted through another (p,7)
reaction into *O, which then f*-decays to 1N,

p+BN - MO+44
“0 — YN+ +u.
The final product returns the process to the main CNO cycle in the form of N.

Similarly, some of the !*N near the end of the main cycle may be converted back to
14N by the following chain of reactions:

p+ BN — 0+«
p+1%0 — VF 4y

TR L, Y04+ 8% 4.
p+'70 - "N+ta

Again a *He nucleus is made from four protons by this procedure.
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The 70 in the intermediate step above may return some 5N to the main cycle and
produce a ‘He nucleus through the chain of reaction

p+70 — BF4q
BF — BO+p"+v0,
p+"0 — ®N+a

The 80 produced in the intermediate stage here may also undergo further proton
capture and produce '°F through the process

p+180 - 19F+,Y
p+YF — 150 4a

Some of the 19F, in turn, may be converted into 2°Ne by a further (p, v) reaction,
p+F - ®Ne + v

In terms of the amount of energy produced, the PP-chains still constitute the dominant
source. However, the CNO cycle is able to generate some of the heavier elements that
are of interest from a nucleosynthesis point of view.

10-4 Solar Neutrino Problem

We saw in the previous sections that most of the radiant energy of stars derives from
nuclear reactions (and the rest from gravitational contraction). In addition to y-rays,
a comparable number of neutrinos is also emitted in the process. Since most of the
reactions take place in the interior of the star, the y-rays are seldom observed directly.
Interactions with the thick outer layers of stellar matter transform the electromagnetic
energy into black-body radiation, characterized only by the surface temperature of the
star. This is not true for the neutrinos. The small interaction cross section means
that most of the neutrinos can emerge from the star without suffering a collision on
the way. Their spectrum is therefore a more direct reflection of the conditions existing
in the interior of the star. For this reason, there are high hopes for new discoveries
to be made through neutrino astronomy: observation of astronomical objects by the
neutrinos they emit rather than the traditional means of visible light and other parts
of the electromagnetic spectrum.

The major advantage of neutrino astronomy is also its main difficulty, The typical
interaction cross section is around 107!8 fm? (107%® m?). As a result, most neutrinos
can, for example, go through the earth without suffering an interaction (see Problem
10-7). Since the only way we can observe a neutrino is through its rare interactions
with matter, huge detectors and highly sensitive apparatus are essential. Fortunately,
the earth atmosphere is not a problem here as in optical astronomy, and large setups
can be constructed on the surface of the earth rather than high up in mountains and
in space stations. In fact, nentrino observatories are usually built deep underground to
reduce background from cosmic rays.

Solar neutrino. For an earth-based observatory, the most intense source of stellar
neutrinos is the sun, as it is the closest “star.” Before examining the expected spectrum,
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let us summarize first the different types of neutrinos produced in the sun from proton

burning. In the previous section, we have seen that neutrinos are produced in the
following three reactions in PP-chains:

p+p — d+et+u, (10-7)
5B — ®Be*+et +u, (10-8)
e"+"Be — TLi+v, (10-9)

The neutrino from the p(p,y)d reaction in Eq. (10-7) is the most important one to
measure, as one such neutrino must be emitted for each *He nucleus made, regardless
of in which one of the three different chains the actual conversion takes place. Unfor-
tunately, the end-point energy of this reaction is only 0.42 MeV, the lowest one among
all the neutrino emission processes involved. The dominant mode of decay for ?B in
Eq. (10-8) is to go to the 2* first excited state at 3.040 MeV. Since it is broad state,
having a width of 1.50 MeV, it complicates slightly the calculation of end-point energy
for the neutrino involved.

For electron capture, the energy distribution of the neutrino emitted is in the form
of a sharp line, as the final state is two body. However, two discrete lines are produced
in the case of "Be given in Eq. (10-9), one to the ground state of 7Li with ~ 90%
probability and the other to the 0.477-MeV excited state with 10% probability. The
end-point energy for the ground state capture is 0.863 MeV, given by the difference
between the "Li binding energy of 39.245 MeV and the "Be binding energy of 37.600
MeV, less the neutron-proton mass difference of 0.782 MeV. For the excited state, the
value is 0.863 — 0.477 = 0.386 MeV.

In addition to these dominant modes, we must include the following two reactions
that are important for the neutrino emitted rather than the fraction of the total energy
produced:

ptp+te” — d+v. (10-10)
p+3He — “He+et+v. (10-11)

The first is the pep process. It is basically the same as the pp process of Eq. (10-7)
except that electron capture replaces t-decay. Although the rate is greatly diminished
because the initial state is three body, the neutrino produced is mono-energetic at 1.442
MeV. The width of the energy distribution is less than 1 keV, arising mainly from the
thermal energy distribution of the particles involved in the reaction.

The second addition is the hep process of Eq. {10-11). Its importance comes from
the fact that it produces the highest energy neutrinos, with an end-point energy of
18.773 MeV. The flux is, however, down by seven orders of magnitude compared with
pp neutrinos. Another source of high-energy neutrinos comes from 8B decay, given in
Eq. (10-8), and it has an end-point energy of 14.9 MeV. As we shall see later, these
high-energy neutrinos are the only ones “seen” by the *’Cl detector that has been in
operation for more than 30 years.

Neutrinos are also produced from the §*-decays in the CNO cycle. The dominant
ones are

13N — ISC+ ﬁ‘f‘ + Ve
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The end-point energies are given in Table 10-3 together with those for the other reac-
tions.

Table 10-3: Maximum energy in MeV of neutrino produced in proton burning.

Label Reaction Epg(right) | Ep(left) | Enax(ve)
pp | p+p—d+et+v, 2.224 0 0.420
8B | !B — 8Re* + et + 1, 56.500 37.738 14.9
hep | p+°%He —*‘He+et +1, 28,296 7.718 | 18,773
BN | BN - BC+ g+, 97.108 94.105 1.199
BO | B0 = BN+ 4t + 0, 115.491 | 111.956 1.731
TR | VR s 70+ 8% 4+, 131.763 | 128.220 1.739

Energy spectrum. In addition to the maximum value, the energy distribution of the
neutrinos emitted is also important in what we can expect to detect at an observatory.
We have seen earlier that, in a §*-decay, the probability W(p.) for emitting a positron
with momentum p, in an interval dp, is given by Eq. (5-68),

W(Pe) dpe = CF(Za Eﬂ)pz(Eﬂ - Ee)z dpe

where, for simplicity, we have assumed the rest mass of neutrinos to be zero and all
the energy-independent factors, including the sum over nuclear matrix elements, are
represented by the factor C. To convert to the probability P(F,) for a relativistic
positron with kinetic energy E,, we can make use of the relation

Ere = E. + mec? = /(pec)? + (mc?)?
This gives us
P(E) dE, = GP(Z, Eo) (Ee+ mec?) BT+ 2Bemect (Ey - Eo)* dE,
Using E, = Ey — E,, we obtain the energy spectrum of the neutrinos emitted as

P(E,)dE, = (%F(Z, Ey — B)) {(Eo — E,) + m.c*}

x\/(Eo — E,)? + 2(Eo — B,)m,c® E? dE, (10-12)

Let us ignore the Fermi function F(Z, Ey — E,) for the time being and concentrate
on the energy dependence given by the statistical part. If the end-point energy Ej is
much larger than the rest mass energy of the positron, as, for example, in the case
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of 8B decay, the energy dependence of P(E,) is symmetric around the peak value at
E, = Ey/2, as shown in (a) of Fig. 10-4. On the other hand, if Ey is comparable to
mec?, as, for example, in converting two protons to a deuteron, the function P(E,) is
forward peaked, as shown in (b) of Fig. 10-4. In a log-log plot, the forward peaking
appears even more pronounced, as we shall see later in Fig. 10-5.
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Figure 10-4: Energy spectra of neutrinos. In (a}, the end-point energy is much
larger than m.c? and the shape is almost symmetric. In (b), the end-point energy
is comparable to m.c? and the spectrum is forward peaked. The vertical scales
are normalized arbitrarily to unity at the peak.

Several corrections must be applied before P(FE,), shown in Fig. 10-4, can be used
as the neutrino spectrum for a specific #*-decay in proton burning. The first is the
Coulomb effect, given by the Fermi function F(Z, Fy— E,). For 8*-decay, the positrons
are given a boost in energy by the nuclear Coulomb field and the spectrum is pushed
in a direction such that it appears to be more forward peaked than without the correc-
tions. To conserve energy, the corresponding neutrino spectrum becomes less forward
peaked than that given by statistical considerations alone. A second correction arises
because the decay takes place in a stellar environment and distribution in the thermal
energy of the particles must be taken into account. The main effect here is to smear
out the distribution somewhat. In the special case of 8B decay, the dominant final state
is a broad one. In this case, the neutrino spectrum is further modified by a convolution
of the distribution of the final state with the shape given by Eq. (10-12), as well as
the corrections described above. In fact, because of the importance of the high-energy
neutrinos emitted, very elaborated calculations have been carried out for the B neu-
trino spectrum [21]. This, as well as spectra from other reactions given above, are
summarized in Fig. 10-5.

Neutrino detectors. There are basically two ways to detect neutrinos. The first is by
scattering from charged particles. If the energy transfer is sufficiently large, the charged
particle recoils with a speed faster than that for light in the same medium. This results
in Cerenkov radiation that can be detected using, for example, a scintillation counter.
For the low-energy neutrinos coming from hydrogen burning, only scattering from elec-
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Figure 10-5: Log-log plot of the expected neutrino fluxes from various proton
burning reactions in the sun [19]. Solid curves are those from PP-chains and
dotted curves from the CNO cycle. Discrete lines come from a pep reaction and
"Be from electron capture.

trons has any finite chance of producing such radiations. Furthermore, the medium
must be transparent for the radiation to reach the detector. For these reasons, water is
used in the Cerenkov detectors at Kamioka. The largest one, the Super Kamiokande,
contains 50,000 tons of high-purity water.® In principle, any neutrino with energy com-
parable to the electron rest-mass energy of 0.5 MeV can scatter electrons to produced
Cerenkov light. However, the practical limit of the Kamioka detectors is higher, around
7 MeV at the time of writing. As a result, only ®B neutrinos from the sun are seen by
the detectors [69)].

Instead of ordinary water, the Sudbury Neutrino Observatory (SNO) employs 1000
tons of heavy water.* The advautage of using this far more expensive form of water
is that, in addition to neutrino-electron scattering, the deuteron in the water is also
sensitive to the neutral current reaction,

Ve+d—=p+n+u,

The neutron liberated in the reaction may be captured by another nucleus through
an (n,~) reaction and a scintillation counter can be used to detect the y-ray emitted.
The minimum neutrino energy required to trigger this reaction is determined by the
deuteron binding energy of 2.22 MeV. The advantage of the neutral current reaction is
that it is equally sensitive to all three types of neutrinos, v,, v, and v;. In contrast,
electron-neutrino scattering favors v, (by a factor of 6). Similarly, the charged current
reaction

vp+d—p+p+e

3See http://osksnl.hep.sci.osaka-u.ac.jp/kamioka Eng/kamioka.html.
4For more up-to-date information, see http://snodaq.phy.queensu.ca/SNO/sno.html.
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the inverse of that given by Eq. (10-5), is sensitive only to electron neutrinos. The
reason that the type of neutrino is of interest here comes from the possibility of neutrino
oscillation. We saw earlier in §5-5 that, under weak interaction, the decay products of
quarks do not have definite flavor. If this happens also to neutrinos, the neutral lepton
emitted in a nuclear (-decay will not be in an eigenstate either, and the observed
neutrino flavor may change under suitable conditions, such as those encountered in
passing through the outer layers of a star, If this does happen, some of the v, emitted
from nuclear reactions in the interior of the sun may be transformed into v, or v, and
would be missed by detectors sensitive only to v.. The neutral current reaction does
not have this problem and may therefore be an important source of information on the
question of whether there is osciliation in the solar neutrinos.

The second way to detect neutrinos is to use radiochemical methods. Nuclear reac-
tions induced by solar neutrinos are extremely rare because of the small weak interaction
cross section. Large detector size alone is insufficient as the signal produced may be
lost in the volume. One way to get around the problem is to use reactions that produce
radioactive nuclei with half-lives suitable for applying radiochemical techniques. The
best known one in this category is the detector at Homestake Gold Mine that has been
operating since 1968. It makes use of the reaction

ve+3CI > %Ar+e”

The chlorine comes in the chemical form CCly, an ordinary cleaning fluid. The product,
37 Ar, is unstable and decays back to 37Cl by electron capture with a half-live of 35 days.
Being a noble gas, the argon can be “flushed” out periodically from the cleaning fluid
and counted. The radioactivity of the sample collected in this way gives a measure
of the number of 3 Ar produced during the period of time and, hence, the number of
neutrino reactions that have taken place in the detector. From the known cross section
of the reaction, the flux of neutrinos going through the detector may be deduced.
As shown in Table 10-4, the minimum energy a neutrino must have before it can be
detected in this way is 0.813 MeV. As a result, it is sensitive to neutrinos from ®B,
hep, the two discrete lines from pep, and the higher energy one from the "Be electron
capture reaction. A summary of the parameters for the neutrino-chlorine reactions is
given in Table 10-4 together with those for the other reactions described below.

Table 10-4: Threshold energy @ in MeV for various neutrino detectors.

Detector Reaction Ep(left) | Ep(right) | Q T1/2
Homestake | ve+¥Cl—+37Ar+e~ | 317.100 | 315505 | 0.813 | 35 days

GSA’}EEX Ve +Ga —"'Ge+e~ | 618.948 | 617.934 | 0.232 | 11.43 days
Molybdenum | ve + %Mo — 8 Tc+ e~ | 846.243 | 843.776 | 1.685 | 4.2 x 10% yr
Kamiokande v +e~ —v+e” — — 25 0
SNO vet+d—pt+nty, 2.224 0.0 2.224 0
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Two other experiments, Gallium Neutrino Observatory (GNO, more commonly
known as GALLEX) and Russian-American Gallium Experiment (SAGE), make use of
the reaction

Ve+ "Ga — "Ge+e”

The threshold energy here is only 0.232 MeV, below the end-point energy of the pp-
reaction common to all three PP-chains. Since each ‘He produced in the PP-chains
involves one pp-reaction, the pp-neutrinos bear almost a direct connection with the
energy produced. Such a simple relation has the advantage of making the comparison
with measured values much more meaningful. The GALLEX/GNO detector consists
of, at the time of writing, 30.3 tons of gallium (12 tons 'Ga) in the form of gallium
chloride solution and has been taking data since 1991. A plan is underway to upgrade
the detector to 100 tons of gallium. The SAGE detector is made of 57 tons of metallic
gallium and has been in operation since 1990. Since gallium is a relatively rare metal,
the amounts used in the two detectors represent a significant fraction of the annual
production of the metal in the whole world.

Another class of radiochemical “detectors” is represented by the one at Henderson
Molybdenum Mine in Colorado. The reaction

ve + %Mo — ®¥Tc + ¢~

has a neutrino threshold energy of 1.685 MeV and produces ®Tc with a half-live of
4.2 x 10° years. The threshold cnergy is relatively high. On the other hand, the half-
life is so long that extremely lengthy periods of time can be used to accumulate the
radioactive product produced in the reaction. In fact, one can take the age of the earth
as the period. In this approach, the experiment involves counting the amount of *®Tc
in molybdenum ore and comparing the result with expectation. This is very similar in
spirit with the chlorine and gallium experiments except that the period is the age of
the earth.

The solar neutrino problem. After running the Homestake Mine experiment for
more than two solar cycles, it is found that the measured neutrino flux is only about a
third of the expected value. Both the galliutn and Kamiokande results also support the
conclusion that the measured flux is lower than the values expected. The deficiency
in the measured solar neutrino flux is therefore “real” in terms of the best available
knowledge of the physics involved. For this reason, it has been generally referred to as
the solar neutrino problem [20].

Because of the extremely small cross section, it is convenient to adopt a new unit,
the solar neutrino unit (SNU for short), for any quantitative discussions of the solar
neutrino question. One SNU is defined as the flux of neutrinos that produces one
reaction a second for every 10%¢ target atoms. The measured value at Homestake Mine
is 2.1 £ 0.3 SNU. Some variations with solar cycle are visible in the data, but they are
not large enough to be of concern to us if our interest is in the deficiency compared
with the expected value.

Since the v, + 37Cl reaction is only sensitive to the high-energy neutrinos from
B decay and the hep process, it is more subject to uncertainties in our knowledge of
the physics involved. One of the major difficulties is that we do not have a method,
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independent of neutrinos, to make observations on the conditions existing in the inte-
rior of the sun, where the nuclear reactions take place. As a result, models must be
constructed on the neutrino spectra we can expect using the best known physical prin-
ciples and available values for the input parameters. The expected value for the 37Cl
measurement, obtained from the “standard solar model,” is 7.9+2.4 SNU [19]. The un-
certainty represents very conservative estimates of the input parameters that went into
the model. The discrepancy of the calculated values from the measured ones is, there-
fore, statistically significant and may well imply new physics. Partly for this reason, it
has stimulated interest in carrying out the newer solar neutrino measurements.

The average measured value of GALLEX at the time of writing is 77 4+ 10 SNU.
This is only about half of the expected value of 127 SNU from the standard solar model.
The measured value of SAGE, 69 + 13 SNU, is comparable to the GALLEX results.
Thus, the gallium measurements also show a deficiency in the flux of solar neutrinos,
confirming the existence of the solar neutrino problem.

The original Kamiokande Cerenkov detector was designed to detect proton decay
and other high-energy events. It was converted in 1986 to observe low-energy neutrinos
by reducing the background. Being a “real-time” detector, it is able to show that the
observed neutrinos are coming from the direction of the sun. On the other hand, the
present threshold of ~7 MeV makes it sensitive only to the 8B neutrinos. The measured
result is about half of that expected from the standard solar model [69]. However, no
correlation with solar spot activity was evident from the data.

If we take all the measured results together, it is quite clear that the observed solar
neutrino flux is less than the value expected based on the best knowledge we have on the
physics involved. This is a very interesting situation, as advances in physics are often
made when observations become precise enough to challenge the existing views. In this
way, the solar neutrino problem has a chance to become the doorway to new physics
we have not yet thought about. No doubt the new detectors of Super Kamiokande and
SNO will shed some additional light on the question.

10-5 Helium Burning and Beyond

When the central part of a star runs out of hydrogen fuel, there is a shortage of thermal
pressure to maintain the hydrostatic equilibrinmm and gravitational contraction begins
once again., This raises the central temperature of the star until it is high enough for
helium burning to start. Since the outer layers of the star are cooler and less dense,
nuclear reactions take place at slower rates. As a result, the central part of the star
evolves into helium burning while the outer layer continues with the process of hydrogen
burning.

Different layers of stellar evolution. The total amount of fusion energy available in
helium burning is much less than hydrogen burning, as the binding energy per nucleon
of ‘He is 7.1 MeV, less than 1.5 MeV away from the peak value around A =~ 56. We
shall see in a more detailed discussion later that the first step in helium burning is
to fuse three *He into a !>C nucleus. Through an (a, <) reaction, 2C absorbs an a-
particle to form 160. At the end of this stage, the Coulomb barrier becomes too high
for further a-particle capture to take place. The star again repeats the sequence of
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first exhausting the available fuel and then contracting to even smaller size and higher
temperature (and density) until the next group of nuclear fusion reactions can take
place. Since the reactions are going on at higher rates in the central part of the star,
the evolution takes place on shorter time scales than the outer layers. The net result is
that an onion-like structure develops, with successive inner layers of the star undergoing
later and later stages of evolution, This is schematically shown in Fig. 10-6.
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Figure 10-6: Schematic diagram showing the dominant nuclear components,
temperature, and density in different layers of a massive star prior to supernova
explosion [120].

When the temperature of a layer reaches kT ~ 1 MeV, particles ag heavy as silicon
occupy a significant fraction of the nuclei present. At the same time, y-rays in thermal
equilibrium with the particles are energetic enough to cause photodisintegration of the
nuclei present. One consequence of such an environment is that a number of protons
and neutrons are knocked out of the nuclei and become the source of other nuclear
reactions. In this way, some of the nuclei outside the 4n chain are created.

The combination of higher temperature in the stellar interior and smaller binding
energy differences in the nuclei involved shortens the duration for each successive stage
of nucleosynthesis. In a massive star, 25 solar masses, for example, the hydrogen
burning stage takes several million years (compared with the order of 10'° years for
the sun). The helium burning stage is about an order of magnitude shorter in time.
In the next stage, when '2C becomes the dominant fuel, the lifetime is only a few
hundred years. Oxygen and silicon combustions at even later stages are estimated to
take, respectively, only 6 mounths and 1 day. At the mean time, the density of the star
goes up. At the hydrogen burning stage, a 25-solar-mass star has only five times the
density of water. At each successively later stage, the density goes up by more than
two orders of magnitude, ending up to be about 30 million times the density of water at

the silicon burning stage. This value is, however, still far less than the nuclear matter
density of 3 x 10™ that of water (see, e.g., Ref. [64].)



§10-5 Helium Burning and Beyond 375

Triple-a process. Let us return first to the end of hydrogen burning. Gravitational
contraction starts again, and both stellar temperature and density begin to rise. Con-
version of ‘He to heavier nuclei becomes possible when the interior of a star reaches
temperature kT' ~ 10 to 20 keV and density p ~ 10° to 10® kg/m® This is the
hydrostatic helium burning stage of a star.

From a nuclear physics perspective, there are several interesting points that merit
special attention. The first is the absence of stable A = 5 nuclei, as we saw earlier in
§10-1. Neither He (ry/2 = 0.7 x 1072 5) nor °Li (71, = 3.0 x 1022 s) nuclei live long
enough for a sufficient number to be built up in a star. As a result, it is impossible
to continue the process of proton capture beyond “He to make the heavier nuclei, as
in the hydrogen burning stage. Instead, a-particle capture becomes the important
mechanism.

