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Useful Constants 

Quantity Symbol Value 

Universal constnnts: 
e' 

fine structure constant a = - 1/137.0359895(61) 

Planck's constant h 6.6260755(40) x J-s 4.135669 x MeV-s 

(reduced) h = -  1.05457266(63) x J-s 6.5821220 x MeV-s 

[4*<0] hc 

2* 
MeV-fm hc 197.327053(59) 

speed of light c 299792458 m/s 
unit of charge e 1.60217733(49) x lo-'@ C 4.8032068 x esu 

Conversron o/ m a t s :  
area ham mz 
charge C 2.99792458 x lo0 esu 
energy eV 1.60217733(49) x 10-" J 
length fin 10-15 m 
m;1qs eV/ca 1.78266270(54) x kg 

U 1.6605402(10) x kg 931.49432(28) MeV/? 

electron m, 9.1093897 x kg 0.51099906(15) MeV/c2 
muon 1.8835327 x kg 105.65839(6) MeV/c2 
pions r4 2.4880187 x kg 139.56755(33) MeV/c2 

KO 2.406120 x kg 134.9734(25) MeV/ca 
proton M, 1,6726231 x kg 938.27231(28) MeV/c2 

neutron M ,  1.6749286 x kg 939.56563(28) MeV/ca 

Masses: 

1.007276470(12) U 

1.0086648981 121 U 

Lengths: 
Bohr radius a. = 5 5.29177249(24) x lo-" m 

0 2  

2.81794092(38) x m 
ah 

classical electron radius T. = - 
m,,c 

Compton wavelength 

2.426310585(22) x m 

m 

h 

h 
electron Ace = - 

m,c 

proton Xcp = ~c 1.32141 x 
P 

Others: 
Avogadro number NA 6.0221367(36) x lozE mol-' 

5.78838263(52) x lo-" MeV/T 

Boltzmann constant k 1.380658 x J/K 8.617385(73) x lo-" MeV/K 

Fermi coupling constant - cF 1.43584(3) x lo-" J-ma 1.16637(2) x lobb G e V 2  

Gamow-Teller to Fermi 

4 c I  Bohr magneton p'7 = - 
2m,c 

(hc)3 

GV 
coupling constants - -1.259(4) 

rlertron P c  1.001159652193( 10) p~ 

PN neutron Pn - 1.91304275(45) 

magnetic dipole moment: 

proton CLLP 2.792847386(63) P N  

3.15245166(28) x lo-'' MeV/T 
et,[c] 

nuclear magneton CLN = - 2 Mpc 
permeability, free space /LO 4n x lo-' N I A ~  FO/LrJ = c-2 

permittivity, free space co 8.854187817 x lo-" C2/Nm2 
Rydberg energy Ry = ~ m , c 2 n 2  13.6056981(40) eV 

viii 



Preface to the Second Edition 

In the half dozen years or so since the first publication of Introductory Nuclear Physics, 
there have been several new developments and changes in the emphasis in the field. 
This, together with the enthusiastic feedback from colleagues and students, makes it 
imperative to publish a new edition. 

For an active topic of research, a textbook cannot stay static. There are large areas 
that are basic and well established. These form the core of the first edition and they 
have stayed more or less the same. At the same time, the students should be made 
aware of certain new trends, such as superdeformation, relativistic heavy-ion reactions, 
nuclear astrophysics, and radioactive beams. At the same time, the preparation of 
students taking a course on nuclear physics is changing as well. Assumptions of a 
good working knowledge of angular momentum algebra and basic methods of quantum 
mechanics may no longer be correct for many. For this reason, some parts of the core 
of nuclear physics have been rewritten to make it more accessible. 

The main changes in the second edition are the addition of two new chapters. 
Heavy-ion reactions, from high-spin states to ultra-relativistic collisions, are now in a 
totally new chapter. The same approach is also taken on nuclear astrophysics. To keep 
the book from getting too big, a few of the appendices in the first, edition are either 
incorporated into the main text or taken out. In addition, some material that is no 
longer in the forefront of nuclear physics research is shortened or removed altogether. 

The Internet has increasingly become the means of providing up-to-date informa- 
tion. From the latest description of major projects to comprehensive data bases, the 
World Wide Web is now the source of choice. For this reason, Uniform Source Locators 
(URL) are given as the “reference” for such topics as nuclear binding energies. Unfor- 
tunately, changes are frequently made to these electronic addresses and the reader may 
have to do some search to find the latest one if a particular URL is moved to a new 
location. 

S. S. M. Wong 

ix 
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Preface to the First Edition 

Nuclear physics is a subject basic to the curriculum of modern physics. There are 
several good reasons for this to be so. First and foremost is the intrinsic interest of 
the subject itself The study of atomic nuclei has historically given us many of the 
first insights into modern physics. Furthermore, the potential of future discoveries 
remains very promising. Second, nuclear physics is closely associated with several 
other active branches of research: particle physics, in terms of the large overlap of 
interests in fundamental interactions and symmetries, and condensed matter physics, 
through the many-body nature of the problems involved. Third, nuclear physics may 
be usefully applied to other fields: chronology in geophysics and archaeology, tracer 
element techniques, and nuclear medicine, just to name a few. 

The diversity of interest in nuclear physics also makes it very difficult to  cover the 
entire subject in any satisfactory manner; some philosophy and guiding principles had 
to be adopted in selecting the material to be presented. The basic principle used for 
this book was to include what I believe every serious student of physics should know 
about the atomic nucleus. It was not always possible to live up to this principle. First, 
an appreciation of nuclear physics today will require not only a good knowledge of 
quantum mechanics and many-body theory but also quantum field theory. This, in 
general, is too much to expect for the average reader and some sacrifice must be made. 
Second, there are many interesting techniques, both experimental alid theoretical, that 
form a part of the subject itself. Any reasonable coverage of these technical aspects 
will greatly expand the size of the book and make it useless in practice. 

On the other hand, it is not possible to give a true ffavor of nuclear physics without 
some background in quantum mechanics. In preparing this volume I have assumed 
that the student has the equivalent of a one-year undergraduate course in quantum 
mechanics or is taking concurrently an advanced quantum mechanics course at the 
level of one of the textbooks listed as general reference at the end. A basic knowledge 
of electromagnetic theory is also assumed; it is, however, unlikely that the background 
required here will be a problem to most students. 

Some effort has been devoted to make the book as self-contained as possible. For 
this purpose, references to the literature are kept to a minimum. A specific paper 
published in scientific journals is mentioned only if a direct quotation is taken from it 
or if there is some historical interest associated with it. If references are needed, the 
first preference has been given to  books that are readily available. However, this is 
not always possible. As a second choice, review articles are cited because a student 
starting out in the field may better comprehend this type of article than the original 
paper. Conference proceedings are used only as a last resort since it is difficult to  expect 
standard libraries to be stocked with the multitude of proceedings published every year. 

xi 



xii Preface to the Firet Edition 

One result of adhering to  this philosophy is that very few of the excellent papers of 
my colleagues have been cited. I have also had some difficulty in selecting standard 
textbooks for reference in subjects such as quantum mechanics, classical mechanics, 
electromagnetism, and statistical mechanics. Here, I have relied purely on my own 
biases without guidance from a general philosophy, as I have done with papers. 

One decision that had to be made concerns the system of units used for equations 
involving electromagnetism. The Systhme International (SI) or meter-kilogram-second 
(mks) system would have been the more correct choice since essentially all students 
have been exposed to it and are more likely to be familiar with it. However, many of 
the advanced treatments on the subject, and nearly all the standard references on the 
topic in subatomic physics, are written using centimeter-gram-second (cgs) units. It is 
therefore more practical to use the latter system here so that i t  is easier for a reader to 
make use of other references. For the convenience of those who are more comfortable 
with SI units, most of the equations (except those in 5V.2) have the necessary additional 
factor enclosed in large square brackets to convert the expressions to SI units. In 
most cases, it is possible to write the equations involving electromagnetism in a form 
independent of the system of units by making use of the fine structure constant a and 
by measuring charge in units of e, the absolute value of charge carried by an  electron, 
and magnetic dipole moment in units of pN, the nuclear magneton. 

The book is aimed at physics students in their final year of undergraduate or first 
year of graduate studies in nuclear physics. There is enough material for a one-year 
course though it could be used for aone-semester course by leaving out some of the detail 
arid peripheral topics. The selection of material is guided in part by current interests 
in the field; no attempt has been made to give a complete account of everything that 
is known in nuclear physics. However, sufficient knowledge is provided here so that a 
student tnay then go to the library and obtain information on a particular nucleus or 
a special aspect of a topic. 

S. S .  M. Wong 



Chapter 1 

Introduction 

Nuclear physics is the study of atomic nuclei. From deuteron t o  uranium, there are 
almost 1700 species that occur naturally on earth. In addition, large numbers of others 
are created in the laboratory and in the interior of stars. The main force responsible for 
nuclear properties comes from strong interaction. However, both wea.k and electromag- 
netic interactions also play important roles. For these reasons, nuclear physics serves 
as an important platform where basic properties of subatomic matter can be examined 
and fundamental laws of physics can be studied. We shall in this chapter give a brief 
history of the subject, its role in modern physics, and some of the general properties of 
nuclei we wish to study before going on into more detailed examinations in subsequent 
chapters. 

1-1 Brief Early History of Nuclear Physics 

The beginning of nuclear physics may be traced to the discovery of radioactivity in 1896 
by Becquerel. Almost by accident, he noticed that well-wrapped photographic plates 
were blackened when placed near certain minerals. To appreciate the significance of this 
discovery, i t  is useful to recall that the time was before the era of quantum mechanics. 
The only known fundamental interactions were gravity and electromagnetism. In fact, 
just before the end of the nineteenth century, most of the observed physical phenomena 
were considered to be well understood in terms of what we now refer to as classical 
physics. Radioactivity was one of the few examples of unsolved problems. It was 
through the desire to understand these “exceptions” to otherwise well-established set 
of physical laws that gave birth to modern physics. 

Two years after Bacquerel’s discovery, Pierre and Marie Curie succeeded in sepa- 
rating a naturally occurring radioactive element, radium (2 = 88), from the ore (pitch- 
blende). Soon afterward, it was realized that the chemical properties of an element were 
changed by such activities. When a source was placed in a magnetic field, it was found 
that there were three different possible types of activity, as the trajectories of some of 
the “rays” emitted were deflected to one direction, some to the opposite direction, and 
some not affected at all. These were named a-, p-, and y-rays, as nothing more was 
known about them until much later. Subsequently, it was found that a-rays consist of 
positively charged 4He nuclei, P-rays are made of electrons or positrons, and y-rays are 
nothing but electromagnetic radiation that carries no net charge. 

1 



2 Cham 1 Introduction 

The existence of the nucleus as the small central part of an atom was first proposed 
by Rutherford in 1911. Later, in 1920, the radii of a few heavy nuclei were measured by 
Chadwick and were found to be of the order of m, much smaller than the order 
of m for atomic radii. The experiments involve scattering a-particles, obtained 
from radioactive elements, off such heavy elements &s copper, silver, and gold, and 
the measured cross sect,ions were found to be different from values expected of the 
Rutherford formula for Coulomb scattering off point charges. 

The building blocks of nuclei are neutrons and protons, two aspects, or quantum 
states, of the same particle, the nucleon. Since a neutron does not carry any net 
electric charge and is unstable as an isolated particle, it was not discovered until 1932 
by Cliadwick, Curie, and Joliot. The only charged particles inside a nucleus are protons, 
each of which carries a positive charge of the same magnitude, but opposite in sign, a3 
an electron, Since only positive charges are present, the electromagnetic force inside a 
nucleus is repulsive and the nucleons cannot be held together unless there is another 
source of force that is attractive and stronger than Coulomb. Here we have our first 
encounter with strong interaction. 

Both gravitational and electromagnetic forces are infinite in range and their inter- 
action strengths diminish with the square of the distance of separation. Clearly, nuclear 
force cannot follow the same radial dependence, else nucleons in one atom would have 
felt the at,traction of those in nearby atoms. Being much stronger, i t  would have pulled 
the nucleons in different nuclei together into a single unit and destroy all the atomic 
structure we are familiar with. In fact, nuclear force has a very short range, not much 
beyond the confine of the nucleus itself, in  marked contrast to the fundamental forces 
that were familiar at  the time. 

In 1935, Yukawa proposed that the force between nucleons arises from meson ex- 
change. This was 61ie start of the concept of field quantum as the mediator of funda- 
mental forces. The reason that nuclear force has a finite range comes from the nonzero 
rest mass of the mesons exchanged. In contrast, the field quantum for electromagnetic 
force is the massless photon and, for gravitat(iona1 force, the graviton. With t,he in- 
troduction of quantum chromodynamics, we come to realize that the Yukawa picture 
of meson exchange is only an effective theory for the force between nucleons. The 
fundamental force responsible for nuclear properties is the strong interaction between 
quarks. Most of this interaction is restricted to between the quarks inside a nucleon 
with gliions as the field quanta. However, some small "residue" goes outside and gives 
us the interaction between nucleons. This is very similar to chemical interactions. Even 
though atoms and molecules are electrically neutral, small remanents are found in the 
electromagnetic force between the atomic nucleus and its surrounding electrons, and 
these give rise to the wide diversity of chemistry around us. 

For the nucleons inside a nucleus, nuclear force is far stronger than that due to elec- 
tromagnetic interaction, as can be seen from the comparisons of the relative strengths, 
or coupling constants, made in Table 1-1. This presented some difficulties in under- 
standing spont.aneous a-particle decay of some heavy nuclei in the early part of the 
twentieth century. If the interaction is strong, how can a-decays have such long life- 
times? For example, nuclei such as 23eU (TI,? = 4.47 x lo9 years) were created before 
the solar system was born and must have half-lives comparable to or longer than the 
age of the earth or else it cannot be found as ores today. The solution of the puzzle is 
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Table 1-1: Fundamental interactions. 

Range 
Interaction 

Strong Gluon 10-15 

Gravity Graviton 

10-44 

10-33 

10-38 

Typical time 
scale (s) 

10-23 

10-20 

quantum-mechanical tunneling, a direct evidence of the wave nature of particles, as we 
shall see later in 54-10. 

Before the discovery of the neutron, it was assumed that a nucleus is made of 
protons and electrons. The presence of electrons inside the nucleus was made necessary 
for the following reason. The electric charge of a nucleus is, without exception, some 
integer multiple of e, the absolute value of the charge on an electron. Let us use 2 to 
represent this integer. At the same time, the nuclear mass is essentially given by some 
integer A times the proton mass m,,. In the case of the hydrogen nucleus, we have 
Z = A = 1. For a nucleus made of A protons (as neutrons were not known), the charge 
should have been Ae.  Instead, it is observed to be Ze, with Z < A for all nuclei beyond 
hydrogen. To get around this difficulty, it was proposed to include A - 2 electrons in 
the nucleus to “neutralize” some of the proton charges. 

This simple model fails when we include more data into our study. Nuclei with 
odd number of nucleons ( A  = odd) are known to  have half-integer value spins, the 
total angular momentum and intrinsic spin of all the nucleons. On the other hand, 
nuclei with even A have integer value spins. Since particles with half-integer spins 
are fermions, particles that obey Fermi-Dirac statistics, an odd-A nucleus must be a 
fermion. Both electrons and protons are also fermions by virtue of the fact that  their 
intrinsic spins are half integers. An electron and a proton may be combined to  form an 
electrically neutral object, but their total spin is an integer and the combined object, 
as a result, cannot be a fermion. If there were no neutrons, the question of whether the 
spin of a nucleus takes on integer or half-integer values would have to be determined 
entirely by whether Z is even or odd. This is not found to be true in practice, and a 
model of the nucleus made of protons and electrons cannot be correct, as i t  violates 
the fundamental relationship between spin and quantum statistics. 

The same quantum statistics consideration comes into play also in the discovery 
of the neutrino in ,&decay. A free neutron is more massive than a proton and decays 
into a proton with a half-life of about 10 min. To conserve charge, an electron is 
emitted. However, this cannot be the complete picture, as all the particles involved are 
fermions. Furthermore, there are some difficulties with energy conservation as well. In 
nuclei, P-decay can transform one of the protons in the nucleus to a neutron with the 
emission of a positron and one of the neutrons t o  a proton by emitting an electron. The 
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electrons and positrons are found to have a continuous spectrum of energy up to some 
maximum value known as the end-point energy. This seemed, on the surface, to violate 
energy conservation, as there is a definite energy difference AE between the parent and 
daughter nuclei. If the final state of the decay involves only two particles, an electron 
and the milch more massive daughter nucleus, the kinetic energy of the electron is 
essentially fixed and completely specified by conservation of energy and momentum in 
the reaction. A continiious distribution of electron kinetic energy violates this simple 
argument. The neutrino was proposed by Pauli in 1931 and used by Fermi in 1933 to 
explain the piizzle. In addition to the electron or positron, a neutrino is also emitted 
in nuclear p-decay. It was not observed in the reaction because it carries no charge and 
very little, if any, rest mass. This “tinobserved” fermion is even more elusive than the 
neutron: It hardly interacts with any other particles and is so light that even today we 
are still iincertain whether it is massless or not. 

The concept of parity violation, the first one of a series of “broken” symmetries 
found in physics, was confirmed through nuclear 0-decay. Both strong and electromag- 
netic interactions are known to conserve parity, i.e., experiments give the same results 
whether they are viewed in right-handed coordinate systems or left-handed coordinate 
systems. In the early 195Os, it was almost, unthinkable to doubt that weak interaction 
should be any different from the other known ones, and certainly there were no rea- 
sons to suspect that parity needs to be treated any differently. However, there were 
baffling experimental data involving particles which seemed to be identical except for 
their decay modes. The concept of parity violation, proposed by Lee and Yang in 1957, 
was confirmed by a P-decay experiment using 6oCo in which it was observed that more 
electrons were emitted with momentnm components opposite to the orientation of the 
nuclear spin t,han along it (for more details see $5-5).  This is a clear violation of the 
invariance of operations under space inversion, i.e., a reflection through the origin of 
the coordinate system used. Violation of parity has led to a better understanding of 
the weak interaction itself, and the concept of broken symmetry opens a new horizon 
for us to view fundamental laws of physics. 

1-2 What Is Nuclear Physics? 

Since nuclei are involved in a wide variety of applied and pure research, nuclear physics 
overlaps with a number of other fields. In particular, it  shares common interest with 
elementary particle physics in many respects. For example, the study of quark-gluon 
plasma in relativistic heavy-inn collisions involves both particle and nuclear physics. 
In astrophysics, stellar evolution and nucleosynthesis are intimately related to low- 
energy nuclear reaction rates, and the subject is of interest to nuclear physicists &s well 
as astrophysicists. Many applications of nuclear properties, such as nuclear energy, 
nuclear medicine, tracer element techniques, involve a knowledge of nuclear physics, 
and nuclear physicists are often involved in the development of these areas. A broad 
definition of nuclear physics will therefore include far too much material than a single 
voliime can reasonably cover. For our purpose, we shall only be concerned with the 
core of nuclear physics, its place as an integral part of modern physics, and its relation 
with some of t8he closed related disciplines. 

The primary aim of niiclear physics is to understand the force between nucleons, 
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the structure of nuclei, and how nuclei interact with each other and with other sub- 
atomic particles. These three questions are, to a large extent, related with each other. 
Furthermore, their interests are not necessarily confined to nuclear physics alone. 

Nuclear  force. One may argue that, since nuclear force is only one aspect of the strong 
interaction between quarks, all we need to  do is to understand quantum chromodynam- 
ics (QCD), the theory for strong interaction. This is, however, not the complete picture. 
Nuclear interaction operates at the iow-energy extreme of QCD where the interaction 
is strong and most complicated. This is one reason why studies in particle physics 
are often carried out at high energies where things are believed to be far simpler and 
we have a chance to  unravel the mystery of the fundamental force between quarks. 
Needless to say, we do not yet understand strong interaction anywhere as well as, for 
example, electromagnetic interaction. In fact, studies made on nuclei constitute some 
of the best means to  clarify certain aspects of QCD. 

Even a thorough knowledge of QCD may not solve the problem of nuclear force. 
Again we can make an analogy with chemistry. All chemical interactions between 
atoms and molecules are electromagnetic in nature. However, this does not mean that 
we can calculate the structure of a DNA molecule starting from Maxwell’s equations. 
The same is true between the fundamental strong interaction and nuclear force. We 
need QCD to provide us with an understanding of the foundation of nuclear force- 
any practical applications in nuclei must still come from a direct knowledge of the 
interaction among nucleons. It is also very likely that, from an operational point of 
view, strong interaction is too complicated to be applied directly to nuclei, and nuclear 
force derived from studies made on nuclei may be far more convenient t o  use in practice. 

Nuclear structure. Nuclei are usually found in their individual ground states, by 
virtue of the fact that these are the lowest ones in energy. However, in the laboratory, 
and in the interior of stars, energy can be injected into nuclei to promote them to excited 
states. Besides energy, other properties for many of these states, such as electromagnetic 
moments and transition rates, can also be observed. In addition, &decay, nucleon 
transfer, fission, and fusion transform one nuclear species to another. The study of 
these quantities supplies us with information on the structure of nuclei. In addition to 
its intrinsic values, nuclear structure can also provide us with the “data” on the nature 
of nuclei and the forces acting on the system. 

From a quantum mechanics point of view, nuclear structure studies, for the most 
part, may be classified as bound state problems. Given an interaction, solution to 
the eigenvalue problem provides us with the energy level positions and wave functions. 
Fkom the eigenfunctions, we can calculate matrix elements of operators corresponding 
to observables. The interaction of primary concern here is the strong force between 
nucleons. The effect of Coulomb force, in many cases, can be treated as perturbation 
to the predominant nuclear interaction. This comes, in part, because of the simple 
radial dependence of electromagnetic force, in contrast to that for strong interaction. 
On the other hand, weak interaction has extremely short range and, for all practical 
purposes in nuclear physics, may be treated as a zero-range, or “contact,” interaction. 
Its presence is mainly felt in P-decay and related processes. 

We are, however, faced with several difficulties here. The first is that  nuclear 
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interaction is not well known. In fact, the interaction between nucleons bound in nuclei 
can be somewhat different and, perhaps, even simpler than nucleon-nucleon interaction 
in general. For this reason, an important part of nuclear structure studies involves 
effective potentials between bound nucleons. A second difficulty is the Hilbert space 
that must be used to obtain a solution. In principle, the dimension is infinite. To 
reduce the problem to a tractable one, sever truncations are necessary. It is possible to 
compensate in part the errors introduced in making the calculation within a restricted 
space by adjusting, or “renormalizing,” the interaction. We shall see in Chapter 7 that 
we have quite a bit of success in understanding nuclear structure by proceeding in this 
way. 

Most of our information is obtained from studies made on stable nuclei for the 
simple reason that they are far easier to handle in the laboratory. Since this is a very 
special group among all the possible ones that can be formed, it is likely that our 
knowledge is biased. Furthermore, unstable nuclei form important intermediate steps 
in nucleosynthesis and are crucial in stellar evolution. With the advent of radioactive 
beams, large quantities of a variety of short-lived “exotic” nuclei will soon become 
available to enrich our data bank on nuclear structure. 

Nuclear reaction. In nuclear reactions, we study the behavior of nuclei in the relation 
with other subatomic particles. From a quantum mechanics point view, it is primarily a 
scattering problem. There are several marked differences from nuclear structure studies. 

First, it  involves kinematics, and the results depend very much on the reaction 
energy as well. Besides elastic scattering, we can have inelastic processes that lead to 
different final states and create particles not present in the initial state. In addition, 
the reaction may also be sensitive to any momentum dependence of the interaction 
between particles. 

Second, the probe itself is often a complex object and may be modified by the 
reaction. For example, when a light ion, such as l60, is used to scatter off a nuclear 
target, both the incident and target nuclei may be excited or transformed into other 
particles. This complicates the analysis as well as opens up new channels for nuclear 
studies. 

A third aspect is that the scattering problem involving strong interaction is perhaps 
too complicated to be solved. In fact, for many purposes, the complete solution may 
not be of interest. The study of reaction theory is developed, to a large extent, because 
of such interests in strong interaction processes. Unfortunately, the topic can be rather 
formal a t  times. For our purpose, we shall only make very limited use of this vast 
resource in Chapter 8. 

A good example among those of current interest is heavy-ion reactions. At low en- 
ergies, the reaction creates a large number of exotic nuclear states that further enhance 
our knowledge of nuclear physics. At the other extreme of ultra-relativistic energies, it 
allows us to stndy the fundamental strong interaction itself. 

Understanding nuclear structure and nuclear reaction is interesting and important 
by its own merits. However, the benefit goes beyond nuclear physics. We have al- 
ready seen examples of new insight in terms of quantum-mechanical tunneling from 
nuclear a-decay, in confirmation of parity nonconservation using nuclear &decay, and 
in using relativistic heavy-ion collision to create quark-gluon plasma. As an integral 
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part of modern physics, nuclear phenomena can give and have given deep insight in 
understanding physics. The possibility is only limited by our imagination. 

1-3 General  Properties of Nuclei 

The intense activity in the last century has resulted in a large body of knowledge on 
nuclear physics. We shall summarize in this section some of the general properties that 
are basic to the subject. 