The second is that ®Be is unstable. The ground state decays into two a-particles
with 732 = 6.7 x 107!7 5. As soon as ®Be is made through the reaction

‘He + *He — ®Be

it decays spontaneously back to two a-particles. However, the half-life is five orders
of magnitude higher than those, for example, for the two mass 5 nuclei given in the
previous paragraph. As a result, there is always some small amounts of ®Be present
at any time. The equilibrium density depends on the rate of creation. At T ~ 1 to
2 x 10® K, the value is about one ®Be among 10° a-particles. Such a low abundance
will not normally be sufficient for further a-particle absorption to form heavier nuclei
except for a very fortuitous “accident” in the structure of 2C.

This leads us to the third interesting point, the “triple-a process.” The binding
energy of '2C is 92.162 MeV and those of ®Be and “He are, respectively, 56.500 and
28.296 MeV. The reaction

‘He+%Be — 2C+ v

leading to the ground state of 12C, therefore, has a @-value of 7.366 MeV. Furthermore,
detailed nuclear structure calculations show that the ground state wave function of 12C
has a relatively small overlap with the product of those for 8Be and *He. As a result,
the reaction cannot be a resonant one and the production rate for this way to create
2C is too small to explain the observed abundance.

Fortunately, there is a 0% excited state at 7.66 MeV in '2C. Since the spin and
parity of both #Be and *He are 0%, the capture can go through the excited 0% state by
the strong s-wave channel. The energy difference from the threshold is now less than
300 keV, and the capture can take place almost at the most favorable circumstance
for a resonance reaction. Furthermore, the wave function of the 7.66-MeV 0% state
resembles that of three a-particles arranged in a straight line, rather than in a triangle,
as in the case of the ground state. This is shown schematically in Fig. 10-7. The large
overlap in the wave functions provides the additional advantage required to make it
possible to convert the small concentration of ®Be efficiently into 2C. Since ®Be lasts
only for such a short time, the process is essentially one that convert three a-particles
to a 12C,

‘He + *He + *He — "’C + v
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and hence the name triple-a process. In the absence of this special 7.66-MeV state, it
would have been almost impossible for nucleosynthesis to proceed to heavier elements
beyond #Be in helium burning stars.

From carbon to oxygen. By capturing an a-particle, *2C is converted into %0. The
reaction
‘He + 2C — 80 4 4

is, by far, the most important one that consumes '2C. Competitive processes such as
12C+ IZC — 2“Mg+'y

are far less effective because of the higher Coulomb barriers and unfavorable @Q-values
(14 MeV in the 2C(*2C,y)*Mg example] [38].

In fact, the triple-o process and ?C(a, v)'®O are the two most important reactions
that control the subsequent production rates and, hence, the relative abundances of
heavier elements. Calculations have shown that, in massive stars, the ratio 90 to
12C affects the amount of heavier elements produced in their lifetimes, as well as the
properties of the remnant after a supernova explosion [143]. Large values, for example,
favor the production of heavier elements, leading to a more massive iron core during
the pre-supernova stage, and increase the probability of leaving a black-hole remnant
instead of a neutron star. Small values, on the other hand, produce relatively much
less heavier elements. The calculated values are plotted in Fig. 10-8 for a few of the
more representative elements as illustration.

Although the triple-o reaction cannot be reproduced easily in the laboratory, the
cross section may be deduced from other measurements with an uncertainty of about
15%. The primary reason for this is the simple level structure of 12C at the energies
involved, as can be seen from looking at Fig. 10-7. This is not true for %0, and the
cross section for the low-energy *C(a,v7)'®O reaction becomes one of the important
measurements in nuclear astrophysics.

The low-lying energy level structure of %0 relevant for the reaction is shown in
Fig. 10-9. In the region of excitation energy near the reaction -value of 7.162 MeV
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Figure 10-8: Calculated production factors of a few representative elements
as a function of the S-factor for the 2C(a, v) 16O reaction. (Values taken from
Ref. [143].)

for the 2C(a, 4)'%0 reaction, there are no 0% states. Consequently, the capture must
proceed through channels with orbital angular momentum £ > 0. Since the angular
momentum barrier increases almost quadratically with £ [proportional to (€ + 1)/7?],
the next most likely reaction channels are £ = 1 leading to 1~ states and £ = 2 to
2% states. In each of these two channels, there are two states near the threshold, the
2+ states at 9.85 and 6.92 MeV and the 1~ states at 9.60 and 7.12 MeV. Both the
6.92- and 7.12-MeV states are subthreshold. However, being states with finite widths,
the distributions of their reaction strengths extend into regions with positive Q-value.
As a result, they make significant contributions to reactions that are extremely low in
energy, such as those taking place in the stellar environment of interest to us here.

We can find out the reaction energies involved in helium burning stars from the
following consideration. A typical stellar temperature here is kT ~ 0.015 MeV (T =~
2 % 10% K). From Eq. (10-4), the peak of the reaction rate is found to occur at

Ermax = (10kT)*°
Using Eq. (10-2), we obtain the result
b=raZZ:\/2uc® = 0.990Z1Z2ﬂ

in MeV'/2, Here A = A;Ay/(A, + A;) is the reduced mass in atomic mass units (amu),
with A; and A; as the masses of the two nuclei involved. For the 2C(a, v)!®O reaction,
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Figure 10-9: Low-lying energy level structure of %0 and the 2C(a, ¥)'%0 re-
action. (Plotted using data from Ref. [136].)

we have Ay = 4, A; = 12, Z; = 2, and Z; = 6. This gives us
Epax = 0.3 MeV

or 300 keV. In the laboratory, it is impossible to carry out a-particle measurements
down to such low energies. First, it is not easy to produce an intense beam when the
energy is so low. Second, the Coulomb barrier for the reaction is around 6 MeV and the
probability for a 300-keV a-particle to penetrate into a '2C nucleus is so small that one
can expect only a few counts a year with the best available accelerator and reasonable
target thickness. For this reason, the reaction rate for ?C(a,v)!®0O at energies of
astrophysical interest is far less well known than that, for example, for the triple-a
process.

Most measurements are carried out at energies on the order of mega-electron-volts,
a region where experiments can be reasonably carried out. In these cases, the dominant
contributions come from states above the '*C(a, 7)'®0 reaction threshold. It is not easy
to extrapolate from these measurements the value for the cross section at 300 keV, as the
contributions from the subthreshold states, important for astrophysical interests, are
insignificant at such high energies. For this reason, the uncertainty was, until recently,
almost a factor of 2 for §(300 keV), the value of the S-factor at E,.. of 300 keV. As we
can see from Fig. 10-8, a more precise value is required to deduce the relative abundances
of 12C to %0 in helium burning stars and thence to make predictions of the rate of
nucleosynthesis for heavier elements. In fact, the measurement of S(300 keV) for the

2C(a@,7)*0 has been, on occasion, referred to as one of most important experiments
to be carried out in nuclear astrophysics.
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Recently, the uncertainty in the £ = 1 part, i.e., contributions from 1~ states, has
been reduced greatly using the a-decay rates from low-lying excited states of 'O [15},

160* — *He + 12C

This is the inverse of the 2C(c, )!¢0 reaction. The excited states of Y60 are obtained
from the §~-decay of 8N, a radioactive nucleus (71/; = 7.13 s) that can be produced
in large quantities from a radicactive beam setup. The equivalent 2C(a, 7)'6O cross
section is obtained in this way down to ~800 keV in energy, far below the values that
can be accessed in direct measurements. As a result, the extrapolation to 300 keV
is made more reliable and a value of S,=;(300 keV) = 80 keV-barn is obtained. The
uncertainty is reduced to about 30% (from a factor of 2 before). Unfortunately, at
Epax = 300 keV, the 2% states are expected to be make comparable contributions.
Until the uncertainties in the £ = 2 part of the S-factor are also reduced, the error bar
for the complete S-factor remains far too large.

Carbon burning and beyond. When all the available He in the central part of a
star is used up, the core goes through another stage of gravitational contraction and
rige in temperature. When T ~ 10° K, corresponding to kT ~ 100 keV, reactions
involving the conversion of any '2C remaining after helium burning become possible,
such as

1204 120 MM +
%Na +p
BMg + n
®Ne + «

¥O0+a+a

I A

The time span for the carbon burning phase is several orders of magnitude shorter than
that for helium. Furthermore, only the core can reach the temperature and density
required for the reactions to take place. The layer just outside the core still has enough
fuel left to continue in the helium burning stage and the layer outside enough to continue
hydrogen burning.

Another interesting case in nuclear structure is the absence of significant contribu-
tions from the '80(a,7)*Ne reaction in stellar nucleosynthesis. The binding energy
difference between 2°Ne and the sum of those for *He and 190 is 4.73 MeV. However,
the excited states in 2®Ne around this energy cannot be formed easily by %0 absorbing
an a-particle. This is, to a large extent, because of the unfavorable angular momentum
barriers, as can be seen from Fig. 10-10. As a result, the reaction

80+ a — ®Ne+ v

does not become important at the end of a-particle capture by 2C to form 0. On
the other hand, because of the relatively low binding energy for a-particles, photodis-
integration of 2°Ne can be significant when the temperature rises to new heights at the
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end of carbon burning. This produces a short-lived neon burning stage in which the
reaction

®Ne + v — *He + *0

produces a-particles that can be used in the reaction
"He + ®Ne — v + “Mg

to produce ¥Mg.

At even higher temperatures, 2 to 3 x 10° K, it is possible to convert *Q into
heavier elements, for example,

160+160 328-}-’7
i )
334+ n
BSi+a

Mg+ a+a

A A A

On the other hand, the reaction 2C + '¢0 is not considered to be important in nucle-
osynthesis, as nearly all the '2C is exhausted before the temperature is high enough for
the reaction to become significant. (See, e.g., Ref. [44].)

When the temperature is between 3 and 4 x 10° K, conversion of two ?%Si to one
%Nij becomes possible. At this stage, y-rays at the high-energy tail of the Maxwellian
distribution are sufficiently energetic for photodisintegration to compete with nuclear
fusion. As a result, direct conversion of silicon to nickel is relatively rare. At thermal
equilibrium, the radiant energy is proportional to T4 according to the Stefan-Boltzmann
law. In this sea of <-rays, large numbers of a-particles, protons and neutrons are
liberated by photodisintegration, allowing a variety of nuclear reactions to make heavier
nuclei up to and just beyond A ~ 56. However, temperature and density decrease as
we move away from the stellar core. While silicon burning is taking place in the core,
the onter layers are still in the various earlier stages of nucleosynthesis.
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10-6 Supernova and Synthesis of Heavy Nuclei

Supernovas hold a special place in nucleosynthesis because of the heavy elements they
produce. Since binding energy per nucleon decreases beyond A ~ 56, it takes energy
to create elements that are heavier. The processes we saw in previous sections are
ineffective for the present purpose. Through random chance, some heavy elements
are produced in the various hydrostatic processes; however, the total amounts are
inconsequential. In a supernova explosion, on the other hand, a shock wave is generated
when the collapsing core rebounds. On its way through the outer layers of the star,
the shock wave provides the ideal condition for endothermic reactions to synthesize
elements beyond A ~ 56.

Only massive stars end their lives as supernovas. For the core of a star to undergo
sudden collapse, there must be sufficient gravitational energy in the system to start
with. The remnant of a supernova is often a neutron star or a black hole. This
requirement puts the core to be more massive than the Chandrasekhar limit of 1.4 solar
mass, as a part of the material is ejected in the ensuing explosion. Furthermore, for the
collapse to take place, there cannot be any thermal pressure to act against gravitational
force. The core must therefore be totally exhausted of nuclear energy. The combination
of these two factors puts the likely candidates to be stars with total mass exceeding 10
times that of our sun. In fact, most model calculations of supernovas treat 20 to 30
solar masses as the typical case. For such massive stars, the core constitutes only about
10% of the total. For smaller stars, such as our sun, the total gravitational energy is
inadequate and the more likely end is a white dwarf, a small-size high-temperature
object that slowly radiates away any remaining thermal energy.

When all the nucleons in the central part of a massive star are converted into A ~ 56
nuclei, principally 3¢Fe, the temperature reaches around 4 x 10° K. Since all the available
nuclear fuel is exhausted, there is no longer the thermal pressure to counterbalance
further gravitational contraction and the temperature rises to even higher values. Once
the star arrives at this stage of its evolution, the dominant nuclear interactions change
into those that consume thermal energy rather than supplement it, as in the earlier
stages. The cooling can take place rapidly, on the order of a fraction of a second,
depending on the stellar mass. Without the thermal pressure, the inner core of the
star implodes with the speed of a free fall. The material is compressed in the process
to several times nuclear matter density. Like a stiff spring, the gravitational energy
released from the collapse is stored momentarily as potential energy in the compressed
nuclear matter., To shed this “extra” energy, the core rebounds and pushes part of
the material in the core to the outer layers of the star at supersonic speeds while the
remaining material goes into either a neutron star or a black hole. Our main concern
here is the explosive nucleosynthesis caused by the ejected material interacting with the
nuclei in the outer layers that are still in various earlier stages of hydrostatic burning,.

Neutrino cooling. In the previous sections we have been concerned with the produc-
tion of energy in stars without paying any attention to the mechanism by which energy
is radiated into the surrounding. In addition to kinetic energies of the products, v-rays,
positrons, and (electron) neutrinos are produced in copious amounts from various nu-
clear reactions. Furthermore, since the star as a whole is electrostatically neutral, there
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are a large number of electrons around, the same number as protons. The positrons
that result from conversion of protons into neutrons are quickly annihilated by the
surrounding electrons through the reactions

ef+e” = v+ et +e” v+

The former is electromagnetic and, therefore, much more likely to occur than the latter
weak interaction process by a factor as high as 10'®. However, except at the outer layer,
the v-ray pairs produced must penetrate through a thick blank of matter before they
can leave the star. Furthermore, the mean free path of y-rays is relatively short, and as
a result, it takes a long time for them to reach the surface. In contrast, the neutrinos
suffer at most one interaction on the average before they are outside the star. For this
reason, the fraction of energy carried away by neutrinos during the short-lived later
stages of the stellar evolution is actually larger than that by v-rays.

Neutrino cooling is even more important during the final collapse of the core of a
massive star. For simplicity, consider a case where the core has 1.5 solar mass (3 x
10% kg) and it collapses into a neutron star. In addition, we shall assume, again for
simplicity, that all the material before the collapse is in the form of %6Ni, with equal
number of neutrons and protons. The number of nucleons in the core is then

3 x 10% kg

— — 37
Mnucleon = -1-.6_7—X 10-27 kg =2x 10

To turn into a neutron star, all the protons must be converted into neutrons and the
number is half of that for nucleons, or 1057. Most of the conversion is through electron
capture, each accompanied by a neuntrino. This puts the number of neutrinos emitted
to be 10%7. A reasonable estimate of the average amount of energy carried away by
each neutrino is 15 MeV. This value may be obtained by considering the neutrinos to
be a degenerate Fermi gas occupying the same volume as the nucleons. In this limit,
the average energy is related to the Fermi energy, in the same way as we have done
earlier in arriving at Eq. (4-72) from the Fermi energy of nucleons. The only difference
here is that we do not have the isospin degree of freedom as in the case of infinite
nuclear matter. Consequently, our density is only half of that of Eq. {4-69) and our
Fermi momentum (1/2)"/? is as large as that of Eq. (4-70). The average energy is then
(1/2)%3 of € (=23 MeV), or ~15 MeV. For 1057 neutrinos, the total amount of energy
carried away is
E,(total) ~ 1.5 x 10°® MeV ~ 2 x 10%% J

that is, about 10% of the gravitation binding energy of the neutron star.

Core collapse. In addition to neutrino cooling, part of the thermal energy can also
be taken away by photodisintegration of nuclei into a-particles and nucleons. At the
end of silicon burning, the temperature is over 4 x 10° K, about % MeV in energy units.
Consequently, photons at the higher end of the Maxwell-Boltzmann distribution have
more than adequate energy to dissociate the nuclei present. As example, consider a
%Fe nucleus, the most tight bound member of the A = 56 isobar. The energy required
to remove an a-particle is only 7.6 MeV. The corresponding amounts for a proton and
a neutron are, respectively, 10 and 11 MeV. There is, therefore, fairly high probability
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for photodisintegration to generate substantial numbers of a-particles and nucleons.
The particles produced are important, as we shall see soon, in making some of the
nuclei beyond A ~ 56 during the rebound after the core collapse. At the same time,
the energy consumed in the reactions depletes the thermal energy further.

Without counteraction by thermal pressure, the core contracts further. Since the
density is already quite high at the end of silicon burning, in excess of 10'° kg/m3, any
further collapse results in electron capture to convert the protons, bound as well as free
ones, to neutrons. The neutrinos released in the neutronization process carry energy
away from the core, as we have seen earlier. The whole sequence of events from the
end of silicon burning to complete collapse takes less than a second, perhaps as short
as only milliseconds.

At the end of the collapse, the kinetic energy must have been converted into some
form of potential energy. The most likely candidate is in compressing nuclear mat-
ter. However, we should not ignore the contributions of the internal energy of matter,
through such means as creating mesons and baryons other than nucleons. Unfortu-
nately, we do not have much experimental guidance to make a good estimate of the
situation. For a proper treatment, we need an equation of state that can take us be-
yond ordinary nuclear matter to the high temperatures and densities we are dealing with
here. As we have seen in Chapter 9, lattice gauge investigations and ultra-relativistic
heavy-ion collision studies may give us some hints on how to do this in the near future.

The observational evidence strongly suggests that the core rebounds after the col-
lapse, with material ejected at supersonic speeds. As far as nucleosynthesis is concerned,
we are more interested in the shock waves and ejected material sent through the mantle
of the star. Both are fundamental in creating nuclei beyond A ~ 56. Furthermore, the
rebound is sufficiently energetic that a large fraction of nuclei in the outer layers of the
star are blown off into the interstellar space and become a part of the raw material for
future star formation and nucleosynthesis. Without these “explosions,” nuclei made in
one star remain with the star and very little heavy elements become available to make
the planets and young stars such as those forming the solar system.

Explosive nucleosynthesis. According to Fowler and Hoyle {64], the mass of a star
just before a supernova explosion is 57% in the '6O-rich mantle and 33% in an outer
shell consisting of H and *He. The remaining 10% is in the collapsing core. When the
shock wave travels through the different regions, a variety of heavy-ion reactions can
take place, such as

10 + 190 — *Si + He 31 + 28 — Ni + v

In the outer layers, the shock wave causes conversion of hydrogen into helium and
helium into oxygen. Some elements heavier than A = 56 are also produced, but the
expected abundances are far less than the observed values shown in Fig. 10-1.
Because of the drastically different environment, nuclear reactions taking place
during explosive nucleosynthesis can be quite different from those in hydrostatic burning
stages described earlier. Here, we are dealing with higher temperatures and shorter time
scales. For example, in explosive hydrogen burning, the (hot) CNO cycle operating at
T ~ 108 to 10° K becomes more important than the PP-chains. To appreciate some
of the differences, let us again start with the 2C(p,v)'3N reaction at the top of the
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main circle in Fig. 10-3. Since the time scale is much shorter, it is possible for the >N
created to capture another proton to form O before +-decay to N. Here, it rejoins
the main CNO cycle again through one further proton capture to form 0. The product
then B*-decays to '>N. The cycle is completed through a *N(p, a)'?C reaction to go
back to 12C. Although the nuclei involved are very similar to the corresponding CNO
cycle in hydrostatic hydrogen burning, the reaction rates are quite different because
of the higher temperature. As a result, the production rates and, hence, the resulting
relative abundances of isotopes produced are also different. For example, the observed
abundances of 2C, ®N, and 7O are believed to be enhanced by the hot CNO cycle.
Similarly, in explosive oxygen burning, 32348, 35C] 3638 Ay 40Ca and “STi are produced,
and in silicon burning, *?Ca, 5Cr, 56%8Fe, *Ni, and Mn are created relatively more
abundantly than otherwise [13].

Creation of heavy elements. For elements beyond iron and nickel, the Coulomb
barriers are high because of the large numbers of protons. For proton and a-particle
captures, the temperature must rise above 5 to 6 X 10° K to make them sufficiently
probable, On the other hand, the average thermal energy is now around 0.5 MeV
and photodisintegration is even more important than at the hydrostatic silicon burning
stage. The competition hetween formation of heavy elements by charged particle cap-
ture and destruction by photodisintegration produces an equilibrium density too small
to be of any importance as far as the final abundances of these elements are concerned.

The bulk of the observed heavy elements are made by capturing neutrons one
at a time. The process creates increasingly more neutron-rich nuclei and must be
interdispersed with (~-decay to keep the products staying more or less in the valley
of stability. Under such circumstances, the observed abundance of an element with
mass A is the result of a balance between the production rate to make the element
from element A — 1 and the destruction rate to form the next element A + 1. The
relation between the abundances for different elements may by expressed in terms of
the variation in the density of element A,

dN 4

dt
where N4 and N4_, are, respectively, the number density of elements A and A—1, and
N, is the neutron density. The neutron absorption cross sections are given by o4 and
g a—1. The relative velocities v4 and v4_j control the probabilities for collision between
a neutron and the two types of nuclel involved. Both the cross sections and relative
velocities are functions of the energy. For our purpose, we are more interested in the

results averaged over energy distribution. This is indicated by the angle brackets. The
equilibrium density is given by the condition

dN,
2 =0
dt
However, since we are dealing here with a chain of reactions involving neutron captures
as well as @~ -decays, the relations for different elements are coupled together by the fact

that, for example, N4 occurs on the right-hand sides for both dN,/dt and dN 4, /dt.
As a result, the solution must be obtained by solving a set of such equations.

= Ny 1Ny < 0p01v4-1 > =NaN, < 04v4 >
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Since neutrons do not carry a net charge, we have the advantage over charged
particle reactions in that we do not have the large hindrance factor at low energies
due to Coulomb barrier penetration, exp{—b/v'E} in Eq. (10-2). The distribution
of neutron reaction rates is controlled essentially by the Maxwellian distribution for
neutron thermal energy, rather than that shown in Fig. 10-2 for protons and a-particles.
At the same time, the density of excited states for heavy nuclei is high, more than 10°
MeV~1. As a result, we can expect that a neutron can always be captured under the
most favorable condition, such as ¢ = 0, unlike the situation we saw earlier for “He
capture by 80 and ?°Ne.

By nuclear physics standards, the neutrons we are interested in here are quite low
in energy, from tens of kilo-electron-volts at T' ~ 0.5x 10° K to 0.5 MeV at 6 x 10° K. At
these energies, the neutron capture cross section is inversely proportional to the velocity.
This factor favors reactions at the lower end of the neutron energy distribution. Since
the number of reactions per unit time is the product of the cross section o and the
frequency of collision, given by the relative velocity v between the two particles, the
rate for

(A Z2)+n— (A+1,2)+7

is more or less constant in the energy region. Under such conditions, the half-life for
nucleus (A, Z) due to the (n, ) reaction is inversely proportional to the neutron density
N, and is given by

In2
N, <ov>

If we take 0.1 barn (1072° m?) as a reasonable average value for o and v = 107 %¢
(corresponding to kT ~ 50 keV), we have

T("-'Y) =

1023
Ty ~ —— 8

(nyy) N,
For neutron density N, ~ 10! m~3, we obtain a value of 7, ~ 10° yr. Since this
is much longer than typical f-decay half-lives, a reaction under such circumstances is
known in nucleosynthesis as a slow process, or s-process for short. If the neutron density
is much higher, N, ~ 10%® m~3, the half-life for a nucleus in a chain of (n,~) reactions
is around T(n4) ~ 107% 5, much shorter than typical S-decay times in the mass region of
interest. Neutron capture in such cases is called a rapid process, or r-process for short.

Source of neutron. During the hydrostatic burning stages of a star, free neutrons
are not produced in any of the dominant processes. This raises the question of whether
there are enough neutrons to provide the density required for the r-process and to
supply the large numbers needed to build heavy elements all the way from A = 56 to
beyond A = 200.

The first thing to realize here is that the observed abundances of heavy nuclei
are down by at least 10° compared with that of silicon (and by 10'° with respect to
hydrogen). Comnsequently, the total number of free neutrons required is quite modest
compared with the total number of nucleons present in the star. Second, neutron
density NV, ~ 10%® m~3, used earlier as example, is not a large value, at least at the
stage immediately after a supernova explosion. The matter density in the oxygen
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burning shell is 10" kg m~3. This is equivalent to a baryon density on the order

of 101°/(1.67 x 1077") ~ 10% m~3. If we have one free neutron for every 10° bound
nucleons, equivalent to about 1 for every 107 nuclei, we reach the required density for
the r-process to take place.

There are several sources for free neutrons. One of these is photodisintegration at
the silicon burning stage. The bulk, however, comes (indirectly) from a-capture by
carbon, nitrogen and oxygen in the CNO cycle, as shown in Fig. 10-3. For example,
a-capture by 1N followed by g*-decay through the reactions

UN +4He — BF 4+ BR 5 B0 et 4o,
produces an 0. Among other possibilities, we have
B0 +4He — Ne +n

that produces a free neutron. Instead of releasing a neutron, we can have a (‘He,y)
reaction to create a *?Ne using the ®*O produced. A free neutron is released by a
("He,n) reaction on *Ne,

2Ne + ‘He — ®Mg+n

Again, we can have, instead, the reaction 2Ne(*He,y)*Mg. Both Mg and Mg can
undergo further (*He,n) reactions,

“Mg + *He - ®Si+n BMg + *He — ®Si+n

to free neutrons into the stellar environment. In addition, neutrons are also produced
in carbon burning and other processes.

Proton-rich nuclei. Nuclei created by neutron capture tend to be on the neutron-
rich side of the valley of stability. Since §™-decay following neutron capture stops at
the bottom of the valley, neutron capture cannot be expected to make nuclei on the
proton-rich side. For this reason, other reactions must be responsible for their creation.
Observed evidence shows that the abundance of proton-rich nuclei are down by two to
three orders of magnitude compared with their neutron-rich cousins, suggesting that
processes that produce them are less likely than the r- and s-processes.

The possible reactions to form proton-rich nuclei are the (p,+) reaction we have
seen earlier and positron capture

(A, Z2)+et = (A, Z+1)+ 7,

Since the latter is a weak interaction process, the rate is much lower compared with
nentron capture. Another even less probable process is spallation of heavier nuclei by
a proton or an a-particle. Finally (7, n) reactions of the type

(A, Z2)+7—>(A-1,2)+n

produces nuclei with a higher Z/N ratio than that for the target.
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Problems

10-1.

10-2.

10-3.

10-4.

10-5.

10-6.

10-7.

10-8.

What is the gravitational energy released when noninteracting particles with a
total mass 1.99 x 10* kg collapse from an infinite distance of separation to a
spherical ball of radius 6.96 x 108 m? Assuming an ideal gas equation of state,
what is the temperature of this sphere? Compare the result with the value of
15 x 108 K for the interior of our sun.

Show that the maximum amount of energy released in the form of electromagnetic
radiation from converting four protons to a *He is given by the binding energy
of *He less twice the sum of the neutron-proton mass difference and the mass of
positrons. Ignore any rest mass the neutrino may have.

Using the fact that three-fourths of the solar mass of 1.99 x 103 kg consists of
protons, calculate the length of time that fusion energy can be generated at the
present rate of 1.4 kW /m? at a distance of 1.50 x 10'! m in converting four protons
to a *He nucleus.

Show that the reaction rate near the most effective temperature Ep,,, given by
Eq. (10-4), may be approximated by a normal distribution centered around E, .,
with a width 0 = /2E,..kT/3.

Calculate the energy released in each one of the nuclear reactions in all three
PP-chains.

The inverse (-decay reaction
Ve +37Cl = e + Y Ar

is used to detect neutrinos from the sun. The number of solar neutrinos produced
may be estimated from the solar constant (1350 W/m?). Assume that 10% of the
thermonuclear energy is carried away by neutrinos with a mean energy of 1 MeV
each and that only about 1% of the neutrino is energetic enough to convert 3Cl to
37Ar. For a detector containing 400 m® of tetrachloroethylene (C,Cly), estimate
the average number of 37Ar produced in a day if the density of C2Cly is 1.5 g/cm?®
and about a quarter of the chlorine is C]. The cross section for the reaction
may be taken to be 107%8 m?.

Assuming a cross section of 10-*8 m? for a neutrino to interact with each nucleon,

find the difference in the night and daytime detection rate of solar neutrinos for
the Super Kamiokande water Cerenkov detector consisting of 50,000 tons of water.

A neutron star is a compact, dense object made of degenerate neutrons having a
density similar to that in the central part of a heavy nucleus.

(a) If the density of nuclear matter is 0.17 nucleons/fm? or 2.8 x 10*" kg/m?,
what is the radius of a neutron star having a mass one and a half times that
of the sun? (One solar mass = 2.0 x 10% kg.)
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(b) A neutron star is one of the possible remanents of a supernova explosion

such as SN 1987a, the one which took place in the Large Magellanic Cloud
160,000 light years away and was first observed on earth on February 24,
1987. When the core of a large star exhausts its nuclear fuel, there is no
longer the thermal pressure to counterbalance the gravitational force, and
the core of the star collapses. For simplicity, we can consider that all the
material in the core of the collapsing star is in the form of **Ni made of 28
neutrons and 28 protons. Because of the tremendous gravitational force, the
protons in %®Ni change into neutrons by capturing atomic electrons through
the reaction

p+e —ntu,

Calculate the number of neutrinos released in converting 1.5 solar mass of
56Ni atoms into neutrons during the gravitational collapse.

If the total cross section for a neutrino to interact with each nucleon is
10%8 m?, how many reactions due to the neutrinos from such a gravitational
collapse can one expect in a detector on earth made of 3000 tons of water?
Compare this with the number of events (12) observed with such a detector
at Kamioka due to supernova SN 1987a.

(d) Assuming that the average energy of each neutrino is 10 MeV in such an

event, calculate the total amount of energy carried away by the neutrinos
from the gravitational collapse. Compare this value with the rest-mass en-
ergy of the sun.



Chapter 11

Nuclear Physics: Present

and Future

We have attempted to give in the previous chapters a highly condensed description
of the achievements of nuclear physics in its 100 years of history. Our emphases have
been on its contributions to the foundation of physics, the properties of nuclei, and the
highlights of some of the present research interest. The subject is a rich one and holds
tremendous potential for the future. As with any scientific endeavor, we can rely on
improvements in our ability to make observations to provide us with new information
and further insight. The explosion of technological advances is having the effect of
pushing pure science to new heights and nuclear physics is among the chief beneficiaries.
In this short chapter, we shall take a somewhat speculative attitude and see if we can
foresee some of the possible directions the subject may take in the near future.
Developments in pure science are often controlled by the three-way symbiotic rela-
tion of technology, observation, and theoretical understanding. This is especially true
in the case of subatomic physics, where experiments often require large accelerators and
sophisticated detectors. To make sense of these complicated observations, we construct
models that lead us to a better understanding of the part of nature invisible to the
naked eye. This knowledge in turn helps us to make progress in our technology both to
improve the quality of life itself and to enhance our ability to make better observations.
Large facilities, such as the Relativistic Heavy-Ion Collider and neutrino observatories,
are expensive to construct and take many years to reach the production phase. From
the careful planning that must go into their designs, it is perhaps not hard to fore-
see what will be the physics to come out initially from these laboratories. We shall
describe what are some of these possibilities. There is a second group of interesting
problems that technology is ripe for making progress. Examples in this category include
computational-based problems, such as lattice QCD, and space-based explorations in
astrophysics that are intimately connected with nuclear physics. A third group consists
of long-standing fundamental problems that are crying out for solutions. We shall name
some of these as well, in part, for their importance to the subject of physics as a whole.

389
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Radioactive beam. Many laboratories around the world are starting to have facilities
for producing beams of radioactive nuclei. We have seen that a large part of our
knowledge on nuclear physics, and subatomic physics in general, comes from collisions
between two particles. With radioactive beams, our horizon is extended to include
projectiles made of nuclei that are unstable. Many of these reactions are important
by their own right. For example, interactions with unstable nuclei form an integral
part of the events going on in stars, such as that we saw in the case of the triple-o
process in §10-5. Better knowledge of their reaction rates are essential to improve our
understanding of nucleosynthesis and the evolution of stars. For this reason, some
of the first experiments planned with radioactive beam facilities often involve nuclear
astrophysics interest.

Radiative beams are also sources of unstable nuclei that are of interest. We have
already seen an example in the inverse of the *C{a,v)'®O reaction in §10-5, using
radioactive 1°N as the source of excited states of Q. By observing the a-particle decay,
the equivalent reaction cross section was measured to much lower energies, solving one
of the long-standing issues in helium burning stars. Similar opportunity exists in a
variety of other cases.

Most of our knowledge on nuclear structure is based on observations made on low-
lying states of stable nuclei. This may well represent a fairly specialized set of data,
those satisfying the conditions for stable nuclei. The true picture of nuclear physics
may be obscured by our limited vision, like trying to infer the behavior of all cats,
including lions and leopards, from observing the household variety. By checking our
existing understanding on unstable nuclei, we can reaffirm the parts that are correct
and modify the reminder. In particular, radioactive beams may be possible to extend
the number of isotopes observed for a given Z, the number of isotones for a given N,
or the number of isobars for a given A. Systematic variations in the structure are
particularly simple in these cases, especially if either the neutrons or the protons form
a closed shell. The simplicity offered Ly this new information will certainly lead into
expanded interest and improved knowledge in nuclear structure.

Relativistic heavy-ion collision. The central focus of RHIC and LHC is to study
the physics of QGP. As we have seen in §9-3, we still do not know of a unique signature
for QGP. Many phenomena are possible candidates but all of them have also possible
alternative explanations that are based on hadronic matter alone. For this reason, one
of the main goals of the first group of experiments at RHIC and LHC are designed
specifically to study these events. In the process, we shall also be able to improve our
quantitative understanding of QCD, and this by itself is already quite exciting.

For example, we saw in §9-3 that changes in strangeness and charm production may
signal the presence of QGP. To establish this, systematic studies must be made using
a variety of colliding ions, including cases in which we do not expect anything other
than purely hadronic matter at any intermediate steps of the reactions. In relativistic
heavy-ion collisions, the amount of energy involved is high, with large numbers and
varieties of secondary particles produced. Distributions of these particles as functions
of transverse momentum and rapidity (see Eq. 9-14) are indicative of the conditions
of the interaction region. Different theoretical models are predicating quite different
results. Experimental guidance in this area will definitely help us to understand the
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physics under such extreme conditions.

The construction of detectors and data acquisition systems for the complicated
events expected from these experiments present new challenges to our ingenuity. To
leave room for discovering the unexpected, one must record as much information of
the collision as possible so that one can analyze the results for phenomena not nec-
essarily expected in the original design. For this reason, detectors are also built to
make comprehensive studies of all the particles produced in each collision. Once these
facilities are in operation, we can expect a new burst of information that will keep both
experimentalists and theorists busy for a long time.

Electron scattering. As we move to phenomena taking place at shorter distances and
higher energies, electron scattering stands out in terms of the precision we can achieve.
By going to high-momentum transfers, we can probe the nucleus at the fine scales where
most of our ignorance lies. For example, it was found that, in the electro-disintegration
of deuterons, the idea of one-pion exchange seems to work to far larger momentum
transfers than we expect [118]. This implies that something more fundamental than
the masses of different mesons being exchanged must be working here. One of the
possibilities is the role of chiral invariance in nuclei.

The origin of chiral invariance may be traced to QCD. We have seen that u- and
d-quarks are far lighter than the others. The corresponding situation at the hadron
level, where most of nuclear physics operates, is that pions are much less massive
than any of the other particles. In the limit that u- and d-quarks may be treated as
massless, helicity (see Eq. 5-51) is conserved and the QCD lagrangian has a special
symmetry, generally referred to as SUL{2) x SUg(2) symmetry. In other words, under
a rotation in “chiral” space, left-handed and right-handed particles are not mixed with
each other (see, e.g., Ref. [58]). At the nuclear physics regime, we can gain a sense of
the importance of this approximate symmetry by looking at Eq. (5-53). If pions can
be treated as massless, we find that axial-vector current is also conserved. This puts
axial-vector current more or less on the same footing as vector currents, as we can see
by comparing with Eq. (5-52).

Tt is often said that chiral symmetry is the connection between strong interaction
inside “bags” of quarks with that outside hadrons. It is not appropriate for us here
to go into the numerous examples justifying this statement. On the other hand, it is
perhaps not difficult to see that nuclear physics can be much simpler if pions can be
treated as massless. The importance of exploring the advantage of such a “soft pion”
limit cannot be overemphasized if we wish to understand low-energy phenomenology of
QCD in nuclei. High-precision electron scattering is certainly one of the most fruitful
avenues in this respect.

Another question of interest, where high precision is necessary and can be reached
with present-day electron scattering technology, is the difference in charge distribution
for a pair of mirror nuclei, in particular, *H and ®He. Although *H (tritium) is ra-
dioactive, its half-life is sufficiently long (12.33 yr) for a target to be made. Since the
A = 3 pair constitutes the lightest mirror nuclei, a detailed comparison of their charge
distributions can be extremely illuminating. At the same time, it may also give us some
information on such fundamental questions as three-body force.

Similar opportunities exist for high-precision studies of the electromagnetic proper-
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ties for heavier nuclei. We have seen earlier in §4-7 that the question of mesonic current
is essential to understand how the electromagnetic operators are modified when nucle-
ons are embedded in nuclei. More generally, the question of “medium” effect—how
certain operators are modified when nucleons are bound—is important in understand-
ing nuclear properties. Many aspects of such studies are ideally suited for the high
precision that can be reached using electron scattering.

Improvement in the precision of experiments involving particles other than elec-
trons, such as protons and neutrons, are also expected to come with technological
progress. This will give us a much better handle on such questions as charge symmetry
in nuclear force, parity violation in nuclear interaction, and three-body forces. With the
accuracy available to date, many of these fundamental questions cannot be answered
in a definitive way.

Kaons and antiparticles. Nuclear physics operates, for the most part, at the level
of nucleons and piouns. For this reason, strange mesons and antinucleons have not been
of any direct concern to us. However, as we saw in §8-4, antiproton scattering off
nuclei can help us to understand the force acting between nucleons. Since nucleon-
nucleon interaction is only an extension of the strong interaction between quarks, the
symmetries of QCD have profound effect on nuclear force and antinucleon scattering
is an important source of such information. Antiprotons have been available from the
Low-Energy Antiproton Ring (LEAR) of CERN and are produced in many other high-
energy accelerator laboratories. Far more antiproton scattering off nuclei can be carried
out and the data will be of great interest.

By the same token, interaction of strange mesons, such as kaons, can supplement
studies of pions on nuclei. We saw in §2-2 that nucleons and pions are made of u- and
d-quarks. Partly for this reason, most of nuclear physics can be understood with these
two lightest flavors alone. However, in addition to these “active” quarks, there is also
a Dirac “sea” of other quarks together with their antiquarks. These sea quarks are
invisible under normal circumstances, in the same way as the electron-positron pairs in
the quantum electrodynamics vacuum we saw in §9-1. However, certain observations
cannot be understood by the valence quarks alone, such as the relation between nucleon
and quark spins. Strange mesons can probe the quark distribution in nucleons from
a different angle than those we can observe using mesons, and this will help us to
understand the role of strange and perhaps other heavier quarks in nuclei. Kaons are
also available from a number of high-energy accelerators. For many years, there have
been proposals to build dedicated kaon sources, or “factories,” from several laboratories.
Once available, it will be a bonus to nuclear as well as particle physics.

Cosmic rays and space observations. A major technological impact on our ability
to do science in recent years is the construction of “observatories” outside the earth
atmosphere and large arrays of detectors on the surface of earth. Many new phenomena,
such as y-ray bursts and extremely high energy cosmic ray showers, have been recorded
and, no doubt, more will be forthcoming in the future. These events complement
laboratory studies as well as help us to reach, for example, the high energies that cannot
be achieved using available accelerators. A historical example is the first identification
of pions in cosmic rays as the “Yukawa” particle. Prior to the discovery, the only
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particle known in the early part of the 1930s with a mass of ~200m, was the muon. As
we know now, the muon cannot be the candidate, as it is not a hadron. Furthermore,
it is a fermion and therefore cannot be absorbed and emitted freely as bosons can.

Even though the energies we have achieved in the laboratory are quite impressive,
they do not compare with those associated with some of the highest energy particles
observed from extra-terrestrial sources. Cosmic rays and y-bursts have been recorded
to reach energies many orders of magnitude higher than what we can hope to achieve
in the laboratory in the foreseeable future. Both the production mechanism of these
high-energy events and the propagation of these particles in the intergalactic space are
of interest.

Most of the observed “new” events are likely to be of interest mainly to cosmology
and elementary particle physics. However, the intimate relation of nuclear physics with
these subjects makes it imperative for nuclear physicists to take a closer look. This is
especially true when these observations are coupled with the possibility offered by neu-
trino observatories, such as the Sudbury Neutrino Observatory and Super Kamickande
Cerenkov Detector, to study neutrinos coming out of the core of stars without being
masked by the thick outer layers of materials.

Computational physics. Advances in computer technology and numerical methods
have fundamentally changed the way certain investigations are carried out in physics.
Instead of restricting to models with analytical solutions, we can now easily explore
new ideas that require extensive calculations and large-scale simulations. We have
already seen an example in lattice gauge studies for transition from hadronic matter
to quark-gluon plasma in §9-3. In fact, numerical solution using the Feynman path
integral approach is likely to be the only way that answers can be obtained for some of
the strong interaction problems.

Theoretical investigations in nuclear physics are often computing intensive. This
comes in part because of the highly nonlinear nature of the problem, associated with
the fact that we are dealing with, for example, eigenvalue problems. In part, it is
also because of the nonperturbative nature of the phenomena, involving interactions
that are strong. Here, computing is actually an advantage in that the tedium to carry
out large calculations can be delegated to machines that are many orders of magni-
tude faster and more reliable than human being. This applies to numerical work as
well algebraic manipulations. In fact, many of the algebraic calculations involved in
analytical solutions are often carried on computers as well. Furthermore, if we take
good advantage of the visualization tools available on computers, many complicated
solutions, both analytical and numerical, can be more readily comprehended than with
algebraic symbols alone. In many cases, far more advantage of the visualization ca-
pabilities can be used in understanding the results from complicated calculations than
what have been done in practice. For example, to be able to “see” a multi-dimensional
result is certainly not something that can be achieved easily without computers.

In addition to lattice gauge calculations, several problems in nuclear theory can also
benefit from intensive computation. The relativistic shell model is one such example.
For the most part in nuclear structure, we are dealing with velocities that are much less
than the speed of light. The relativistic effect can nevertheless be important in such
cases from the following considerations. In the Schrodinger picture, each spin-% fermion
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has two components, one with spin pointing np and the other with spin down. In the
more general Dirac picture, the corresponding wave function has four components, two
for the particle and two for the antiparticle. The four-component Dirac equation may
be expressed as a set of two coupled equations, each one having only two components.
At nonrelativistic energies, the coupling between the “upper” two components and the
“lower” two components may be replaced by a spin-orbit term and the two equations
decouple from each other in this approximation.

Traditionally, nuclear structure problems are solved by following the time-honored
methods used in atomic structure with the Schrodinger approach. However, by going
back to the more fundamental Dirac equation, many conceptual difficulties are found
to be much easier to handle and better solutions are obtained. We saw one such ex-
ample in nuclear matter calculations in §4-12 and another one in intermediate-energy
nucleon-nucleus scattering in §8-5. Similar successes are found also in a variety of
other problems in both nuclear structure and nuclear reaction. The calculations in-
volved in solving four-component equations are more complicated than those in the
two-component Schrodinger approach. In addition, we need more experience in han-
dling certain aspects of the Dirac equation in a many-body setting. The results are,
however, extremely encouraging and may lead to better understanding of some of the
puzzles in nuclear physics.