Valley of stability. Stable nuclei are found with proton number Z = 1 (hydrogen) 
to Z = 82 (lead). There are, however, a few minor exceptions, and we shall come back 
in Chapter 9 to see the significance of some of these in astrophysics. For each proton 
number, there are usually one or more stable or long-lived nuclei, or isotopes, each 
having a different number of neutrons. Since the chemistry of an element is determined 
by the electrons outside the nucleus and, hence, the number of protons inside, the 
chemical properties of different isotopes are fairly similar to each other. However, 
since they are made of different neutron numbers N, their nuclear properties are quite 
different. 

The only unstable nuclei found naturally on earth are those with lifetimes com- 
parable to or longer than the age of the solar system (“5  billion years) or as decay 
products of other long-lived species. However, in stars, unstable nuclei are being cre- 
ated continuously by nuclear reactions in an environment of high temperature and high 
density. Many short-lived nuclei are also made in the laboratory, including those with 
more nucleons than the heaviest ones found naturally on earth (see e.g., (841). A list 
of known elements together with their chemical names and abbreviations is given in 
Table 1-2. 

To a first-order approximation, stable nuclei have N = 2, with neutron number 
the same as proton number. The best example is perhaps the A = 2 system. Here, we 
find that the only stable nucleus is the deuteron, made of one proton and one neutron. 
Di-proton and di-neutron are both known to be unstable. F’rom this observation we 
can conclude that the force between a neutron and a proton is attractive on the whole, 
but not necessarily that between a pair of neutrons or a pair of protons. 

As we go to heavier nuclei, the number of protons increases. Since Coulomb force 
has a long range, its (negative) contribution to the binding energy increases quadrati- 
cally with charge. In contrast, nuclear force is effective only between a few neighboring 
nucleons. As a result, the attractive contribution increases only linearly with A. To 
partially offset the Coulomb effect, stable nuclei are found with an excess of neutrons 
over protons. The neutron excess ( N  - Z) increases slowly with nucleon number A .  
For example, the most stable nucleus for Z = 40 is 90Zr with N = 50. The neutron 
excess in this case is 10. For 2 = 82, we find zosPb as the most stable isotope with 
N = 126, a neutron excess of 44. For Z > 82, all the known nuclei are unstable. If 
we view the (negative of) nuclear binding energy as a function of N and 2, the stable 
and long-lived nuclei are found in a valley in such a two-dimensional plot, as shown in 
Fig. 1-1. This is sometimes referred to as the “valley of stability,” At low values of N 
and 2, the bottom of the valley lies along the line with N = 2. As we go to heavier 
nuclei, the valley shifts gradually to N > 2. 
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Table 1-2: Known elements. 
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The newly identified elements of Z = 110 to Z = 112 have not yet been assigned official names 
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Figure 1-1: Distribution of stable and long-lived nuclei as a function of neutron 
and proton numbers. Stable nuclei are shown as filled squares and they exist be- 
tween long-lived ones (empty squares) that are unstable against &decay, nucleon 
emission, and a-particle decay. 

In most cases, the number of stable nuclei for a given N ,  2, or A is fairly small, 
and the lifetimes of unstable ones on both sides of the stable ones decrease rapidly 
as we move away from the central region. For nuclei with a few more neutrons than 
those in the valley of stability, ,fT-decay by electron emission is energetically favored. 
Similarly, for nuclei with a few “extra” protons, the rates of P+-decay by positron 
emission determines their lifetimes. As the number of neutrons or protons becomes too 
large compared with those for stable nuclei in the same region, particle emission takes 
over as the dominant mode of decay and the lifetimes decrease dramatically as strong 
interaction becomes involved. By the time we get to the upper end (large N and 2) of 
the valley of stability, nuclei become unstable toward a-decay and fission as well. 

The local variations in the “width” of the valley of stability, that  is, the number 
of stable nuclei for a given 2, N ,  or A,  reflect finer details in the nature of nuclear 
force. For example, there are more even-even (even N and even 2)  stable nuclei than 
odd-mass and odd-odd nuclei, a result of pairing interaction, to be discussed in more 
detail in Chapter 7. There, we shall also see the reason why the largest numbers of 
stable nuclei are found near the “magic numbers.” 

Binding energy. A more detailed examination of the binding energies of stable nuclei 
shows some additional interesting features. For simplicity, let us consider only the 
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most stable nucleus for a given nucleon number. The binding energy, EB(Z,  N ) ,  is the 
amount it takes to remove all 2 protons and M neutrons from the nucleus and is given 
by the mass difference between the nucleus and the sum of those of the (free) nucleons 
that make up the nucleus, 

EB(2, N )  = (ZMH + NM” - M ( 2 ,  N ) p  

Here M ( 2 ,  N )  is the mass of the neutral atom, MH is the mass of a hydrogen atom, 
and M, is the mass of a free neutron. I t  is conventional to use neutral atoms as the 
basis for tabulating nuclear masses and binding energies, as mass measurements are 
usually carried out with most, if not all, of the atomic electrons present. 

Because of the short-range nature of nuclear force, nuclear binding energy, to a 
first approximation, increases linearly with nucleon number. For this reason, it is more 
meaningful to consider the binding energy per nucleon, E,(Z, N ) / A ,  for our purpose 
here. The variation as a funct,ion of nucleon number for the most stable member of each 
isobar is shown in Fig. 1-2. The maximum value is around 8.5 MeV, found at A z 56, 
For heavier nuclei, binding energy per nucleon decreases slowly with increasing A due 
to rising Coulomb repulsion. As a result, energy is released when a heavy nucleus 
undergoes fission and is converted into two or more lighter fragments. This is the basic 
principle behind nuclear fission reactors. For light nuclei, the reverse is true and energy 
is released by fusing two together to form a heavier one. This is the main source of 
energy radiated from stars and the cause behind nucleosynthesis of elements up to 
A M 56. 

I0 

8.5 MeV 

8 
32 
3 m 

0 
100 2W 
Nucleon number A 

Figure 1-2: Average binding energy per nucleon as a function of nucleon number 
A for the most stable nucleus of each nucleon number. 

The sharp rise in the binding energy per nucleon for light nuclei (A 5 20) comes 
from increasing number of nucleon pairs. A closer examination shows that the trend 
is not a smooth one and the values are larger for the 4n nuclei, those with A = 4 x n 
for n = 0, 1, 2, . . . . Since N = 2 for these light, stable nuclei, the 4n nuclei may be 
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28.30 

32.00 

56.50 

64.75 

92.16 

104.66 

127.62 

137.37 

160.65 

174.15 

198.26 

viewed as if they are made of a-particles. The fact that their average binding energies 
per nucleon are larger than their neighbors implies that nucleons like to form a-particle 
clusters in nuclei. This can be seen quantitatively by looking a t  the values for nuclei, 
with 2 5 A <_ 25, shown in Table 1-3. For the 4n nuclei, the difference between the 
total binding energy and the sum of those for n &-particles is also given: 

Ah' I E B ( N ,  2) - ~ E B ( ~ H ~ )  

For n = 2, we find that the value is negative, showing that 8Be is unstable with respect 
to a-particle emission. For the others in the list, the value increases with n. In fact, 
if we divided AE by the number of a-particle pairs, given by n(n - 1)/2, the result 
is roughly constant, with a value around 2 MeV. This gives us a picture that, a t  least 
for light nuclei, a large part of the binding energy lies in forming a-particle clusters, 
around 7 MeV per nucleon, as can be seen from the binding energy of 4He. The much 
smaller reminder, around 1 MeV per nucleon or 2 MeV between a pair of a-clusters, 
goes to  the binding between clusters. This phenomenon is usually referred to as the 
"saturation of nuclear force." That is, nuclear force is strongest between the members 
of a group of two protons and two neutrons, and as a result, nucleons prefer to  form 
a-particle clusters in nuclei. It is a reflection of a fundamental symmetry of nuclear 
force, known as SU4 or Wigner supermultiplet symmetry. As the number of nucleons 
increases, the "excess" in binding energy per nucleon of 4n nuclei is no longer visible. 
Beyond l60, the increase in the binding among four nucleons in forming a cluster is 
averaged over a larger number of nucleons in the simple way we are examining the 
question here. However, the satura;ion effect persists to heavy nuclei. This may be 
seen by the local increase in the energy required to take away a nucleon, shown later 
in Fig. 7-2. 

Table 1-3: Binding energies (MeV) for some stable light nuclei. 

EBIA A E  
1.11 - 

7.07 - 

5.33 - 
7.06 -0.09 
6.48 - 
7.68 7.27 
7.48 - 
7.98 14.44 
7.63 - 

8.03 19.17 
7.92 - 
8.26 28.48 
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- 
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Nuclear radius a n d  nuclear density. In addition to binding energy, the general 
t)reiid of nuclear size shows also a simple dependence on nucleon number. For the most 
part, the nuclear radius is given by 

R = roA’I3 (1-2) 

with TO = 1.2 fm (1 fm, or femtoineter, equals m). This means that the volume is 
linearly proportional to A and that the nucleons are not compressed in size in spite of 
the large forces acting between them. In fact, one has to go to some extreme situations, 
such as a black hole or during the collapse of a large star prior to a supernova explosion, 
hefore nucleons can be compressed much beyond what is known as the nuclear matter 
density po N 0.16 f 0.02 nucleons/fm3, a value that is 3 x 1014 times the density of 
water. We call also arrive at the same order of magnitude from the fact that the mass 
of a neutron star is typically around 1 solar mass kg) and the radius roughly 
10 kin. 

In finite nuclei, the average density is somewhat smaller than PO. Using Eq. (1-2), 
we arrive at  p w 0.12 nucleons/fm3. This is attributed to a large diffused surface region 
where the density drops off to zero more or less exponentially. For many purposes, the 
radial distribution of nitclear density may be represented by a Woods-Saxon form, 

Po 
d r ) =  1 f exp{(r - c)/.t} (1-3) 

Here L is a parameter that measures the “diffuseness” of the nuclear surface, with 
typical values around 0.5 fm, and I: is the distance from the center to the point where 
the density drops to a half value. Some of the typical values found in nuclei are listed 
later in Table 4-1 

Nuclear  shape. For stable nuclei, the nuclear shape is essentially spherical. As we 
shall see later in 54-9, this is an effort to minimize the surface energy, in analogy to a 
drop of fluid. However, small departures from spheres are observed, for example, in the 
region 150 < A < 190. One way to quantify these “deformations” is to use the ratio 

where R is the average nuclear radius given by Eq. (1-2) and, for the case of an ellipsoidal 
shape nucleus, AR is the difference between semi-major and semi-minor axes. For a 
sphere, AR = 0. In nuclei, the typical value of 6 does not exceed 0.1 for low-lying 
states. However, large deformations can be created in the laboratory by fusing two 
nuclei together. In this way, valiies of 6 around 0.6 (that is, semi-major axis twice the 
semi-minor axis) have been observed. This is the case of superdeformation, t o  which 
we shall return in 59-2. 

One of the reasons for nuclear deformation is the competition between Coulomb 
and nuclear forces. Since the strength of the Coulomb force is inversely proportional 
to the square of the distance, a nucleus can decrease its total energy (and increase its 
binding energy) by putting protons as far away from each other as possible. For the 
same volume, a deformed shape is preferred as a result. Nuclear force, on the other 
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hand, tries to  keep the shape spherical so that the short-range attraction can be more 
effective. Since nuclear forces are stronger, light nuclei on the whole are spherical. 
However, once we go to intermediate values of A and beyond, the saturation property 
cuts off further increase in the binding energy per nucleon with increasing A due to  
nuclear force. As a result, slight deformation can actually increase the binding energy 
by decreasing the Coulomb contribution. 

Density of excited states. The binding energy defined in Eq. (1-1) is only that for 
the ground state of a nucleus. In general, a nucleus has a number of excited states 
as well. For these states, i t  is customary to use a slightly different scale and measure 
the energies relative to the ground state as the zero point. If we examine the spectra 
for different nuclei, we find that each one is sufficiently unique that it can be used as 
a signature to identify the nucleus, similar to the case of atomic spectra. In spite of 
the individual characteristics, there are certain general features in the distribution of 
excited states that are worth noting. 

Nuclei are made of nucleons. Being fermions, Pauli exclusion principle demands 
that each nucleon must occupy a different single-particle state. In the limit that inter- 
actions can be ignored, the ground state of a nucleus is one with nucleons filling up all 
the single-particle states in order of their energies, starting from the lowest one. This 
is similar to a Fermi gas, one with all the molecules made of identical, noninteracting 
fermions. At zero temperature, the fermions settle in the lowest possible single-particle 
states and the energy of the highest filled one is known as the Fermi level. The only 
way to  put excitation energy into such a system is to promote some of the particles 
below the Fermi surface to  the unoccupied ones above. At low excitations, there is 
only enough energy to put a few such particles from states just below the Fermi surface 
to those just above. As there are not too many different independent ways t o  carry 
out this operation, the density of states, the number of excited states per unit energy, 
is small. As we increase the excitation energy, more particles can be promoted and 
the number of different ways to form many-body states increases, resulting in higher 
level density. Based on such a simple picture, Bethe [30] in 1937 obtained the following 
formula for the density of states a t  excitation energy E: 

generally known as the Fermi gas model formula. The quantity a is the level-density 
parameter. A derivation of Eq. (1-4) can be found, for example, in Ref. [152]. 

Interaction between nucleons modifies the energy spectrum from such a simple, 
smooth form. The location of each excited state is now a complicated function of 
the nuclear interaction and the nucleons. Nevertheless, the general form given by the 
Fermi gas model remains to be essentially correct. The main effect of interaction may 
be separated into two parts. The first is a change in the relative positions of individual 
levels. From a certain point of view, we can say that the interaction introduces a 
“fluctuation” in the spectrum over the smooth form given by the Fermi gas model. 
Depending on one’s interest, the fluctuations can be all that is important in a study if 
one’s focus is on the position of a particular level or a group of levels. On the other 
hand, if the concern is with general features, such as the amount of energy that can 
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be stored in an excited nucleus under certain conditions, only the smooth part of the 
spectrum is of primary importance. 

A second consequence because of interaction is a shift in the energy scale by some 
amount A. Since excitation energy is measured from the ground state, any change to  the 
latter produces a constant shift of the whole spectrum. In general, interaction tends to 
lower the ground state energy from the value given by a noninteracting model. Because 
of such a change in the energy scale, the level-density formula in many applications 
takes on the form 

1 

This is known as the back-shafted Fermi gas model formula. Here, both a and A are 
considered as adjustable parameters to be determined by fitting to known data [53], 
An example for the nucleus "Fe is shown in Fig. 1-3. 

, Z J S  (1-5) P A ( E )  = 12a1/4(E - A)5/4 

Figure 1-3: State density of "Fe 
obtained using Eq. (1-4) (smooth 
curve) and an independent par- 
ticle niodel (staircase). The oh- 
served values (shaded histogram) 
are lower than the calculated ones, 
as the ground state energy is de- 
pressed by two-body correlations. 
This effect may be accounted for 
by the back-shifted Fermi gas for- 
mula given in Eq. (1-5)~ 

ENEAOY IN MeV 

Scat te r ing  cross section. In studying atomic nuclei, we often resort to scattering a ' 

one particle off another. This comes from the necessity that we are examining objects 
of dimension on the order of femtometers m). The wavelength of visible light, 
on the other hand, is much longer, on the order of lo-' m. To go down to length scales 
of interest to subatomic physics, far shorter wavelengths than visible light and, hence, 
much higher energies are needed, and this can be achieved most readily by scattering. 
A feeling of the energies required in a scattering experiment to reach a given length 
scale may be obtained by examining the corresponding de Broglie wavelength: 

h A = -  hc - 
P* E 

Table 1-4 lists the values for pliotons, electrons, and protons at  typical energies used 
in nuclear experiments. 



61-3 General ProDerties of Nuclei 15 

Energy 
(MeV) 

0.1 

0.5 

1 

10 

100 

1,000 

10,000 

Wavelength (fm) 

Photon Electron Proton 

1.2~104 3701 90 

2 . 5 ~ 1 0 ~  1421 40 

1.2~103 872 29 

1.2x102 118 9.0 

1.2x10 12 2.8 

1.2x10-1 1.2 x 10-1 1.1 x lo-' 

1.2 1.2 0.73 

The probability for a projectile scattering off a target particle is usually expressed 
in terms of a quantity called '(cross section." The total cross section u in a reaction 
is defined in the following way: Consider a single incident particle moving outside the 
range of any interaction along a straight line toward the target. If the velocity is v, 
the particle sweeps in time t a cylinder of volume vtd ,  where A is the area covered by 
the particle. The scattering probability P is given by the ratio of the area block by 
the target particles and A. If the number of target particles per unit volume is n and 
the target thickness is TI the number of target particles "seen" by the beam particle is 
nAT. The scattering probability is then 

ndTa 
d 

p=--  - unT 

Since n and T have, respectively, dimensions inverse length cubed and length, the 
total cross section u must have the dimension of length squared, or area, as P is 
dimensionless. 

The total cross section is often not the quantity measured directly in an experiment, 
as it requires all the scattered particle to be detected (hence, the name total cross 
section). The angular distribution of the scattered particles is actually a more useful 
quantity, as it provides us with more information. In the same way as above, we 
can define the differential scattering cross section du/dR in terms of the probability 
P(B,q5) for a scattered particle to arrive at a detector that is located at  angles (6,4) 
and subtends a solid angle ASZ at the center of the target by the relation 

da  
dR 

P(B,q5) = -nT 

The connection between differential and total cross section is given by integrating over 
all solid angles: .=I4' o dQ * d R = l ' / ' c s i n B d B d $  o dR 

In 5B-2, we shall redefine the same differential cross section in term of the wave functions 
involved in a reaction. 
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React ion  types.  The usual type of final state we wish to deal with in a reaction is 
two body. In other words, before the reaction, we have a projectile particle a incident 
on a target particle A. After the reaction, a parbicle b is scattered away, leaving behind 
a residual part,icle l3. The reaction may be represented in either one of the following 
two ways: 

4% b)B or a + A - + b + B  

For example, if a proton incidents on a 4RCa target and a neutron is observed to emerge 
from the reaction, the residual nucleus is 48Sc. The reaction may be written as 

4 8 ~ a ( p ,  or p + %a 3 n + 48SC 

Other reactions may also take place in bombarding a 48Ca target by a beam of protons. 
For example, a proton may emerge, leaving the 48Ca nucleus in an excited state. The 
reaction may be expressed as 

4 8 ~ a ( p ,  P')~ 'c~* or p i- 48Ca 3 p' + 4 8 ~ a '  

Here the asterisk indicates that, after the reaction, 48Ca is in an excited state and the 
prime on the proton says that the energy is different from the incident amount. 

Each one of these combinations is a different ezit channel for pr~ ton-~ 'Ca  scatter- 
ing, and the possible, or "open," exit channels are governed by conservation laws and 
selection rules operating in the scattering. In general, the number of open channels 
increases very fast, with increasing energy available in the reaction. 

The allowed exit channel is not, restricted to final states consisting of two particles. 
For example, an experiment may be carried out using a deuteron as the incident particle 
instead of the proton in the above example. A possible exit channel may involve a 
breakup of the deuteron into a proton and a neutron. The reaction is represented 

or d + 48Ca -+ p + n + 4 8 ~ a  

To simplify the discussion, we shall for the most part, ignore reactions involving three 
or more particles in the final state. Furthermore, the dist#inction between projectile and 
target nuclei and that between the scattered particle and the residual nucleus is useful 
only in fixed-target experiments in which the target is stationary in the laboratory. 
For colliding beam experiments, in which the two particles in the incident channel 
are moving toward each other, the separation is not meaningful. For most of our 
discussions, we shdl bc working in the center of mass of the two-body system, and the 
distinction reduces to a simple question of semantics. 

In an elastic scattering, both t8he incident and target particles remain in their 
original states, usually t,heir respective ground states. Elastic scattering is, in general, 
the simplest from a reaction point of view. For example, elastic scattering of electrons is 
wed t,o map the charge density distribution of a nucleas. Since the interaction is mainly 
electrornagnetk, it is possible to infer from the results how nuclear charge distribution 
differs from that for a point particle. 

171.elastic scattering is the process where a part of the incident kinetic energy is used 
to excite the nriclei involved or to create new particles. The most obvious example is 
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Coulomb scattering where the target nucleus is raised to an excited state by electro- 
magnetic interaction, the inverse of electromagnetic decay. As another example, the 
reaction 

v, + 37Cl + e- + 37Ar 

is the inverse of P--decay of 37Ar and is used in detecting solar neutrinos. 
When two nuclei interact, it is possible to transfer one or more nucleons between 

them. For example, if a deuteron is incident on a l60 target, the loosely bound neutron 
in the projectile may be attracted by the target nucleus and becomes attached to  it as 
a result. The scattered particle is now a proton and the residual nucleus becomes 170. 

Such a reaction, i60(d,p)’70, is called a stripping reaction, as a neutron is stripped 
from the projectile. The inverse is a pickup reaction, for example, i70(3He,4He)160, 
whereby a neutron in the target I7O is picked up by the 3He projectile. The scattered 
particle is now 4He, and l60 becomes the residual nucleus. More complicated nucleon 
transfer reactions may be induced using heavy ions. 

Nuclear fusion may be considered t ~ 9  the extreme of nucleon transfer reactions. In 
this case, two heavy ions are brought into close proximity to each other so that nuclear 
force can act between the nucleons in the two ions, forming a compound nucleus as 
the intermediate state. Under favorable circumstances, some of the excess energy in 
the system may be discarded by emitting 7-rays and nucleons, resulting in a final state 
that may be considered as a nucleus. For example, the yet-to-be named superheavy 
element 277112 is obtained in this way from the irradiation of 2i!Pb by ;&Zn [84]. 

Alternatively, the final state may be an unusual one in a known nucleus. Since the 
collision of two heavy ions often involves large quantities of angular momentum, the 
final state is very likely to  retain a significant fraction and ends up in a state of high 
spin. For example, the reaction ‘ ~ ~ G d ( ’ ~ 0 , 4 n ) ’ $ ~ H f  produces 167Hf nuclei by “fusing” 
l6O with ISSGd. Ignoring angular momentum carried away by the four neutrons (and 
several y-rays), we can make an estimate of the amount available in the final system. If 
the center-of-mass energy of the l60 beam is E,, = 75 MeV and the impact parameter 
b = 10 fm, we have the result 

e = mv,,b = b\/2mEC,,, N 80h 

by starting from the classical definition e = r x p with p = mv. This is sufficient to 
create states of very high spin values, such as y h ,  observed in 16’IHf formed in this way. 
For comparison, the ground state spin of 167Hf is only !h. The only way for such large 
spins to exist in a nucleus with only 167 nucleons is for a significant fraction of the 
nucleons to  act coherently as a single unit. This is an example of collective behavior 
in a nucleus that takes the nuclear shape far from the nearly spherical ones normally 
observed for ground states. 

The usual consideration for creating such exotic states is that the energy involved 
must be sufficiently high to overcome the Coulomb barrier between the two ions. This 
is necessary for the two groups of nucleons to come into contact with each other for 
fusion to take place. At the same time, one does not want t o  inject any more energy 
into the system than necessary, as any excess has to be discarded in order for the final 
system to live long enough to be detected. The value of E,, = 75 MeV is roiighly 
what is used in practice for “light” ions such as I6O. The value of b = 10 fm is also a 
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reasonable choice, as it is essentially half the distance between the centers of the two 
ions when they are just in contact with each other. 

1-4 

In atomic nuclei, we are dealing with length scales that are extremely small and time 
scales that are extremely short, compared with standard measures in daily life. Instead 
of the meter, a more suitable unit of length, as we have seen earlier, is the femtometer, 
abbreviated as fm (1 fm = lo-'' m). For example, the typical size of a nucleus is of the 
order of 1 fm. The same is also true for the range of nuclear force. For nuclear reaction 
cross sections, a derived unit, the barn, equal to m2, is often used. Typical values 
are often given in millibarns, 

A wide range of time scales enters into nuclear physics. In Table 1-1 we have 
seen that the typical reaction time for strong interaction is second, or s 
using the standard abbreviation for seconds. At the other end of the scale, we find 
naturally occurring radioactive elements that were made prior to the formation of the 
solar system. The lifetimes of these radioactive nuclei must be of the order of lo9 years 
or longer, as anything with much shorter lives would have almost completely decayed 
away. 

s, the width of its energy distri- 
bution r is sometimes used to  characterize the lifetimes. Because of the uncertainty 
principle, AEAt = h, a state that lives only for a time At can have its energy measured 
only up to an uncertainty no better than A E  w h/At. This gives a width r = fL/T in 
the probability distribution of the observed energy of the state. Here, T is the lifetime, 
or mean life, of the state. Since h = 6.58 x lozz MeV-s, lifetimes of the order of s 
correspond to r of the order of 100 MeV, and a time scale on the order of s 
corresponds to a width on the order of 1 eV. 

kg, with neutrons more massive than protons 
by about 0.14%. A convenient uni t  for mass is the atomic mass unit, commonly abbre- 
viated as u, or amu, and 1 u is 1.6605402 x kg. It is defined using the neutral 
I2C atom as the standard, 

Commonly Used Uni t s  and Constants 

b or 10-1 fm2. 