Another example is the use of sampling, or Monte Carlo, techniques in microscopic
calculations. We saw in §7-5 that the Hilbert space in a microscopic calculation can be
extremely large. To make progress, drastic truncation of the space as well as renormal-
ization of the interaction has to be carried out. If a larger active space can be used, it
can certainly reduce some of the uncertainties introduced by truncation and renormal-
ization. Similar to many other types of problems, one can apply sampling techniques
for certain investigations in large spaces and obtain meaningful results by carrying out
only a small part of the actual work. The computer is well suited for doing this type
of calculation, especially in view of the general trend toward parallel computing by
making use of several central processing units at the same time. Furthermore, Monte
Carlo techniques are used in a variety of other many-body problems, such as those
in condensed matter physics. The advances made there can also be a great help in
applying the method to nuclear physics problems.

In §7-5 we saw also that it is possible to start with a realistic nucleon-nucleon
scatfering potential and modify it so that it is appropriate for bound nucleons. The
nuclear wave function obtained may be used to describe the nuclear state involved in
an intermediate-energy nucleon-nucleus scattering, as we saw in §8-5. Furthermore,
the nucleon-nucleus interaction can also be derived from the same free nucleon-nucleon
interaction potential used as the starting point for the nuclear wave function calculation.
In each one of the steps, rigorous many-body problem techniques are available and
can be applied. The calculation is a rather involved one. On the other hand, both
the input nucleon-nucleon potential and the output nucleon-nucleus scattering can be
checked directly with independent observations. The comparisons form the tests for
many interesting questions, including many-body techniques and our understanding
of how nucleons are modified inside the nuclear medium. Far more such large-scale

calculations can be performed, especially in view of the higher precision experimental
data that can be abtained these days.
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Fundamental problems in physics. There are several fundamental questions in
physics that involve atomic nuclei. The solar neutrino problem described in §10-4 is a
good example. It cuts across several disciplines, particle physics, cosmology, hydrody-
namics, just to name a few. In addition to the intrinsic interest in the problem itself,
it has the potential of pointing the way to new physics, such as neutrino oscillation.
Nuclear physics enters in understanding the processes that produce the particles and
in interpreting the measured results. The importance of the problem cannot be un-
derstated. This is especially true in view of the great expectation we have in neutrino
astronomy. Unless we can understand neutrinos from the sun, the nearest star by many
orders of magnitude, we have no hope of extending the observations to any of the other
stars.

A second example concerns some of the properties of neutrinos. As we saw in §5-6,
double-G-decay is one way to find out whether it is a Majorana or a Dirac particle. The
neutrino mass is also an important question in deciding some of the basic properties
of the particle. Furthermore, it enters also into the question of “missing” mass in
the universe. Answers to these and other questions are interesting by themselves and
may also lead to new knowledge of the microscopic world that subatomic physics has
adopted as its subject of interest.

A third example is why the QCD effect seems to be totally absent in nuclear
phenomena. There are two possible answers. The first is that there is some fundamental
symmetry in operation. If this is the case, it will be of interest to find out what this
symmetry is and how it functions. Alternatively, and more likely, it is possible that
we are not asking the right questions. What are the phenomena in nuclear physics
that QCD must be invoked directly? Perhaps, this is one of the questions that will be
revealed in relativistic heavy-ion collisions.

Several other basic problems in physics also fit into the category where nuclear
physics can be of help in solving them. However, we shall not make the attempt here
because of the preparations required to describe them.

Over the century-long history of nuclear physics, we have seen the central emphasis
of the subject changing as we improve our knowledge of the subatomic world and our
ability to make observations. For example, instead of radioactivity at the beginning of
the twentieth century, a large fraction of the present-day effort is in high-energy nuclear
physics. Instead of topics that are now in quantum mechanics textbook, we are talking
more and more in terms of QCD and cosmology. Such changes form a natural path
in the development of our interest in the microscopic regime. As we know more about
nuclei, we want to find out more by going into shorter length scales and carrying out
more precise measurements. These observations, in turn, are guiding us to new heights
in our understanding. Nuclear physics has been, is, and will remain a vibrant part of
modern science. It is extremely rich in physics and is of interest to those trying to
unravel the mystery of the physical universe.
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Appendix A

Parity and Angular Momentum

A-1 Parity Transformation

Parity, or space reflection, transformation is the operation whereby all three coordinate
axes in the Cartesian system change sign. That is, if the location of a point in space is
given by coordinates (z,y, z) in a particular system, the coordinates of the same point
in a system related to the original one by a parity transformation P are (-z, —y, —2),

(-Tv Y, Z) - (_'T; -Y —Z) (A'l)

Such a reflection of the axes changes a right-handed coordinate system to a left-handed
one, as illustrated by Fig. 5-3.

In quantum mechanics, the probability of finding a particle at location r is given
by the absolute square of its wave function |¥(r)|? at the point. Since the probability is
an observable, it cannot change its value simply because we have switched from using a
right-handed coordinate system to a left-handed one, or vice versa. The wave function
itself, however, may change under a parity transformation, subject to the following
two conditions. The first is that |¥(r)|? must remain invariant, as we saw above.
The second is that two successive parity operations must bring the system back to its
original state, i.e., P? = 1. As a result, the wave function ¥(r) can change at most by
a sign. States whose wave functions do not change sign under a parity transformation,

P¥(r) = U(—r) = +T(r)
are called positive-parity states, and those whose wave functions change sign,
PE(r) = ¥(—r) = —¥(r)

are negative-parity states. A wave function that does not fall into either one of these
two categories does not have a definite parity.

397
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In terms of spherical polar coordinates, the radial distance r is not affected by a
parity transformation. The only changes are in the angular variables,

(?',0,¢) I — (’I‘,?\' - 9,?1’ + ¢) (A-Z)

This relation can be shown to be identical as that in Eq. (A-1), for example, by trans-
forming both sides to Cartesian coordinate systems, Because of Eq. (A-2), radial wave
functions are not changed by a parity transformation. As a result, the parity of a wave
function of a state is given by the angular part alone. For a state ¥(r) with definite
orbital angular momentum (£, m), we can decompose the wave function into a product
of radial and angular parts,

\Il(r) = Rnc(T)Yzm(O» ¢)

The angular dependence is described by spherical harmonics Y, (8, ¢), the eigenfunc-
tions of orbital angular momentum operators £2 and £y. The parity of spherical har-
monics of order ¢ is (—1)%. This can be seen from its explicit form

_ (=)™ |28+ 1) (£ — m)! me pymyzf d ythm, o ¢
Yerl0,8) = S\ g i © - (G) e -0t (A
where 7 = cos 8. Since cos(m — #) = — cos(#) we have, under a parity transformation,
n—p -7

The transformation of polar angle # gives a phase factor (—1)**™ to Yg, (8, ¢). The az-
imuth angle ¢ enters Eq. (A-3) only in the exponential factor e™¢. The transformation
from ¢ to 7 + ¢ produces a factor ¢™" = (—1)™. The combination of the two gives us
the net result,

Ylm(a1 ¢) —_—p—'—) Ylm(" - 0»” + ¢) = (_l)t}/lm(oi ¢)

For this reason, spherical harmonics of even order have even parity and spherical har-
monics of odd order have odd parity.

In additional to parity associated with spatial wave functions, the intrinsic wave
function of a particle can also have a definite parity, related to the internal structure of
the particle. If the structure is known, such as that for a nucleon from a quark model,
the intrinsic parity may be deduced from the wave function. In cases where the internal
structure is not known, the intrinsic parity must be determined experimentally using
reactions in which the parities of all other particles as well as all the relative angular
momenta involved are known.

As an example, we shall see how the intrinsic parity of a pion is determined to be
negative. The measurement involves the absorption of 7~ by a deuteron. The pion is
first captured in the s-state of a deuterium atom, forming a 7-mesic atom as a result
(see also §8-8). Since the pion is a meson, it can be absorbed by the proton in the
deuterium nucleus through the reaction

T~ +d-—-n+n (A-4)
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Before the reaction, the total angular momentum J of the w-mesic atom is 1, as the
intrinsic spin of the pion is 0 (see also §2-7), the spin of the deuteron is 1 (see §3-1), and
the orbital angular momentum of the wd-system is 0 (the 7~ is in the atomic s-state).
Total angular momentum is conserved in the reaction of Eq. {A-4) and, as a result, the
final state produced by the reaction must also have J =1

The two neutrons in the final state, being identical fermions, must be in an anti-
symmetric state to satisfy the Pauli principle. The symmetry of the wave function of
the two-neutron system is determined by L, the relative orbital angular momentum,
and S, the sum of the intrinsic spin of the two particles. If the spatial part of the
system of two identical fermions is symmetrical (L = even), the total intrinsic spin
wave function must be antisymmetrical (S = 0). Alternatively, if the spatial part is
antisymmetrical (L = odd), the total intrinsic spin wave function must be symmetrical
(8§ =1).

From the fact that J= L + § =1, we find that the possible pairs of (L, S)-values
to form J = 1 are (0,1), (1,0), (1,1), and (2,1). The combinations (0,1) and (2,1)
can be ruled out on the ground that both intrinsic spin and spatial wave functions are
symmetric and, therefore, violate the Pauli principle. Similarly, the combination (1,0)
is not allowed, as both orbital and intrinsic spin parts are antisymmetric. The only
possible combination remaining is (L, S) = (1,1), which is antisymmetric in the spatial
part but symmetric in the intrinsic spin part of the wave function.

The parity of the right-hand side of the reaction given by Eq. (A-4) is therefore
(-1)* = —1, independent of the intrinsic parity of neutrons, as there are two involved.
Since parity is conserved in the reaction, the left-hand side must also have negative
parity. There are three components contributing to the parity of the initial state of the
reaction. The parity of the ground state of the deuteron is known to be even (L = 0, 2,
and both neutron and proton have the same intrinsic parity). The parity of the orbital
wave function of the m-mesic atom is positive, as we have seen earlier. As a result, we
conclude that the intrinsic parity of 7=, the third component in the initial state, must
be negative in order for the parity of the total system to be negative.

For fermions, the intrinsic parity of an antiparticle is opposite to that of its cor-
responding particle. This can be seen from the structure of the Dirac equation where
a particle and an antiparticle are described by a single four-component wave function.
Alternatively, it can be determined using such measurements as the polarization of the
two photons emitted in the decay of a positronium (e*e™ system) in the singlet state
(J = 0). On the other hand, for bosons the parity of both particle and antiparticle
must be the same. For more details, see standard particle physics textbooks, such as
Perkins [115], and Halzen and Martin [80].

A-2 Spherical Tensor and Rotation Matrix

A quantity ,,,(r) is said to be a spherical tensor of angular momentum rank J if it
belongs to a group consisting of 2J + 1 members, each having the same J-value but
differing in the M-value, projections along the quantization axis. The possible values
of M are —~J, =J +1, ..., J. Under a rotation of the coordinate axes through Euler
angles {a, 3,7) shown in Fig. A-1, the 2J + 1 members transform among themselves
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Figure A-1: Rotation of the coordinate
axes from (X, Y, Z) to (X', Y*, Z') by Eu-
ler angles (a, 8,7) in three steps. First,
a rotation around the Z-axis through
angle a brings (X,Y,2Z) to (X1,Y1,2).
Second, a rotation around the new Y-
axis through angle 3 brings (X, Y, Z) to
(X2,Y1,2Z2). Inthe last step, (X2, Y1, Z3)
is brought to (X', Y',Z’) by a rotation
around Z; (same as Z') through angle 4.

according to the relation
1/1,,,,4(7") = ZTI);M(T) DKJM‘(a:ﬁv 'Y) (A'5)
M

where coefficients D, (@, 8, 7) are the rotation matrices, or D-functions for short. The
2J 41 components of a spherical tensor v, , for all possible values of M, therefore form
an irreducible group under rotation. The set of 2¢ 4+ 1 spherical harmonics Yy (0, ¢),
withm = =f, =0+ 1,..., ¢, is an example of a spherical tensor of integer rank £.
However, spherical tensors are more general quantities and can have half-integer ranks
as well. Both wave functions and operators can be spherical tensors, as the requirements
can be satisfied by both types of quantities.

There are several possible ways to define the D-function. We shall adopt the con-
vention given by Brink and Satchler [37}. A rotation of the coordinate axes in the way
defined in Fig. A-1 can be achieved as three successive infinitesimal rotations repre-
sented by the operator

R(a, B,7) = e~ i1 g=iBdy pieds (A-6)

The same transformation is equivalent to a rotation first around the Z-axis by angle
7, followed by a rotation through angle @ around the Y-axis, and finally a rotation
through angle o around the Z-axis again. That ig,

R((I, 13, ’Y) = 8—10-’: e—‘ﬁ-’ve"i'h,. (A-7)
The D-function in Eq. (A-5) may be written as the matrix element of R(a, 3,7),

Dl{'fM'(a»ﬂ’ 7) = (%M‘R(a»ﬁ. 7)'11’,“!) (A'S)



§A-2 Spherical Tensor and Rotation Matrix 401

between components M and M’ of a spherical tensor of rank J. The orthogonality
relation among the D-functions is given by

;(’D&w(a; B Dapaee B,7) = 3 Diganr(e, B, M) (Dfonp (@, B,7)) = barw
(] Ml
and

2% 2w 7 oJ ) 87I'2
/0 /0 /O(DM'M(a’ﬂv'Y)) DN’N(aaﬁa7)Slnﬂdﬂdad7=m‘sM'N'fSMN‘SJ'J

where 6, is the Kronecker delta with value unity if = y and zero otherwise.

Since 4,,, is an eigenfunction of J,, we can make use of Eq. (A-7) to simplify the
D-function,

D;,’N(Of, ﬂ, 'Y) - (¢1Mle-ia.’,e—iﬁ.’,e—w.’; ‘.w“v)
— e—l(aM+‘YN) (wJMle—lﬁJ,!wJN)
where, in the final form, the matrix element remaining,

dyn(B) = (W, le ™ 1y,,,)

is called the reduced rotation matrix element. Explicitly, it may written as

VU + M = M + N)(J - N)!
hun(P) = %:("I)Q(J +M-Q)I(J - N-Q)QQ+N - M)!

x (cos B/2)XM=N=2Q(gin g/9)?+N-M

The summation is over all possible values of @ that do not lead to negative arguments
in the factorials. The phase convention used here is that of Condon and Shortley [37].

Let Tk, represent component g of a spherical tensor operator of rank k. The con-
jugate (Tikq)! of T}, is defined by the relation between the Hermitian conjugate of their
matrix elements,

(JMI(Teg)'|'M') = (J' M| i) T M)*

It is easy to see that (Tk,)! is not a proper tensor. If T}, transforms under a rotation
according to Eq. (A-5), the transformation of its conjugate is given by

t *
(Teg)t = (3 Teg Dy (0, B,)) = (T (DE (@ 8,7))
q q
To have the proper transformation, we can make use of the property that
(Do, B,7))" = (=1)P"DE,_ (e, 6,7)
and define an adjoint tensor

Ty = (-1 (T, )} (A-9)
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that transforms under a rotation of the coordinate axes in the same way as given
by Eq. (A-6) and is, therefore, a proper tensor. It should be pointed out that the
phase factor (~1)7 in Eq. (A-9) is unique but the factor (~1)* is somewhat arbitrary.
There are also other conventions found in the literature. The one adopted here has the
advantage that it is convenient for tensors of half-integer rank, for example, like those
used in Eqs. (2-26) and (2-27).

In problems where spherical symmetry is important, such as those commonly en-
countered in subatomic physics, spherical tensors are useful for a variety of reasons.
Some technical advantages of using spherical tensors are related to the algebra of an-
gular momentum coupling given in the next four sections.

A-3 Angular Momentum Recoupling Coefficients

In general, the product of two spherical tensors is not a spherical tensor. For example,
the product of Tja, a spherical tensor of rank J, and Uy s, a spherical tensor of rank
J', is a mixture of tensors with ranks |J — J'| to J + J'. We can use the product
between two ordinary vectors as an illustration. A vector r is a spherical tensor of
rank unity and is specified, for example, by giving its projections (ry,7;,73) on the
three axes of a Cartesian coordinate system. The product of » with another vector ',
having projections (r{,r3,74), contains, in general, a total of nine components. We can
separate these nine products into three groups. The linear combination

S=rri+rrytrry=r-r

is a scalar, as it is invariant under a rotation of the coordinate axes. Three of the
quantities transform among themselves like a vector,

V= (ry7y — TaTy, TaTy — 14Ty, 1Ty — TyTy) =7 X 7

as can be seen from the fact it has the standard form of an ordinary vector product
between r and . The remaining five components may be written as

3

=1 ! ! i !

Tyj = g(riry + 1,10 = 385 D Tt
k=1

and they form a second-rank spherical tensor.

In general, a tensor of definite rank can be projected out of a product of two tensors
using angular momentum coupling coefficients,

(Tj % Up) jyms = 3" (Gima jama|isma) Tjymy Ujgmg (A-10)
re

where the Clebsch-Gordan coefficient (j,m;jama|jam;) vanishes unless ma = m; + m,

and |j; — jal € j3 € j1 + 2. Several different symbols ate commonly used in the
literature to represent Clebsch-Gordan coefficients,

(hmagamajams) = (jamamaljijajams) = CHI,

We shall use the first form in the above expression, as it gives the picture of the overlap
of | jm) with the product of | jym; ) and | jarny ).
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It is often more convenient to express the coupling coefficients between two spherical

tensors in terms of Wigner 3j-symbols, related to the Clebsch-Gordan coefficients by a
simple factor,

gt J2 s _ (=)phems
mimams) = VIR ET imiiamals -ma)
In terms of 3j-symbols, the symmetry in the arguments of the coupling coefficient may
be expressed as

(j1 J2 j3)=(jz Js jl)z(ja n jz)
m; My M3 me mMamy Mma My My

=(_1)11+J'z+ia (jl Ja Ja ) - (_1)]1+12+j3( v j2 Js ) (A-11)
my mg my -my —my —~My

In other words, 3j-symbols are invariant under an even permutation of the three pairs
of arguments, and a phase factor (—1)"1#72*7 is needed for an odd permutation as well
as for the case when all the m-values change sign.

The orthogonality relations between the coefficients are

> (jl 72 ja)(jl 2 j:';)

mimz \M1 Mg M3/ \ My Mg my

3 (jl J2 j3)<jl J2 js)
mymgms ‘T M2 My my My M3y

Z(2j3+1)(j1 J2 ja)(jl J2 js)

[
y3ms miymo M3 m; My M3

.. ] '6m m!,
A(j1j2ds) —Jé“;‘::—_*‘_a—li (A-12)

I

I

A(JrJ273) (A-13)

i

A(J15253) byt Oy, (A-14)

where
1 for iy — dul < da < 31 + i
A(Gij2gs) = { IJ‘ J2l £ Js < i+ G2
0 otherwise

In terms of Clebsch-Gordan coefficients, the same relations may be expressed as

> Gimajamaliama) (imyjamalisms) = A(517293) 65,516mam,

mymg
S (hmudemaliama)(imigemaliams) = (245 + V)A(j1j2ds)
mymama
Y (imajemaljsma)(imijamalisma) = A(j1j273)bm, m; m,m,
Jsm3

The Condon and Shortley phase convention, commonly adopted nowadays, states that
in coupling j; and j; to the maximum possible angular momentum j; + j; and all
the projections on the z-axis take on the maximum allowed values, i.e., m; = j; and
ms = 73, the Clebsch-Gordan coefficient

(rdagalir+da i+g2) = +1
and
> my(iimigama|jams) (jimigams|(jz-1) mg) > 0

myma
All Clebsch-Gordan coefficients are real in this convention, and the explicit values of a
few involving low angular momentum ranks are listed in Table A-1.
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Table A-1: Some useful Clebsch-Gordan coefficients.

(3mylme|gm)

J ms = +;
€+l é"‘%‘*‘m t+i-m
2 20 +1 241

i1 \/f_i:ﬁ: ,Jw
2 2041 20+1

[T
3
=

-
I
|
o

(1m,tmy|jm)
j m, = +1 ms =0 my, = -1
(41 (+m)(€+m+1) l-m+1)(f+m+1) (-m)l-m+1)
' \ 20+ 120+ 1) (+128+1) AL+ 1)(28+ 1)
/ (E+m){l—m+1) -m _ (E—m){+m+1)
\ 20(€ 4+ 1) \/}(T+T) 20(€+1)
01 (E-m)(t-m+1) _ [ (E=m)(€+m) €+ m+1)(£+m)
‘ \ 20(20 + 1) \\| 2+ \ 20(20 + 1)
(-—Jm():nl,’) = (jmj' -m'|00) = %—*\/_I_JX_..‘;—’I—&jjlémm,' {(Fm00|5'm')y = 8;, byt
i1y —(_1)i-m m
(—m()m) (=1) \/j(]‘+1)(2j+1)
( J 21‘):(_1),_," Im? —j(j +1)
-mim V(21 = 1)i( +1)(25 +1)(2j +3)
1y \J (29 = 231)!(2g = 202)!(29 — 24y)! g
(jl j2j3)= (29 +1)! (g = 71)g = 72)!(g ~ js)!
D0D if 29 = even
0

i 29 = odd
where 2g = j1 + j2 + j3
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A-4 Racah Coefficient and 9j-Symbol

When three spherical tensors R,,, Sj,, and T, are coupled together, the final rank J
alone is not adequate to specify the product uniquely. In order to distinguish between
the different possibilities, an intermediate rank specifying the coupling between two of
the three tensors is used. There are two equivalent ways to construct this intermediate
coupling. One is to couple the first two tensors R;, and S}, together to rank Ji, and then
couple the product to T}, to obtain the final rank J. The angular momentum structure
of the product may be expressed in the form ((R;, x Sj,) 5, X T},)s. Alternatively, we
can couple the last two tensors S,, and T), together first to rank Jo3 and then couple
R,, to the product. This way of coupling may be represented as (R,, x (Sj, x Tj3) 1,4) -

The two forms are not independent of each other and the relation between them is
given by

(Ry, X 83) 3y, X Ta)y = Y \/(2J12 + 1)(2J2a + 1) W (5152 J ja; Ji12J23)

Jaz

X(R_n x (Sn x TJa)Jza)J

where W (j152J3; J12J23) is the Racah coefficient. It may be expressed as the sum over
the products of four Clebsch-Gordan coefficients,

W {abed; ef) = Z(aabﬁ|e(a+ﬂ))(e(a+ﬁ) d(v~a-f)|cy)

1
J@e+1)(2f +1) 4y
x (bBd(v-a-B)|f(y-a))(aaf(y-a)lcy)

However, this is not the way to evaluate a Racah coefficient numerically. It is more
convenient to use explicit formulas in terms of its six arguments and these can be found,
for example, in Brink and Satchler [37].

A more convenient form of Racah coefficients is the 6j-symbol defined by the rela-

tion o
{11 J2Jua
Jad Jag

For example, the symmetry relations of Racah coefficients may be expressed in terms
of 6j-symbols in the following manner:

{j1j2j3 } _ {jzjajx} _ {jajljz} _ {.1211 ja} - {j4jsj3}
Jajs s Js o Ja JeJads Js 74 Js Jij2 s
The orthogonality relation between two 6j-symbols is given by

. nied Y fidd" by
2 = 23
Z““){ }{ } 27 +1

3 Jajad ) \Jsja

} = (—l)hﬂﬁjﬁj W(j1j2«]j3; J12J23)

There are also identities involving products of 3j- and 6j-symbols that can be found in
most advanced texts on nuclear structure.

In coupling four spherical tensors together, two intermediate coupling ranks are
needed to specify the product uniquely. The different ways of making the intermediate
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couplings are related to each other through 9j-symbols,
((le X sz)Jtz x (T,is X U}'t)-’u).}
= 3 (@4 + 1)(203 + 1)(2013 + 1)(2J04 + 1)

JiaJaa
ho o i

x Ja Js Ji ((Rj1 x TJ:)Jxa X (Sn X Ujl)-’ll)]
Jia Jyg J

The value of a 9j-symbol may be expressed as the sum over the products of three
67-symbols,

noJe Jn it s d i e d Joo Jue J
. = SN (=12 (2 1{1313} 2J4 Jog 12 Y34
js j“ J;‘ ;( eI+ JuJ I\ Ja ) L' Gja
13 Ju
The symmetries of 9j-symbols are
Ji Ja 7 Ntoda g Jr Js Js Ja Js s
Ja Js Js p = Y Je Js Js g = Jv Ja Js (=9 Jr Js Jo
Jr J8 Jo Ja Js Jo Ja Js Js h 72 Js
Ja Js Je
= (_1)Jl+JZ+jS+J(+j6+]6+j7+J!+jD J1 2 s
Jr Js Jo
and the orthogonality relation is
a g o v g2 Jn by by 1
(@Ia+1)2J2a+1) 4 3 Ja Ju Ja o J3 talia T
34

J13Jas N (2‘]12 + 1)(2J34 + 1)

Jis Ju J Jiz Jug J

A collection of symmetry and orthogonality relations, as well as relations between 3;-,

67-, and 9j-symbols, can be found, e.g., in the appendices of Brink and Satchler [37)],
and Wong [151}.

A-5 Wigner-Eckart Theorem

One of the advantages in using tensors of definite spherical ranks is offered by the
Wigner-Eckart theorem. The matrix element of an operator of rank k£ between states
with angular momenta J and J' may be separated into two parts, one invariant under
a rotation of the coordinate system used and the other expressing the dependence of
the matrix element on the coordinate system. Since only projections of tensors on
the quantization axis are changed by a rotation of the axes, the invariant part of the
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matrix element is independent of the projections and, as a result, is only a function of
the nature of the operator and the states involved. That is,

IMITA ) = (17 () g (A-15)

where the double-bar matrix element (J}|Ty||J') represents the invariant part and is
generally known as the reduced matriz element. The angular momentum dependence
of the matrix element is contained in the 3j-coefficients and is independent of the
operator and the states involved, other than their angular momentum ranks. All the
physical content of a matrix element is contained in the reduced matrix element. As a
result, it may be compared with those of other quantities without being encumbered
by dependence on the coordinate system used.
In terms of Clebsch-Gordan coefficients, Eq. (A-15) appears as

2 {J M'kq|IM)
Vv2J +1

Slightly different ways are used by some authors to define the reduced matrix element.

In some books, the phase factor and/or the square root in the denominator is absorbed

into the definition of the reduced matrix element. Note that the phase factor (—1)* is
essential here, as we deal with operators of half-integer ranks as well.

(JM|TgI'M") = (1) (Tl ")

A-6 Landé Formula

Consider a vector operator V. Since it is an operator with spherical tensor rank unity,
its matrix element behaves, under a rotation of the coordinate system, in the same
way as any other spherical tensor of the same rank, including the angular momentum
operator J. Using the Wigner-Eckart theorem, the matrix element of component ¢ of
V may be expressed in terms of its reduced matrix element as

- J 1J
MVl = (-7 (500 ) (a16)
where ¢ has possible values 41 and 0. Similarly, the matrix element of J has the form
IMlhgamy = (= (7 1) ) (A7)

q9 -M q M

Since both reduced matrix elements (J||V1|J) and (J||J||J) are quantities independent
of the coordinate system, they must be multiples of each other, with the ratio
(vilJ)
R = bl A-18)
1T (
independent of M.
Consider, now, the matrix element of the scalar product J- V. Since it is a scalar
operator, it has nonvanishing matrix elements only along the diagonal, i.e., for J = J'
and M = M'. In a spherical basis, the scalar product may be expressed as

J V=Y (-1)4J1 Vi, (A-19)
q
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We can check that this is the same as scalar products defined in terms of Cartesian
components of the vectors by noting that

1 ,

Jy = :F7_§(let'l.]y) Jo=J,
1 .

Vi = q:ﬁ(‘/ziz‘,u) Vo=V,

This is slightly different from the definition of angular momentum raising and lowering
operators Ly = L, £ iL, as the usual convention does not attempt to make them
spherical tensor operators.

We can now make an intermediate state expansion of the matrix element of J -V,

(M- VIIM)Y = 325 (-1 M| I MW IM'|V_ | I M)
Mg
Since the operator J can change at most the M-value, but not the J-value, of a function
on which it acts, a sum over intermediate states of different J-values is not needed.

Using the ratio R defined in Eq. (A-18) and the relations given by Eq. (A-16) and
Eq. (A-17), we have the relation

(IM|V_,|J M)

S AT

= 0 (L L RO

R{IM|T_g| JM)

With this, we obtain the result

(IMI(T-V)IM) = RY. S (~D)NIM|T|IMWIM'|J_|J M)
M g
R(JM|J*|J M)

RI(J +1)

It

In other words, R = (JM|(J- V)|JM}/J(J + 1) and

(IMIVIIM) = - !

—(JTI)UM (T V)IMY(IM|T,|IM') (A-20)

generally known as the Landé formula.



Appendix B
Scattering by a Central Potential

B-1 Scattering Amplitude and Cross Section

The scattering of one particle off another at nonrelativistic energies is described by a
time-dependent Schrédinger equation

L, 0
zhéz\ll(r, t) = H¥(r,t) (B-1)

under appropriate boundary conditions. In the center of mass of the two particles, the
Hamiltonian has the form )

h

H=-—-V4+V B-2

7Vt (B-2)
where p is the reduced mass and V is the potential representing the interaction between
the two particles. If H is independent of time t, the time dependence in the wave
function may be separated from the rest,

U(r,t) = ¢(r)e E/h

Here 1(r) is the eigenfunction of the time-independent Schrédinger equation

hz
—2z V¥ +(V - Eyy(r) =0 (B-3)

For simplicity we shall consider () to be a function of spatial coordinates only and
ignore any dependence on other variables, such as spin and isospin.

Incident flux. The usual scattering arrangement involves a collimated beam of projec-
tile particles traveling along the positive z-direction and incident on a target placed at
the origin. Except for Coulomb force, interactions between nuclei have short range. For
this reason, we shall consider first finite-range potentials and return later to Coulomb
interaction in §B-5. Outside the range of the interaction, we can take V = 0; both
particles are free and their wave functions may be represented by plane waves e
where k = /2uE/h is the wave number. (For a Coulomb interaction, Coulomb wave
functions must be used instead of plane waves.)

409
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The relation between wave function and intensity of the incident beam is given by
the quantum-mechanical probability current density

h
S(rt) = 5= (V% — 979"} = R{¥" 2.0}

where R stands for the real part. For an incident plane wave traveling along the positive
z-direction, the number of particles passing through a unit area perpendicular to the
z-axis is then
g, od Lk
— —thkz 7 7 ik2) __ T _

S._§R{e L }_N v (B-4)
where v is the velocity of the projectile when it is still outside the interaction region.
The value of incident flux S; depends on the way the plane wave is normalized. Here
we have taken it in such a way that S; = v,

Scattered wave. The scattered particle outside the interaction region is described
by a spherical wave ™" /r radiating outward from the center of the interaction region.
The particle density in the incident beam is usually sufficiently low that we may ignore
any interference between the incident and scattering particles. As a result, the wave
function at large r is a lincar combination of a plane wave, made of the incident beam
and particles not scattered by the potential, and a spherical wave, made of scattered
particles. The result may be expressed as

ikr
U(r) e €4 £(0,6) (B-5)

Here, f(6,¢) is the scattering amplitude which measures the fraction of incident wave
scattered in the direction with polar angle # and azimuthal angle ¢. In general, both
#(r) and f(8, ¢) are also functions of the incident wave vector k and scattered wave
vector k'. However, to simplify the notation, we shall not indicate them unless required
in the discussion. Furthermore, the probability for scattering is sufficiently small that
the normalization of the incident wave is not affected by particles removed from the
incident beam due to scattering.

It is convenient to take the origin of the coordinate system to be at the center of
the region where the two particles come into contact with each other. Since the z-axis
is chosen to be along the direction the two particles approaching each other outside
the interaction zone, the xy-plane is fixed by requiring it to be perpendicular to the
z-axis. However, we do not have a natural way to define the orientation of the z-
or y-axis in the plane, if all the particles involved have spin J = 0, or if the spins of
neither the incident nor the target particles are polarized in any given direction and the
orientations of the spin of the particles in the final state are not detected. In such cases,
the system is invariant under a rotation around the z-axis and the azimuthal angle ¢
cannot be determined uniqguely. The wave function of the system must be independent
of ¢ and the scattering amplitude becomes a function of the polar angle & only.

The scattering angle 8 is the angle between the incident wave vector k and the
scattered wave vector k', as shown in Fig. B-1. For § # 0, k and k' forms a plane, the
scattering plane. We may define a unit vector n perpendicular to the scattering plane
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Incident plane wove (k)

Figure B-1: The scattering plane defined by k and &/, respectively, the wave
vectors of the projectile and the scattered particle. The scattering angle 0 is that
between k and k. The scattering is independent of the azimuthal angle ¢ unless
the polarization direction of the spin of at least one of the particles is known.

in the following way:

PYLE.LA (B-6)

k] K|

The orientation of n depends on the vector k', which, in turn, depends on where the
detector is placed. Unless polarization is involved, the choice of the direction of n
is arbitrary, usually determined by the convenience of the experimental arrangement.
However, if one or both particles involved in the initial state are polarized, or if the
spin orientations of one or both of the particles in the final state are detected, spin
dependence in the interaction between the two particles may cause a difference in the
scattering results that depends on the direction of n relative to that of polarization.
Under such conditions, the scattering amplitude is a function of 8 as well as ¢.

Differential cross section. The differential scattering cross section may be expressed
in terms of the scattering amplitude f(f). The probability current density for the
scattered spherical wave is given by the expression

eikr

S

S, = §R{ (f(9) i )} = %lf(fi)l2 +0(r?)

r
If the scattered particle is observed by a detector with effective area da placed at
distance r from the scattering center, the solid angle subtended by the detector at the
origin is d

a
and the number of particles recorded per unit time is

N, = 5, da = 5,72 dS
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The differential scattering cross section, dg/dS?, sometimes represented also as o(f), is
defined as the number of particles scattered into a solid angle d? at angle 8 divided by
the incident flux,

do  S.r?

— T — 2 -
As we have seen in §1-3, it has the dimension of an area and gives a measure of the
probability of scattering into a particular direction.

The scattering cross section is the integral of the differential cross section over all
solid angles,

= [990 - 297 si
aw/deQ~/|f(0)| 27 sin 8 dO

It conveys an idea how much of the incident beam is intercepted by each particle in the
target. Since the typical unit of length for nuclei is the femtometer (fm), a convenient
unit for scattering cross section is femtometer squared (= 1073 m?) and that for do/d
is the femtometer squared per steradian. A derived unit, the barn (1 barn = 10-?% m?),
is often used in quoting measured values. Hadronic processes are usually of the order
of millibarns (1 mb= 10"* m? or 0.1 fm?), whereas electromagnetic processes are of
the order of nanobarns (1 nb= 10~% m?) and weak interaction processes of the order
of femtobarns (1 fb = 10~** m?), as mentioned in Chapter 1.

B-2 Partial Waves and Phase Shifts

Partial wave expansion. If the interaction potential is a central one, V = V(r), that
depends only on the relative distance r, angular momentum is a constant of motion. In
this case, it is convenient to decompose the wave function ¥(r) into a product of radial
and angular parts and write it as a sum over components with definite orbital angular
momentum £, or partial waves,

oo
Y(r,0) =Y ae Re(r) Yeo(6) (B-8)
=0
where the coeflicients a, are the amplitudes of each partial wave. Only spherical har-
monics Yem(8, ¢) with m = 0 are involved here, as we are considering systems indepen-
dent of the azimuthal angle ¢.
Since Yy(6) is an eigenfunction of the angular part of Eq. (B-3) with eigenvalue

£(¢ + 1), the radial wave function for partial wave ¢ satisfies the equation
h2{1 d 24 U+
2u

r2dr  dr re }R‘(r) + V(r)Ry(r) = ERy(r)

In terms of the modified radial wave function
w (7Y = T Ry(7)
the equation may be simplified to

dQZ;Y) (A By - #udr) =0 (B-9)
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For short-range potentials, V(r) goes to zero as r — co. The same is also true for the

£(f + 1)/r? term. In the asymptotic regions, we are left with a simple second-order
differential equation of the form

dzu,(r)

G+ Eu(r) =0

The solution for this equation is the familiar linear combination of sin(kr) and cos(kr).
That is, at large r, the function u,{r) must take on the form

u(r) —==— Agsin(kr ~ 1ex) + Bycos(kr - 1 )
= Cysin(kr ~ 1er + &)
= Cifem it eﬁ'éte'(""%‘"’} (B-10)

where A, and By, or C, (C}) and &, are two constants that must be determined from
boundary conditions. The phase factor %Zw is included here so that it is more convenient

to compare with the asymptotic form of spherical Bessel functions we need to carry out
later.

Phase shift. The angle §, is known as the phase shift. Its physical meaning can be
seen by comparing Eq. {B-10) with the partial wave expansion of a plane wave,

= 5 /AT D) # ek Yo 6) (B11)
=0

Asymptotically, the spherical Bessel function j,(kr) has the form

sin(kr — §¢r)
kr

jt(kr) T—00 *

and may be compared with that of Eq. (B-10).
In the asymptotic region, a plane wave may be written as

—— Z Van(20 + 1) — sm(kr - 10rm) Yio(6)
i(kr—3 hr) et kr—3 lw)
Z,/47r(2£+1 S { 2 tkr=31 Yo (6)

=0

oo akr l(kr— hr)

Z Vam(28+1 {2 T —“Zr} Yu(9) (B-12)
=0

where we have used the relation e**"/% = i¢ to put the expression into a form convenient
for later needs. The difference between Egs. (B-10) and (B-12) is the phase shift,
for example, in the argument of the sine function. Because of interaction induced by
potential V(r), the phase of partial wave £ in Eq. (B-10) is shifted by a factor §, with
respect to that of a free particle represented by the plane wave of Eq. (B-12). This
is a result we could have anticipated from the beginning. For a real potential, which



414 Appendix B: Scattering by a Central Potential

we have implicitly assumed here, only elastic scattering can take place. Furthermore,
if the potential is also a central one, orbital angular momentum £ is a good quantum
number and the probability current density in each ¢-partial wave channel is conserved.
The only thing in the wave function that can change as a result of scattering is the
phase angle, and this is represented by the phase shift §,. We shall return at the end
of this section with an example using a square-well potential as illustration.

In general, elastic as well as inelastic scattering can take place. Such a situation
is represented by a complex scattering potential, with the imaginary part representing
loss of probability from the incident channel due to such inelastic events as excitation
of the target nucleus and projectile particle, absorption of the incident particle by the
target, and creation of new particles. In these cases, the phase shifts are also complex
in general. We shall return to the case of scattering by a complex potential in §B-4.

Elastic scattering cross section. Using the result of Eq. (B-10), the scattering wave
function of Eq. (B-8) in the asymptotic region may be written as

W 0) —mes Zu’e}’}o(ﬂ)%sin(kr— Lon + 6) (B-13)
£=0

where the unknown coefficients a, in Eq. (B-8) and C; in Eq. (B-12) are combined
into a single quantity a,. Since this is just another asymptotic form of the same wave
function as given earlier in Eq. (B-5), we arrive at the equality

. eikr
et + f(8)—

=3 a',Ym(H)%sin(kr ~ Lor +6)

=0
x e . e—i(kr—%tn)
— ! —_a W oy _
Z;‘,”‘Y“’w){( iye 2ikr ¢ 2ikr } (B-14)
Using the results of Eqs. (B-12) and (B-13), we can rewrite (B-14) in the following way:
o0 1 e"" .} 1 . i efhr
{Eo 4m(2 + 1) 5 Yeo(0) + f(ﬁ)}T {Eo desr Yoo(O)(—i)'e b} e
- , —i(kr~J ) i p-tlkr—ten)
— y —_— — - N
ZVane+ DiYe(0)} L@ —pr

(B-15)

The equation is arranged in such a way that terms related to e'*" are on the first line
and terms related to ¢=™*" are on the second line of both sides.

Since the functions e*" and e™**" are linearly independent of each other, their

coefficients on the two sides of Eq. (B-15) must separately equal each other. From the
coefficients for e~**"=¢"/2) we gbtain the result

ap = f4m (20 + 1) i*e’

Substituting this relation back into the coefficients of e’*" in Eq. (B-15), the scattering
amplitude may be put in terms of phase shifts as

f() = %é”%’ﬂ(e%_l)mw)
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Z V20 + 1 €% sin 8,Y(0) (B-16)

t=0
In terms of the phase shifts, the differential scattering cross section may be written as

do
Q-

20+ 1" sin 6,}’,0(0) (B-17)

by substituting the results of Eq. (B-16) into (B-7).
From the orthogonal condition on spherical harmonics

r o
/0 /0 Y (8, 8) Yo (6, 8) sin 88 dd = Sgorbrmm (B-18)

we see that the scattering cross section may be reduced to a particularly simple form
us
o® Z V(2 + 1)(2¢ + 1)e’®~4¢) sin §, sin 6y f Yeo(6)Yeo(6)27 sin 6 d6
ze'

= 222€+1 sin® &,
k =0

=5 TS0+ 1)1 - e (B-19)
t

Since we have taken the scattering potential V() to be real in this section, only elastic
scattering can take place. Later on, when we come to the more general case of a
complex scattering potential, inelastic scattering can also take place. The superscript
is to remind us that the cross section calculated here is for elastic scattering only.

Relation to scattering potential. A more direct connection between phase shift and
scattering potential is provided by the following analysis. By making the substitution
p = kr, Eq. (B-9) may be further simplified to

Pul) (YO LD by =0 (B-20)

For a free particle, we have V(p) = 0 and the corresponding modified radial wave
function fi(p) for partial wave ¢ satisfies the equation

Efp)  [EE+1) _ )
2 - (T -1 =o (B-21)

where f((p) = pje(p), with j¢(p) a spherical Bessel function of order £.

The ¢-dependent term as well as the constant term in Eqgs. (B-20) and (B-21) may
be eliminated by multiplying Eq. (B-20) with f,(p) and subtracting from it Eq. (B-21)
multiplied by u,{p). The result is

dp{ii!£ —fdu‘} V(p)fz(p)ue(p) (B-22)
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When r — oo, the spherical Bessel function j,(p) — p~*sin(p — %hr), as we have seen
earlier, and we obtain the results

fz

fe(p) = sin(p — §¢r) — cos(p — 3r)
and du
u,(p) — sin(p — 30m + &) *‘17' — cos(p — 1em + &)
The quantity within the curly brackets in Eq. (B-22) becomes
%%u, - f,% — cos(p — 3¢r)sin(p ~ L€r + 6¢) — sin(p — 3£7) cos(p — Fém + be)

= sin 6¢

where the last equality is obtained using standard trigonometric identities, Equation
(B-22) now reduces to
V(o)

d .
2 5n by = ——E—ft(P)ue(P)
or V( )
sinde =~ [ =2 fdp)ue) dp (B-23)
This relation determines the phase shift §, from a potential V'(p) up to a multipie of 27.
The general convention to fix this uncertainty is to take § = 0 as £ — 0. Although
Eq. (B-23) expresses 6, in terms of V(r), the relation is not as direct as it appears on

the surface, since 1,(p) in the integrand depends also on the potential, as can be seen
from Eq. (B-20).

Partial wave and bombarding energy. One useful result of partial wave analysis
is that, for low bombarding energies, only the phase shifts for £ ~ 0 are substantially
different from zero. This can be seen from the following argument. The classical turning
radius 7, is defined as the point where the (repulsive) potential is equal to the incident
energy. For partial wave channel ¢, the effective potential in Eq. (B-9) is

~ +1
V()= Vir )+ 4 ke (B-24)
As a result, we may use the relation
ﬁe£+1
=)+ AL (8-25)
2u i

to determine the classical turning point r,.

For a short-range potential, the effective potential V (r) of Eq. (B-24) for large values
of r and £ is dominated by the repulsive centrifugal barrier term €(€ + 1)/r2. (At very
small r, the centrifugal term also dominates by virtue of its inverse r?-dependence;
consequently, only in the intermediate range is the nuclear potential important.) As a
result, Eqs. (B-20) and (B-21) become the same for large ¢-values and we obtain

llirg u,(r) = fe(r)
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Consequently,
b =z 0

We shall now establish a criterion by which £ may be considered as large enough such
that phase shifts may be ignored for partial waves of order greater than this value.