For states that live on the order of to 

The mass of a nucleon is 1.67 x 

- _ - -  kg - 1.6605402(10) x lo-" kg = 931.49432(28) MeV/c* mass of 12C atom 
12 NA 

u =  

where N A  = 6.0221367(36) x loz6 (kg mol)-' is Avogadro's number and the values 
inside the parentheses indicate the uncertainties in the last digits. In terms of atomic 
mass unit, the masses of a free proton and a free neutron are, respectively, 

Mp = 1.007276470(12) u 

By definition, the mass of '*C is exactly 12 u. 
Since binding energy is a small fraction of the rest ma.+% energy of a nucleus, atomic 

masses in atomic mass units are usually not very different numerically from the number 
of nucleons A = N + 2. It is sometimes convenient t o  express nuclear masses in terms 
of the mass excess, A(Z, N )  (also referred to on occasions as mass defect), defined in 
the following manner: 

A ( 2 ,  N )  I { M ( Z ,  N )  in u - A }  x 931.49432 MeV 

M,, = 1.008664898(12) u 
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where multiplication by 931.49432 converts the quantity from atomic mass units to 
energy units in MeV. For a hydrogen atom, the mass excess is 

A(H)  = (1.007276470 - 1) x 931.49432 + 0.51110 = 7.2891 MeV 

and for a free neutron, 

A(n) = (1.008664904 - 1) x 931.49432 = 8.0713 MeV 

Given the mass excess of a nucleus, the binding energy in Eq. (1-1) may be expressed 
as 

E,(Z, IV) = ZA(H)  + IVA(n) - A(2,  N )  
In some tables of binding energy, the values are given in terms of mass excesses. 

Instead of mass, it is sometimes preferable to work in terms of the equivalent rest 
mass energy. The commonly used unit of energy in nuclear physics, as we have already 
seen, is MeV, or million electron-volts, and 1 MeV is 1.60217733 x J. For example, 
the rest mass energy of a neutron is 939.56563 MeV. For some of the higher energy 
events, i t  is more suitable to  use instead GeV (lo9 eV), which is 1000 times larger 
than MeV. For example, the order of magnitude for a nucleon mass is 1 GeV. A few 
other derived units are also in use to  measure other nuclear properties, such as nuclear 
magneton ~ L N  for magnetic dipole moment. We shall define each one of them as they 
appear in the discussion. 

Universal constants, such as Planck’s constant h, speed of light c,  and electric charge 
e, enter quite often into calculations involving nuclei. For electric charge, we shall use e, 
the charge carried by a proton as the unit. For Planck’s constant, f i  = h/27r turns out 
to be more convenient on most occasions. In fact, the combination hc = 197.3 MeV-fm 
enters naturally in a variety of calculations. For example, in our earlier discussion on 
de Broglie wavelength, the calculation can be carried much easier in terms of AC in the 
following way: 

2nhc 
E 
- h 27rhc A = - = - -  

P P C  
TZi? 

Here p is the momentum and E the energy of the particle. Similarly, in our estimate 
of the angular momentum t carried by two colliding heavy ions at impact parameter b, 
the value in units of h may be evaluated as 

We see that, in the final expression, the mass is converted into rest mass energy mc’ 
and the denominator becomes tic. 

Formulas involving electromagnetism are complicated by the fact that both centi- 
meter-gram-second (cgs) and Systbme International (SI) units are in common usage. 
We shall write them with an “extra” factor in square brackets that “converts” the 
equation from cgs units to SI units. That is, the equation is in cgs units if the factor is 
not there and in SI units if included. Thus, electrostatic potential Vc(R) between two 
point particles, one with charge ze and the other with Ze, separated by distance R, is 
given by 
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The formula is in cgs units if t,he factor in square brackets is ignored and in SI units 
when the factor is included. To avoid any dependence on the system of electromagnetic 
w i t s  adopted, we can make use of the fine structure constant 

to replace factors in Eq. (1-6) that depend on the system adopted. Thus, we can write 

Z Z  zz 
R R(fm) MeV 

V,(R) = ~ L C -  “N 1.44- 

In the final form, R is given in terms of femtometers so that we can use the numerical 
value ahc = 1.44 MeV-fm. In a similar way, the Coulomb energy for a spherical nucleus 
with 2 protons and radius R is given by 

Here, we assume that the charge is distributed evenly throughout the spherical volume. 
The final form of the expression excludes the Coulomb energy associated with each one 
of the 2 individual protons. 

Problems 

1-1. Given that the radius of a nucleon inside a nucleus is R = 1.2 fm, calculate the 
density of nuclear matter. From this, evaluate the radius of the sun (mass = 
2 x 1030 kg) if it  collapses into a neutron star without losing any of its present 
mass. 

1-2. From the uncertainty relation, find the minimum kinetic energy of a nucleon in 

m2, find the 

208Pb. Use R = l .2A’I3 fm for nuclear radius. 

1-3. If the cross section for neutrino interaction with iron is u M 
mean free path of a neutrino in solid iron. 

1-4. Use conservation of energy and momentum to calculate the maximum kinetic 
energies for electrons released in the decay of a free neutron, 

n -+ p 4- e- + 57, 
and in the decay of a free muon, 

p - + e - + v p + V e  

Consider the pnrticlw are initially at rest in the laboratory. 

1-5. If the density distribution of 184W is given by the form shown Eq. (1-3), find the 
average density of thc nucleus using the values of c and z given in Table 4-1. 

1-6. For 56Fe, the Irvrl-density parameter is found to be a = 7.2 MeV-’. Evaluate the 
level density of 5GFe at excitation energy E = 20 MeV. 



Chapter 2 

Nucleon Structure 

All nuclei are made of neutrons and protons, the two lightest members of the baryon 
family. Nucleons are, however, not elementary particles. Partly for this reason, a sig- 
nificant fraction of the present-day interest in nuclear physics is related in one way or 
another to the underlying quark's degree of freedom. Such a study is, in tjnrn, a part 
of the larger subject of quantum chromodynamics (QCD), the study of quarks arid the 
interaction between them. It is still too early at this stage of the development, of QCD 
to demand a complete description of nuclear physics starting from first principles; nev- 
ertheless, an understanding of the nucleus cannot be achieved without some awareness 
of quarks and their interactions. We shall attempt here only an introduction to  certain 
aspects of strong interaction essential to nuclear physics. 

There are also good practical reasons to examine the relationship between quarks 
before those between nucleons. One of the dominant considerations in subatomic 
physics is the role of symmetries. In this respect, there are many similarities and 
connections between quarks and nucleons, as expected. In some cases it is easier to 
study these symmetry principles using quarks rather than nucleons, in part because the 
number of quarks inside a hadron is much more restricted than the possible number of 
nucleons inside a nucleus. For this reason as well, we shall devote a large part of this 
chapter to the symmetry relations between strongly interacting fermions using quarks 
as an example. 

2-1 Quarks and Leptons 

The search for the fundamental building blocks of all matter in the universe has always 
been a central issue in physics. As our understanding of physical laws improves, our 
view changes on what constitutes the elementary particles, particles that cannot be 
made as composites of others. These days, the accepted view is that all matter is 
made of quarks and leptons. The only additions to the list are photons, W* and 2' 
bosons, gluons, and gravitons, particles mediating electromagnetic, weak, strong, and 
gravitational interactions, respectively. 

Quarks. Quarks are the basic building blocks of hadrons, particles interacting with 
each other through strong interaction. In nuclear physics, we are mostly concerned with 

21 
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Q / e =  - 1 

Q / e =  0 

the lightest members of the hadron family: nucleons, which make up all the nuclei, and 
pions, which constitute the main carriers of nuclear force. There are six different kinds, 
or ~ ~ D ’ U O I ’ S ,  of quarks: IL (up), d (down), c (charm), s (strange), t (top), and b (beauty, 
or bottom). These six particles may be arranged according to their masses into three 
pairs, with one member of each pair having a charge i e  and the other - i e ,  as shown 
in Table 2-1. 

e I L  T 

ve ve vr 

Table 2-1: Quarks and leptons. 

Since quarks have not been observed in isolation-they appear either as bound 
quark-antiquark pairs in  the form of mesons or bound groups of three quarks in the form 
of baryons-the names assigned to them, up, down, strange, etc., are only mnemonic 
symbols to identify the different species. The word “flavor” is used, for convenience, 
to distinguish between different types of quark, not because it has anything to do with 
hste.  Besides flavor, quarks also come in three different colors, for example, red, green, 
and blue. Color and flavor are quantum-mechanical labels, or quantum numbers, very 
similar to spin and parity, required to differentiate between the different states in which 
a quark finds itself. Since there are no classical analogues to flavor and color degrees 
of freedom, there are no observables that can be directly associated with them. In 
this respect, they are similar to the parity label of a state which must be “observed” 
t,hroiigh indirect evidence. For quarks, observation of any of their properties is made 
even harder hy the fact that they appear only in groups of two or more. However, there 
is by now a large amount of evidence for the presence of flavor, color, and other degrees 
of freedom associated with qnarks, and we shall examine some of these properties in 
this chapter. 

Leptons. Although quarks make up the bulk of observed mass in the universe, they are 
not the only elementary building block of particles with finite rest masses. Leptons, or 
light particles, are not made of quarks. They participate in electromagnetic and weak 
interactions but not in strong interaction. The number of different types of known 
leptons is also six and can also be arranged into three pairs, as shown in Table 2-1. 
The elcctron (e), the muon (p), and the tau lepton (7) carry a charge -e each, but the 
elwtron neutrino (ve ) ,  the muon neutrino ( v , ~ ) ,  and the tau neutrino ( v T )  are neutral. 
The niassw of leptons are much less than those of quarks, with m,cZ = 0.511 MeV, 
rnl1cZ = 106 MeV, and mTc2 = 1784 MeV. The neutrinos are known to be much lighter 
and their rest masses may even he zero. A large amount of effort has been devoted 
in recent years to measuring the mass of u,. The best estimate at the moment is that 
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it is a few electron-volts or less, although much larger values for the upper limit have 
also been reported. For the other two types of neutrinos, only the upper limits of their 
masses are known: mvr < 0.25 MeV and m, < 70 MeV. 

In nuclear physics, leptons make their presence felt through nuclear P-decay and 
other weak transitions. In general, only electrons and electron neutrinos are involved; 
occasionally muons may enter, such as in the cme of a muonic atom where a muon 
replaces one of the electrons in the atom. Because of its larger mass and its more 
recent discovery, the ?-lepton has yet to enter nuclear physics studies. 

Lepton number conservation. The number of leptons is conserved in a reaction. 
For example, a free neutron decays with a lifetime of 886.7 f 1.9 s through the reaction 

n -+ p +  e- + De 
The bar over v, indicates that it is an electron antineutrino, the antiparticle of an 
electron neutrino. On the left-hand side of the equation, only a neutron is present. 
Since there is no lepton, we can assign L = 0 as its lepton number. On the right- 
hand side of the equation, we have one electron, which carries a lepton number L = 1. 
An antiparticle is given a particle number of the same magnitude as the particle with 
which it is associated but with the opposite sign. This is necessary since an antiparticle 
can annihilate a particle to form a state with no particle. Hence, the lepton number 
of ve is -1. The total lepton number on the right-hand side of Eq. (2-1) is then 
L = 1 + (- 1) = 0. With these assignments, we find that the lepton number is conserved 
in the reaction. 

Conservation of lepton numbers in Eq. (2-1) depends on the recognition that the 
neutral lepton produced in the reaction is observed to be an antineutrino rather than a 
neutrino. This is not merely a gimmick to balance the lepton number of the two sides of 
the equation. The two types of neutrinos, v, and pe, are two different particles, related 
to each other by a transformation between a particle and its antiparticle, or charge 
conjugation. Electron neutrinos, v,, can be obtained, for example, from the reaction 

(2-1) 

Such a process is not energetically possible for a free proton, the nucleus of a hydrogen 
atom, as a free neutron is more massive (M,,cz = 939.566 MeV) than a free proton 
(Mpc2 = 938.272 MeV). However, a proton bound within a nucleus, pbound, can undergo 
the reaction of Eq. (2-2). The necessary energy conservation is now between the parent 
nucleus, having the bound proton as one of its nucleons, and the daughter nucleus 
containing the neutron. As long as there is enough energy difference between the parent 
and daughter nuclei to create the two leptons, a positron e+ and an electron neutrino 
v,, the reaction is possible (see $5-5 for detail). Since a positron is the antiparticle of 
an electron, its lepton number L = -1. To conserve charge, the charged lepton on the 
right-hand side of Eq. (2-2) must be a positron, and to conserve lepton number, the 
reaction must be accompanied by an electron neutrino in the final state. 

If v, and U, were the same particle, we could make use of the electron neutrino 
obtained from the reaction given by Eq. (2-2) to induce the inverse of that of Eq. (2-l) ,  

v, + p + e+ + n (2-3) 
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To conserve charge, the charged lepton on the right-hand side must be a positron with 
L = -1. However, the react,ion is not observed to take place. On the other hand, the 
reaction 

is observed. This establishes that v, and Ve are two different particles as well as confirms 
that the lepton number is conserved (see $5-6 for more detail). In fact, the conservation 
of leptons (i.e., that leptons cannot be created or annihilated except in pairs each one 
consisting of a lepton and an antilepton) is a fundamental conservation law, not too 
different from the conservation of energy and momentum. Our convention of assigning 
lepton niimbers starts by giving L = +1 to an  electron. Once this is fixed, all the other 
lepton numbers are determined by conservation requirements. 

Particles that are distinct from their antiparticles are called Dirac particles. This is 
to distinguish them from Majorana particles, which are the same as their antiparticles. 
As we shall see in $5-6, one of the interests in double p-decay, nuclear decay through the 
emission of two electrons or positrons, is to find out whether neutrinos can be Majorana 
particles. So far all the evidence seems t,o suggest that they are strictly Dirac particles. 

The conservation of lepton numbers applies separately to each one of the three 
groups of leptons, e and v,, p and v,,, and T and v,. That is, the number of leptons in 
the electron family L,, the number of leptons in the muon family L,, and the number 
of leptons in the tau family L, are conserved separately in a reaction. For example, 
miions decay with a mean life of 2.2 I L S  through the reaction 

27, + p + e+ + n (2-4) 

p- --i e- + Ve + v,, (2 -5)  

Since only a muon appears on the left-hand side of this reaction, we have L, = 0 and 
L, = 1 (as well as L, = 0).  On the right-hand side, the muon number is conserved 
by the presence of v,,, The electron number must also be zero on the right-hand side 
to conserve L,, and this requires 27, to appear with e - .  The fact that the reaction 
produces two neutrinos, a miion neutrino and an electron antineutrino, rather than, for 
example, v, and si, or two ?-rays, is good evidence for the conservation of L, and L, 
separately. For most interests in nuclear physics we are concerned primarily with the 
leptons in the electron family. 

Baryon number conservation. The number of quarks of each type, u, d, s, etc., 
is also conserved in strong interact,ion processes. That is, one type of quark cannot 
be changed int,o another. The exception happens in weak interaction processes. This 
is equivalent to saying that flavor is a good quantum number only in the limit that 
weak force can be ignored. Unless we are dealing with the quark contents of hadrons, 
it  is more convenient to examine instead the baryon number, which is known to be 
conserved under the influence of weak interaction as well. The only exception is the 
possible decay of protons through reactions such as 

2, + e+ + 7ro (2-6) 

allowed under theories for grand unification of all forces. At present, the observed limit 
on the lifetime of a proton is longer than loz6 years. As a result, we shall not be 
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Flavor 

21 (UP) 

d (down) 
a (strange) 

c (charm) 

b (beauty) 

t (top) 

concerned with this possibility and we shall take the baryon number to be conserved 
in all the reactions of interest to us. 

There is no conservation law for the number of mesons. If there is enough energy 
available, they can decay into other mesons, baryon and antibaryon pairs, lepton and 
antilepton pairs, or -prays. The lightest members of the meson family are the pions 
with rest mass around 140 MeV/c2. It is stable on the time scale of strong interaction, 
as it cannot decay into another hadron. However, through weak interactions, charged 
pions decay predominantly to muons, 

(2-7) 

7ro-ty+-y (2-8) 

- 
lr+ + p + + v ,  71 + p - + F "  

with a mean life of 2.6 x lo-' s, and a neutral pion decays 99% of the time to two 
w a y s ,  

with a mean life of 8.4 x lo-'' s. Both lifetimes are milch longer, by something around 
6 to 14 orders of magnitude, than the typical time scale for strong interactions. Note 
also that in all three modes of decay the lepton numbers are conserved and, as we shall 
see later, the total number of quarks is also conserved. 

A t to S C &? 7 &(e) Mc2(GeV) 

4 4 !j 0 0 0 0 +a 0.002 -0.008 

f 4 -3 0 0 0 0 -4 0.005-0.015 

5 0 0 -1 0 0 0 - 5  0.1 - 0.3 

4 0 0 0 1 0 0 +$ 1.0 - 1.6 

f 0 0 0 0 -1 0 -3  4.1 - 4.5 

5 0 0 0 0 0 1 +a 180f12 

2-2 Quarks,  the Basic Building Block of Hadrons 

Q u a r k  masses. Among the six quarks listed in Table 2-2, the least massive members 
are the u- and &quarks. These two are believed to  have essentially the same mass, 
in the range of a few MeV/c2. The lightest baryons, nucleons and A-particles, and 
the lightest mesons, pions, must be made exclusively of these two quarks and their 
antiquarks. The s-quark is more massive. The unique feature of the s-quark is that it 
carries a quantum number called strangeness and is therefore a necessary constituent 
of particles with nonzero strangeness, such the K-mesons, or kaons, and the baryon 
A. The c-quark is even more massive. It was first found through the discovery of the 
J/$-meson in 1974 as a narrow resonance in the annihilation of a positron with an 
electron at 3.1 GeV center-of-mass energy. Since a meson is made of a quark and an 

Table 2-2: Quantum numbers of quarks. 
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antiquark, a new quark, heavier than u, d, and s, the three known at the time, must 
be postulated in order to understand this new meson. This is the c-, or charm, quark, 
having a mam far greater than those of u,  d, and s. The existence of the c-quark was 
subsequently confirmed by other experiments, including the discovery of excited states 
of J / $ .  The birth of the c-quark prompted the search for even heavier quarks. In this 
way, the presence of a b-quark was found in the T-meson at 10 GeV. The mass of the 
t-quark hns only been measured recently [97]. At the same time, one may also wonder 
whether there is a fourth generation of quarks beyond the three known ones. 

Associated with each quark there is an antiquark. All the known hadrons are made 
of these six quarks and their antiqnarks. The properties of quarks are deduced from 
measurements made on mesons and baryons, as observations on isolated quarks cannot 
he carried out. The masses, magnetic moments, and other properties of quarks are 
inferred from what we know of the properties of mesons and baryons (see, e.g., [22]). 
Currently, our ability to make such deductions relies on our incomplete understanding of 
QCD. It is especially inadequate at low energies, where the majority of the experimental 
observations are made. For example, to obtain the masses of quarks from the known 
hadron masses, we need to know the strength of the interaction between quarks that 
binds them inside the hadron. Since this is poorly known, the quark masses listed in 
Table 2-2 represent only the best est,imates and may or may not be closely related to 
their true masses. Furthermore, different ways of making the estimate result in different 
Val u es . 

Fermions and bosom. Hadrons are subdivided into two classes, baryons and mesons. 
Besides nucleons, we have A,  A ,  and a large number of heavier particles in the baryon 
fanlily. Among mesons, we have already enc.ountered pions, kaons, J/$, and T, and 
there are many others. 

Baryons are distinguished by the fact that they are fermions, particles that obey 
Fermi-Dirac statistics. Because of this property, two identical baryons cannot occupy 
the same quantum-mechanical state. The fact that baryons are fermions implies that 
quarks must also be fermions, as it is impossible to construct fermions except from odd 
numbers of fermions. Furthermore, if we accept that a quark cannot exist as a free 
particle, the lightest fermion in the hadron family must be made of three quarks. 

As fermions, baryons must have half-integer intrinsic spins. For example, the in- 
trinsic spin of a nucleon is ; and that of a A-particle is ;. This implies that quarks 
must also have half-integer intrinsic spins. In addition, t,he quarks are residing in states 
with definite orbital angular momenta, just like electrons in an atom. The energy of 
three quarks in  a baryon depends on the interaction between them and this, in turn, 
depends on the total spin and angular momentum. We shall come back for a brief look 
of t8his question later in the quark model of hadrons ($2-7). 

Among t,he baryons, we are mostly concerned with the lightest pair, the neutron and 
the proton. From charge considerations alone, we can deduce that a proton, carrying a 
charge +e, must be made of two u-quarks, each having a charge of Ee, and one d-quark, 
- f e .  The quark wave function of a proton may be represented as 
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Similarly, the quark wave function of a neutron is 

In) = l u d d )  (2-10) 

so that the total charge of a neutron in units of e is $ - 5 - 5 = 0. Nuclear physics is 
usually not concerned with any of the heavier baryons, except perhaps for A- and A- 
particles. This comes because we are normally dealing with very low-energy phenomena, 
a few giga-electron-volts per nucleon or less. As a result, there is usually inadequate 
energy to excite nucleons to become heavier baryons. 

Bosons, particles obeying Bose-Einstein statistics, may be made from even number 
of fermions. This means that mesons are constructed of an even number of quarks. 
Since, on the one hand, bosons can be created or annihilated under suitable conditions 
and, on the other hand, the number of quarks is conserved in strong interaction pro- 
cesses, a meson must be made of an equal number of quarks (q )  and antiquarks @). 
The simplest meson is, therefore, made of a quark-antiquark pair (q i j ) .  For example, 
pions, the lightest members among the mesons, are made of a quark, either u or d, and 
an antiquark, either or -a. 

Quark charge. Many hadrons are observed to carry electric charge. This leads to  the 
conclusion that quarks must also carry charge. In nature all observed charges are in 
multiples of e = 1.60217733 x lo-'' C, with the charge on an electron being -e and on 
a proton +e. The most convenient assignment of charge to the quarks is for u-, c-, and 
t-quarks to have +$e and d-, s-, and b-quarks to have -fe .  The assignment of multiples 
of f e  to quarks seems, on the surface, to violate the notion that e is a fundamental or 
indivisible unit of charge. However, there is no reason to assume that $e cannot be the 
more fundamental unit instead of e. Furthermore, there is no problem, as quarks do 
not exist freely and all the observed charges are in integer multiples of e .  

2-3 Isospin 

The nucleon. A proton and a neutron may be considered as two different aspects of the 
same particle, the nucleon. Both of them have spin f and their masses, 939.566 MeV/c2 
for a neutron and 938.272 MeV/c2 for a proton, differ only by about 0.1%. The main 
distinction between these two particles is in their electromagnetic properties: namely, 
charge and magnetic dipole moment (see 52-8). If we are dealing only with strong 
interactions, such differences are immaterial. That is, in the absence of electroniag- 
netic interaction, a proton cannot be distinguished from a neutron. This is similar to 
the case of particles with different values of m3, projections of the intrinsic spin s on 
the quantization axis. Consider a spin-; particle. In the absence of a magnetic field 
B, particles with the two possible values, fi, of m, are degenerate in energy and, 
consequently, are indistinguishable from each other. On the other hand, once a mag- 
netic field is introduced, the degeneracy is removed and particles are observed to have 
different energies depending on whether their intrinsic spins s are aligned parallel or 
antiparallel to B. The difference between a proton and a neutron is analogous to the 
difference between particles with m, = ktf if we substitute the Coulomb field with a 
magnetic field. 
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If protons and neutrons are considered as identical particles, we need a new label to 
distinguish between them. For this purpose, the concept of isospzn is introduced. Since 
there are only two possible states for a nucleon, the proton state and the neutron state, 
WP can assign isospin t = f to a nucleon, based on the analogy that a spin-f system 
can have two different, subst,atPs. The two nucleons are distinguished by to = ff, 
the expectation value of the third component of isospin operator t .  It is a matter of 
convention whether we consider the 1 t = f ,  to=+; ) state to be a proton state and the 
I t = i , t ~ = - $ )  state to be a neutron state, or the other way around. Both conventions 
are in use and we shall adopt the more popular one with 

I p )  f I t=f ,  to=+;) 1.) I it=;, to=+) (2-11) 

where I p )  and I 1 1 )  represent, respectively, the wave functions of a proton and a neutron. 
For a nucleus consisting of several nucleons, the total isospin is given by the vector sum 
of that for each individual nucleon, 

A 

T= t ( i )  (2-12) 
t=1 

where A is the number of nucleons. This is identical to the rule for angular momentum 
addition. 

111 the absence of electromagnetic interaction, we expect isospin to be a constant 
of motion. That is, the eigenstates of the Hamiltonian can also be the eigenstates of 
t 2 ,  the square of the isospin operator, as well as the third component t o .  As a result, 
each eigenstate may also be labeled by t and t o ,  with t(t + 1) as the expectation value 
of t2 and to, that  of to for the eigenstate. In dealing with nuclei, the main source of 
isospin symmetry breaking conies from Coulomb interaction that acts only between 
protons. A less severe but nevertheless noticeable source is the difference between the 
masses of the neutral and charged mesons exchanged between two nucleons (see $3-6). 
The possibilit,y of more fundamental isospin-breaking terms in the nuclear force, for 
instance, diie to a possible small difference between the maqses of u- and d-quarks, is 
not yet well established but has not been completely ruled out either. 