Let the range of the potential V(r) be represented by ry. At low energies, the
classical turning radius r; is large and we have ry < r;. We may therefore ignore the
contribution of V(r,) in the definition of the turning radius. Equation (B-25) can now
be approximated by the expression

2
b B HEY)

T 1l

or
(kry)? ~ €6 +1)

This gives us an approximate value of the turning radius that is independent of V(r).
It also implies that the scattering takes place mainly in channels with £ < kr,. In
other words, for £ > kr,, the phase shifts 6, — 0.

On the other hand, r, is a quantity that depends both on E and ¢. It is therefore
more convenient to use rp, the range of the potential, instead of r, as the condition to
determine the highest partial wave that can contribute to the scattering. Since these
two quantities are of the same order of magnitude, we obtain the condition

be =0 for €3> kr (B-26)

Classically, no scattering occurs if a point particle approaches a hard sphere with impact
parameter b greater than the radius of the sphere ro. Since £ = |r x p| = fikr, we arrive
at the conclusion that partial waves with £/h > kry are not scattered. Equation (B-26)
is essentially a quantum-mechanical statement of the same criterion.

The range of nuclear potentials is of the order of a femtometer. For nucleon-nucleon
collisions at £ = 1 MeV in the center of mass, krg ~ 0.2. Hence only £ = 0, or s-
wave, phase shift can be significantly different from zero. This is observed to be true
as can be seen, for example, in the values extracted from experimental nucleon-nucleon
scattering shown in Fig. 3-3. From the figure, we find that only the s-wave phase shifts
are different from zero at low energies and that the sizes of the phase shifts for the higher
partial waves, for example p-waves, do not become significant until £ > 10 MeV. For
this reason, nucleon-nucleon collision is often approximated by s-wave scattering for
E <10 MeV.

Example of a square-well potential. It is instructive to see the actual relation
between phase shifts and scattering potential for a simple case. We shall limit ourselves
to s-wave scattering and calculate & for a square well of radius 7, and bombarding
energy E = 1 MeV. For an attractive potential of depth V5, we have

_f-V forr<rg
V(T)-‘{ 0 forr>rg

The radial equation, obtained by solving Eq. (B-9) inside the well, is

up(r) = Asinkr for r <71
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where 1
K=y 2u(E + Vo)

The amplitude A will be determined later. For a repulsive well, V; is a negative quantity.
In this case x becomes purely imaginary for E < |Vp|, and instead of a sine function,
the radial wave function inside the well is a hyperbolic sine function.

Outside the well, V(r) = 0, and the radial wave function is sinusoidal for both
attractive and repulsive wells,

ug{r) =sin{kr +86) for r>n

For convenience, we have normalized the wave function to have an amplitude of unity
outside the well. The requirement that the logarithmic derivative of the wave function
be continuous across the boundary at r = ry gives us the condition

sinery _ sin(krg 4+ 6g)
kcoskry  kcos(krg + &)

From this result, the s-wave phase shift is found to be
ik
bg = nm — krg + tan p tan krg

where n is to be determined by the condition that 8§y = 0 at E = 0, as we have done
for Eq. (B-23). The amplitude of the wave function inside the well is determined by
the requirement that wuq(7) itself is continuous across the boundary,

Sin(k'ﬁ) + 50)
A= ———
sin(krg)

The results are plotted in Fig. B-2,

For an infinite repulsive potential, the radial wave function cannot penetrate into
the well, as shown in Fig. B-2(a), and u(r) = 0 for r < rq as a result. Instead of
starting at r = 0, the nonvanishing part of the wave function is now shifted outward
by a distance ro. The phase shift is then 6y = —kry. The scattering cross section from
Eq. (B-19) becomes

0= :—7: sin? 8o = % sin? kry =2 4l
a result we expect from comparisons with the scattering of two hard spheres of radius
7o each. For a finite repulsive well, the radial wave function does not vanish completely
inside the well. The amplitude rises exponentially at small r instead of sinusoidally
for a free particle, as shown in Fig. B-2(b). The phase shift is still negative, but the
magnitude of &g is less than that for an infinite repulsive well.

For an attractive well, the phase shift is positive. If |Vy| is small, the wave function
inside the well rises faster near the origin than that of a free particle. As a result, the
nodes of the wave function outside the well are shifted closer to the origin, as shown in
Fig. B-2(c). As the attractive well becomes deeper, the phase shift grows in magnitude.
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Figure B-2: Radial wave functions for low-energy, s-wave scattering by a square
well. For comparison, the corresponding form for a free particle is shown as a
dotted curve in each case. The result of an infinite repulsive well is shown in (a)
and a finite one in (4). The results for attractive potentials of different depths are
shown in (c) to (f). The wave functions inside the well in these cases grow faster
near the origin than that for a free particle and the phase shift is positive.
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At well depth corresponding to 6, = 7/2, shown in Fig. B-2(d), the scattering cross
section becomes 47 /k?. For E = 0, we have the result
4w
o= F -— 00

The meaning of an infinite scattering cross section at zero energy is that the incident
particle never emerges from the potential well; i.e., a bound state is formed at E = 0.
In fact, a bound state appears whenever the phase shift is an odd integer multiple of
#/2. On the other hand, when & is 2 multiple of 7, the cross section drops to zero and
nodes in the wave function appear also inside the well, as can be seen in Fig. B-2(f).
In realistic situations, the potential has a more complicated form than a square well;
however, the qualitative features discussed above remain true.

B-3 Effective Range Analysis

Scattering length. For low bombarding energies, it is customary to express the
scattering results in terms of two parameters: scattering length a and effective range
re. Since, in general, the cross section must be finite at £ = 0, we can define a length
parameter a by the relation

}ci.g(l)d = 4ma? (B-27)

Except for a sign, the scattering length is given in terms of the s-wave phase shift by
comparing Eq. (B-27) with (B-19),

. 1 idp .t
a= 'lcl_% %{—Ee ° sin 60} (B-28)

The sign convention adopted here is such that the scattering length is positive if there
is a bound state, as for example in the case of isoscalar (T = 0) nucleon-nucleon
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interaction, and a < 0 if there is no bound state, as for example in the case of isovector
(T = 1) nucleon-nucleon interaction.

Effective range. The energy dependence of scattering at low energies is given by the
effective range 7.. The origin of this parameter comes from the following rationale. For
£ =10, Eq. (B-9) may be written as

d?ug(k,7)

o —{2MV(T) k’}uo(k,r)zo (B-29)

where we have included the wave number k explicitly in the arguments of the modified
radial wave function ue(k, ) so as to emphasize the energy dependence in the solution.
For two different energies, £, = 2h%k?/2u and E; = h*k%/2p, we have two different
solutions of Eq. (B-29), ue(k1,7) and u(k,, r), respectively. These functions satisfy the
following equations:

& 2

y» ——uo(ky,T) — {}:T;V(r) - k'f}ug(kl,r)
(B-30)

d 2

ctolha,r) = {25V () k;}uo(kz,r) =0

il
=)

By multiplying the first one of Eq. (B-30) with uy(ks,7) and the second one with
ug(ky,7) and integrating the difference over variable r, we obtain the result

d2
fo {uo(kz,r) Srattolki, ) — uo(ks, ) W‘uo(kg,r)}dr
+(k? - k2) /0” wo(k1, r)uo(ke, v) dr = 0

The first integral may be carried out by parts, and we obtain the result

{’(L()(kg,?’)%ﬂg(kh 'U.o(kl,‘l“) ’U;g(kz, )}l:
= (= k) [ walk,ruolkar)dr  (B31)

This is true for an arbitrary potential, including V(r) = 0.

Consider another function v(k, r) satisfying the same equation as Eq. (B-29) except
with V(r) =0,
k,
Leolbor) | gt r) =0 (B-32)

Analogous to Eq. (B-31), we have

d d o
{Uo(kz. T)E;Uo(kl,r) - ”o(klyr)d—rvo(kz, T)}lo

= (8~ ) [Tk ry(kn i (B-33)
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If the potential has a short range, Eqs. (B-29) and (B-32) are identical to each other in

the asymptotic region. As a result, we may require that their solutions have the same
form at r = oo,

vw(k,r) = u(k,r) = Asin(kr+ bo) (B-34)

where the amplitude A will be determined later. Since the radial wave function Ro{r)
itself must be finite at the origin,

UQ(k, T) N 0

The left-hand side of Eq. (B-31) may be expressed in terms of vy(k, ) using Eq. (B-34),

d d
{uo(kz, T)Euo(kh ) — uo(ky, T)Euo(kz, T)}

[\]
. d d
= }LI&{U()(’CQ, T)Evo(kl, 7‘) - ’Uo(kl, T)E'Uo(kg, T)}

Using this, we can subtract Eq. (B-31) from (B-33). The contributions from r = oo on
the left-hand side of the two equations cancel each other and we are left with the result

vo(klo)ad;vo(kz, 0) — vo(k2, O)a‘irvo(kl»o)
= (k3 — k7) /om{vn(ku r)vo(ka, 1) — ug(ky, )uo(ks,v)} dr  (B-35)

However, vo(k,7) does not vanish at the origin, as can be seen from Eq. (B-34). This
may be used to fix the amplitude A such that vo(k,0) = 1. As a result,

sin(kr + &)

wlk,r) = sin &g

(B-36)

and Eq. (B-35) simplifies to the form

d

d o0
-&;vo(ka, 0) - (—i;vo(lcl,o) = (k3 — Icf)/o {vo(k1, T)vo(ke, ) — wo(ky, r)ug(ke,7)} dr

Alternatively, we obtain

kq cot 50(’6;2 - l;;cot 8o(ky) - /ooo entkn, 7Yook, ) — aCs, Pyuolhe, 1)} dr
2 — K

using Eq. (B-36).
If both E; and E, are close to some value E = 2pk?/ fi2, the above expression may
be written as p

d(k?)

The effective range is defined as twice the integral in the expression at k =0,

kcot 8p = /Ow{vg(k, Ty —ul(k,r)}dr

Te=2 /:o{vg(ka T)— ule(k’?')}kzu dr
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The energy dependence of the s-wave phase shift can now be expressed in the form
k cot 83(k) = (k cot 8g)x=o + %T¢k2 + o (B-37)

Using the definition of scattering length a in Eq. (B-28), the first term on the right-hand
side of Eq. (B-37) can be shown to be equal to —1/a. Up to order k?, we find

k cot bo(k) = —% + —;—r,k’

The s-wave scattering cross section is then

_ 4w
k2 + {Lrk? - 1/a)?

which reduces to Eq. (B-27) when k& — 0.

o= ig— sin? 64(k)

B-4 Scattering from a Complex Potential

When a particle is scattered from a target, part of the kinetic energy may be trans-
formed into excitation energy of the projectile, the target nucleus, or both. At the
same time, some of the nucleons from one may be transferred to the other. If enough
energy is available in the collision, secondary particles may also be created. All such
processes are inelastic in the sense that the exit channel of the reaction is different
from the entrance channel. In general, a reaction consists of both elastic and inelastic
scattering and the interaction potential is complex. The solution of the Schrédinger
equation in such a case may still be represented by Eq. (B-8); however, the phase shifts
can now be complex quantities as well.

In order to treat a broader class of scattering problems, we shall write the asymp-
totic form of the modified radial equation u,(r) for partial wave £ in terms of an incoming
wave T,(r) and an outgoing wave Qy(r),

ul(r) = Te(r) — eOe(r) (B-38)
in the place of Eq. (B-10). Here 7, the inelasticity parameter, is a way to measure the
contribution of inelastic scattering, as we shall see later. [The definition of 5, here is
a more general one than that in Eq. (3-79), where 7, is a real number, equivalent to
the absolute value of 7, here.] Each of the factors in Eq. {B-38) has a counterpart in
(B-IO),

e~ 2ibt Ig(’l') o e—i(kr-—-}lw) OC(T) ~ ei(kr—-%lﬂ) (B-39)
The elastic scattering cross section given in Eq. (B-19) may now be expressed as

o iy
o = = Y (2 + 1)1 - )
[4

In addition, there are new terms contributing to the reaction that are not present in
scattering by a real potential.
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One way to see the difference between scattering by a real and a complex potential
is to examine the intensities of the incoming and outgoing waves for partial wave .
Using the last form of Eq. (B-10), we obtain the difference as

1-— l,r"|2 =1- l6216('2

If the phase shift &, is real, the difference vanishes and only elastic scattering can take
place. For a complex phase shift, the difference does not vanish in general, as some of
the incident flux is transferred to channels other than the incident one. This part of
the scattering is represented by the “reaction” cross section

0" = 7 (20 +1)(1 - Inel) (B-40)
¢

The total cross section is then the sum of those due to elastic scattering as well as the
reaction,
o.tot = +

= Zze+1(ll—nzl +1— |nf)
14

= ﬁ 2320+ 1)(1 - Rpy) (B-41)
4

We may compare this result with the scattering amplitude f(8) at # = 0. From
Eq. (B-16), we have

f(6=0) = k228+1(em'~1) lk 26+ 1)(me = 1)

=0
where we have made use of the value

20+1

Ye(f =0) = y

Comparing this result with the final form of Eq. (B-41), we obtain the relation

otot = 4—;13 £(0) (B-42)
known as the optical theorem.

Reaction channel. To discuss inelastic scattering involving nuclear particles in more
detail, we need to define the concept of a reaction channel. It is used to describe a
particular quantum-mechanical state of the system either before or after the scattering
event. We shall examine here only two-body scattering, although the formalism itself
can be generalized to include reactions involving three or more particles in the final
state. The labels required to specify a reaction channel consist of three distinctive
parts: those describing the internal degrees of freedom of the projectile or the scattered
particle, those describing the corresponding quantities for the target or the residual
nucleus, and those describing the relative motion between the two. For simplicity we
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shall use a single letter, ¢, the channel quantum number, to represent the complete set
of labels,
¢ B {Jpatp, Jrug; ype : m}

where £ is the relative angular momentum and m is its projection on the quantization
axis. The wave function of the projectile (or scattered particle) is represented by Srpaps
where j, is the spin and ay, represents all the other quantum numbers required to specify
the state for the projectile (or the scattered particle). The wave function of the target
(or the residual) nucleus is given by vj,q,, where j, is the spin and c, represents all the
other labels,

Since there are three different angular momenta involved here, it is useful to couple
two of them together first. For this purpose, we shall define a function,

q”'m = (¢qup x '/"JtN)*w

the product of the wave functions of the projectile (or the scattered particle) and the
target (or the residual) nucleus with their angular momenta coupled together to (v, ).
It is convenient to treat the relative orbital angular momentum ¢ separately from the
spins of the particles, as it is not usually observed directly in a measurement. The
identification of one of the two particles involved in the scattering as the projectile
and the other one as the target nucleus before the event, and one of the particles as
the scattered particle and the other one as the residual nucleus after the event, is an
artificial one without much significance in the center-of-mass system we are using here.
To simplify the notation, we have omitted references to isospin.

Scattering solution. Instead of Eq. (B-39), we shall define the incoming and outgoing
waves in the following way:

1 : —i(kr~%¢x
I(r) = - ﬁz'}’,m(o,qs)e (br=fm)g
1 M WY — X
0r) = —=iYim(0,0)e" 10, (B-43)

where v, is the center-of-mass velocity in channel ¢ and is used to normalize the wave
function in terms of probability current density, as we saw in Eq. (B-4). Consider first
the simple case of a definite incoming channel ¢. The scattering wave function for this
incident channel and all possible outgoing channels may be written as

V. (r) =T(r) ~ Z SercOp () (B-44)

where S is the matrix element relating the scattering amplitude from incident channel
¢ to exit channel ¢'.

In general, the scattering process is described by the s-matrix (also referred to, on
occagion, as the reaction matrix or the collision matrix). The matrix element

Sae = (U (r)|SI¥L(r))

is taken between wave functions in the incident channel ¢ and outgoing channel ¢/. The
superscripts on the wave functions are to remind us that the solution in channel ¢/ must
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be obtained using the appropriate boundary condition for the outgoing wave and that
in channel ¢ for the incoming wave. We shall return to the topic of the s-matrix in the
final section of this Appendix.

The general solution of the Schrédinger equation (B-3) outside the range of scat-
tering potential V' is a linear combination of those given in Eq. (B-44),

U(r) =Y C{T.(r) - 2 SeeOu(r)} (B-45)

where the coeflicients C. depend on the initial conditions given by the particular ar-
rangement of the incident beam and the target.

The asymptotic form of the incident wave function, with the projectile described
by @;,q,, the target nucleus described by 9;,4,, and the two particles approaching each
other along the z-axis with relative wave function described by a plane wave (or a
Coulomb wave if both particles carry charge), is given by

1

\I/inc (1‘) = We‘kzq)'m

4T i —s(kr—Len t(kr—Len
—~ = \/;2; v (2¢+ 1)%{6 (=3t - grlirmae )}Y‘O(e)q)‘”‘
) = % Z A/ (QZ + 1) {Ic(t,m=0) - 0c(l,m=0)} (B-46)
[4

in analogy with Eq. (B-12). For clarity, in addition to channel quantum number e,
we have also given some of the implied labels explicitly in parentheses as part of the
subscripts. The complete scattering wave function of Eq. (B-45) must contain a term
describing an incident beam identical to that given in Eq. (B-46). Hence Eq. (B-45)
may be written in the form

\I/(T‘) 700’ l\]{; Z \/ (25 + 1) {Ic(l,m=0) - ZSC'C(l,m=0)Oc'}
3 <
= z—‘ij z \/ (28 + 1){I¢([,m=0) - Oc(l,mzo) + Oc(l,m:ﬂ) - Z Sc'c(l,m:ﬂ)oc‘}
[4 ¢
= Upne(r) + ——l\f YoV @+ 1){Ocem=0) = 3 Sectem=00c |
14 o

We shall now work out the differential scattering cross section from this expression.

Cross section. Since the incident probability current density is normalized to unity
because of Eq. (B-43), the differential scattering cross section is given by

2
Z v (24 1) Soqeywp) citsm=0,yua) Yeo( 6)

e

(&) .
g Yooy ' B k?

where we have integrated over all the internal variables in the initial state, described by
the product wave function ®.,,(jpe,; jexe), and in the final state, described by the prod-
uct wave function ®.1.(js0,; - 6r). The expression is basically the same as Eq. (B-17)
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except that elements of the s-matrix between incident and final scattering states are
used to replace the phase shifts. The summation over ¢, the orbital angular momentum
in the outgoing channel, is required since in a scattering experiment only the states of
the scattered particle and the residual nucleus are observed and their relative angular
momentum ¢ is not usually identified. On integrating over the angles, we obtain the
scattering cross section as

n
Cpairstd = 75 920+ DISe(eyup)eltam=0 o)l (B-47)
k t

in the same way as was done to arrive at Eq. (B-19). The reaction cross section is
represented by terms with exit channels with § # a.
For elastic scattering, the amplitude is given by the expression
Tc’(l’m"y';t’ﬁ)c(l,m:ﬂ,'yua) = 6!(’6m'06'11'6pp' 604[1 - Sc(l’m’-,’u’ﬁ) c(£,m=0,ypa)

which, in its more general form, is known as the t-matrix. The elastic scattering cross
section is then

| " 2
O poiype = ] ;(2@ + D1 ~ Se(typa) ct;m=0,yp0)|

n
= = 2{:(23 + 1D){1 = 2RS aispatme=0) + | Seteruarettm=o el }
tl

(B-48)

We can recover from this the relation given by Eq. (B-41) for total scattering cross sec-
tion by adding to Eq. (B-48) the contribution from the reaction cross section contained
in Eq. (B-47) and summing over all possible exit channels,

o m 2
O v = k2 213(” + 1){1 = 2RSe(typa)cltm=0ua) + 3 1Seerypp)cttm=0ue)] }
- ' u'
Because of the unitary property of the s-matrix,
2
E |Sercery o) c(lwa)l =1
tl.’l"lﬁ

where the summation is taken over all the possible channels, we have the result

o n
U;uta;wa = ) 21:(25 + 1){1 - §RSc(t'mu)c(l'wc')}

From this we obtain again the optical theorem in the same way as was done in deriving
Eq. (B-42) from (B-41).

B-5 Coulomb Scattering

The discussions in §B-2 and §B-3 apply only to short-range potentials. For nuclear
scattering this is quite adequate except for the electric charge carried by the partici-

pants. The Coulomb potential between two nuclei with charges Zye and Zje is given
by

2
Ve(r) = [——}——} Zi5e ath122
4Teg T T
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where the factor inside the square brackets converts the expression from cgs to SI units.
Since the range of this potential is infinite, the techniques employed in §B-2 to find the
scattering solution no longer apply. This is not a problem, as exact solutions are
available (see, e.g., Messiah [104], Morse and Feshbach [106], and Blatt and Weisskopf
[32]). A short summary of the results is given here.

For scattering involving only Coulomb potential, the Schrédinger equation can be
written as

2
{v2 + k- -}ﬁ}wc(r) =0 (B-49)
h
wnere k2 - M y = leaayc
n? hk

The regular solution of Eq. (B-49) has the form
W(r) = ¥ f(r - 2)

where
kz=krcos@=k-r

The function f(¢) satisfies the differential equation,

d? d
{cga+a-ag+injro=0

with
¢ =ik(r — 2)

It is a type of Laplace equation,
d? d
{UW + (8- M)E - ae}f(u) =0
with solution involving the confluent hypergeometric series

a£+a(a+1)u_’
A1 BB+1)2

The normalized Coulomb wave function is then

F(a|flu) =1+

1

Ye(r) = e" (1 + iy)e™* F(—iv|1)ik(r — 2))

The definition of the gamma function I'(1 + iy) and its properties may be found in
Abramowitz and Stegun [2].
At the origin, F(c|B]u) = 1 and only the normalization factor remains,

$e(0) = e ¥ (1 + iv)

Using the identity that
Y

. 2 __nr
L +inl" = sinh Ty
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we obtain the result
27y

e —1

Y (0" =

This gives the Fermi function F(Z, E.) of Eq. (5-67) for nuclear 3-decay in the limit that
the charge distribution in the daughter nucleus can be considered to be concentrated
at a point located at the origin.

For scattering, we are more concerned with the asymptotic behavior of the wave
function. As in Eq. (B-5), we need the values at large distances away from the origin
and expressed as a sum of incident wave ¢;(r) and scattered wave 4,(r),

12’8(7') = 1/11'(7') + 'd’s(?‘)

For |r — z| — oo, we have the result

(B-50)

2
{kz+7In k(r—z)} v .
hir) — e {1+Wik(r-—z) 4o}

Yu(r) — L gser=rinair) fe(0) +0(r%)
T
The Coulomb scattering amplitude f°(4) is given by
(g) = Y t{vin(sin? do)+265)
F0) = — g Ig* ’
where
& = argI'(1 + i)

is the Coulomb phase shift for £ = 0. Using this result, we obtain the Rutherford
scattering formula

(da) __{ Zy Zyochic }2

49/ run. L4Esin2(0/2)

This is the same expression as Eq. (4-7) except, here, the kinetic energy is represented by
the symbol E to conform with the general practice in nonrelativistic scattering, rather

than T in Eq. (4-7), where we need to make a distinction from the total relativistic
energy.

We can also make a partial wave expansion for the solution to Eq. (B-49) in a way
similar to that given in Eq. (B-8). Let

-
i [
Vel(r) = 3 \/Am(20+ 1) - ui(r)Yaol0)
t
The modified Coulomb radial wave function u§(r) satisfies the radial equation

& 2y L+1)\ .,
{52‘4-1 —;——————~pz }ut(T)~0

where p = kr. The solution of this equation may also be expressed as a sum of Fy(v, p)
and Ge(7, p), the regular and irregular Coulomb wave functions (see, e.g., Abramowitz
and Stegun [2}),

ug(p) = C1Fy(7, p) + C2Ge(, p)
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However, for scattering problems, it is more convenient to use

ug(r) = e Fy(, p) (B-51)
where
b = argT(€+ 1 +1iv)

is the Coulomb phase shift for partial wave £.
Asymptotically, the Coulomb wave function has the properties

Fi(v,p) —==— siné& Ge(v,p) —==— cosé,

where
&e=p—vIn2p— %Ew+6§
Applying this result to the right-hand side of Eq. (B-51), we can write the asymptotic

form of the modified radial wave function in a manner similar to the final form of
Eq. (B-10),
O kreyinke)) 2685 a(kr—yIn2kr—tx))
< —i(kr—~yIn2kr)) __ _2i6§5 j1o(kr—yIn2kr—€x
ul(T) T—00 2]‘5’!‘ {e e"te }

From this, we obtain the Coulomb scattering amplitude in terms of the phase shifts

1 ;K€
10 = 57 ; VAT(2€ + 1) (%% — 1)Yi0(8)
similar to that given in Eq. (B-16).

B-6 Formal Solution to the Scattering Equation

There are two reasons to have a short discussion here on the formal solution to the
scattering equation. The first is to define some of the terminology commonly used in
scattering and related problems. The second is to make a connection with methods
used in standard references on nuclear scattering.

We shall write the time-independent Hamiltonian as

H=Ho+V (B-52)

Normally Hy consists of the kinetic energy operator only,
= ——V? B-53
Hy % ( )

as in Eq. (B-2). However, we may also choose to include in Hy a part of the interaction,
such as that due to Coulomb force or the optical model potential, as we did in §8-4.
The potential V in Eq. (B-52), then, represents the residual interaction, the remainder
of V that is not already included in Hy. For our purpose here, we shall further assume
that any long-range part of the potential is included in Ho.
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The eigenfunction of the scattering equation is the solution of the equation
(Ho = EYié(r) = -Vei(r) (B-54)

where the superscript + on ¢ (r) indicates that the solution satisfies outgoing boundary
conditions and the superscript ~ refers to incoming boundary conditions. Qur concern
will be mainly with the former. The subscript k, with magnitude k = \/2uE//h, displays
the explicit dependence of the solution on energy.

The solution of the homogeneous equation

(Ho— E)gs({r) =0 (B-55)

forms a complete set satisfying the orthogonality condition

[ e ronir)dr = ok - k)

and having the closure property
/¢i(r')¢k(r) dk = 6(r — ')

For the simple case of Eq. (B-53) for Hy, we have plane waves, ¢x(r) ~ exp(ik - r), as
the solution for Eq. (B-55). On the other hand if, for example, the Coulomb potential is
included as a part of Hy, we have the Coulomb wave functions as the solution instead.

Green’s function. Using the method of Green’s function, the solution of the scattering
equation may be expressed in terms of an integral equation

YEr) = oulr) + 2 [ G W () (B-56)

The first term is the solution to the homogeneous equation of Eq. (B-55). The Green’s
function G*(r, ') in the second term satisfies the equation

2
(Hy = E)G*(r,7') = —Z—”&('r ~7) (B-57)

with outgoing boundary conditions. In the simple case that Hy involves only the kinetic
energy, as given in Eq. (B-53),

1 elkl"—"'l

“aree

G*t(r,7v') = (B-58)
We shall use this simple form of the Green’s function exclusively for the examples below.

It is easy to check that ¥} (r) given in Eq. (B-56) is a solution to (B-54). On
applying Hy — E to both sides of Eq. (B-56), we obtain the result

2
(Ho — EYYi (r) = (Ho ~ E)pw{r) + h—‘:(Ho - E)/G‘L(r, W ("t (r') dr'
The first term on the right-hand side vanishes because of Eq. (B-55). For the second
term, since Hy — E operates only on variable » and not on ', we may bring the operator
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inside the integral without changing the final result. Furthermore, since r appears only
in G(r,r'), we obtain, using Eq. (B-57), the result

(Ho — EW{(r) = = [ 8(r ~ V(Wi () dn' =~V (ryui(r)
the same equality given in Eq. (B-54).

Scattering amplitude. It is easy to see how the scattering amplitude may be obtained
from Eq. (B-56) using the explicit form of the Green’s function given in Eq. (B-58).
Let # = r/|r| be a unit vector along direction r. In the asymptotic region,

Ir—v|=r—% 0

since the integral over 7 is effective only in the region of small 7' where the short-range
potential V(') is nonvanishing. As a result, we may approximate the Green's function
of Eq. (B-58) as

GH(r,1) s - e - L

T 4 T ir T

where we have taken k' to be along the direction of #. Equation (B-56) is now reduced
to

e [, : :
vE) = on(r) - S5 [V () ar (B-59)
Comparing this result with Eq. (B-5), the scattering amplitude is identified as
10) = —Ly [ G Wit 0 dr' = ~LrtoulVit)  (BeD)
2rh? ) ¥ k 2k k

The resuit here is an exact one {in the asymptotic region) and is different from that of
the first Born approximation given in Eq. (8-22), as 1, the solution of the scattering
equation Eq. (B-54), appears in f(0) in the place of ¢,. The differential scattering cross
section is then

de o) = Sl VI

The usefulness of this expression is limited, as it requires a knowledge of ¥} ('), the
complete solution to the scattering problem.

The result given by Eq. (B-59) is an integral equation, or “formal,” solution of
the scattering equation, as v; itself appears on the right-hand side as well. Its value
lies mainly in analytical works, such as a Born series expansion of the scattering wave
function and scattering amplitude. To simplify the notation, we shall write Eq. (B-56)
in the following way:

YE = +GTVY (B-61)

where, instead of G*(r,r'), we have used G*, an operator for the Green’s function
defined by the relation
G*(r,7') = (r|G*|r)
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In terms of Hy and E, the Green’s function operator G* may be expressed as

Gt =lim L

B E_Hy+ie (B-62)

where the factor +ie, with ¢ as some small positive quantity, is required to ensure
that the operator corresponds to the outgoing boundary condition. The derivation
of Eq. (B-62) may be found in quantum mechanics texts such as Merzbacher [103],
Messiah {104), and Schiff {125].

Lippmann-Schwinger equation. It is easy to see that Eq. (B-62) is correct by
substituting it into Eq. (B-61). The result

Y=+ vy

1
E - H() + i€
is one way to write the Lippmann-Schwinger equation. The equation may be reduced
to a more familiar form by operating from the left with £ — Hp + ie and taking the
limit ¢ — 0,

(E - Ho)pf = (E — Ho)w + Viif

The first term on the right-hand side vanishes because of Eq. (B-55) and the rest of
the equation is identical to Eq. (B-54).

If we replace ¥ on the right-hand side of Eq. (B-61) by its value in the same
equation and repeat the process, we obtain an infinite series expansion of ¥/ in terms
of ¢,

vE

i

ok + GV (g + GTVy})
Gk + GtV + GTVGHV (g + GTV)

(1+ fj(GW)")d)k (B-63)
n=\

I

This gives us a Born series expansion of the scattering amplitude if we substitute the
expansion for v into Eq. (B-60).

t-matrix. We have seen earlier that the scattering amplitude (—p/27h%)(dp|V|¥})
given by Eq. (B-60) is not useful directly for calculating cross sections because of its
dependence on ¥}. For many purposes it is more convenient to define a transition
matrix, or t-matrix, satisfying the relation

(dwitide) = (ewlVIvi) (B-64)

In terms of the t-matrix, the scattering amplitude is a function of matrix elements
involving only ¢, the solution of the homogeneous equation given in Eq. (B-55), Again,
this is useful mainly for formal work, as the t-matrix itself cannot be written down unless
we solve the scattering problem first. For the simple case of Hy consisting of the kinetic
energy operator only, the elements of the ¢t-matrix involve only plane wave states.
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Using the series expansion of ¢} given in Eq. (B-63), we can write the elements of
the t-matrix as

(B ltlor) = (V1 + 2 (GTV)")lgr)
n=1
Since the equality holds for arbitrary ¢4 and ¢+, we obtain a relation between the
operators involved,

t=V(+ Y (GTV)Y)
n=1
This can be put in a more compact form. Since the summation is taken up to infinity,

we can take one product of Gt with V out of the summation and rewrite the equation
in the form

t=V+ VGV + VGV GV =V + VG+{V 4V E(G+V)"}
n=1 n=]1
The quantity inside the curly brackets is nothing but the transition operator ¢ itself,
and we obtain the result
t=V +VGtt

a form that is convenient as the starting point of many other derivations.

s-matrix. The s-matrix may be expressed in terms of the t-matrix using the relation

(0p]Sldg) = bpq — 2miB(E, — Ep) {plt]dg)

The definition of the s-matrix is usually introduced through the time development
operator U(t,tp) in the interaction representation of quantum mechanics (see, e.g.,
Sakurai [121] and Schiff [125)).

For most elementary applications, the time dependence of a quantum-mechanical
state is expressed in the Schriodinger representation. Here, the operators are time
independent; all the time dependence resides with the wave functions ¥,(¢). Using
Eq. (B-1), we obtain the result

ih%\ll,(t) = HY,(t) (B-65)
where the subscript s emphasizes that the wave function is in the Schrédinger repre-
sentation. To simplify the notation, we have suppressed all arguments other than time.
Alternatively, one can work in the Heisenberg representation where, in contrast, the
wave function is time independent and all time dependence is built into the operators.

In the interaction representation, the time dependence of a system is partly in the
operator and partly in the wave function. The Hamiltonian is divided into two parts

H = Hy+ H,

Wave functions ¥(¢) and operators O(t) in this representation are related to those in
the Schrédinger representation through the transformations

Y(t) = e/h,(t) (B-66)
é(t) — elHot/hOA,e—qut/h (B‘67)
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As a result, the time development of a state in the interaction representation is given
by the equation

N
iz (1) = Hi(O¥(1)

as can be seen by substituting the inverse of Eq. (B-66) into (B-65). For many pur-
poses, such an approach can be simpler than working in the Schrodinger representation,
especially if H, is only a small part of the complete Hamiltonian.

We can now define the time development operator U(ty,t) that takes a state from
time to to time ¢ in the interaction representation

D(t) = U(t, £0)¥(to)
On substituting this definition in to Eqs. (B-66) and (B-67), we obtain an equation for
U(th t))
iﬁ%U(t, to) = H,(t)U(t, ty)
The solution of this equation may be given as an integral equation,

t
U(t, to) =1-1ih H,(t)U(t,to) dt
to
The s-matrix operator is defined by the following relation:
§= lim U(t,t)

It is easy to see that the matrix elements of operator S between specific initial and
final states are proportional to the scattering amplitude, as both quantities are related
to the probability of finding a system in the final state at t = 400 if it started out from
an initial state at { = —o0.

In terms of phase shifts, the element of the s-matrix for partial wave £ is given by
(€|5]€) ~ et
The analogous relation for the t-matrix element is
(e|t1e) ~ et sin &,

The advantage of using the s-matrix for scattering problems is its unitarity and other
symmetry properties that are convenient in more advanced treatments.
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6j-symbol, 405
9j5-symbol, 406

actinide series, 244
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active
nucleon, 257
space, 235, 258
state, 254
adiabaticity parameter, 277
adjoint
operator, 230
tensor, 401
algebraic model, 233
allowed transition, 192, 199

a (alpha)
-cluster, 11, 146
-particle, 1

decay, 143-150, 364

Alternating Gradient Synchrotron {AGS),

348
amu (atomic mass unit), 18
analyzing power, 296
angular
distribution, 290
momentum, 256
momentum selection rule, 165, 175
electromagnetic moments, 126
anomalous, 49
antinucleon scattering, 99, 303
antiparticle, 30, 31
antiquark, 26
antisymmetrized wave function, 44, 248
approximation
Born, 286-291, 303
distorted wave, 291, 303
impulse, 132, 300, 306
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independent particle, 254
interacting boson, 229-233
long-wavelength, 172
random-phase, 271
Argand diagram, 89
astrophysical S-factor, 361
asymmetric fission, 151
asymptotic freedom, 55
atomic mass unit, 18
attractive well, 418
Auger effect, 177
average cross section, 284
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symmetry, 251
vector, 185
axially symmetric object, 221

back-shifted Fermi gas model formula,
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backbending, 227
bag model, 55, 341
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crossing, 327
head, 223
barn, 18, 412
baryon, 26, 43
number, 24
basis states, 235-238
beauty, 35, 36
8 (beta)
-decay, 181-203, 306
allowed, 198
50Co, 185
double, 202
Fermi, 192
forbidden, 200
Gamow-Teller, 192
superallowed, 199
-particle, 1
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big-bang nucleosynthesis, 356-357
binary fission, 151
binding energy, 9

per nucleon, 10, 155
black hole, 381
Bohr radius, 120
Bonn potential, 98
Born approximation, 286-291, 303
Bose-Einstein statistics, 27
boson, 27

operator, 229
bound

nucleon, 99

state problem, 5
boundary conditions, 282
branching ratio, 163, 164
breathing mode, 157, 205
breeder reactor, 152
Breit-Wigner formula, 284
broken symmetry, 4, 41
bulk modulus, 157

Cabibbo
angle, 42, 183
-Kobayashi-Maskawa (CKM) matrix,
184, 346
calcium isotopes, 264
carbon
burning, 379
-nitrogen-oxygen (CNO) cycle, 364—
366
central
collision, 350
force, 77
potential, 83
centrifugal
barrier, 89
stretching, 227
Cerenkov radiation, 369
Chandrasekhar limit, 381
channel
quantum number, 424
radius, 282
charge
conjugation, 23, 31, 34
density, 111-112

exchange reaction, 215, 303, 306, 313
314
form factor, 105, 269
independence, 72, 81
number, 29
radius, 109-111
symmetry breaking, 72
charged particle capture, 384
charm, 35, 36
meson, 350
chemical name, 8
chiral invariance, 391
classical turning radius, 148, 416
Clebsch-Gordan coefficient, 402
closed shell nucleus, 240
clustering, 272
CNO (carbon-nitrogen-oxygen) cycle, 364—
366
coefficient
Clebsch-Gordan, 402
Racah, 405
collective
behavior, 17
model, 205-229
colliding beam, 80
collision, see scattering
matrix, 424
color, 22, 38
screening, 350
complex
potential, 88
scattering
amplitude, 88
potential, 422
compound
elastic, 284
nucleus, 17, 280-285
compression modulus, 157
computational physics, 393
Condon and Shortley phase convention,
401, 403
configuration mixing, 256
confinement, 55, 100
conserved vector current (CVC), 188
constant-density sphere, 110
contact interaction, 182
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core
collapse, 382
state, 254
Coriolis force, 228
correlation, two-particle, 351
correspondence principle, 323
Coulomb
barrier, 361
effect, 7, 319
energy, 139, 153, 208
parameter, 140
excitation, 275-280, 319
penetration factor, 361
phase shift, 428, 429
potential, 79, 426
repulsion, 144
scattering, 93, 427
wave function, 428
coupling constant, 2, 308
Fermi, 182
Gamow-Teller, 188
pion-nucleon, 96, 183
vector, 188
cranked Hamiltonian, 340
cross section, 281
average, 284
differential, 15
scattering, 411, 415
elastic scattering, 282
point-particle, 276
reaction, 15, 283, 423
scattering, 81, 286, 412
total, 15
current density, 169
cutoff radius, 111
CVC, 188

de Broglie wavelength, 14, 15, 276
Debye screening, 350
decay

allowed, 198

a-particle, 143--150, 364

B, see B-decay

constant, 161

double g, 202

electromagnetic, see electromagnetic
transition
Fermi, 192, 215
forbidden, 192, 200
Gamow-Teller, 192
neutron -, 23, 181-183, 356
quark, weak, 183
superallowed, 199
decoupling parameter, 227, 228
deep-inelastic
collision, 324
scattering, 117
deformation, 12, 125, 154, 218
deformed
nucleus, 126
single-particle state, 250~256
delayed neutron, 151
A (delta)
-hole excitations, 308
-particle, 25, 30, 38-39, 43-45, 84,
98, 309
density
charged-lepton states, 193
-dependent effective potential, 300
final states, 192, 285
infinite nuclear matter, 155
neutrino states, 193
of states, 13, 341
vibration, 205
deuteron, 58-71, 288, 357, 363
D-state, 68-T71
isospin, 60
orbital angular momentum, 59
total intrinsic spin, 60
D-function, 222, 400
difference equation, 141
differential scattering cross section, 15,
411, 415
diffuseness, 112, 295
dimensional analysis, 174
dipole form, 114
Dirac
equation, 307, 320, 394
form factor, 113
formula, 109
particle, 24, 107, 202
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direct
reaction, 286-291, 303
scattering amplitude, 306
distorted wave Born approximation (DWBA),
291, 303
(d, n) reaction, 290, 315
doorway state, 285
double
(-decay, 202
-charge exchange reactions, 314
-hump potential, 154
(d, p) reaction, 286, 288, 315
Drell-Yan process, 350
ds-shell, 218, 267
dynamic moment of inertia, 331

e (unit of charge), 19
effective
charge, 268
Hamiltonian, 258-261
interaction, 259, 263, 264, 300
nucleon-nucleon interaction, 143
one-body potential, 72
operator, 268-270
potential, 416
barrier, 148
range, 90, 95, 419, 420
analysis, 419
eigenvalue problem, 5, 236
eigenvector, 236
elastic scattering, 16, 115
cross section, 282
electric
hexadecapole moment, 127
multipole
moment, 126
operator, 125
transition, 172
quadrupole
moment, 65-67, 126-127
operator, 65
term, 109
transition, 168
electromagnetic
field, 168-172
moments, 124-132

transition, 168-181, 306
quadrupole, 210, 225, 269
rotational model, 225
selection rule, 175-177
vibrational model, 210

electron, 22
capture, 189, 356, 363, 367
scattering, 105-120, 391

elementary particle, 21

EMC (European Muon Collaboration)

effect, 118

empty state, 254

end-point energy, 4, 193, 367

ensemble averaging, 345

equilibrium shape, 335-340

7-meson, 34, 41

np-meson, 41

E2-transition, see quadrupole transition

Euler angle, 41, 221, 399

even

-even nucleus, 133

-mass nucleus, 133

exchange

interaction, 94

scattering amplitude, 306

exit channel, 16
explosive nucleosynthesis, 383

frp2-orbit, 264
fast-pion absorption, 309
femtometer, 18
Fermi
(B-decay, 215
coupling constant, 182
decay, 192
-Dirac statistics, 3, 26
function, 193, 369, 428
gas, 13
model, 13, 155, 341
integral, 196
level, 13
momentum, 115, 155
fermion, 3, 13, 26
creation operator, 31
Fermi’s golden rule, 167, 190
Feynman
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diagrams, 96
path integral, 344
final state interaction, 93
fission, 10, 150-154, 211
asymmetric, 151
barrier, 152
binary, 151
induced, 151
isomer, 154
spontaneous, 150
ternary, 151
flavors, 22
folding model, 298
forbidden decay, 192, 200
force, see also potential
nuclear, 57, 72
tensor, 68
three-body, 72
formal solution, 259-261, 287, 429
form factor, 105~109, 113-119
charge, 105
Dirac, 113
longitudinal, 105
nucleon, 113-119
Pauli, 113
Sachs, 113
transverse, 107
four-component wave function, 394
Fourier
-Bessel coefficients, 111
transform, 105, 163
freeze out, 351
full width at half maximum, 163

Galilean invariance, 76
7 (gamma)
-ray, 1
-vibrations, 211
gamma function, 427
Gamow-Teller
coupling constant, 188
decay, 192
strength, 215
gauge theory, 344
Geiger-Nuttall law, 146, 149
generator coordinate method, 272

giant
dipole resonances, 213
Gamow-Teller resonance, 215
resonance, 212-218
Goldberger-Trieman relation, 188
Goldhaber-Teller model, 213
gravitational contraction, 381
grazing collision, 321
Green’s function, 286, 430
ground state
isospin, 134
magnetic moment, 129
properties, 132
spin, 132-134
group structure, 231
gyromagnetic ratio, 49, 61

hadron, 26
mass, 53
half-life, 145, 161
Hamiltonian, 409
cranked, 340
effective, 258-261
Hartree-Fock, 246-250
one-body, 240
rotational, 221
single-particle, 250
time-dependent, 165
time-independent, 429
Hanbury-Brown-Twiss effect, 351
hard core, 95
harmonic oscillator, 239
frequency, 241
model form, 112
potential, 102, 240
Hartree-Fock
Hamiltonian, 246-250
time-dependent, 325
Hauser-Feshbach theory, 285
heavy
iom, 17, 212, 317
reaction, 317-353
water, 370