From R prirely mathematical point of view, spin and isospin are similar in structure. 
Let, 11s concerit,rate on isospin-fr systems for the moment and study them by analogy 
with spin-; systems. A particle with s = f and projection along the quantization axis 
m = +f may be represented by a two-component column matrix in the following way: 

ls=f, m=+i) = (i) 

J S A ,  m=-’) = 

Siiriilarly, the corresponding rn = - 3  state may be represented as 

2 (3 
( p )  = I t= ; , to=+z)  - - Mt 

The isospin wave functions of nucleons may be written in an analogous way, 

(2-13) 

(2-14) 

(2-15) 

(2-16) 
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where the subscript t ,  which we shall omit in the future unless required for reasons of 
clarity, identifies that the column matrices are for isospin. Using the convention that 
a proton has to  = +i and a neutron has t o  = - f ,  we can relate the charge number Q, 
electric charge in units of e, for a nucleon to to, 

Q = t o + s  1 

When we extend the concept of isospin to antiparticles and to systems of several nu- 
cleons, the relation between Q and t o  depends also on A ,  the number of baryons in the 
system, 

Q = t o  + ;A  (2-17) 

A more general relation involving strangeness and other quantum numbers is given 
later in Eq. (2-37). 

systems can be constructed from Pauli matrices u in 
the same way as angular momentum operators for a spin-i system. For example, we 

Isospin operators for t = 

can write 
0 1  0 -i 

0 -1 
(2-18) 

for the 1-, y-, and z-components of isospin operator r. The matrices obey the relation 

T,T] = & I +  i € , j k T k  (2-19) 

Here I is the 2 x 2 unit matrix and € i lk  is the three-dimensional Levi-Civita symbol, 
with tr jk  = 1 if the order of i, j, and k is an even permutation of 1, 2, and 3; -1 if the 
order is an odd permutation; and zero if two or more of the three indices are the same. 

For a nucleon it is easily seen that the wave functions given by Eqs. (2-15) and (2-16) 
are the eigenfunctions of the r 3  operator, or s o  operator in spherical representation, 

T o ( : )  = r 3 ( 3  = (; -;)(;) =+(:) 
T o ( ; )  = r 3 ( ; )  = (1 0 -1 ”(;) = -(!) 

The value of the third component of isospin, t o ,  is equal to half of the expectation value 
of ro, the same relation as that between m, and 60 for spin-; particles. By the same 
token, the expectation value of r2 is 3, four times the value of t ( t  + 1) for a nucleon. 

From the form of r given in Eq. (2-18), we can construct isospin-raising (T+) and 
isospin-lowering (7-) operators that  transform, respectively, a neutron to a proton and 
a proton to a neutron, 

In the same way as angular momentum raising and lowering operators, r* changes the 
value of t o  without affecting isospin t or any other parts of the wave function, 

7*1 t ,  t o )  = Jt(t + 1) - to ( t0  f 1) It, t o  f 1) (2-21) 
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The definition used here for T+ and T- is the more general form used in textbooks and 
differs slightly from the convention for spherical tensor operators given in §A-2. 

For nuclei made of several nucleons, isospin operators may be constructed out of 
the single-nucleon operators I ,  T I ,  ~ 2 ,  and TO (= ~ 3 ) .  For example, 

(2-22) 

where ~ ~ ( i )  acts only on the isospin wave function of the ith nucleon. 
The usefulness of isospin is not restricted to the economy gained in treating formally 

a proton and a neutron as two different states of the same particle. Since isospin is 
a constant of motion in strong interaction processes, it  is a fundamental symmetry, 
essentially on the same footing as flavor, parity, etc. Isospin is useful in classifying 
hadrons in general. For example, as we shall see in 52-5, pions come in three different 
charge states, ri ,  T O ,  and r-. They may be treated as the three projections, t o  = +1, 
0, -1, of an isospin t = 1 system. Since pions are not baryons, the baryon number 
A = 0. We see that the relation between charge number Q and the third component 
of isospin given in Eq. (2-17) holds here as well. In $2-7 we shall see the case of a 
quartet of Iiaryons, the A-part,icles, that appear in four different charge states, At+, 
A+, Ao, and A-, with charge number Q = 2, 1,  0, -1. It is therefore a t = $ system of 
baryons. We shall return later for a discussion of the isospin wave function of hadrons 
and nuclei. 

2-4 Isospin of Antiparticles 

Par t ic les  and antiparticles.  An antiparticle may be characterized by the property 
that it can annihilate the particle with which it is associated. Energy and momen- 
tum conservation are maintained in the process, for example, by the emission of two 
y-rays or the creation of a different particle-antiparticle pair. Since the final state of 
an annihilation process is electrically neutral, a particle and its antiparticle must have 
opposite charges t,o conserve electric charge. For example, an electron has charge -e, 
and its antipart>icle, the positron, has charge i-e. Similarly, the conservation of other 
scalar quantum numbers, such as lepton number and baryon number, requires the cor- 
responding labels for particles and antiparticles to be equal in magnitude but opposite 
in sign, as we have seen in earlier examples. By the same token, the intrinsic parity 
of an antiparticle is shown in §A-1 to be opposite to that of its particle. For vector 
quantities, such as intrinsic spin and isospin, the rules of angiilar momentum addition 
require that the magnitudes be the same for a particle and its antiparticle so that they 
can he coupled toget,her to form scalars. 

Let 11s take the case of proton-antiproton annihilation at rest with the emission of 
two photons as an example: 

P + F + Y + Y  

Since a photon is an isospin zero, or zsoscalar, particle, the total isospin on the right- 
hand side of the reaction is zero. Conservation of isospin requires that the proton and 
the antiproton are coupled to a T = 0 state on the left-hand side. Since t = f for a 
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proton, the antiproton p must also have t = f .  The third component of isospin for a 
proton is to  = +f by the convention we have adopted. For an isoscalar system, the 
sum of the third components of isospin for all the quantities involved must also be zero. 
From this, we conclude that t o  = -4 for an antiproton, the opposite in sign from that 
for its particle. 

We see that the relation between charge number Q and the third component of 
isospin given by Eq. (2-17) applies to antiparticles as well. For an antiproton, the 
baryon number A = -1, and we obtain the correct result of Q = -1 from Eq. (2-17) 
using to value of -3 deduced above. 

Charge conjugation. The operation that transforms the wave function of a particle 
to that of an antiparticle is called charge conjugatton. It changes the sign of the 
charge of a particle without affecting any of the properties unrelated to charge. In 
relativistic quantum mechanics, this implies a transformation between a particle and 
its antiparticle, hence the name particle-antiparticle transformation. Let \ p ) and I n )  
represent, respectively, the wave functions of a proton and a neutron. In terms of 
second-quantized creation operators u!,, for a particle, we may express these wave 
functions as 

I P )  = at/2,,,/zlO) I n )  = 'If/2,-L/ZlO) (2-23) 

where 10) is the wave function for vacuum. In the expression, we have displayed only 
the isospin ranks and suppressed all other labels for simplicity. The wave functions of 
an antiproton IF) and an antineutron In) may be constructed in a similar way, using 
the creation operator bf,, for an antiparticle, 

(2-24) 

Here we have made use of the fact that, on transforming a particle to an antiparticle 
(and vice versa), the charge, and hence the projection of isospin on the quantization 
axis, changes sign. If particles and antiparticles are unrelated to each other, aft, and 
bf,, are completely different operators defined, respectively, by Eqs. (2-23) and (2-24). 
However, particles and antiparticles can transform into each other through charge con- 
jugation, C, and as a result, operators at and bt are not independent of each other. 

In addition to isospin (and spin), the wave functions of a particle and an antiparticle 
can also differ by a phase factor. There are several ways to obtain this factor. If we 
take aft, and a!,, as operators with a definite irreducible spherical tensor rank t ,  the 
phase factor is fixed by their transformation properties under a rotation in the isospin 
space. For second-quantized operators, we have the relation 

bf,, = (-l)t-toat,-to (2-25) 

The phase factor arises from the fact that operators a&, and u,,+, are not Hermitian 
conjugates of each other without the factor ( - l ) t - t o .  (For a more detailed discussion, 
see, e.g., Refs. [34, 501.) 

With the relation between the second-quantized operators given by Eq. (2-25), we 
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find that, under charge conjugation, 

The same considerations apply to other particles as well. For example, since a u-quark 
has isospin ranks ( t ,  t o )  = (8, +f) and a d-quark has ranks (i, -:), the transformations 
to their ant,ipart>icles under charge conjugation are 

These phase factors are used in writing the quark wave functions for pions in the next 
section. 

2-5 Isospin of Quarks 

One of the consequences of treating a proton and a neutron as two different isospin 
states of a nucleon is that we can change a proton into a neutron, and vice versa, using 
tlic isospin-lowering and isospin-raising operators given in Eq. (2-20), 

T+In) = (* 0 1  * ) ( J = ( ; ) = I P )  0 

T-lP) = ( I  0 0  ")(o)  1 = (;) = In>  (2-28) 

In terms of quarks, we have already seen in Eqs. (2-9) and (2-10) that 

l P )  = bud)  In)  = ludd) 

When we substitute these results into Eq. (2-28), we obtain 

T+Iudd) = I u ~ d )  r-)uud) = ludd) (2-29) 

Since a proton and a neutron are considered here to  be identical to each other except 
for the third component of their isospin, the other parts of the wave functions are not 
changed by isospin operations. In terms of quarks, the only difference between a proton 
and a neutron is the replacement of one of the two u-quarks by a d-quark. The relations 
expressed by Eq. (2-29), therefore, imply that,  when an isospin-raising operator acts 
on the qiiarks, it  transforms a (1-quark to a u-quark, and the other way around for an 
isospin-lowering operator. Since no other qiiarks are involved here, we conclude that 
d- and u-quarks also form an isospin doublet, analogous to the proton-neutron pair. 
Furthermore, since the third component of isospin is a scalar quantity, the sum of t o  
of two u-quarks and one &quark in a proton must be + f  and that of one u-quark and 
two d-quarks in a neutron must be -$. To satisfy both requirements, we tnust assign 
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t o  = +f to a u-quark and t o  = -; to a d-quark. The relation between charge number 
Q and to  is still given by Eq. (2-17), when we note that a quark has baryon number 
A = $, from the fact that it takes three quarks to make a baryon. 

More formally, we can write the T* operator for a nucleon as the sum of isospin- 
raising or isospin-lowering operators acting on each one of the three quarks, 

3 

Tdnucleon) - CT*(Q,) 
t=l 

where s*(q,) acts on the isospin of the i th quark only. Ignoring for the moment any 
antisymmetrization requirement between the three quarks in a nucleon, we can write 
the first relation of Eq. (2-29) in the following way: 

T+I  n )  = (T+(qi) + 7+(42 )  + T+(B)) I 4 1 ) 4 2 ) 4 3 ) )  

where we have assumed that the first quark in the neutron is a u-quark and the re- 
maining two are d-quarks. Since r + I u )  = 0 (a u-quark has to = +:), the first term 
vanishes. The second and third terms give the results 

~+(dI21(1)d(2)d(3)) = I a u ( W ( 3 ) )  

T+ ( 4 3 )  lU(l)d(2)d(3)) = h( l )d (2b(3 ) )  

Upon antisymmetrization these two terms produce identical results which we shall 
represent generically as I uud ). 

Quark wave functions of pions. We can check the isospin assignment to  the u- and 
d-quarks by examining the structure of mesons formed of these two quarks and their 
antiquarks. It is simplest t o  start from T -  with t = 1 and t o  = -1. Since we cannot 
use any quarks other than u, d, 7i, and 2, the only way to form a to = -1 system is 
to take the Zd combination. We can easily deduce that this pair of quarks must form 
a t = 1 system by elimination. Two isospin-i particles can only be coupled to  total 
isospin 0 and 1. The ad system cannot be t = 0 as it has t o  = -1. As a result, we can 
make the identification 

as there is no other way to form a t = 1, to = -1 state with u, d, z, and 2. 
In general, it is possible to find several different linearly independent components 

corresponding to the same t and to. The appropriate combination for a given situation 
is guided by isospin-coupling rules. Furthermore, the wave function must be antisym- 
metric among the quarks and is an eigenstate of the Hamiltonian. For our interest in 
this section, we shall only be concerned with isospin coupling. 

From the wave function of A - ,  we can construct that for 7~' using an isospin-raising 
operator, 

1 

IT-)  = lad) (2-30) 

(2-31) 
1 

ITo) = -T+IT-) = - T+(qt) ( ' i id)  
N N r=1,2 

where N is the normalization factor to be determined later. The operator s+ acts on 
the wave function of each quark. We have already seen that 

T+l4 = I 'u.) (2-32) 
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However, for the antiquarks, 
T+[z) = -12) (2-33) 

The additional negative sign comes from the symmetry requirement under charge con- 
jugation, as discussed in the previous section. 

The normalization factor N in Eq. (2-31) may be determined using Eq. (2-21). 
Since I T -  ) is a t = 1, t o  = -1 system, 

T+11, -1) = &Il,0) 

we obtain a value N = fi. The final result for the wave function of is then 

(2-34) 

The same result can also be obtained by coupling the isospin of the two particles using 
the Clebsch-Gordan coefficients described in §A-3. Since the values of both coefficients 
t,o couple two isospin-$ particles to total isospin 1 are 

we obtain the same result as given in Eq. (2-34) after inserting an “extra” minus sign 
arising from the transformation from I d )  to I ) under charge conjugation. 

The wave function for T+ in terms of quarks is 

\a+) = -1.2) (2-35) 

This result may be arrived at either by applying an isospin-raising operator on the 
quark wave function of T O  obtained above or by constructing a (t, t o )  = (1, +1) system 
in the same manner as we have just done for the a--system, Again, the overall minus 
sign comes from charge conjugation between d and 2. 

One question still remains concerning the t o  = 0 wave function for a quark-antiquark 
pair. There are two different ways, and d& to form a to = 0 state from the two 
quarks and two antiquarks provided. Besides the one given in Eq. (2-34), we can also 
take the linear combination 

(2-36) 

It is orthogonal to I T O )  and must therefore describe a meson other than ? y o .  Both ua 
and d z  have t o  = 0 but a mixture of ( t l t o )  = (1 ,O)  and ( t , t o )  = (0,O). A particular 
linear combination was taken in Eq. (2-34) so as to have the correct isospin of t = 1 for 
the xO-meson. The linear combination given in Eq. (2-36) is a different one and must 
correspond to an isospin zero system as a result, a fact that  can also be seen from the 
explicit values of the Cleljsch-Gordan corfficients required to construct a t = 0 system. 
Such an isospin-singlet meson may be identified with the 7-meson, which has a rest 
mass of -550 MeV f c2. 

The four particles, T + ,  T O ,  T - ,  and 7, exhaust all the observed mesons in the form 
of a quark-antiquark pair that can be constructed out of u,  d,  a, and a in their lowest 
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possible energy states. To obtain other mesons, we must either introduce excitations 
in the quark-antiquark system or invoke s- and other more massive quarks. We shall 
return to  this point later. 

Other quarks. Let us examine briefly the isospin of the other quarks, c, s, t ,  and b and 
their antiparticles. It is perhaps tempting to assume that each one of the remaining 
two pairs forms also an isospin doublet. This, however, is not the case. As can be 
seen from Table 2-2, these four quarks are isoscalar particles. Two questions are raised 
here: How are the assignments of t = 0 made to these quarks? What is the relation 
between their values of Q and to? Since quarks are not particles observed in isolation, 
assignment of isospin (as well as other quantum numbers) must be carried out through 
the hadrons they make up. This is what we have done for the u- and d-quarks and we 
shall see how it can be carried out for the s-quarks as an example. 

After u- and d-quarks, the next one in order of increasing mass is the s-quark. They 
are found in hadrons with nonzero strangeness S. For our purpose here we can regard 
S as a label to identify the number of strange antiquarks in the hadron. The lightest 
strange mesons are the kaons, or K-mesons. They come as two isospin doublets (t = f 
systems), one consisting of K+(u3) and Ko(da), and the other of K-(%) and ~ ( Z S ) .  
Since u- and d-quarks have isospin t = f ,  the s-quark must have integer isospin 0 or 
1 in order to form kaons with t = f .  The assignment of t = 1 may be ruled out on 
the grounds that, if this were true, we should be able to form t = $ strange mesons, 
for example, made of an s-quark and an antiquark, either 7i or 2. The fact that  such 
mesons have not been observed implies that the isospin of the s-quark is zero. The 
assignment of isospin to the other quarks may be carried out in a similar way and we 
shall not go into the steps here. 

With the assignment of t = 0 to the heavy quarks, we need now to  modify the 
relation between the charge number Q and t o .  Equation (2-17) was derived for u- and 
d-quarks and must be changed now, as the other quarks have different relations between 
Q and to .  The more general form of Eq. (2-17) is given by 

Q = to  + : ( A  + S + C + B + 7) (2-37) 

where assignments of\ baryon number A ,  strangeness S ,  charm quantum number C, 
beauty quantum number B, and top quantum number I for each of the six flavors of 
quarks are given in Table 2-2. 

2-6 

In strong interaction processes, the total number of each type of quark, u, d,  s, c,  b, and 
t ,  is conserved. However, through weak interactions, quarks can be transformed from 
one flavor to  another, such as the example shown in Fig. 2-1. In terms of observed par- 
ticles, the flavor degree of freedom in quarks shows its presence by separating hadrons 
into different groups, with transitions between groups allowed only through weak inter- 
actions. As a result, transition rates between members of the same group, characterized 
by the fact that they have the same quark content, are fast and typical of strong inter- 
action processes. On the other hand, transitions between members of different groups 

Strangeness and Other Quantum Numbers 
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Figure 2-1: Tranfiformation of a d-quark into a a-quark through weak interac- 
tion. The virtual W--boson emitted decays into a pair of leptons, e- and ije. 

involve the transformation of one type of quark to another and are much slower, with 
lifetimes more typical of weak interaction processes. 

Each group of hadrons is charact,erized by the number of quarks of each flavor, and 
hansitions from one groiip to another involve a change in one or more of these numbers. 
For example, the h‘+-nieson, with mass 494 MeV/c2, is made of the quark-antiquark 
pair u ~ .  The dominant made of decay, 63.5% of the time, is into leptons, pt + ijg. 

A less prominent Inode, 21.2% of the time, is into a pair of pions A+ + a”. In either 
decay mode, the total number of quarks is conserved. However, there is no strange 
antiquark among the end products of the decay. One way t,o “remove” the strange 
ant,iquark B witlioiit changing the net number of quarks involved is to let it  decay to a 
%quark, which then annihilates wit,h the 11-quark in Kt to produce a pair of leptons. 
Alternatively, the 3-quark may P-decay to a &park instead and form a part of the 
pions in the end product. The mean life of the K+-meson, 1.2 x s, is typical for 
weak decays. 

Strangeness,  cha rm,  and beauty. Among the baryons, 11 is a particle with quark 
content (uds )  and mass 1116 MeV. It is produced in reactions such as 

x- + p -+ A -t K“ 

where the meson K O ,  with quark structure &, is the isospin partner of Kt. On the 
left-hand side of the react)ion, there is no strange quark, as both A- and p are made 
exclusively of u’s and d’s. On the right-hand side, we see that the presence of an s-quark 
in the A-particle is accompanied by an S in the I(” meson. In ternis of the observed 
hadrons, we find that the production of a A and other hadrons containing an s-quark is 
always accompanied by another hadron containing an 3. This type of association may 
be accounted for by assigning a strangeness quantum number S to count the number of 
strange quarks. In strong interaction processes, we say that strangeness is a conserved 
quantity to indicate the fact that the numbers of s and 3 produced must be the same. 
Por historical reasons, an s-quark is assigned S = -1 and 3 is assigned S = +1 (and 
S = 0 for all other quarks). 

Similar to strangeness, we can assign a charm quantum number C to account for 
the number of c-quarks, with C = 1 for a c-quark and C = -1 for a bquark (and C = 0 
for all other quarks). To accoiint, for the number of b-quarks, a beauty quantum number 
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Rest mass energy 
MeV 

1019.41f0.01 

3096.88f0.04 

9460.37f0.21 

B is used with B = -1 for a 6-quark and B = +1 for a E-quark (and B = 0 for all other 
quarks). Thus, for example, a hadron with n c-quarks has C = n and a hadron with 
m 6-quarks has B = -m. Whether a quark or an antiquark of a given flavor should 
take on the positive sign for the quantum number representing that flavor is somewhat 
arbitrary. The convention described here is the one commonly used and satisfies the 
relation between Q and t o  given in Eq. (2-37). 

Earlier, we saw the long lifetime of kaons as an example of strangeness conservation. 
Similarly, long lifetimes of the order s are observed for the analogous situation of 
charm and beauty conservation in the decay of D- and B-mesons, the lightest mesons 
containing, respectively, a c- and b-quark or their antiquarks. The rest masses of L? 
(1869 MeV for L?*) and B (5278 MeV for B*) are, however, much larger than those for 
K-mesons, reflecting the heavier masses of c- and b-quarks. Relatively long lifetimes are 
also observed for mesons made of heavy quark-antiquark pairs as, for example, those 
shown in Table 2-3. Since these particles are not stable, they are observed as resonances 
when their production cross sections are plotted as functions of the bombarding energy. 
For this reason, it is more common to characterize the stability of such LLparticles” by the 
widths I‘ of their resonance curves, related to their mean life T through the uncertainty 
relation 

R 

Width 
r (MeV) 

4.43 50.05 

0.087f0.005 

0.053f0.002 

where ti = 6.58 x MeV-s is the Planck constant 

Table 2-3: Lifetimes of &, J/$-, and T-mesons. 

Meson 

4 

Jilt, 
T 

It is worthwhile noting that lifetimes for J/$- and T-mesons are much longer and 
the widths r narrower than expected. This is caused by the special circumstance that 
there is not enough energy available for a J/$-particle (a), with rest mass 3097 MeV/c2, 
to decay into a D+(cl) and a D-(Fd) particle, the lightest members of quarks containing 
a charm quark, as their combined rest mass energy is 2 x 1869 MeV. Similarly, a Y- 
particle (rest mass 9460 MeV/c’) cannot decay to a pair of mesons containing b-quarks, 
as the lightest pair, a Elf(&) and a B-(&), has a combined rest mass energy of 2 x 
5278 MeV. As a result, J/$ and T must decay through much slower processes involving 
three or more lighter hadrons, as shown, for example, in Fig. 2-2(a), and into lepton 
pairs by weak interaction. In contrast, the analogous +-meson (rest mass 1019 MeV/c2), 
made of sB, can decay to a K+ and a K- with a combined rest mass energy of 2 x 
493.6 MeV. The narrow widths of J/$- and T-particles are quite astonishing in view 
of the high energies involved. As a result, they are useful as energy calibrations and 
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Figure 2-2: Example of decay into hadrons for J/$-meson, made of cZ. The 
three-pion process shown in ( a )  is allowed wherew transition to D+R- shown in 
( b )  is forbidden, as the total mass of the final product is greater than that of J / $ ,  

as signatures of special events in high-energy nuclear physics as, for example, those 
discussed in Chapter 9. 

Color. Besides flavor, each quark has another important degree of freedom, known 
as color. The need of this additional quantum-mechanical label can be seen most 
readily by examining the quark wave function of a A-particle. As we have seen earlier, 
A is an isospin t = i particle with four different charge states, A++, A+, A”, and 
A-. Since it is a nonstrange baryon (S = 0), it must be made of u- and d-quarks 
alone. For A++, the member with the highest charge state, there is only one possible 
combination of quarks, (mu), to make a baryon with Q = 2. The intrinsic parity of A 
is known to be positive. This, together with other evidence, requires the spatial part 
of the wave function for the three 11-quarks in A++ to he symmetric if we permute 
any two of them. The intrinsic spin of A is $ and, hence, the intrinsic spin part of 
the wave function for the three u-quarks is also symmetric. Similarly, the isospin part 
of the wave must also be symmetric in order to have t = i. The net result is that 
the product of space, intrinsic spin, and isospin parts of the wave function for A++ is 
symmetric under a permutation among the three ~r-quarks. On the other hand, quarks 
are fermions and the Pauli exclusion principle requires that the total wave function of 
the three identical quarks be antisymmetric with respect to a permutation of any two of 
the three quarks. The wave function we have obtained so far for A++ is in contradiction 
to this fundamental principle of quantum mechanics. There are two possible ways to 
get out of this dilemma: Either the Paiili principle is wrong, which is very unlikely, or 
else we have missed one of the degrees of freedom for quarks. 

This new degree of freedom is given the name “color” and hence the name quantum 
chrornodynarrrics for the theory dealing with strong interactions involving “colored” 
quarks. To account for this new degree of freedom, a color is assigned to each quark, 
for example, R (red), G (green), and B (blue). From the example of the A’+-particle 
we can deduce that the quarks in hadrons must be antisymmetric in the color degree 
of freedom; that is, the net color in a hadron must vanish. We can also reach the same 
conclusion from another point of view. Since color has not been an observed property, 
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all hadrons must be colorless objects: The color degree of freedom of the constituents 
inside a hadron must somehow neutralize each other. For mesons, this is easy to  achieve, 
as an antiquark must have the opposite color for a quark. For baryons made of three 
identical quarks, such as A++, the different colors cancel by being antisymmetric with 
respect to each other. 

In nuclear physics, we are usually not involved explicitly with the color degree 
of freedom. However, the A-particle is important. I t  was discovered by Fermi and 
Anderson in 1949 as a resonance in n+-scattering off protons at pion kinetic energy 
T, = 195 MeV, as shown in Fig. 2-3. It  corresponds to a mass of the pion-proton 
system of 1232 MeV. Since this takes place in the 4 = 1 reaction channel with both 
spin and isospin $, it  is also known as the &-resonance. Because it is a very strong 
resonance at relatively low energy, nucleons inside a nucleus may be excited fairly 
easily to become a A-particle, and as we shall see later, such excitations may have a 
strong influence in processes involving energies comparable to those required to change 
a nucleon into a A-particle. 
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Figure 2-3: Total cross section of charged pions scattering off protons. The 
strong &-resonance in ?r+ + p  reaction occurs in the (J",T)  = ($+, $) channel 
with f = 1. The 7r- + p cross section at the same energy is much smaller, a the 
system is a mixture of T = 4 and T = $. The data are taken from Ref. [22]. 

2-7 Static Quark Model of Hadrons 

A quark model of the hadrons should, in principle, involve all six different flavors. This 
can be rather complicated, as a large number of particles can be  constructed from six 
different quarks and six different antiquarks. Fortunately c-, b-, and t-quarks are so 
much more massive than u-, d- ,  and s-quarks that they are important primarily in heavy 
hadrons. For most particles of interest at low energies, only the three light quarks, u, 
d ,  and s, and their antiquarks, are involved. For this reason, it is quite adequate for us 
to consider a model consisting of only these three quarks and their antiquarks. 
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Mesons and pseudoscalar mesons. Let us start with the simpler case of mesons. 
Although mesons can be made with any number of quark-antiquark (qT)-pairs, most of 
the observed ones may be understood by considering only a single (qij)-pair. A simple 
quark model of mesons, therefore, involves a quark and an antiquark moving with 
respect to each other with orbital angular momentum 4. The total angular momentum, 
or spin, of the system is J = 4 f S,  where S = sq + ST is the sum of the intrinsic spins of 
the quark and the antiquark. Since sq = ST = f ,  the possible value of S for a qpsystem 
is either 0 (singlet state) or 1 (triplet state). As for the spatial part of the wave function, 
it has been found that mesons with relative orbital angular momentum t = 0 are lower 
in energy, the same as in the case of atomic levels. We shall restrict ourselves to these 
low-lying ones as they include essentially all those of interest to nuclear physics. 

We have already seen that pions are the least massive particles among mesons. 
Since both orbital angular momentum e and total intrinsic spin S are known to be 
zero, the spin J of a pion is also zero. They are therefore “scalar” particles, as their 
wave functions are invariant under a rotation of the spatial coordinate system. However, 
unlike ordinary scalars, their wave functions change sign under a parity transformation. 
This may be seen in the following way. The parity of the pion is given by the product 
of the int,rinsic parities of the quark ($1) and the antiquark (-1) and the parity of 
the spatial wave function of the (@)-pair. The property of the spatial wave function 
under a parity transformation is related to the orbital angular momentum C and is given 
by (-l)t, the same a3 spherical harmonics of order e discuseed in $A-1. Since C = 0, 
the parity of the complete pion wave function is negative. The pion therefore behaves 
like a pseudoscalar quantity, one that is invariant under a rotation but changes sign 
under an inversion of the coordinate system. For this reason, pions and other J = 0, 
negative-parity mesons are called pseudoscalar mesons. 

and 2, a total 
of 2 x 2 = 4 (pseudoscalar) mesons can be constructed with C = 0 and S = 0; three 
pions and one 7-meson. When the strange quark s and its antiquark ;ii are included in 
addition, the total is now nine. These are shown in Fig. 2-4. The nine mesons may 
be separated into two groups. Eight of the nine form an  octet, the members of which 
transform into each other under a rotation in the flavor space. That is, when we make 
an interchange among u, d,  and s, the wave functions of the eight mesons transform 

We saw earlier that with two quarks, u and d ,  and two antiquarks, 

S 

+1 

Figure 2-4: Pseudoscalar mesons. 
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as an irreducible representation of the SV3 group, special unitary group of dimension 
3. Mathematically the transformation is very similar to, for instance, a rotation of the 
spatial coordinate axes by some Euler angles. The various components of a spherical 
tensor of a given rank, e.g., spherical harmonics YC,(B, $), differing only in the values 
of m, are modified because of the rotation. However, the relation between different 
components of Yt,(B, 4) is such that, in the rotated system, the new Yt,(B, 4) can 
always be expressed in terms of the spherical harmonics of the same order C in the old 
system, as shown in §A-2. In group theoretical language, the 2Cf 1 spherical harmonics 
of the same C but different m form an irreducible representation. Members of the meson 
octet also form such a group representation except that the rotation is in the (three- 
dimensional) flavor space consisting of u-, d-,  and s-quarks, and the transformation is 
from quarks of one flavor to another. 

The remaining meson, 70, is invariant under any such interchanges among the 
three quarks and forms an irreducible representation by itself. In this way, the nine 
mesons in the model flavor space of u-, d-,  and s-quarks, and their antiquarks, may 
be classified into an octet and a singlet according to their SU3 symmetry in flavor 
transformation. We shall soon see that, although this symmetry in the SU3(flavor) is 
not exactly preserved in strong interactions, it is nevertheless useful as a classification 
scheme for both mesons and baryons. 

I t  is a simple matter to write down the wave functions of the nine mesons in terms 
of (q@-pairs. The pion wave functions have already been given in 52-5. There is no 
ambiguity in constructing the kaon wave functions, as each one must involve either an 
s or an 8. The flavor of the other quark for the S = 1 kaons, or an antiquark for the 
S = -1 kaons, must be either u or d,  or 'li or 2, and the choice is completely determined 
by the charge carried by each kaon. The results are shown in Fig. 2-4. 

The wave functions of the two isoscalar mesons, 778 and 770, are slightly more com- 
plicated and must be deduced using, for example, symmetry arguments. Since qo is 
invariant under a transformation among the three flavors, its wave function must be a 
linear combination of (un), (dd), and (ss), with equal weight: 

(un) + Ida) + Iss)) (2-38) 

where the factor l/d comes from the normalization requirement. The qo-meson is, 
then, an "extension" of the qo-meson constructed out of u- and d-quarks (and their 
antiquarks) given in Eq. (2-36). Similar t o  the two-flavor case, the wave function of 78, 

the isoscalar meson in the octet, may be obtained by requiring it to be an isoscalar and 
orthogonal to both I 7ro ) and I qo ). The result is 

(2-39) 

The derivation is left as an exercise (see Problem 2-5). 
Two isospin t = 0 pseudoscalar mesons are known at low energies, the gmeson with 

mass 548.8 MeV/c2 and the q'-meson with mass 957.5 MeV/c2. Since the SUS(flavor) 
symmetry is not an exact one, the observed mesons are mixtures of qo and q8 given 
above. The mixing coefficient is usually expressed in terms of an angle 8, known as the 
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For the pseudoscalar mesons, the value is B 'v 10". 

Vector mesons. Instead of S = 0, the total intrinsic spin of the quark-antiquark pair 
in a meson may be coupled to S = 1. For t = 0, the spin of the pions produced is now 
J = 1. The parity, however, remains negative. Similar to the pseudoscalar mesons, 
we now have a set of nine vector mesons whose wave functions behave like an ordinary 
vector under a transformation of the spatial coordinate system. 

The structure of the set of vector mesons, as far as their symmetry under a rotation 
in the flavor space is concerned, is the same as that of the pseudoscalar mesons, as can 
be seen by comparing Fig. 2-5 with Fig. 2-4. Corresponding to the pions, we have an 
isospin triplet of p-mesons, and instead of the strange pseudoscalar mesons KO, K+, 
I ( - ,  and 'iT0, we now have the strange vector mesons I P 0 ,  I(*+, IT*-, and R". The 
two isoscalar vector mesons with definite SU3 symmetry are 40 and 48 .  The observed 
isoscalar vector mesons, 4 and w, have much larger SVS(flavor) mixing, with Cabibbo 
angle B N 40", compared to B N 10" for the pseudoscalar mesons. 

s 
+I 

I -1 - f  0 +) +1 fo 

Figure 2-5: P = 1- vector mesons. 

The vector mesons are more massive than their pseudoscalar counterparts. For 
example, the pmeson has a rest mass energy of 767 MeV and the w-meson has 782 MeV, 
In contrast, the pion rest mass energies are 140 MeV for .* and 135 MeV for T O .  As 
far as their wave functions are concerned, the vector and pseudoscalar mesons differ 
only in their total intrinsic spin, with S = 1 for the former and S = 0 for the latter. 
The large difference in their masses must come from the differences in the interaction 
between a quark and an aritiquark in the S = 0 and S = 1 states. We see here an 
example of the important role of the interaction hetween quarks which we have ignored 
for the sake of simplicity in most of our discussions. 

Because of their larger masses, the p and w-mesons can decay via strong inter- 
actions to pions with lifetimes at least six orders of magnitude shorter than those of 
pions. The pmeson transforms to two pions with a mean life of 4 x loFz4 s (or width 
f = 153 MeV) and the a-meson goes 90% of the time to three pions with a lifetime of 
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8 x 
roles in the interaction between nucleons. 

s (r = 8.5 MeV). As we shall see later, both p and w-mesons play special 

Baryons. With three flavors, we can construct a total of 3 x 3 x 3 = 27 baryons 
for a given set of (e,S)-values. They can be classified according to their SU3(flavor) 
symmetries into four groups consisting of 10, 8, 8, and 1 members. The group of 
10 baryons (decuplet) is completely symmetric under a transformation in flavor, and 
the group of one baryon (singlet) is completely antisymmetric. The other two groups, 
consisting of eight members each (octets), have mixed SUa(flavor) symmetry, neither 
completely symmetric nor completely antisymmetric. Similar to the case of mesons, we 
can make use of the SU,(flavor> symmetry to construct the quark wave functions for 
these baryons. 

The baryon wave functions are slightly more complicated to  derive than those for 
mesons for the simple reason that we are now dealing with products of three objects 
instead of two. It is convenient to treat all the quarks as identical particles distinguished 
only by their flavor and color labels. Since hadrons are color neutral objects, their quark 
wave functions must be totally antisymmetric in color. As a result, the rest of the wave 
function, formed of a product of flavor, spin, and spatial parts, must be symmetric 
under a permutation of any two of the quarks. 

Consider first the decuplet. The 10 members of the group, together with their quark 
contents, are listed in Fig. 2-6. Because they are completely symmetric in flavor, it is 
relatively simple to construct the quark wave functions. We have already encountered 
one of the members in this group, A++, in introducing the color degree of freedom. As 
mentioned previously, both the intrinsic spin and isotopic parts of the A-particle wave 
function must be completely symmetric in order to couple to a state with maximum 
total spin S = 9 and isospin t = i. Furthermore, for a symmetric product of spin, 
isospin, and spatial parts, the spatial part of the wave function of three u-quarks must 
also be symmetric. 

With A++ given by Iuuu) from isospin considerations, the wave functions of the 

-2  I 

Figure 2-6: J* = I' baryon decuplet. 
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other three members of the isospin quartet, A+, A', and A-, may be obtained using 
the isospin-lowering operator I- on 1 A + + ) ,  in the same way as we have done earlier in 
oht,aining t,he pion wave functions. With each application of the .r--operator, one of the 
u-qiia.rks is changed iiito a hquark. This gives us the correct isospin structure of all four 
members of the A .  However, unlike the pion case where two nonidentical fermions are 
involved, a quark and an antiquark, we are dealing here with three identical particles. 
In addition to isospin coupling, we must also ensure proper symmetry between the 
quarks under a permutation between any two of them. 

When two ident,iral particles are said to be in a symmetrical state under an in- 
terchange, we mean that the wave function remains the same when we permute the 
particle labels 1 and 2. Consider as an example the following symmetrical wave function 
of two fermions: 

(2-40) 
1 

$S( l !  2) = -{<(1)C(2) + C(1)<(2)) fi 
where < and 5 are single-particle wave functions and l / f i  is the normalization factor 
for the case where the two single-particle wave functions are different from each other. 
Under a permutation between 1 and 2 ,  the two particles exchange the single-particle 
states they occupy. Let us denote this operation by operator Plz. It is obvious that, 
for the wave function 3 ~ ( l ,  2) defiiied above, we have 

Similarly an ant,isymrrietric two-particle wave function ea(  1,Z) may be written as 

1 
QA(l72) = 3 { < ( 1 ) ( ( 2 )  ((1)((2)) (2-41) 

By inspection, we see that 

For ( = {, the symmetric wave function reduces to <(1)<(2) (with appropriate change 
in the normalization) and the antisymmetric wave function vanishes, as required by the 
Pauli exclusion principle. 

For At+ we have the simple situation that all three quarks have the same flavor. 
The wavc function is t,he symmetric product of three u-quarks, 

Wr shall now SPC how to obtain the wave function of A+ using the isospin-lowering 
operator. When T- is applied to 1 At+) ,  we have a choice of changing any one of the 
three u-quarks into a d-quark. Since there is no way to make a distinction between 
them, the wave function of A+ must he a linear combination of all three possibilities 
with equal weight. The normalized and symmetrized (since the color degree of freedom 
is outside our  considerations here) wave function for A+ is 
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To simplify the notation, we shall write the same equation in a shorthand form, 
1 In+) = -( Iduu) + ludu) + Iuud)) 
fi 

where it is implied that the first symbol in each term is for quark number 1, the second 
one for number 2, and the third one for number 3. In cases where we wish only to 
indicate the quark content of a hadron without displaying the permutation symmetry 
explicitly, the notation can be shortened further to (uud), for example, as done in 
Fig. 2-6. 

Following this rule, the wave functions of Ao and A- may be written in the following 
manner: 

1 
/Ao) = - [ Iddu) + I d ~ d )  + J ~ d d ) )  a 

They are obtained by applying the r--operator t o  the wave function of A+, once for 
I A o )  and twice for I A-) .  Alternatively, we can start from the only possibility to 
construct the wave function for I A- ), the to = --! member of the isospin quartet, as 
we have done earlier for At+, and apply the isospin-raising operator to produce 1 A"). 

The wave functions of the three strangeness S = -1 baryons in the decuplet may 
be obtained by starting with IC*+) ,  the to = 1 member of the isospin triplet. We 
can use 1 At+ ) given in Eq. (2-42) as the starting point and replace one of the three 
u-quarks with an s-quark. This is similar to the way we obtained I A + )  from I A++ ) 
above by replacing a u-quark with a d-quark. Here, instead of isospin, we are lowering 
the strangeness by replacing a d-quark with an s-quark. Again, from the symmetry 
requirement, the normalized wave function is 

(2-43) 

Next, we apply r- operator on 1 C*+)  to obtain I C*') and, thence, I C*-). Since the 
s-quark is an isospin zero particle, it vanishes when acted upon by the r-- (or T+-) 
operator. The only effect of the isospin-lowering operation is to change one of the 
u-quarks to a d-quark. As a result, we obtain 

1 IP) = -[ Idus) + Iuds) + Idsu) + lusd) + Isdu) + [sud)}  
J6 
1 

IC'-) = -{ldds)  + )dsd) 4- I sdd ) )  fi 
This completes the wave functions for the three S = -1 members. 

I t  is trivial to obtain the wave functions for the strangeness S = -2 members of 
the decuplet, since now only one of the three quarks carries a nonzero isospin and, as a 
result, only an isospin doublet can be constructed. Their wave functions are given by 
the following expressions: 

1 .=*+ 1- ) = -( (uss)  + (sus) + Issu))  fi 
1 I?-) = - { l dss )  + Isds) + Issd)}  6 
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For S = -3 there is only one possibility, 

Although it is an isoscalar particle, and consequently t o  = 0, it is a charged particle. 
This can be seen from Eq. (2-37). Since the baryon number is A = 1 and strangeness 
S = -3, the charge number of the particle is -1. The same result can also be obtained 
from the fact. that  each s-quark carries a charge - ie .  The particle therefore carries one 
unit of negative charge and, hence, the negative sign in the superscript. 

Baryon singlet. A st&e of three quarks completely antisymmetric in flavor is also 
simple to construct. The quark content in this case must be uds, one of each flavor. 
However, there are 3! = 6 possible choices: three choices in arranging which one of the 
t,hree quarks has flavor label TI. and two choices in arranging which one of the remaining 
two quarks has flavor label d. (The last one takes on label s.) There is no reason to 
favor any one of the six possibilities and a linear combination of all six is required. 
The particular choice, however, must be antisymmetric with respect to a permutation 
between any two quarks in order to satisfy the requirement of being a singlet state. 
We can arrive at the correct linear combination by starting from any of the six terms, 
for instance, u ( l ) d ( 2 ) s ( 3 ) .  To this, we add terms generated from it by applying all the 
possible linearly independent permutations among the three indices 1,2, and 3. For the 
three odd permutations P12, P23, and P31 producing the arrangements (dvs), (vsd), and 
( sdu ) ,  we must take t,hem with the negative sign in order to satisfy the requirement of 
being symmetric. Similarly, the two even permutations P12P23 and P31PZ3 that generate 
the arrangements (dm)  and ( sud )  must be taken with the positive sign. The normalized 
singlet quark wave function is then 

Except for an overall sign, this is the only unique way to construct the required anti- 
symmetric linear combination. Since there is no other way to construct a wave function 
with the same symmetry, 1 A1 ) forms an irreducible SU3(flavor) representation by itself. 

Let us examine the symmetry of the isospin part of the wave function. Since the 
3-quark is an isoscalar quantity, the isospin of the wave function is determined by u- 
and d-quarks. To illustrate this point, we can rewrite the wave function in the following 
form by putting the s-quark always at the end: 

We can recognize that each one of the linear combinations in 11 and d has t = 0, as it 
is antisymmetric in the  isospin-carrying parts. The singlet SLr3(flavor) representation 
therefore describes an isoscalar particle. Since the isospin is completely determined by 
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the symmetry in flavor of the quark wave function, i t  does not constitute an independent 
degree of freedom in fixing the wave function. 

So far we have not explicitly put in the intrinsic spin part of the wave function. An 
example will be given later for the nucleon wave function. Here, we shall simply state 
the result that J" = it for the Al-baryon. 

Since the SU3(flavor) symmetry is not an exact one, the observed strangeness S = 
-1, isoscalar, J" = f' particle A is a mixture of I A1)  and I A s ) ,  the latter being a 
member of the J" = f +  baryon octet. This is similar to the admixture in pseudoscalar 
and in vector meson wave functions we have seen earlier. 

Baryon octet. The remaining 16 members of the 27 possible baryons constructed 
from u-, d-, and s-quarks have mixed symmetry in flavor. They may be classified as 
two octets distinguished by their symmetries under a simultaneous interchange of both 
flavor and spin. We shall be interested only in the lower energy octet, as i t  contains 
protons and neutrons as members. The waves function for each member in this group 
is symmetric under the combined exchange of flavor and intrinsic spin, as the three 
quarks must be antisymmetric in color. The members of the octet together with their 
quark contents are shown in Fig. 2-7. 

S 

0 

1 1 -1 -- 2 0 + 4  +1 to 

Figure 2-7: J" = f' baryon octet. 

Let us construct the proton wave function as an example. Since the intrinsic spin 
and parity of a proton are f' , and the orbital angular momentum is 0, we can start by 
coupling the intrinsic spins of the three quarks to the value f. There are several ways to 
achieve this, and we shall take the simplest one by coupling the first two quarks to spin 
0 and then couple the third one with spin up to form a system with (S, So) = (f, +$), 

1 
I f 7  + f )  = -&41)t)19(2)1) - Iq(1)1)14(2)r))lq(3)t) (2-44) 

Here, the up-arrow symbol represents a quark with intrinsic spin up (+ f )  and the 
down-arrow symbol a quark with spin down (-$)- The assignment of flavor to each of 
the quarks will be made later. A second possibility to form an (S, So) = ( f ,  +f) system 
is to couple the first two quarks to spin 1 instead of 0, as we have done above. This 
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choice is complicated by the fact that the final system is a mixture of total spin f and 
h .  To project out the desired S = f part, a linear combination must be taken of the 
two possibilities, ((q14z),,,(43)1/2,-1/2} and {(qlq*)~,~(r/3)1/~,+1/2), where the first of the 
two subscripts indicates S and the second the value of its third component. 

The combined symmetry of the spin and flavor parts of the wave function may be 
determined after assigning a flavor to each one of the quarks involved, subject to the 
condition that, for a proton, each term must consist of two u-quarks and one d-quark. 
Let us start by giving the first two quarks different flavors. Equation (2-44) becomes 

The combination of spin and flavor may be symmetrized in two stages. First we shall 
carry out the process onfy for the first two quarks and obtain 

I f , + f ,  = i(l4l)T)ld(2)1) - Iu(Wld(2)T) 

+lW)l) l 4 2 ) t )  - I41)t) 142) l ) )  I 4 3 ) i )  (2-45) 

Next, we shall generate the others by applying permutations and P32 on each of 
the four terms in Eq. (2-45). This gives us a total of 12 terms. On grouping identical 
terms together, we obtain the quark wave function for a proton with spin orientations 
of all the quarks indicated explicitly, 

-(bI 211 dT) + 14 dT 71-1) + IdT 4 4) 
+I4 111 dt, + I 4  dt  u t )  + I4 4 at))) (2-46) 

To simplify the notation, we have dropped the labels for quark number and rely on 
the order each quark appears instead. The fact that this wave function is symmetrical 
under a simultaneous interchange of flavor and spin between any two quarks can be 
pstablished by inspection. 

The neutron wave function can be written down from that for a proton by simply 
substituting all the Ti-quarks by d-quarks and vice versa. Similarly, the wave functions 
of the strangeness S < 0 members of the octet can be built from that of the proton, in 
the same way as we have done for members of the decuplet by starting from I A++) .  
These are left ils exercises. 

2-8 Magnetic Dipole Moment of the Baryon Octet 

The hadron wave functions obtained in the previous section are based solely on sym- 
metry considerations. Since they are not the eigenfunctions of a realistic Hamiltonian 
involving interaction between quarks, we cannot expect them to be able to describe 
any of the dynamic properties with good accuracy. Nevertheless, calculations for some 
simple quantities can be carried out, and the results will show whether they are useful 
as zero-order approximations to the wave functions. Besides quantities used already in 
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obtaining the wave functions, such as charge number, spin, isospin, and strangeness, 
the magnetic dipole moment is one we can use to test our model. We shall only deal 
with members of the baryon octet given in Fig. 2-7, as more are known about them. 

The magnetic dipole moment of a baryon comes from two sources, the intrinsic 
dipole moments of the constituent quarks and the orbital motion of the quarks. For 
the baryon octet of interest here, all the members have J" = f'. In the simple model 
adopted in the previous section for our discussion, the three quarks are symmetric in 
the spatial parts of their wave functions, with relative motion l = 0. As a result, 
contributions from quark orbital motion may be ignored. 

Quark magnetic dipole moments. Associated with the intrinsic spin s of a particle, 
there is an intrinsic magnetic dipole p. The ratio between the two quantities is a 
constant g, known as the gyromagnetic ratio. In terms of operators, we have the 
relation 

CL = SSPD (2-47) 

For quarks, it is convenient to measure the dipole moment in terms of 

This is identical in form to the definition for nuclear magneton p~ except, here, g is 
the quark charge e / 3  and m,, the quark mass, is used instead of nucleon mass (and the 
factor [c] in the numerator converts the result from cgs to SI units). 

For Dirac particles, i.e., particles devoid of internal structure, we have g = 2 
for those with intrinsic spin s = i. In practice, no particle is observed to be com- 
pletely without some "structure" associated with it. For example, electrons and muons 
emit and absorb virtual photons. The contributions from these virtual processes give 
rise to an magnetic dipole moment such that the observed value of g 
is 2 x 1.001159652193(10) for an electron and 2 x 1.001165923(8) for a muon. The 
small corrections to the simple Dirac particle values for the charged leptons are well 
understood and can be calculated to very high precision in quantum electrodynamics. 

Since a quark is an elementary particle, we can take it as a simple Dirac particle 
to start with. The relation between intrinsic magnetic moment and spin is given by 
Eq. (2-47) with g = 2. However, we do not know the quark masses; it is therefore 
not possible to deduce the values of p in any simple way. (For this reason there is no 
point to consider corrections to g due to anomalous magnetic dipole moment either.) 
However, if we assume that the masses of u- and d-quarks are equal, the ratio between 
their magnetic dipole moments is given by the ratio of their charges. This gives us the 
result 

Pu = -2111 (2-48) 

As we shall soon see, this is useful in getting an idea for the values of the intrinsic 
magnetic dipole moments of the u- and d-quarks. 