Heisenberg uncertainty principle, 162

helicity, 113, 186
helium, see a-particle
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burning, 359, 373-376
(*He,¢)-reaction, 201
hep process, 367
Hermitian conjugate, 401
hexadecapole moment, 127
high-energy nuclear physics, 38, 119
high-spin state, 17, 323, 326-340
Hilbert space, 236, 258
Hill-Wheeler variable, 220
homogeneous equation, 430
homonuclear molecule, 90
hydrogen

atom, 120

burning, 358

-like atom, 120, 319
hydrostatic equilibrium, 358
hypernucleus, 315

IBA, 229-233
impact parameter, 417
impulse approximation, 132, 300, 306
incident
channel, 280
flux, 409
inclusive
cross sections, 324
scattering, 117
incompressible fluid, 110, 139
independent particle
approximation, 254
model, 238-240
induced fission, 151
inelastic
electron scattering, 306
scattering, 17, 84, 422
nucleon-nucleon, 88
inelasticity parameter, 89, 282, 422
inert core, 232
infinite nuclear matter, 155-158
integral equation, 430
interacting boson approximation (IBA)
229-233
interaction, 308, see also potential
final state, 93
representation, 433
interband transition, 226

1

intermediate-energy
nucleon-nucleus scattering, 303-308
proton scattering, 123
internal
conversion, 168, 177
pair
creation, 168
production, 177
intraband transition, 225, 226
intrinsic
coordinate system, 220
magnetic dipole moment, 61
parity, 398
quadrupole moment, 224
spin, 26, 185, 187, 241, 257
wave function, 222
invariance, see symmetry
irreducible
group, 400
representations, 233
isobar, 137
isobaric analogue state (IAS), 73, 136~
139
isolated resonance, 283
isoscalar, 30
dipole vibration, 207
operator, 75
isospin, 28, 59-61
dependence, 140
invariance, 73
mixing, 134-137
operator, 29
purity, 136
quarks, 32
symmetry breaking, 28, 54
two-nucleon, 61
isotope, 7
isotopic shift, 119-120

Jj-coupling, 232
scheme, 257
I/
-meson, 25, 37
suppression, 350

K =0 band, 223
Kamiokande, 370
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kaon, 315

factory, 392
Kelson-Garvey mass formula, 141-143
kinematical moment of inertia, 332
Klein-Gordon equation, 79
K*-meson, 25, 35, 36, 42, 185
Kronecker delta, 401
Kurie plot, 194

A-particle, 36
Landé formula, 63, 407, 408
Laplace’s equation, 78
lattice
gauge calculation, 343
spacing, 345
left-handed particles, 187
lepton, 22
number, 23
leptonic processes, 182
level-density parameter, 13
Levi-Civita symbol, 29
lifetime, 18, 162
Lippmann-Schwinger equation, 432
liquid drop model, 139, 152, 205, 208
(°Li,®He)-reaction, 201
local group, 358
logarithmic derivative, 282
longitudinal form factor, 105
long-wavelength
approximation, 191
limit, 172
Lorentzian shape, 163
Lorentz invariance, 79
LS-coupling scheme, 256

magic number, 9, 239
magnetic
charge density, 127
dipole moment, 61-64, 129-132
intrinsic, 61
orbital, 61
dipole operator, 61-62, 128
moment, 127-132
multipole transition, 172
term, 109
transition, 168
Majaron, 203

Majorana
fermion, 202
particle, 24
major shell, 240
mass, 10
defect, 18
excess, 18
master equation, 324
matrix
diagonalization, 237
element, reduced, 407
method, 68, 135, 236-237
matter density, 120
maximum spin, 323
Maxwell-Boltzmann distribution, 358, 362
mean
field, 249
approach, 337
theory, 271
life, 162
meson
exchange, 78
-nucleus scattering, 309-315
mesonic current, 63, 132
microscopic model, 235, 298
mirror nuclei, 73
mixing angle, 41, 42, 183
model
algebraic, 233
bag, 341
Fermi gas, 155, 341
folding, 298
Goldhaber-Teller, 213
independent particle, 238-240
liquid drop, 139, 152, 205, 208
microscopic, 235, 298
nuclear structure, 235
optical, 291-303
quark, 39
rotational, 218-229
shell, 238, 256-271, 393
single-particle, 130, 179
two-centered, 272
vibrational, 205-212
modified radial wave function, 282, 412
moment of inertia, 221
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dynamic, 331
kinematical, 332
static, 332
momentum
dependence, 103
transfer, 107, 108, 116, 288
M 1-transitions, 226
Monte Carlo
calculation, 345
technique, 394
Mott formula, 107
multiple excitation, 279
multiplicity, 347
multipolarity selection rule, 176
multipole
electromagnetic, 172-174
expansion, 124--126, 276
moment, 126
muon, 22, 350
rmuonic atom, 120-121

natural line width, 162, 163
nd-scattering, 80
negative parity, 397
neon burning, 380
neutral
atom, 10
weak current, 183
neutrino, 4, 22, 395
astronomy, 366
cooling, 382
helicity, 187
mass, 187
measurement, 194-195
oscillation, 371
spectrum, 367
neutrinoless double (§-decay, 202
neutron, 3, 27
absorption, 384
A~ -decay, 23, 181-183, 356
-deficient nucleus, 317-318
delayed, 151
electric
dipole moment, 126
form factor, 114
excess, 7, 140

-neutron scattering, 80

number, 7

prompt, 151

-proton mass difference, 138

-rich nucleus, 318, 384

star, 381, 382

target, 80

wave function, 27
neutronization, 383
Nilsson

orbital, 251

scheme, 254-255

state, 251

-Strutinsky approach, 335-340

nn-scattering length, 93
nonleptonic processes, 182
nonlocal potential, 295, 301
nonresonant reaction, 361-362
Nordheim rules, 133
(n, p) reaction, 303
np-scattering, 80, 85
nuclear
(-decay operator, 191
fission, see fission
force, 5, 57, 72, 95
saturation, 11
interaction, 72-80
magneton, 61
matrix element, 164
matter, 155-158
density, 12
potential, 69, 78, 95-102
symmetry, 76
radius, 2, 110
reaction, 6
reactor, 152
size, 12
structure, 5
model, 235
transparency, 349
nuclei
777112, 319
26 Ac, 164
Al 118
6m A 204
%7Ar, 371, 387
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5B, 357

8B, 363

142B4, 151

"Be, 190

8Be, 159, 272, 364, 375

209Bj, 273, 324, 325

22B{ 150

82pr, 202

12C 18, 160, 204, 269, 304, 312, 364,
365, 375

“e 313

16C, 138, 139, 159

39Ca, 273, 286

40,4‘2,44,46,4303’ 119

40Ca, 106, 123, 206, 238, 264, 286,
302

41Ca, 264, 273, 288

420, 264

43'44‘45’46’4703, 265

8, 16, 123, 264

1060, 202

uoeq, 211

IlZ.IH,llGCd’ 211

H8cd, 210

132(Ce, 330

BACE, 151

370y, 371, 387

88Co, 4, 186
[-decay, 186

1827y 330

154y 328

1526y, 187, 234
electron capture, 187

16 138, 139, 159

7R, 131, 273

19F, 255, 366

%6Fe, 14, 20, 118, 382

253Pm, 319

22Fy, 164

"1Ga, 372

3H, 273, 391

3He, 72, 114, 131, 195, 201, 273, 357,
363, 391

4He, 118, 238, 312, 357, 363

5He, 273, 357, 375

8He, 318

1701t 223

180Hg 317

3K, 273

82Kr, 202, 203

92K, 151

SLi, 273, 375

614, 312

Li, 80, 190

XMg, 272

¥Mg, 233, 273

Mg, 204

12N, 160, 204

13,14N, 365

5N, 131, 273, 365

16N, 138, 159

19Na, 218

2Na, 315

BNa, 255

16Ne, 138, 139, 159

19Ne, 218, 255

20Ne, 204, 234, 268, 290, 315, 366,
379

2Ne, 204, 255, 290

86N, 267, 388

¥TNi, 267

60Nj, 186, 211, 313

62Nj, 211, 267, 268

2%57No, 319

120,159

140, 365

150, 273

160, 138, 159, 205, 209, 218, 238,
268, 269, 273

17Q, 131, 273, 366

1803, 273, 366

20, 318

206ph 106, 158

07ph, 273

208py 121, 172, 206, 209, 238, 244,
250, 314, 316

209p}, 273

106pq 202

12pg, 150

1%Ra, 164

103Rh, 314

102RYy, 211
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485¢, 16

82Ge, 202, 203

853, 218

152G, 187
120'121811, 315
1326y, 318

26Th, 164

874, 119

20771, 273

2087, 150

19T, 227

827, 151

85, 151, 152, 159, 160
WY, 151, 152, 160

28 9 144, 147, 152, 159, 160, 320

136X e, 324, 325
847r, 333
0Zr, 206, 238, 317, 353
nucleon, 2, 27
form factor, 113-119
-nucleon
interaction, 80, 218
potential, 303
scattering, 346
scattering phase shifts, 84
-nucleus
potential, 306
scattering, 292, 303-308
number, 7
valence, 257
nucleosynthesis
big-bang, 356-357
explosive, 383
heavy element, 384
hydrostatic, 363-366, 373380
stellar, 357-360
nucleus
closed shell, 240
compound, 17, 280
deformed, 126
even-even, 133
even-mass, 133
hyper-, 315
mirror, 73
neutron-rich, 318, 384

odd-mass, 132, 133, 227, 255

odd-odd, 133, 134

proton-rich, 318, 386

spherical, 65, 218

superheavy, 244, 318
numerical

integration, 345

simulations, 271

occupancy representation, 247
octupole vibration, 209
odd
-mass nucleus, 132, 133, 227, 255
-odd nucleus, 133, 134
off-shell, 100
w-meson, 42
one
-body
contribution, 141
Hamiltonian, 240
-boson exchange (OBE), 97
potential, 306
-particle one-hole (1plh)
excitation, 209, 271, 305
state, 247

-pion exchange potential (OPEP), 94,

95
on-shell, 100
operator
adjoint, 230
boson, 230
effective, 268-270
electric
multipole, 125
quadrupole, 65
fermion creation, 31
isoscalar, 75
isospin, 29
magnetic
dipole, 61-62, 128
nuclear (-decay, 191
permutation, 44
projection, 217, 258, 269, 293
gunadratic spin-orbit, 76, 78
s-matrix, 434
spin, 69
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-orbit, 76
tensor, 71
time development, 433, 434
two-body spin-orbit, 77
optical
model, 291-303
formal derivation, 292-295
microscopic, 298-302
phenomenological, 295-298
potential, 295, 310
theorem, 423
orbital angular momenta, 240
overlapping resonance, 284
oxygen burning, 380

pairing, 129, 133, 232
energy parameter, 140
force, 140
interaction, 9, 229

parameter
Coulomb energy, 140
decoupling, 227, 228
inelasticity, 89
level density, 13
pairing energy, 140
shape, 206
surface energy, 139
volume energy, 139

Paris potential, 98

parity, 30, 58-59, 76, 397
antiparticle, 399
negative, 397
nonconservation, 184-187
positive, 397
rotational wave function, 222
selection rule, 176
transformation, 222
violation, 4

partial
half-life, 151, 164
wave, 83, 412
width, 163, 281

partially conserved axial-vector current

(PCAC), 188
partons, 117
Pauli

exclusion principle, 38, 44, 60, 90,
96, 99, 155, 399
form factor, 113
matrix, 29, 69
PCAC, 188
pd-scattering, 80
pep process, 367
permutation, 76
operator, 44
perturbation, 165
method, 55
technique, 344
{p, v) reaction, 363, 364
phase
diagram, 343
shift, 80-89, 282, 413, 418
transition, 346
¢-meson, 42
phonon, 209
photodisintegration, 357, 374, 382, 384
photon, 352
pickup reaction, 17, 286
m-mesic atom, 309, 398
pion
absorption, 309-310
-decay constant, 188
fast, 309
-nucleon
coupling constant, 96, 188
scattering, 122
-nucleus scattering, 122-123, 310
production, 310
scattering, 310-313
soft, 391
stopped, 309
wave function, 33
plane wave, 82, 190, 409, 430
Born approximation (PWBA), 290
(p, n) reaction, 303
Poisson’s equation, 79
polarization, 84, 86, 410
polar vectors, 185
positive parity, 397
potential
barrier, 147
a-decay, 144
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Bonn, 98
central, 83
complex, 88, 422
Coulomb, 79, 426
density-dependent, 300
double-hump, 154
effective, 416
energy surface, 340
harmonic oscillator, 102, 240
nonlocal, 2995, 301
nuclear, 69, 78, 95-102
nucleon-nucleon, 303
nucleon-nucleus, 306
one-body, 72
one-boson exchange, 96, 306
optical model, 295, 310
Paris, 98
quark-quark, 100
repulsive, 418
scattering, 284
short-range, 79, 82
spin-orbit, 296
square-well, 417
Yukawa, 80, 306
PPI-chain, 363
PPIl-chain, 363
PPI11l-chain, 364
(p, p') reaction, 303
pp-scattering, see proton-proton scatter-
ing
probability current density, 410
projection operator, 217, 258, 259, 293
prolate spheroidal shapes, 255
prompt neutron, 151
proton, 27
charge radius, 114
inelastic scattering, 303
number, 7
-proton scattering, 80, 84, 346
-rich nucleus, 318, 386
wave function, 26
pseudorapidity, 348
pseudoscalar, 40, 185
mesons, 40
p-shell, 266
Py3-resonance, 39, 122, 308-310, 312

QCD, see quantum chromodynamics
QGP, see quark-gluon plasma
quadratic spin-orbit operator, 76, 78
quadrupole
interaction, 229
moment, 224
transition, 210, 225, 269
vibration, 207, 232, 267
quantum
chromodynamics (QCD), 2, 5, 21,
38, 77, 96, 100, 341, 343, 395
electrodynamics, 319, 350
mechanical tunneling, 3
quark, 21
charge, 27
-gluon plasma, 326, 340-353, 390
signature, 349-353
mass, 25
matter, 341
model, 39
-quark interaction, 100
substructure, 117
weak decay, 183
quasi-elastic scattering, 115
Q-value, 189-190, 202
0~ -decay, 189
B*-decay, 189
electron capture, 190

Racah coefficient, 405
radioactive beam, 318, 390
radioactivity, 1
radinm, 1
radius, root-mean-square, 110
random-phase approximation (RPA), 271
range, 80
rapidity, 347
reaction
channel, 280-281, 423
charge exchange, 215, 303, 306, 314
cross section, 15, 283, 423
direct, 280, 286-291, 303
{d,n), 290, 315
(d, p), 286, 288, 315
(3He,t), 201
matrix, 424
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nonresonant, 360-362

(n,p), 303

nuclear, 6

(p,7), 363, 364

pickup, 17, 286

(p,n), 303

(. p'), 303

stripping, 17, 286
red giant, 359
reduced

matrix element, 164, 407

rotation matrix element, 401

transition probability, 173, 277
relative

coordinate, 75

momentum, 76
relativistic

heavy-ion collision, 326, 390

shell model, 393
renormalization, 262, 268
reorientation effect, 280
repulsive potential, 418
residual interaction, 238, 256, 429
resonance, 37

energy, 283
p-meson, 42
Riemann zeta function, 343
right-handed particles, 187
rigid body, 227, 229
root-mean-square (rms) radius, 109
Rosenbluth formula, 113
rotation, 76

matrix, 400

element, 401

rotational

alignment, 329

band, 222

Hamiltonian, 221

model, 218-229

wave function, 222
Routhian, 339
RPA, 271
r-process, 385
Rutherford

cross section, 276

formula, 2, 107

scattering, 428

-matrix, 424, 433
operator, 434
-process, 385
Sachs form factor, 113
sampling, 345
saturation
density, 155
nuclear force, 11, 145
scalar, 185, 402
product, 69
scaling factor, 114
scattered wave, 410
scattering
amplitude, 82, 303-306, 410, 414
antinucleon, 99, 303
compound elastic, 284
Coulomb, 93, 427
cross section, 81, 282, 286, 411, 412
deep-inelastic, 117, 324
elastic, 16, 115
electron, 105120, 391
equation, 429
inclusive, 117
inelastic, 16
intermediate energy proton, 123
length, 90-95, 419
nn, 93
T=0,9
meson-nucleus, 309-315
Mott, 107
neutron
-deuteron, 80
-neutron, 80
-proton, 80, 85
nucleon
-nucleon, 86, 346
-nucleus, 292, 303-308
pion, 310-313
-nucleon, 122
-nucleus, 122-123, 310
plane, 82, 410
problem, 6
proton
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-deuteron, 80
-proton, 80, 84, 346
quasi-elastic, 115
Rutherford, 428
shape-elastic, 284
Schmidt values, 131

Schrodinger
equation, 68, 79, 82, 147, 166, 409,
422, 427
representation, 433
second

-quantized notations, 248
-rank spherical tensor, 402
selection rule
Fermi decay, 198
forbidden decay, 201
Gamow-Teller decay, 198
magnetic moment, 128
semi
-empirical
effective interaction, 264
mass formula, 139-143
-leptonic processes, 182
seniority, 232
S-factor, 361
shape
coexistence, 332-335
parameter, 206
vibration, 206-212
shell, 240
correction, 272, 338-339
effect, 141
model, 256
-mode}
space, 256-258
structure, 335
short-range potential, 79, 82
¥-baryon, 45
single
-charge exchange, 313
-particle
basis states, 237
energy, 252
estimate, 178181
model, 130, 179
spectrum, 240

singlet scattering length, 92

Slater determinant, 237

soft pion, 391

solar neutrino problem, 372
Sommerfeld number, 149, 275, 361
space reflection, 397

spectroscopic notation, 245

spherical
Besgel function, 83, 111, 172, 289,
290, 413, 415
harmonics, 59, 60, 83, 125, 191, 288,
289, 398

integral, 67
nucleus, 65, 218
polar coordinates, 398
shell model, 238, 256-271
tensor, 399
second-rank, 402
wave, 82
spin, 40, 59, 256
alignment, 326
dependence, 86
-isospin term, 218
operator, 69
-orbit
energy, 243244
operator quadratic, 76
term, 296
spontaneous fission, 150
spurious state, 214
square-well potential, 417
state density, 13
static quadrupole moment, 225
statistical field theory, 345
stellar
evolution, 355
nucleosynthesis, 357-360, 363-366,
373-386
stopped pion, 309
stopping power, 348
strangeness, 25, 35, 36
enhancement, 350
production, 349
strange quark, 25, 35-36, 40, 50, 349
strength function, 285
stripping reaction, 17, 286
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strong interaction, 341
structure function, 116-119
SUs, 232
(favor), 41, 43
Sudbury Neutrino Observatory (SNO),
370
SU4 symmetry, 11
sum rule, 214
Super
Kamiokande, 370
Proton Synchrotron (SPS), 348
superallowed (3-decay, 199
supercritical field, 320
superdeformation, 219, 329-331
superdeformed band, 323
superheavy nucleus, 244, 318
supernova, 381-383
SN 1987a, 388
surface energy, 139, 153, 208
symmetrical state, 44
symmetric rotor, 226
symmetry, 21
energy, 140, 202
Galilean, 76
isospin, 73
N N-scattering, 86
nuclear
force, 72-78
potential, 76
parity, 76
time reversal, 76
translational, 75

tensor
adjoint, 401
force, 68-71, 86
operator, 71
product, 69, 70
ternary fission, 151
thermal radiation, 351
Thomas
-Reiche-Kuhn (TRK) sum rule, 214
spin-orbit potential, 296
three
~-body force, 72, 81, 97
-parameter

Fermi distribution, 112, 119
Gaussian distribution, 112
time
-dependent
Hamiltonian, 165
Hartree-Fock, 325
perturbation theory, 165-168
Schrddinger equation, 165
wave function, 162
development operator, 433, 434
-reversal invariance, 76, 81
t-matrix, 87, 100, 432
top, 35
transition
allowed, 192, 199
E?2, see quadrupole transition
electric, 168
multipole, 172
electromagnetic, see electromagnetic
transition, 168-181
forbidden, 192
interband, 226
intraband, 225, 226
magnetic, 168
matrix, 432
element, 164, 191
phase, 346
probability, 161-167, 190
[-decay, 190-201
quadrupole moment, 225
rate
fF-decay, 190
energy dependence, 175
vibration model, 211
translational invariance, 75
transmission coefficient, 147, 148
transversality condition, 169, 170
transverse form factor, 107
triple-a process, 375
triplet-D state, 61, 66
triplet-S state, 61, 62, 66
tritium, 72
turning radius, 417
two
-body
contribution, 142
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correlation, 202, 351

matrix element, 262267

spin-orbit operator, 76, 77
-centered shell model, 272
-component wave function, 187
-nucleon system, 57
-parameter Fermi form, 112, 295
-particle interferometry, 351

u {atomic mass unit), 18
Us group, 231
ultra-relativistic collision, 326
uncertainty relation, 115, 126
uniform density sphere, 179
uniformly charged sphere, 138, 297
units, 18-19
universal

constant, 19

weak interaction, 182 -187
T-meson, 26, 37

valence

nucleon, 257

space, 232, 258

state, 254
valley of stability, 7
van der Waals force, 101
variational calculation, 246-248
vector, 185

coupling constant, 184, 188

meson, 42

product, 70

spherical harmonics, 171
vibrational

model, 205-212

motion, 267
volume

energy, 139

term, 155, 296

wave
number, 82
vector, 82

W-hoson, 182

weak interaction, 181187
coupling constant, 183
freeze-out, 356

universal, 182-187
Weisskopf estimates, 178
Weizacker mass formula, 139-141, 152
Wentzel-Kramers-Brillouin (WKB) method,
148
width, 18, 162, 323
Wigner
-Eckart theorem, 126, 164, 406
supermultiplet, 11
Woods-Saxon form, 12, 112, 295

Z-baryon, 45

yrast band, 322
Yukawa potential, 80, 306

Z-boson, 182
zero-coupled pair, 129
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