Nucleons. The contribution to the magnetic dipole moment of a baryon from quark 
intrinsic dipole moments depends also on the orientation of the spin of each quark. 
Since the quark orbital motion does not enter here, the magnetic dipole moment is 
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given by the number of quarks of each flavor in each one of the two possible spin 
orientations. For a proton, we can count the numbers of uf, 211, d f ,  and dJ explicitly 
using the wave function given earlier in Eq. (2-46). The results are simply the sums 
of the squares of the coefficients in the wave function for each one of the four possible 
combinations of flavor and spin orientations: for the number of v-quarks with spin 
up, 5 for the number of u-quarks with spin down, 4 for the number of d-quarks with 
spin up, and 3 for the number of d-quarks with spin down. The net contribution from 
u-quarks to the proton magnetic dipole moment is then $ - f = 4 ,  and that from 
d-quarks is 5 - 3 = - 5 .  In this simple model, the final result for a proton is then 

4 1 
P p  = - zpd 

For a neutron, we can again interchange the roles of u- and d-quarks in the expression 
above and obtain the result, 

If we now make the assumption that the masses of the u- and d-quarks involved are 
equal and their ratio of magnetic dipole moments is given by Eq. (2-48), we obtain the 
ratio between those of a neutron and a proton, 

4 1 
= s l i d  - Ipu 

4 1 

4 1 
p, ihl - - 31(u - 2Pd - -2 

3 
- =  
Ibp 5pu - spd -3pd 

This is in good agreement with the observed value of -1.913/2.793 = -0.685. 

Baryons with S>O. For the other six members of the octet, there is at  least one 
s-quark involved. As a result, we need to include the contributions from the intrinsic 
magnetic dipole moment of strange quarks. Since the s-quark is known to be more 
massive than the u- and d-quarks, we cannot easily relate its intrinsic magnetic dipole 
moment to those of the u- or d-quarks in the same way as we have done in Eq. (2-48) 
between u- and d-quarks. On the other hand, eight magnetic dipole moments are known 
for thc members of the octet and all of them are given in terms of the intrinsic magnetic 
dipole moments of the three quarks in this simple model. As a result, a least-squares- 
fitting procedure may be used to deduce the three unknown quark values from these 
eight pieces of data. To carry out this procedure, we must first express the baryon 
magnetic dipole moments in terms of those for the three quarks, as we have done above 
for the nucleons. 

Although we do not have the quark wave functions written out in detail for the 
S < 0 members of the octet as we have done in Eq. (2-46) for the proton, we can 
nevertheless count the number of quarks of each flavor with spin up and that with 
spin down, starting with the quark content of each baryon given in Fig. 2-7. This 
is particularly simple for those strange baryons involving only two different flavors, 
i.e., t,hose made of s- and ii-quarks only or s- and d-quarks only. For example, the C+- 
baryon is made of two .u-quarks and one s-quark. Compared with the proton, (uud), 
we see that the only difference between the quark stmicture of these two baryons is 
that, in the place of a d-quark in proton, we have an s-quark in C+. Since all members 
of the octet have the same combined symmetry for spin and flavor, the proton and C+ 
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must have very similar quark wave functions, except for the replacement of d with s. 
Hence, the magnetic dipole moment of the C+-baryon is given by 

Pc+ = g P u  - g P s  

Similarly, the quark content of C- is (dds).  Comparing it with a neutron, we find that 
the expression for the magnetic dipole moment of a C--baryon is the same except that, 
in the place of u-quarks in a neutron, we have the contributions from s-quarks. This 
gives us the result 

Using similar methods, the expressions for the magnetic dipole moments of the two 
S = -2 members of the octet, ?(dss) and s+(uss),  can be obtained and the results 
are given in Table 2-4. 

4 1 

4 1 
p ~ -  = gpd - 5ps 

U 

d 

S 

Table 2-4: Magnetic dipole moment of baryon octet. 

1 

1 

1 

Octet 
member 

P 
n 
A 

c+ 

1 Quark content 
I u d s  

- 3  

4 0 -I I o o 1  3 

I 

Best fit 
PN 

2.793 

-1.913 

-0.613 

2.674 

-1.092 

-1,435 

-0.493 

-1.630 

- 1.839 

1.852 

-0.972 

-0.613 

Observed 
PN 

2.792847386(63) 

- 1.91304275( 45) 

-0.613( 4) 

2.458(10) 

- 1.160(25) 

-1.250( 14) 

-0.6507(25) 

- 1.61 (8) 

-2.02(5) 

For the two remaining members of the octet, Co and Ag, the quark contents are 
(uds) for both. Since three different flavors are involved, a slightly different approach is 
required. For both hadrons, we can make use of their isospin difference to derive their 
wave functions. For this purpose we can ignore the s-quark for the moment, as it is an 
isoscalar particle not involved in any isospin considerations. 

Let us start with A,. Since it is an isospin singlet, we have t = 0. In the discussions 
given earlier for the quark wave functions of T O -  and 70-mesons, we have seen that a 
t o  = 0 system, consisting of a u- and a d-quark, is a mixture of isospin 1 and 0. To 
project out the isospin t = 0 part, we need an antisymmetric linear combination of the 
two possible arrangements of u and d, 
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The spins of these two quarks cannot be both up, as such an arrangement will be 
aritisyrnmetric under the simultaneous exchange of spin and flavor. The only possibility 
is therefore 

\(t120)=(O,O);fs,m,)=(O,O)) = ;{ (IW W)l) - IW)t u(2)l)) 

+(ld(l)l42)T) - l ~ ( l ) l 4 2 ) t ) ) }  

Note that the total spin of the two quarks is also zero as a result of the symmetry 
requirement. 

We can now couple the s-quark to the product and form a spin-f system of three 
quarks , 

I ( t , t o ) = ( O , O ) ;  ( s ,m, )=( f ,+f ) )=  +( ( l U ( l ) t  440 - Id(1)t U ( 2 ) l ) )  

+ ( I W l u ( 2 ) t )  - 1.(1)1 d(2)D))ls(3)1) (2-49) 

The wave funct>ion is not properly antisymmetrized with respect to the third quark. 
However, for thc purpose of calculating the magnetic dipole moment, this is not neces- 
sary; all we need to do is to count the number of quarks of each flavor with spin up and 
the corresponding number with spin down, and this is independent of the symrnetriza- 
tion among the three quarks beyond those given in Eq. (2-49) above. Furthermore, it 
is also evident from the structure of the wave function that the net contributions from 
both u- and d-quarks are zero, as there are equal numbers of each with spin pointing 
up there are wit,h spin pointing down. As a result, we obtain 

P,$ = 

for the magnetic dipole moment of A8. Because of the crudeness of the model used 
here, there is no point in considering any SU3(flavor) symmetry-breaking effects and 
the resulting difference between A8 and the observed A-baryon. 

The isospin of Co is unity, as it is a member of a triplet, C+, Co, arid C-. The 
quark wave function is somewhat more complicated than what we have obtained for 
A*, as the u- arid d-quarks must now be coiipled to a spin-1 state. We shall leave the 
calculation of !LEO i n  terms of quark magrictic dipole moments as an exercise, since the 
value of /ICO is not known and we cannot make use of it in our calculation. On the 
other hand, the decay of C" though the reaction 

C " - + A + y  

is similar to a magnetic dipole transition (see 55-3) and, as a result, the transition 
probability is proportional to Ipco4,,12, The matrix element of the magnetic dipole 
transition operator O(M1) has the value 

1 - (C"IO(M1)lA) = ----(Pw - P d )  J;i ILCo+A - 

Since the experiment measures the square of the transition matjrix element, only the 
absolnte valne is det,ermined 11161. The sign is known from independent sources to be 
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negative. As a result the value of pC0-,, may be used as a piece of information for our 
calculation. 

Table 2-4 summarizes the contribution from each one of the three quarks to the 
magnetic dipole moments for the members of the baryon octet together with pC0-,,. 
The observed values are listed in the last column in units of nuclear magnetons, pN = 
eh/ (2Mpc)  in cgs units or eh/ (2Mp)  in SI units. The values of pu, pd, and pa are 
deduced by fitting them to the eight measured dipole moments. Since the accuracies 
that can be achieved for the measured values of the various baryons differ by a large 
margin, the eight pieces of data that went into the calculation as input have been 
weighed inversely according to their experimental uncertainties, given in parentheses in 
the table. The results of the calculation are shown under the column labeled L'Best fit." 
The calculated values agree quite well with observation, especially in view of the crude 
model used. Except for 5- ,  the discrepancies are less than 0 . 2 ~ ~ .  This close agreement 
has two implications. The first is that the model used to deduce the moments in terms 
of those of the three quarks is a reasonable one, otherwise much larger differences would 
have resulted. The second is that the values deduced for the quark magnetic dipole 
moments are physically meaningful. 

We expect several corrections to our simple analysis. One of the assumptions we 
have made is that  the wave functions have only e = 0 components. This is true if 
orbital angular momentum is conserved by the interaction between quarks. As we shall 
see in the next chapter, in an analogous discussion on the deuteron ground state, the 
orbital angular momentum is not necessarily a constant of motion. Consequently, it is 
unreasonable for us to  expect that the ground states of the members of the baryon octet, 
be purely t = 0. In general, some configuration mixing from t > 0 terms is present, 
and this may be the most important correction to our simple model. A more detailed 
discussion can be found in a status report by Brekke and Rosner [36]. 

The values of the magnetic dipole moments of the three lighter quarks obtained 
from the least-squares-fitting procedure are given at the bottom of the table. Although 
there are no observed values to compare with, we can, nevertheless, get a rough idea 
whether the results are reasonable. For example, the ratio pL,/pd = -1.91 is fairly close 
to the value of -2 obtained earlier by assuming that the masses of u- and d-quarks are 
identical to each other and both of them have the same gyromagnetic ratios. 

2-9 Hadron Mass and Quark-Quark  In te rac t ion  

Another striking feature in hadron spectroscopy is the systematics in their masses. In 
Table 2-5, the observed values for some of the low-lying members are given, together 
with their uncertainties in the last digits in parentheses. First of all, we notice that the 
masses for the members of the J" = i' baryon octet are well correlated in value with 
their strangeness quantum numbers. That is, the maSs differences between members 
with the same strangeness are much smaller than those between members of different 
strangeness. For example, the difference between a proton and a neutron is less than 
2 MeV/c2, whereas the difference between a A-baryon (S = -1) and a neutron is 
around 176 MeV/c2, and that between a ZO-baryon (5 = -2) and a A-baryon is 
around 200 MeV/c2. The obvious conclusion one can draw from siich comparisons is 
that the rest mass energies of the underlying u- and d-quarks are the same within a 
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few mega-electron-volts and that the value of the s-quark is larger than those of the 
u- and d-quarks by I00 to 200 MeV. Further support for s-quarks being more massive 
can he found in the mass differences between members of the baryon decuplet, between 
members of the pseudoscalar mesons, and between members of the vector mesons. As 
for t,he charm and beauty quarks, we have already seen evidence from the masses of 
J /+  and T-mesons in $2-6 that they are even more massive. From a comparison of 
the maSses of hadrons made of different quarks, the messes of the various quarks can 
be deduced. The generally accepted values were given earlier in Table 2-2. 

Table 2-5: Low-lying hadron masses in MeV/c2. 

Baryons 

s=o 
p 938.27231(28) 
n 939.56563(28) 

A 1115.684(6) 
C+ 1189.37(7) 
Co 1192.55(8) 
C- 1197,436(33) 

5 0  1314.9(6) 
3 1321.32(13) 

s=-1 

s = -2 

3- 

Mesons 

Pseudoscalar meson8 
7rf 139.56995(35) 
8 0  134.9764(6) 

I@ 493.677(13) 
Ko,p 497.672(31) 

17 547.45(19) 
71' 957.77(14) 

P 768.5(6) 
K' 891.59( 24) 
w 781.94(12) 
9 1019.413(8) 

Vector mesons 

The small mass differences between hadrons having the same strangeness can come 
from either electromagnetic effects or a small difference between the masses of u- and 
d-quarks. However, our present knowledge of the strong interaction is not able to 
elucidate on this question. In spite of our ignorance, the small difference between the 
maSses of proton and neutron and between 7r* and T O  are important in understanding 
certain nuclear phenomena, such as isospin symmetry breaking in the nuclear force. 

It is worthwhile to emphasize here again that, since quarks have not been observed 
in isolation outside hadrons, the values deduced from hadron spectra are not their true 
masses. The observed hadron masses depend on the intrinsic masses of the quarks as 
we11 as the binding energy hatween the quarks. If the binding energies are known, it 
is a trivial matter to ohtain the quark masses from those of hadrons. As we shall see 
later in the analogous situation of nuclear masses, binding energy calculations require 
a knowledge of the interaction between the constituents. Even in the nuclear case, it  is 
not  easy tro obtain high precisions, partly because of our incomplete understanding of 
the interaction between nucleons and partly because of the inherent difficulties of the 
many-body problem. 

For quarks, the situation is further complicated by several factors. First, the quark- 
quark interaction is known to be very strong at  energies of concern to us here. We have 
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seen an example of this from the mass differences between the pseudoscalar mesons 
(sum of quark intrinsic spins S = 0) and the vector mesons (S = 1).  For example, 
the quark contents of the T- and p-mesons are the same, but their masses are quite 
different, with m,c2 M 140 MeV and mpc2 M 767 MeV, respectively. The large dif- 
ference must be attributed mainly to the dependence of the interaction on the total 
intrinsic spin of the quark-antiquark pair. This is quite different from the usual situ- 
ation in quantum systems where the interesting physics often arises from small parts 
of the complete interaction. For example, in atomic physics the main contribution to 
the binding energies of electrons comes from the electrostatic attraction between the 
nucleus and each one of the electrons. Most of the other properties of an atom, on 
the other hand, are sensitive mainly to small perturbations caused by the interaction 
between electrons. As a result, a number of perturbative methods have been developed 
over the years and they are found to  be quite successful in handling such problems. 

For quarks, the interaction is very strong at low energies where nuclear physics op- 
erates and where most of the experimental observations are made. Because of what is 
generally known as asymptotic freedom, the quark-quark interaction is weak only at ex- 
tremely high energies. As a result, perturbative techniques apply to QCD only at  such 
extremes, far beyond the realm of nuclear physics and low-lying hadron spectroscopy. 
For the low-energy regions, methods other than perturbative approaches must be ap- 
plied before we can properly link QCD calculations to observations. We shall see one 
such example in the form of lattice QCD calculation in 59-3. 

Second, there is the question of confinement. Again, since quarks are not observed 
in isolation, their mutual interaction must have a component that grows stronger as the 
distance of separation between them increases. This is opposite to our experience in 
the macroscopic world, where interactions, such as gravitational and electromagnetic, 
grow weaker as the distance of separation between the interacting objects is increased 
(and the relation is given by the inverse square law). As a result, we need to  devise new 
methods to handle the problem. One way is to impose confinement “artificially” as a 
boundary condition. In other words, the quarks are considered to be inside a LLbag71 
that prevents them from escaping to the outside. Such a bag model, together with its 
many variants, has made impressive contributions in improving our understanding of 
the structure of hadrons and in linking the quark-quark interaction with the interaction 
between nucleons. We shall see a simple application of such a phenomenological model 
when we come to  the question of phase transition from hadronic matter to quark-gluon 
plasma in 59-3. 

Problems 

2-1. Show that conservation of energy and momentum requires at least two y-rays to 
be emitted in the annihilation of an electron by a positron. 

2-2. Show that the nucleon isospin wave functions given in Eqs. (2-15) and (2-16) are 
the eigenfunctions of the operator 

T 2  = TI” + T2” + T i  
with eigenvalues 3. Express r 2  in terms of T+, r-, and ro and calculate again, 
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in terms of these operators, the expectation values of r2 for the isospin wave 
function of a proton and a neutron. 

2-3. Antiprotons are created when a beam of high-energy protons strikes a hydrogen 
target. In the laboratory system what is the minimum proton kinetic energy 
required for the reaction to take place? 

2-4. Construct the quark wave function of 71- by applying an isospin-lowering operator 
to the wave function of ?yo given in Eq. (2-34). Use the same technique to construct 
the quark wave function of C*" by applying an isospin-lowering operator to that 
of C*+ given in Eq. (2-43). 

2-5. The meson 718 is a neutral, isospin-singlet particle made of a linear combination 
of quark-antiquark pairs taken from u-, d-, and s-quarks and their antiquarks. 
Construct, the quark wave fiinction of 778 by requiring it to be normalized and 
orthogonal to those of T" and 70 given in Eqs. (2-34) and (2-38). 

2-6. An elec,tron is moving in a circular orbit. Show that the magnetic dipole moment 
generated by the nrhital motion is given by the relation 

where J! is the angular momentum in units of ti and the factor [c) converts the 
formula from cgs to SI units. Assume that the charge and mass of the electron 
are distributed uniformly along the orbit and ignore the contributions from the 
intrinsic magnetic dipole moment. 

2-7. The Co-particle is a baryon made of a u-quark, a d-quark, and an s-quark coupled 
to total intrinsic spin S = and isospin t = 1. Assume that the orbital angular 
momentum e = 0; show that the magnetic dipole moment of Co is given in the 
quark model by 

where pu, &, and ps are, respectively, the intrinsic magnetic dipole moments of 
the ti-, d-, and s-quark. 

P p  = ;(PI' 4- c l d )  - $CL, 

2-8. Use the quark model to show that the magnetic dipole moments of vector mesons 
p+  and p- are equal in magnitude but opposite in sign. 

2-9. If the magnetic dipole moment of a u-quark is 1 . 8 5 2 ~ ~ ~  of a d-quark, -O.972pN, 
and of an s-quark, -0.613pN, what are the values of magnetic dipole moments 
of t8heir antiqiiarks? The p+-nieson is a vector meson with J" = 1- and isospin 
T = 1. Calciilate the magnetic dipole moment using the values of quarks assuming 
the ort~it~al angiilar inomentnni to be the lowest value possible. 



Chapter 3 

Nuclear Force and 
Two-Nucleon Systems 

The interaction between two nucleons is one of the central questions in physics and its 
importance goes beyond the properties of nuclei. In a 1953 Scientific American article, 
Bethe (page 59 of Ref. (311) estimated that “in the past quarter century physicists have 
devoted a huge amount of experimentation and mental labor to this problem-probably 
more man-hours than have been given to any other scientific question in the history 
of mankind.” In the intervening years after Bethe wrote these words, even more effort 
has been expended on the topic than before and much progress has been made. We 
now know that nucleons are not elementary particles and their interactions derive from 
the force acting between quarks that make them up. While quantum chromodynamics 
gives a fairly good description of the structure of hadrons in terms of quarks, it is 
far less certain how the interaction between nucleons is quantitatively related to the 
fundamental quark-quark interaction. 

In this chapter, we shall examine the problem from a mostly phenomenological point 
of view. We shall concentrate on two-nucleon systems and make use of their simplicity 
to illustrate some of the challenges we face in nuclear studies. First we shall examine 
the deuteron, the only bound system formed of two nucleons. Far more information is 
provided by the scattering of one nucleon off another, and we shall see what we can 
learn about the nucleon-nucleon interaction from such studies. 

3-1 The Deuteron 

Binding energy. The deuteron is a very unique nucleus in many respects. It is only 
loosely bound, having a binding energy much less than the average value between a pair 
of nucleons in all the other stable nuclei. We have seen in Eq. (1-1) that the binding 
energy E, of a nucleus is given by the mass difference between the neutral atom and 
the sum of the masses of free neutrons and protons in the form of hydrogen atoms. 
For a deuteron, the mass Md is 1876.1244 MeV/c2. The binding energy is then the 

57 
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difference between k f d  and the sum of those for a neutron, M,,, and a hydrogen atom, 
M" : 

Mnc2= 939.5656 MeV 

+ MHc2= 938.7833 MeV 

=1878.3489 MeV 

- Mdcz=1876.1244 MeV 
(3-1) 

E,= 2.2245 MeV 

A more precise value, Es =2.22457312(22) MeV, is obtained from radiative capture 
of a neutron by hydrogen. In this reaction, represented as p(n, 'y)d,  a slow neutron is 
captured by a hydrogen atom followed by the emission of a y-ray (see Ref. (781 for 
details). If the energy of the incident neutron is negligible, the energy of the y-ray 
emitted gives the deuteron binding energy. Since itl is usually far easier to determine 
y-ray energies accurately than measurements of atomic masses, binding energies are 
often better known than absolute masses. 

Partly because of the small binding energy, the deuteron has no excited state; 
all observations on the deuteron are made on the ground state. The results of the 
more important measured quantities are listed in Table 3-1. In spite of the small 
number of independent pieces of data available, we stand to learn a great deal about 
the two-nucleon system from the deuteron. Furthermore, because of their fundamental 
importance, many carefiil and sophisticated measiirernents have been carried out and 
the available values represent some of the best that can be obtained for the type of 
measurement. In this section we shall make use only of spin, parity, and isospin, 
leaving the study of the magnetic dipole moment and electric quadrupole moment to 
the next two sections. 

Table 3-1: Ground state properties of deuteron. 

Ground State Property 

Binding energy, EB 
Spin and parity, J" 
Isospin, T 
Magnetic dipole moment, & 

Electric quadrupole moment, Qd 

Radius. r A  

Value I 
2.22457312(22) MeV 
1+ 
0 

0.857438230(24) pN 

0.28590(30) efm' 
1.963(4) fm 

Note: Uncertainties in last digits of the measured values are 
given in parentheses. 

Spin and parity. The parity of a state describes the behavior of its wave function 
under a reflection of the coordinate system through the origin, &s shown in §A-1. For 
the deuteron, it is known that the parity is positive. Let us see what we can learn from 
this piece of experimental information. For this purpose, it is useful to separate the 
wave function into a product of three parts: the intrinsic wave function of the proton, 
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the intrinsic wave function of the neutron, and the orbital wave function for the relative 
motion between the proton and the neutron. Since a proton and a neutron are just 
two different states of a nucleon, their intrinsic wave functions have the same parity. 
As a result, the product of their intrinsic wave functions has positive parity, regardless 
of the parity of the nucleon. This leaves the parity of the deuteron to  be determined 
solely by the relative motion between the two nucleons. 

For states with a definite orbital angular momentum L, the angular dependence in 
the wave function is given by spherical harmonics YLM(6rj). Under an inversion of the 
coordinate system, spherical harmonics transform according to the relation 

YLM(Q74) p + YLd. - 0, .  + 4) = (-l)LYLM(e, 4) 

The parity of Y L M ( B ,  4) is therefore (-l)L. The fact that the deuteron parity is positive 
implies that the orbital angular momentum must be even. 

The spin of the ground state of deuteron is J = 1, where J = L + S. The possible 
values of S,  the sum of the intrinsic spins of the two nucleons, are 0 and 1. We can 
eliminate S = 0,  as i t  is impossible to couple i t  with even values of L to form a J = 1 
state. Furthermore, we can also rule out any L values greater than 2 by the same 
argument. From the fact that the spin and parity of a deuteron are J" = 1+, we find 
that the only possible values of (L, S) are ( 0 , l )  and ( 2 , l ) .  We shall see later that the 
dominant part of the ground state wave function is the L = 0 component. However, 
the small L = 2 admixture is important to understand certain properties of deuteron 
and nuclear force. 

Isospin. Through symmetry arguments, we can also deduce the isospin T for the 
deuteron. Since the projection of isospin on the quantization axis is to = +f for a 
proton and - a  for a neutron, the deuteron is a state with the sum of the isospin 
projections To = 0. The isospin of such a system of two nucleons can be coupled 
together to either T = 0 or T = 1, as we saw earlier in 52-7. For a light nucleus such 
as the deuteron, the isospin is expected to be a good quantum number and the ground 
state of the deuteron can take on only one of these two values. 

If, again, we regard a proton and a neutron as two different isospin states of a 
nucleon, a deuteron may be treated as made up of two identical particles. The total 
wave function of such a system is required to be antisymmetric under a permutation of 
the indices of the two (Fermi-Dirac) particles, 

PI'LQ(1,2) = Q(2,l)  = -Q(1,2) (3-2) 

The wave function 4 ( 1 , 2 )  may be decomposed into a product of spatial, spin, and 
isospin parts. For the spatial part, a permutation of the indices means that 

r E r l - r 2  - - r  
P12 

In a spherical polar coordinate system, this corresponds to the transformation 

(r,O,rj) p,2 + ( r ,  7r - 614 + .) 
Since the radial coordinate T is unchanged by the transformation, the symmetry of the 
spatial wave function is given by the angular dependence and, consequently, that of 
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the spherical harmonics. The transformation is, then, mathematically the same as that 
under a parity change. For L = 0, 2, the spatial wave function is symmetric under 
permutation as a result. 

It is also easy to see that the intrinsic spin part of the deuteron wave function is 
even in the S = 1 state. Consider the state with Ms = 1 among the triplet of possible 
states of Ms = 0,  f l  for S = 1. The intrinsic spin wave function may be written as 
the product of those for the two nucleons, 

( S 4 ,  Ms=l) = (S=$,m,=$),ls=$,m,=l) 2 2  (3-3) 

The function on the right-hand side of the equation is obviously even under a permu- 
tation of the indices of the two nucleons indicated by the subscripts. Since there is 
no other way to construct an ('3, M s )  = (1,l) state, the function given by Eq. (3-3) 
must he the intrinsic spin wave function for the state. The wave fiinctions of the other 
two S = 1 states, with M s  = 0, -1, may be generated from the MS = 1 state us- 
ing an angular momentum lowering operator. Since the operator is symmetric with 
respect to the two nucleons, the resulting wave functions retain the symmetry of the 
(S, M,?) = (1,l)  state we started with. Consequently, they are also symmetric under a 
permntat,ion of t,he two nucleons. From this, we establish that the intrinsic spin part 
of the deuteron wave function is even under a permutation of the two nucleons. 

With both spatial and spin parts of the wave function symmetric, the isospin part 
milst be arit,isyrntrietfric i n  order to Inaintain the product of all three to be antisymmetric 
under a permutation of the two nucleons, as required by the Pauli exclusion principle. 
The algebras of intrinsic spin and isospin are the same. From the discussion above 
on the intrinsic spin wave function, we can conclude that the T = 1 state of two 
nucleons is symmetric under permutation. On the other hand, the antisymmetric linear 
combination 

describes a T = 0 state. This can be seen either by examining the explicit values of the 
Clehsch-Gordan coefficients involved or by the fact that the right-hand side of Eq. (3-4) 
vanishes when either an isospin-raising or an isospin-lowering operator is applied to it. 
The requirement that the isospin part of the two-nucleon system is antisymmetric then 
implies t,hat t,hc deuteron ground state is in a T = 0 state. 

We can also arrive at, t,he same conclusion by a different set of arguments. If the 
ground state of the deuteron were T = 1, we expect to find similar bound states in 
the other two T = 1 two-niicleon systems, the two-proton system (TO = 1) and the 
two-neutron system (To = -1). However, no such bound states have been observed. 
We can perhaps eliminate the possibility of a two-proton bound state on the grounds 
t,h,zt Coulomb rcpulsion between two protons is of the order of 1 MeV at the distance 
of t,he deuteron radius. Since this value is a large fraction of the deuteron binding 
energy, it is difficult2 to expect, that a bound state can be formed of two protons. This 
limitation, however, does not, apply to a system of two neutrons. Since no bound state 
is observcd for two neutrons either, we come to the conclusion that it is not possible 
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to have a T = 1 bound state for two nucleons in general. The neutron-proton system 
can be either an isoscalar (T = 0) or an isovector (T = 1) state. Since there does not 
seem to be a bound state for the T = 1 system, the deuteron ground state must have 
isospin T = 0. We may also conclude from the same argument that there is an isospin 
dependence in the force between a pair of nucleons that is attractive only in the T = 0 
state. 

In summary, we have established using symmetry considerations that the deuteron 
ground state has S = 1 and T = 0. There remain, however, two possibilities, L = 0 and 
L = 2, for the spatial part of the wave function. In spectroscopic notation, the L = 0, 
S = 1 state is represented as 3S1 (tr iplet4 state) and the L = 2, S = 1 as 3D1 (triplet- 
D state). If L and S are good quantum numbers, i.e., if the nuclear Hamiltonian H 
commutes with both L2 and S2, the deuteron ground state would have to be in either 
one of these two states. There is, however, no fundamental reason to expect that this 
has to be true. In fact, we shall soon see that there is clear evidence that both the 
3S1- and the 3Dl-components must be present in deuteron. This, in turn, leads to the 
conclusion that the nuclear force mixes different L-components in an eigenstate. 

3-2 Deuteron Magnetic Dipole Moment 

Magnetic dipole operator. The magnetic dipole moment of a nucleus arises from 
a combination of two different sources. First, each nucleon has an intrinsic magnetic 
dipole moment coming from the intrinsic spin and the orbital motion of quarks (see 
52-8). Second, since each proton carries a net positive charge, its orbital motion con- 
stitutes an electric current loop. If, for simplicity, we assume that the proton charge is 
distributed evenly along its orbit, we can use classical electromagnetic theory to obtain 
its contribution to the magnetic dipole moment of a nucleus, 

(orbital) eh[c] = --.ti 
2MPc P, (3-5) 

where L, is the orbital angular momentum of the ith proton in units of ii and Mp is 
its mass (see Problem 2-6). As usual, Eq. (3-5) is in cgs units if the factor inside the 
square brackets is ignored and in SI units if included. 

It is more convenient to express the contributions to the nuclear magnetic dipole 
moment from individual nucleons in terms of gyromagnetic ratios g ( i ) .  For orbital 
motion, we can define gt ( i )  by the relation 

with 
for a proton 

g ~ i )  = { FN for a neutron 
to reflect the fact that only protons carry net charge and, consequently, can contribute 
to the nuclear magnetic dipole moment. Use of the nuclear magneton ,uN as the unit 
avoids any explicit dependence in the appearance of the equation on the system of 



62 Chap. 3 Nuclear Force and Two-Nucleon Systems 

electromagnetic units used. Similarly, contributions from the intrinsic spin of each 
nucleon may be expressed as 

pispin) = gl(i) 8, (3-7) 

Since s = $, the gyromagnetic ratio for a free nucleon is 

gp = 2pp = 5 . 5 8 5 6 9 5 ~ ~  for a proton 
(3-8) = g, = 2pn = - 3 . 8 2 6 0 8 5 ~ ~  for a neutron 

Here, we have assumed that the structure of a bound nucleon inside a nucleus is the 
same as in its free state. As a result, we may use gp and gn, the “bare” nucleon values, 
as those for gs(i) in nuclei as well. 

In terms of gyromagnetic ratios, the magnetic dipole operator may be written as a 
function of the orbital angular momentum operator t ,  and the intrinsic spin operator 
s, of each nucleon. For a deuteron, only two nucleons are involved, and the operator 
takes on a particular simple form, 

pd = gpap + gn% + ep  

where tP is the angular momentum operator for the proton and sp and a, are, respec- 
tively, the intrinsic spin operators acting on the proton and the neutron wave functions. 
To simplify the expression, we have made use of the fact that gc is 1 for a proton and 
0 for a neutron. Since the masses of a proton and a neutron are roughly equal to each 
other, we may assume that each one of the two nucleons carries one-half the orbital an- 
gular momentum associated with their relative motion, i.e., tp = fZ. The final result 
is then 

where L is the deuteron orbital angular momentum operator. 

pd = gpsp + gn8n + iL (3-9) 

Contribution from the %~-atate. For the deuteron ‘St-state, L = 0, and the 
expectation value of the magnetic dipole operator reduces to a sum of the intrinsic 
dipole moments of a proton and a neutron, 

/ L d ( 3 s 1 )  = Pp + F n  = 0.879805pN (3-10) 

The details of this calculation are given later in Eq. (3-14). The final result of Eq. (3-10) 
is almost the same as the observed value of 0.857438~~. The small difference, 

/& /J,d(3s1) = 0.857438 - 0.879805 = -0.022367~N 

is, however, worth more careful consideration. 

sured value from the expectation one in the 3S1-stat,e: 
We can think of at least three possible causes for the small departure of the mea- 

(1) The internal structures of the proton and the neutron are modified by the fact that 
the two nucleons are in a bound state. As a result, the gyromagnetic ratios for 
intrinsic spin may be different from gp and gn given in Eq. (3-8) for free nucleons. 
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(2) There are contributions from charged (virtual) mesons exchanged between the 
proton and the neutron, and these have not been included in Eq. (3-10). 

(3) There is a small admixture of the 3D1-state in the deuteron ground state. 

Item 1 is extremely unlikely, as the deuteron is only a loosely bound system. The 
binding energy of 2.22 MeV can hardly be expected to affect the motion of quarks 
inside a nucleon that are bound by energies of the order of hundreds of mega-electron- 
volts. The effect of mesonic current suggested in item 2 is possible. In fact, it has been 
shown that mesonic currents are important in understanding magnetic dipole moments 
of odd-mass nuclei (see $4-7). However, we shall not discuss the topic here, partly for 
the reason that item 3 is more likely to be the major cause for the discrepancy between 
p d  and &(3&). Furthermore, it is not easy to  distinguish between items 2 and 3 from a 
more fundamental, field-theoretical point of view. For simplicity, we shall consider only 
item 3 and treat the 3D1-admixture as the source for the small discrepancy between the 
observed and the calculated 3S~-state value. 

Expectation value of the magnetic dipole operator. Let us calculate next the 
expectation value of j6d in the deuteron 3D1-state using the form given in Eq. (3-9). The 
matrix element depends also on M ,  the projection of spin J of the state on the z-axis. 
By convention, the magnetic moment, similar to other static electromagnetic moments, 
is defined as the expectation value of the z-component, or the q = 0 component in 
spherical tensor notation of §A-2, of the operator in the substate of maximum M ,  
i.e., M = J .  For the magnetic deuteron dipole moment, we have 

Since both P d , @  and JO ( q  = 0 component of J )  are similar operators, as far as 
their angular momentum properties are concerned, their expectation values must be 
proportional to each other, as shown in $A-6. 

The constant of proportionality is given by the Land6 formula, Eq. (A-20), in terms 
of the expectation value of the projection of p along J ,  

(3-12) 

To calculate the expectation value of the scalar product between p and J ,  we shall first 
rewrite Eq. (3-9) in terms of S = sp + 8, and J = L + S, 

~d = +((gp +gn)S+ (gp - gn)(8p -sn) + L} (3-13) 

Since the operator aP - 8 ,  acts on proton and neutron spins with opposite signs, it can 
only connect between two states, one with S = 1 and the other with 5’ = 0,  and as a 
result, cannot contribute to the expectation value of interest to us here. This reduces 
p d  to  a function of L and S only. 
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On substituting the simplified form of pd of Eq. (3-13) into (3-12), we obtain the 
result 

The scalar products on the right-hand side may be written in terms of 6, L2 and S2, 

S. J = S. (L + S) = S2 + f(J’ - L2 - S2) = $(.P - Lz + S2) 

L . J = L. ( L  + 5’) = L’ + f($’ - L2 - 5’’) = $(J” + L2 - S’) 

and the value of the magnetic dipole moment in a state of given J ,  L, S and M = J 
reduces to 

1 
P d  = (J;is( (gp + S n ) ( J ( J  + 1) - w + 1) + S(S + 1)) 

+ ( J ( J  + 1) + L ( L  + 1) - S ( S  + 1))) (3-14) 

For the 3S1-state, L = 0 and J = S = 1, we recover the result pd(%1) = p p  + p,, given 
earlier in Eq. (3-10). For the 3D1-state, we have L = 2 and this gives us the result 

p,JDi) ;{ (gp + gn)(-2) + 6) = 0.310~N (3-15) 

The difference from the measured value of 0 . 8 5 7 ~ ~  is even larger than that for the 
3S1-state, making it unlikely for the deuteron ground state to be a purely 3D1-state. 
This leads to an admixture of and 3D1-states as the most likely candidate for the 
deiiteron wave function, as far as the magnetic dipole moment is concerned. 

Admix tu re  of 301-state. We can make a simple estimate of the amount of 
3D1-component in the deuteron ground state using the measured value of pd and the 
ralriilated values of pJ3Sl) and pJD1) obtained above. For a linear combination of 
3S1- and 3D1-components, the deuteron wave function may be written as 

I’d’d) = a 13%) b 13D1) (3-16) 

with the normalization condition 

Since there is no &diagonal matrix element of p between 3S1- and ‘DI-states, the 
deuteron magnetic dipole moment is given by 

a2 + b2 = 1 (3-17) 

/id = a ’ / ~ ~ ( ~ S 1 )  + ~‘IL~(~LII) = 0.857~~ (3-18) 

The valiirs of a and b may he obtained by solving Eqs. (3-17) and (3-18) together. 
The value for O2 turns out to be around 0.04, suggesting that there is a 4% admixture 
of the 3D1-component in the deuteron ground state. AS we shall see later, this is 
consistent, though somewhat on the low side, with the range of values obtained from 
other meamred properties of the deiiteron. 
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3-3 Deuteron Electric Quadrupole Moment 

In electrostatics, the potential due to an arbitrary charge distribution at  points far 
away from the source may be characterized by the moments of a multipole expansion 
of the source. For a microscopic object like a nucleus, it is not possible to  observe the 
distribution directly, and the measured multipole moments give us some information on 
the source. For the charge distribution in a nucleus, the lowest nonvanishing multipole 
moment is the quadrupole, as the expectation value of the electric dipole operator, as 
well as all the other odd multipoles, vanishes due to  the fact that the operators change 
sign under space inversion (see $4-6). For the deuteron, the measured quadrupole 
moment is Q d  = 0.28590 efm2, as shown in Table 3-1. 

Quadrupole operator. For a spherical nucleus, the expectation values of the squares 
of the distance from the center to the surface along x-, y-, and z-directions are equal 
to each other, 

As a result, the expectation value of r2 = x2 + y2 + zy" is 

(2) = (yy") = (2) 

The electric quadrupole operator, which measures the lowest order departure from a 
spherical charge distribution in a nucleus, is defined in terms of the difference between 
3 2  and T ~ ,  

For a spherical nucleus, we have (Qo) = 0 as a result. If a nucleus bugles out along the 
equatorial direction and flattens in the polar region, (z2) is smaller than the average 
expectation value of the squares of the distance along the other two axes and the 
quadrupole moment is negative. A positive quadrupole moment of 0.29 efm2 indicates 
that the deuteron is slightly elongated along the z-axis, like an olive. 

The operator Qo is a spherical tensor of rank 2 (see §A-2), carrying two units of 
angular momentum. In terms of spherical harmonics, 

Qo = e(3z2 - T ' )  (3-19) 

The electric quadrupole moment of a nuclear state is defined as the expectation value 
of Qo in the substate of maximum M ,  

QA = ( J  M=J(Q,(J M = J )  (3-21) 

similar to the definition of magnetic dipole moment seen earlier. 
Based on angular momentum considerations, any nuclear state with J < 1 cannot 

have a quadrupole moment different from zero. The expectation value (5, MIQo(J ,  M )  
vanishes if the three angular momenta involved, J ,  2, and J ,  cannot be coupled together 
to form a closed triangle. At the same time, since Qo operates only in the coordinate 
space, it is independent of the total intrinsic spin S. This means that the orbital 
angular momentum L of the state must also be greater or equal to 1. For this reason, 
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the expectation value of Qo vanishes in the 3S1-state. The existence of a nonvanishing 
quadrupole moment is therefore a direct evidence of the presence of the 3D1-component 
in the deuteron ground state. 

Expectation value of the quadrupole operator. Let us work out the connection 
between the spatial part of the wave function and the quadrupole moment, assuming 
for the time being that the deuteron is in a state of definite orbital angular momentum 
L. Such a wave function I LS; J M )  may be represented by the product of a spatial part 
I LML ) and an intrinsic spin part I SMs ), coupled together to total angular momentum 
( J ,  M)l 

ILS; J M )  = c (LM' SMslJM)ILML)ISMs) (3-22) 
MLMS 

where ( L M L  SMsIJM)  is the Clebsch-Gordan coefficient. For the expectation value of 
Qo, we have 

Q d ( L )  = (Ls; JMIQoILS; JM) 

MLMS M L M ;  

= C C ( L M L  S M s ( J M ) ( L M L  SM~IJM)(LM'SMsIQ, ILMLSM~)  

Since the operator does not act on intrinsic spin, we can remove this part of the wave 
function from the matrix element by making use of the orthogonal relation between the 
intrinsic spin wave functions, 

(SMSlSM2 = bf,,; 
As a result, the expectation value of Qo reduces to a matrix element involving only the 
spatial part of the wave function, 

Q d ( L )  = ~ ( L M L  s ( M - M L I ~ J M ) ~  (LMLIQoILML) (3-23) 
ML 

where we have made use of the property that the Clebsch-Gordan coefficients vanish if 
Ms # ( M  - Mt). 

Wc may simplify the expression on the right-hand side of Eq. (3-23) further by 
writing the spatial wave function as a product of radial and angular parts, 

ILML) = R L ( T )  YLML(84) 

where the angular part is given by spherical harmonics YLML(e&) and the radial part 
satisfies the normalization condition, 

Using the explicit form of Qo given in Eq. (3-19), we obtain the result 
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The radial integral here is the expectation value of rz and therefore must be a positive 
quantity. However, we cannot evaluate its value without making some assumptions on 
the radial wave function. 

The angular integral over three spherical harmonics may be expressed in terms of 
3j-symbols, 

(3-25) 

For L = 2, the numerical values for this integral are - 1 / 7 m ,  + 1 / 1 4 m ,  and 

+1/7@, respectively, for M L  = 2, 1, 0. Before we can insert these values into 
Eq. (3-24) and obtain a value for QI(L = 2), we also need the square of the three 
Clebsch-Gordan coefficients (LML S(M-ML)IJM)’  for S = 1, L = 2, M = J = 1, and 
ML = 2, 1,  0. These can be found using Table A-1, and the values are h, &, and h, 
respectively. With these, we obtain the result 

Qd(3D1) = (’DIM = llQo1’DlM = 1) 

= &(L = 2, ML = 2(Qo(L = 2, ML = 2) 

+$(L = 2, ML = l(Q0IL = ~ , M L  = 1) 

+b(L = 2, M L  = OIQOJL = 2, ML = 0) 

= -fe(r2)o 

where m 
(r’)D = 1 Rb(r)r2R,(r)r2 dr 

If, as an estimate, we take the value of ( r ’ ) ~  as the square of the deuteron radius, we 
obtain Q43D1) = -0.77 efm’. Since even the sign disagrees with the measured value, 
it is unlikely that the deuteron wave function is made up entirely of the 3D1-state. 

For a more realistic model, we shall take a Iinear combination of 3Sr- and 3D1- 
components, as we have done earlier in Eq. (3-16) for the magnetic dipole moment. 
The deuteron electric quadrupole moment now has the form 

Qd = a2(3S1M = llQo13SlM = 1) + b2(3D1M = l\Qo13DlM = 1) 

+2ab(3S1 M = lIQo(3D1M = 1) 

The first term vanishes, since L = 0. The main contribution is likely to come from the 
last term, as the 3D1-component is only a few percent of the total and 1.1 > lbl as a 
result. This term involves an off-diagonal radial integral, 

(3S1M = 11Qo13DlM = 1) o( A R i ( r ) r 2 R o ( ~ )  T’ d~ 

The value is sensitive to the shapes of the radial wave functions and, as a result, it is 
difficult to  put a firm value on the amount of 3D1-component in the deuteron ground 
state from electric quadrupole moment calculations. Most of the estimates put lb\’ to 
be in the range of 4% t o  7%. 

m 
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3-4 Tensor Force and the Deute ron  D-state 

We have seen that both magnetic dipole and electric quadrupole moments support the 
idea that the deuteron ground state is a linear combination of 3S1- and 3D1-states. The 
orbital angular momentum is, therefore, not a good quantum number and the nucleon- 
nucleon interaction potential does not, commute with the operator &'. In this way, 
presence of the 3D1-component in the deuteron ground state provides us with one clear 
piece of information concerning the property of nuclear force. 

Deuteron Hamiltonian. The Hamiltonian for the deuteron problem may be written 
in the form 

(3-26) 
h2 

H = --V2 f V 
211 

where the first term is t8he kinetic energy in the center of mass of the two-nucleon 
system and p is the reduced mass. The second term expresses the interaction between 
the two nucleons in tcrms of a potential V .  The ground state wave function, $d, is the 
eigenfunction of the Schrodinger equation 

HI11,) = &llJd) 

with eigenvalue Ed. In 53-1 we deduced from symmetry arguments that only L = 0, 
2 can contribute to the wave function, and the eigenfunction has the form given in 
Eq. (3-16), 

where n and b are coefficients t o  be det,ermined by solving the Schrodinger equation. 
It is convenient, for us to think in terms of a matrix approach to the eigenvalue 

problem (see also 57-1). Since we are only interested in finding the amount of mixing 
between 3S1- and 3D1-states, we may use these two states alone as the basis to construct 

idjd) = o. i3s1> t h 1 3 ~ ~ )  

the Hamiltonian matrix, 

{ H I =  (Z;; 2;) (3-27) 

where the matrix elements are given by the following definitions: 

HI1 = (3SlIH13Si) H z z  = (3D11H13D1) Hi2 = Hzl = (3D11H13S1) 

On diagonalizing this real, symmetric matrix, we obtain the energy Ed and the coeffi- 
cients a and ti. However, this is not our interest here; we are more concerned with the 
type of Hamiltonian that can cause a mixing between %,- and 3D1-states. 

If the off-diagonal matrix elements H l z  and Hzl vanish, the Hamiltonian matrix is 
diagonal. The two eigenstates are then I 3Sl ) and I 3D1 ) without any mixing between 
them. The fact that the deuteron ground state is a linear combination of these two 
basis states implies that the off-diagonal matrix elements are not zero: 

(3mN13S1) # 0 (3-28) 

Since the kinetic energy term of the Hamiltonian contributes only to the diagonal matrix 
elements in the two-dimensional Hilbert. space we are working in here, Eq. (3-28) must 
be the result of the interaction potential V. This leads to the conclusion 

(3mq3sl) # 0 (3-29) 



63-4 Tensor Force and the Deuteron D-state 69 

That is, the nuclear potential is not diagonal in a basis span by states with definite 
orbital angular momentum and can, therefore, mix 3Sl- and 3D1-states. 

In order to have a nonvanishing off-diagonal matrix element, the potential V must 
have a spatial part that is a spherical tensor of rank 2 so as to be able to connect an 
S- to a D-state, as required by Eq. (3-29). Again, let us express the deuteron wave 
function as a product of spatial, intrinsic spin, and isospin parts. Similarly, the matrix 
element of V above may also be written as a product of three matrix elements: one in 
coordinate space, one in intrinsic spin space, and one in isospin space. For simplicity, 
we shall ignore any possible dependence on the isospin in the matrix element of V in 
the following discussion. 

Since the nuclear Hamiltonian conserves the total angular momentum of the system, 
the potential V must be a scalar in spin J .  However, if the spherical rank of the spatial 
part of the operator is 2, we must find an operator of the same rank for the intrinsic 
spin part so that a scalar product of these two rank 2 operators can be constructed. 
For this purpose, let us examine first the possible spherical tensor operators that we 
have in the intrinsic spin space. 

Spin operator. For a spin-$ system, an arbitrary operator may be expressed in terms 
of Pauli matrices, 

0 1  0 -i 
0 -1 

(3-30) 

together with the two-dimensional unit matrix. In terms of spherical components, the 
Pauli matrices may be written as 

O -l) --(us + ia,) = Jz ( 1 
Jz 0 0  btl = 

a-1 = + - ( u , - i u y ) = d 3 ( 0  1 0)  
Jz 1 0  

(3-31) 

These form the three components of an operator acting only on the intrinsic spin part 
of the wave function of a nucleon and carrying one unit of angular momentum, similar 
to other vector operators such as L .  

A two-body operator in the nucleon intrinsic spin space may be constructed from a 
product of u(1) and u(2), respectively, the intrinsic spin operator for particles 1 and 2. 
Since each one is a vector, the spherical tensor rank of the product is the vector sum of 
a(1 )  and 4 2 )  and may therefore carry zero, one, or two units of angular momentum, 
as shown in §A-3. The first two possibilities are, respectively, analogous to the usual 
scalar and vector products in multiplying ordinary vectors. The last possibility is a new 
one and is often loosely referred to as the “tensor product” of two vector operators. The 
name should not be confused with the more general product of two spherical tensors. 

The scalar product of two vectors is a familiar quantity. In a Cartesian coordinate 
system, a scalar two-body operator in the intrinsic spin space may be expressed as 

4 1 )  * 4 2 )  = u s ( 1 ) u m  + uy(1)uy(2) + u z ( l b z ( 2 )  (3-32) 
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In terms of the spherical components given in Eq. (3-31), the same product may be 
written in the following way: 

4 1 )  . 4 2 )  = uo(l)m(2) - Q+1(1)fl-1(2) - fl-l(l)a+t(Z) (3-33) 

as done in Eq. (A-19). We can also make use of the explicit values of the following 
Clebsch-Gordan coefficients given in $A-3, 

1 
(1+11-1100) = (1-1 1+1100) = +- 4 

1 
(1010(00) = -- 

4 
and write the result in spherical tensor notation, 

where q,  the index of summation, takes on values - 1 , O ,  and $1. The last form expresses 
the two-body operator in intrinsic spin space as a product of two Pauli spin operators 
with angular momentum coupled together to zero. 

In general, a product of two operators with tensorial ranks T and s, coupled together 
to form a tensor of rank t ,  may he written as a coupled product, 

(3-35) 

a done in Eq. (A-lo). Thus, the vector product of a(1) and 4 2 )  is given by 

(a(1) X "(2))lm = C(l2''9Ilm)@~(')''q(2) (3-36) 
PQ 

I t  is left as an exercise to show that this is equivalent to the vector product of a(1) 
with 4 2 )  in Cartesian coordinates (see Problem 3-5). 

By the same token, we can also use Eq. (3-35) to write the components of the 
second-rank tensor product of a(1) and a(2),  

( 4 1 )  x U(2)hrn = C(lP l~ l2m)aP( l )a9 (2 )  
Prl 

Each component may be expressed explicitly as 

1 

1 

( 4 1 )  x uW)*o = - t ~ l ( 1 ) ~ - l c 2 )  + u-1(1)r1(2) + 2flo(l)@o(2)) 

( 4 1 )  x 42))2*l = -ta*tl(l)ao(2) + ao(l)a*1(2)) (3-37) 

( 4 1 )  x 4 2 ) ) * * 2  = U*l(l)fl*1(2) 

6 

Jz 

using the values of the Clebsch-Gordan coefficients given in Table 3-2. 
We can now return to the operator for the intrinsic spin part of the nuclear potential 

V. Since the product of a(1) and 4 2 )  can only be coupled together to form a scalar, 
a vector, or an operator of spherical tensor rank 2, the maximum rank of V in intrinsic 
spin space is 2. Furthermore, since the intrinsic spin part and the orbital angular 
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Table 3-2: Values of Clebsch-Gordan coefficients (lplq)2m). 

m 

0 

-1 

P Q Pplql2m) m P Q (lplql2m) 

0 1 - 1 f i  1 1 0 &  

0 - 1 1 f i  1 0 1 6  

0 0 fi -2 -1 -1 1 

- 1 - 1  0 6 2 1 1  1 

0 -1 4 

momentum part must have the same rank to form a scalar product in J ,  the maximum 
rank of the orbital angular momentum part must also be 2. As we have seen earlier, 
this is adequate for our purposes since, from the admixture of the 3D1-component in the 
deuteron ground state, we have concluded in Eq. (3-29) that there must be a component 
in V with spherical tensor rank 2 in L. 

Tensor operator. An operator formed by the scalar product of a second-rank operator 
in intrinsic spin space and a similar one in coordinate space is often referred to as a 
tensor operator. It is generally written in the form 

n 

where we have used subscripts to indicate on which of the two nucleons each Pauli 
spin operator acts. We shall follow this practice for single-particle operators in general 
wherever there is no need to indicate the spherical tensor component of the operator. 
The context will always make it clear whether the subscript on an operator is for 
spherical tensor rank or an index for particle number. The form of the tensor operator 
given in Eq. (3-38) is only the L- and S-dependent parts: The strength of the force as 
well as its radial and isospin dependence must be put in separately. 

The fact that there is a small admixture of 3D1-component in the predominantly 3 S ~  
deuteron ground state implies that there must be a tensor component in the nucleon- 
nucleon potential. Although we cannot say much more about this component of the 
nuclear force from the deuteron properties alone, the clear evidence for such a term is 
an indication of the richness in the deuteron problem. In the next section, we shall 
see that, besides the tensor force, the nuclear potential contains also terms that have 
tensorial ranks 0 as well as 1 in intrinsic spin and spatial coordinates as well as other 
operators of rank 2. 

3-5 Symmetry and Nuclear Force 

Nucleons interact with each other through two-body interactions. That is, the force 
between nucleons acts only between a pair of them a t  a time. The absence of one-body 
terms in the potential can be seen by contrasting with atomic electrons. In an atom, 
the electrons are bound to a central electrostatic potential provided by the protons in 
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the nucleiis. As a result, there is a force acting on an electron even in cases where it is 
the only one present, such I L ~  the hydrogen atom. This is not true for nuclei, as there 
is no external source to provide a force on the individual nucleon. The only one-body 
operator in  a nuclear Hamiltonian is the kinetic energy arising from the motion of each 
nucleon. We shall see later, for example in 57-3, that one may on occasion introduce 
an “effective” one-body term in the nuclear potential to approximate the average effect 
from all the other nucleons in the nucleus. The source of such an effective one-body 
potential is, however, the two-body interaction between nucleons. 

On the other hand, it is not possible to rule out completely three-body and higher 
particle-rank terms in the nuclear interaction. A three-body force is one which is felt 
only when there are at  least three particles present, such as that represented later 
by Fig. 3-8(g). For example, in a three-nucleon system such as a triton, the nucleus 
of tritium, or a 3He made of two protons and one neutron, a two-body force acts 
between nucleons 1 and 2, between nucleons 2 and 3, and between nucleons 3 and 1. 
If, after taking away the sum of the interactions between these three pairs, there is 
still a residual force left in the system, we can then say that there is a three-body force 
between nucleons. All the available evidence indicates that such a term, if present, must 
be very much weaker than the two-body force. With the possible exception of three- 
nucleon systems, it is unlikely that our present experimental equipment and theoretical 
knowledge can detect the presence of any three-body forces in nuclei. For this reason 
we shall ignore any possible three-body forces from now on. The same applies to other 
many-body terms in the nuclear potential. 

One way to study nuclear two-body interactions is to make use of two-nucleon 
systems such as the deuteron. However, as we have already seen, the deuteron is a very 
limited system having only one bound state. For a more comprehensive investigation, 
we must resort, to scattering of one nucleon of€ another. Before going into the details of 
nucleon-nucleon scattering, it is advantageous to examine first some of the restrictions 
imposed on the nuclear interaction by the symmetry requirement on a two-nucleon 
system. 

Charge independence. We shall aSsiime that nuclear force is charge independent; 
that is, the only difference in the interaction between a pair of protons and a pair of 
neutrons is the Coulomb interaction between protons. This is, again, an assumption 
bascd on experimental evidence. There is no fundamental reason to rule out a charge- 
symmetry-breaking term in the nuclear force itself. As we shall see in the next section, 
the difference in mass between charged and neutral pions alone implies the possibility of 
a small but significant difference between proton-neutron interaction and the interaction 
between a pair of protons or a pair of neutrons. On the other hand, from a practical 
point of view, there is perhaps no need to be concerned with any possible violation of 
charge symmetry in nuclear force. At the moment, all the evidence puts the term to 
be smaller than the accuracies we can achieve in handling the much stronger charge- 
independence-breaking effect due to electromagnetic interaction. For simplicity, we 
shall ignore, from now on, any charge dependence that may be present in nuclear force. 
Furthermore, for our discussion of nuclear force here, we shall also ignore any charge 
symmetry breaking coming from electromagnetic origin. 

Since charge is related to the third component of the isospin operator T, the charge 
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independence of nuclear force implies the commutation relation, 

[ H I  To] = 0 (3-39) 

where H is the nuclear Hamiltonian. This, in turn, means that the eigenvectors 1111) of 
a nuclear Hamiltonian can also be the eigenvectors of TO at the same time, 

TOW) = f(Z - N)lllt) (3-40) 

where Z is the proton number and N the neutron number of the nucleus. 

Isospin invariance. In addition to TO, the nuclear Hamiltonian commutes also with 
the square of the isospin operator, 

(H,Tz] = 0 (3-41) 

In other words, the eigenfunctions of the nuclear Hamiltonian are also eigenfunctions 
of the operator T2, 

Physically, it means that the wave function of a state with a definite isospin T is 
unchanged if we replace some of the protons by neutrons, and vice versa. Such a 
transformation between the two states of a nucleon takes us from one member of the 
isobar, a nucleus of the same nucleon number, to another. Since nothing else is changed, 
these two states must have essentially the same properties except for a difference in the 
proton and neutron numbers. Mathematically, the wave functions of two such states 
are related to each other through an isospin rotation that can be realized using raising 
or lowering operators. 

A group of states related by a rotation in the isospin space are known as isobaric 
analogue states (IAS) of each other. Many examples are known in light nuclei. As 
illustration, the energy level spectra for two A = 11 nuclei and two A = 21 nuclei are 
shown in Fig. 3-1. In both examples, the members of each pair are, furthermore, mirror 
nuclei of each other; that is, the number of protons in one is equal to the number of 
neutrons in the other, and vice versa. In a sense, they are the image of each other in 
a mirror that turns protons into neutrons and neutrons into protons. In addition to 
energy level positions, many other properties of states in mirror nuclei are found to be 
very similar to each other. Most of the small differences found may be attributed to 
the Coulomb interaction, which we choose to ignore in our discussion here. 

In heavy nuclei, the Coulomb effect increases because of the larger numbers of 
protons. Since electromagnetic interactions do not conserve isospin, we find that nuclear 
states are no longer eigenstates of Tz .  In contrast to Eq. (3-42), we have 

T2111t) = T(T + 1)14 (3-42) 

That is, when Tz acts on an eigenstate of the nuclear Hamiltonian, the result is a linear 
combination of eigenstates of different isospin. The situation may also be described by 
saying that the strength of the IAS is split among several states. When this happens, 
it can be difficult to find any direct evidence for the presence of IAS and the concept 
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Figure 3-1: A comparison of the low-lying spectra of members of the A = 11 
and A = 21 isobers, showing the similarity in their level structure. (Plotted using 
data from Ref. [95].) 

of isospin ceases to be useful. In spite of the complications caused by electromagnetic 
interactions, the evidence for isospin invariance of the nuclear force itself is quite strong. 
As we shall soon see, we may be able to make use of isospin symmetry to limit the 
possible forms the nuclear potential can take. 

Isospin operators. Isospin invariance, however, does not imply isospin independence 
of nuclear force. We have already seen evidence that the nuclear force is different 
depending on the isospin of the two-nucleon system. For example, a bound state is 
found for T = 0, the deuteron, but not for T = 1. Let us examine the possible forms 
of isospin operators that satisfy these conditions and can be used in a nucleon-nucleon 
potential. 

For a single nucleon, the isospin operator T may be written in terms of Pauli 

(3-43) 

as we have done in Eq. (2-18). Alternatively, they can be expressed in terms of spherical 
components analogous to Eq. (3-31), except that  the operators here act on the isospin 
part of the wave function. Since there are only two isospin states for a nucleon, the 
only possible (single-nucleon) operators for the isospin part of the wave function are T 
and the identity operator, 

(3-44) 

All other single-nucleon isospin operators can be expressed in terms of 1 and r. For 
example, the eigenvalue of T* in the space of a nucleon is always 3, as can be seen by an 
explicit calculation using the nucleon isospin wave functions given in Eqs. (2-15) and 
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(2-16). As a result, the operator T~ may be replaced by the form 3 times the identity 
operator 1. 

For a system consisting of A nucleons, the isospin operator is the sum over those 
acting on individual nucleons, 

For the two-nucleon system we are mainly interested in here, we can write 

(3-45) 

(3-46) 

Since nuclear force is two body in nature and a scalar in isospin space, we must construct 
two-body operators using operators 1 and T acting on each one of the two nucleons. 
The operator T is unsuitable for our purpose here, as it  is one body and acts on one 
nucleon at  a time. Furthermore, it is a vector in isospin space. One way to construct a 
two-body, isoscalar operator is to take a scalar product of Twith itself. From Eq. (3-46), 
we have 

The first two terms on the right-hand side are onebody operators, seen by the fact 
that they do not vanish even when there is only one nucleon present. Only the third 
term, 7 1  7 2 ,  is a two-body operator, &s it vanishes unless it is acting on a state with 
both nucleons 1 and 2 present. The operator T2 therefore has mixed particle rank of 1 
and 2 .  The only purely two-body operators we are left with in the isospin space are the 
unity operator and 71 - 5. All other two-body isoscalar operators may be expressed as 
functions of these two. 

@ T *  T =  f(T1' 4- 72' + 271 . 73) (3-47) 

Fkom Eq. (3-47), we have the relation, 

For a single nucleon (isospin i), the expectation of r2 is 3, as we have seen earlier. The 
expectation value of 7 1  - 7 2  in the space of two nucleons with total isospin T is then 

-3 for T = 0 

1 for T = 1 
(TIT1 * 721T) = (3-48) 

Since the expectation value is different, the operator r1 T~ is able to distinguish a 
two-nucleon state with isospin T = 0 from one with T = 1. In contrast, the identity 
operator has the same expectation value, unity, in both T = 0 and T = 1 states. We 
shall see later that the difference between these two operators is adequate to give a 
proper isospin dependence for nucleon-nucleon potentials. 

O t h e r  symmetr ies  and general  form of nuclear potential. The force between 
two nucleons must be invariant under a translation in space of the two-nucleon system 
as a whole. In other words, the interaction can only depend on the relative position 
of the two nucleons and not on their absolute positions with respect to some arbitrary 
coordinate system. This requirement is generally referred to as translational invariance, 
and it implies that only the relative coordinate between the two nucleons 

r = rl - r2  (3-49) 
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can enter as one of the arguments. 
The nuclear potential V may depend on the momenta p1 and p, of the two particles. 

On the other hand, since the sum P = p, + pz corresponds to the center-of-mass 
momentum of the two-nucleon system as a whole, it cannot appear as an argument of 
the interaction between the two particles. The only possible momentum dependence V 
can have is on the relative value between two nucleons, defined by 

P = i(P1 - Pz) (3-50) 

This is known as Galilean invariance of the two-nucleon system. 
In addition to isospin, translational, and Galilean invariances, a nuclear potential 

must also remain unchanged under a rotation of the coordinate system, time reversal, 
space reflection (parity), and a permutation between the two nucleons. In terms of 
independent operators, the pvtential can only be a function of 6 1 ,  u2, 71, and 7 2  in 
addition to r and p. As we have demonstrated with isospin operators, only a very 
limited number of linearly independent two-body operators, satisfying the symmetry 
requirements for a nuclear potential, can be constructed using a given set of single- 
nucleon operators. For example, the single-particle orbital angular momentum operator 
f? is not an independent, operator from those in the set given above, as it is the vector 
product of r and p. Okubo and Marshak [114] have shown that the most general 
two-body pot,ential under these conditions must take on the form 

v ( T ;  61, uz! 719 7 2 )  = vo(r) + v U ( T ) b l  ' u 2  + vT(T)71 ' Tz + vUT(T)(ul ' mz)(Tl * 7 2 )  

+VLS(T)L. s+ VLSr(T)(L. S)(1 * 72) 
+VT(T)SIZ + vTI(r)s,2 71 * 7 2  

+VQ(T)QIZ + V~7(r)Q12 71 ' 7 2  

+vPP(T)(ul ' P)(uZ ' P) + Vffi(r)(al ' p)(VZ * P)(T1 7 2 )  

(3-51) 

with 12 terms. In addition to the tensor operator &Z given earlier in Eq. (3-38), we have 
two other operators that are constructed from elementary single-nucleon operators: the 
two-body spin-orbit operator, 

L ' s = ;(el + 4). (u1 + Q Z )  (3-52) 

and the quadratic spin-orbit operator, 

Q 1 2  = i( (ci . L)(az.  L) + (uz. t)(ai * L)} (3-53) 

The radial dependence and strength of each one of the 12 terms are given by the 
12 functions Vo(r), V,(T), . . . . To determine the forms of these functions, we will 
need information in addit)ion to those generated from symmetry arguments above. For 
example, we can make use of our knowledge of the basic nature of the nuclear force, such 
as the meson exchange picture of Yukawa to be discussed in the next section, or we can 
use a semi-empirical procedure and fit some assumed forms of the radial dependence to  
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experimental data. When our understanding of QCD is fully developed in the future, 
it should also be possible to determine these functions from first principles. 

The 12 terms in Eq. (3-51) may be divided into five groups. The first four, 

Kentral = V ~ ( T )  + V o ( ~ ) u l  * ~2 + V T ( T ) ~ ~ . ~ Z  + C b T ( ~ ) ( b l  * U Z ) ( ~ I  7 2 )  (3-54) 

are the centralforce terms, as the tensorial ranks of the spatial parts of all four operators 
are zero. Similar to isospin, there are only two two-body operators for intrinsic spin: 
unity and ul 62. Analogous to Eq. (3-48), two-nucleon states with total intrinsic spin 
S are distinguished by 

-3  for S = 0 

I for S =  1 
(SIfll * UzlS) = (3-55) 

The product of two independent two-body intrinsic spin operators and two similar ones 
for isospin gives us the four central force terms. As we can see from Eq. (3-54), the first 
term Vo(r) depends only on the radial distance T.  The second term has, in addition, a 
dependence on the intrinsic spin but not isospin. The third has isospin dependence but 
no intrinsic spin dependence. Only the fourth term has both intrinsic spin and isospin 
dependence. However, all four terms are scalars in intrinsic spin and, hence, in orbital 
angular momentum as well. A central force, therefore, commutes with S2,  L 2 ,  and J2. 

The other terms in Eq. (3-51) do not necessarily preserve the total intrinsic spin 
and the total orbital angular momentum of a two-nucleon system. In the presence of 
these terms, the two-nucleon system is invariant only in the combined space of L and S 
labeled by J. The dependence of the nuclear force on the two-body spin-orbit operator 
is expressed by fifth and sixth terms in Eq. (3-51), 

The reason that two separate components are needed here (as well as the other terms 
to be discussed below) comes from the possibility that the radial dependence of the 
isospin-dependent and the isospin-independent parts may be different from each other, 
as for example the result of different mesons being exchanged. The spatial part of 
the two-body spin-orbit operator involves L.  Since it does not change sign under an 
inversion of the spatial coordinate system, it is an axial vector. In order to maintain 
parity invariance as well as rotational invariance for V ,  only a scalar product with 
another axial vector may enter here. It is easy to see that the operator L 2  is not 
suitable for this purpose, as it conserves both L and S and is, therefore, a part of the 
central force. The only other possibility is the product L . S. (See Problem 3-8 for 
other possible forms.) 

The two-body spin-orbit operator, however, cannot connect two states with different 
orbital angular momenta. In other words, 

(LSIL. SlL’S’) = O for L’ # L 

This comes from a combination of two reasons. From angular momentum coupling 
requirements, the matrix element (LSIL + SIL‘S‘) vanishes if (L’ - L\ > 1, as the 
operator L carries only one unit of orbital angular momentum. On the other hand, the 
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parity of the orbital part of the wave function of a state with angular momentum L is 
(- l)L. Under a space reflection, operators L and S do not change sign. The matrix 
element (LSIL.S(L’S’), however, changes sign if L‘ = L f  1 and must therefore vanish. 
The net result is that the spin-orbit term is nonzero only between states of the same 
orbital angular momentum. However, the same constraint does not apply to the total 
intrinsic spin. As a result, Vspin-orbit is not a central potential. 

The next pair (seventh and eighth) of terms in Eq. (3-51) involve tensor force which 
we have already encountered in $3-4. The quadratic spin-orbit terms VQ(r)Q12 and 
V,,(T)Q~~T~ . t 2  enter only when there is momentum dependence in the potential. The 
last two terms, Vpp(~)(ul.p)(u~-p) and Vpp~(r ) (u l ,p ) (u2 .p ) (71 ’T2) ,  are often dropped 
since, for elastic scattering, they can be expressed as a linear combination of other 
terms. Their contributions, therefore, cannot be determined using elastic scattering, 
froin which we obtain most of the information on nucleon-nucleon interaction. 

Returning now to the deuteron system, we see that if only the central force terms, 
given by strengths Vo, V,, V,, and V,,, are present in the nuclear potential, both L 
and S are good qiiantum numbers. The same is also true for the spin-orbit terms 
for reasons mentioned earlier. Among t,he remaining terms, the simplest one that can 
admix the 3Sl- and 3D1-st,ates is the tensor force. The presence of the 3D1-component 
in the ground state wave function provides the clearest indication of the presence of 
such a term in the nuclear force. 

3-6 

The meson exchange idea introduced by Yukawa in 1934 is a good starting point to 
examine nucleon-nucleon interaction beyond what we can Icarn through symmetry ar- 
guments in  the previous section. In the Yukawa picture, the interaction between two 
nucleons is mediated by the exchange of mesons. Although it is not straightforward to 
draw a quantitative connection with the underlying quark structure of the hadrons, the 
theory does make it possible to relate nuclear interaction with various other hadronic 
processes, such as the strength of meson-nucleon interaction. On a more empirical 
level, the Yukawa idea provides 11s with a reasonable form for the radial dependence of 
nuclear potentials. Such expressions may be used, for example, as the starting point for 
semi-empirical approaches. Our focus in this sect,ion will be mainly on the origin of the 
meson exchange idea itself. We shall leave any applications to the last section after we 
have first taken a look at the experimental information derived from nucleon-nucleon 
scattering. 

A proper derivation of a potential based on boson exchange requires a relativis- 
tic quantum field theory treatment that is beyond our present scope. However, the 
essence may be obtained by drawing an analogy with classical electrodynamics. The 
electrostatic potential &(r)  in a source-free region is a solution of Laplace’s equation, 

Yukawa Theory of Nuclear Interaction 

V2#(r) = 0 (3-57) 

In the presence of a point source with charge q,  located at  the origin, the equation takes 
on the form 

VZ@(r) = - - 4nq(i(r) I4:J (3-58) 
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The solution is the familiar Coulomb potential, 

(3-59) 

When the electromagnetic field is quantized, photons emerge as the field quanta and 
the charge becomes the source of the field. 

Nuclear force differs from its electromagnetic counterpart in several respects. The 
most important one is perhaps the short range, and we shall see evidence in support 
of this in the next chapter. For now, we are concerned mainly with the question of 
finding an equation similar to Eq. (3-58), and its analogue in quantum field theory, for 
a short-range nuclear potential. The equation must also be invariant under a Lorentz 
transformation so that it is correct in the relativistic limit as well. This rules out the 
Schrodinger equation, which applies only in the nonrelativistic limit. The field quantum 
exchanged between the nucleons must be a boson, as only bosons can be created and 
annihilated singly. A fermion, on the other hand, must be created and annihilated 
together with its antiparticle. The Dirac equation is therefore unsuitable, as it is an 
equation for spin-! particles (i.e., fermions). This leaves the Klein-Gordon equation as 
the prime candidate. 

The relativistic energy-momentum relation is given by the equation 

E2 = p2c2 -I- m2c4 

We can quantize this equation in the same way as in nonrelativistic quantum mechanics 
by replacing energy E with operator i/i(a/at) and momentum p with operator -ihV, 

(3-60) 

Here, m is now the mass of the field quantum. After dividing both sides of the equation 
by ( h ~ ) ~  and rearranging terms, we obtain the familiar Klein-Gordon equation, 

(3-61) 

This is only the analogue of Eq. (3-57), as it does not yet contain a source term for 
field quanta. This point may be further demonstrated by letting the mass of the field 
quantum m go to zero and ignoring the time dependence. The result is the same as 
Eq. (3-57). 

To include a source, we must find the equivalent of Poisson's equation (3-58) by 
adding a source term to Eq. (3-61). For simplicity, we shall consider only the static 
limit and ignore terms involving time derivatives. For a point source with strength g 
located at  the origin, this is given by 

(3-62) 

The solution for this equation, 

(3-63) 
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has the well-known form of a Yukawa potential and reduces to Eq. (3-59) on letting 
in = 0 and g = [ ( ~ T ~ o ) - ~ ] ~ T Q .  On the other hand, if the field quantum has a finite 
mass, we find that the strength of the potential drops by Nl/e at a distance ro = ti/rnc. 
The quantity TO may be taken as a measure of the range of the force mediated by a 
boson with mass m. For pions (rn N 140 MeV/c2), the value of TO is around 1.4 fm. 
We shall see later that one-pion exchange gives a good representation of the long-range 
part of the nuclear potential. 

3-7 Nucleon-Nucleon Sca t te r ing  Phase Shifts 

The form of the nucleon-nucleon interaction potential given in Eq, (3-51) was obtained 
using properties of the deuteron and symmetries in the two-nucleon system. To make 
further progress, we need additional experimental information, and this is provided by 
the scattering of one nucleon off another at  different energies. 

Nucleon-nucleon scattering. In principle there are four types of scattering measure- 
ments involving two nucleons that can be carried out. The scattering of an incident 
proton off a proton (pp-scattering) is the simplest one of the four from an experimental 
point of vicw, as it is relatively easy to accelerate protons and to construct targets 
containing hydrogen (proton). For neutron scattering, there are two major sources 
for incident beam. At low energies, neutrons from nuclear reactors may be used. At 
higher energies, one can make use of neutrons produced by a beam of protons, for 
instance, through a ( p , n )  reaction on a ‘Li target. However, both the intensity and 
the energy resolution of neutron beams obtained in these ways are much more limited 
than t,hose for proton beams. As a result, neutron scattering is, in general, a more 
difficult experiment than those with protons. The scattering of neutrons off proton 
targets (np-scattering) and the corresponding pn-scattering are however important in 
t,hat the reaction takes place in the T = 0 channel aa well. In contrast, pp- (and nn-) 
scattering can only provide information on the T = 1 state of two nucleons. 

In addition to pp- and np-measurements, one can, in principle, carry out pn- and 
m-scattering experiments ns well. Here, instead of using protons as the target, a 
“neutron target” is used. Free neutrons are unstable, with a half-life on the order of 
10 rnin. It is therefore impossible to construct a “fixed” neutron target, in contrast to 
prot,ons where material consisting of hydrogen may be used. There are, in principle, two 
methods of getting around this limitation. One way is to carry out il “colliding beam” 
experiment. In place of a target fixed in the laboratory, a second neutron beam is used 
and, instead of having an incident beam scattering from a fixed target, two beams of 
particles are directed toward each other. Scattering takes place when the particles in 
the two beams collide. To be practical, such an experiment requires high intensities in 
both beams, and currently, highly intense beams of neutrons are not easily available. 

The other way is to c‘simulate’7 a fixed neutron target using deuterium. Since the 
deuteron is a loosely bound system of a neutron and a proton, the desired pn- or nn- 
scat,tering results can be obtained by carrying out the corresponding pd-  or ncl-scattering 
experiments. The contrihiition due to protons in the deuterium target may be removed 
by subtracting from the measured values the corresponding results obtained in pp-  or 
np-~cat~tering. This procedure is correct provided that: 
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(1) The subtraction procedure can be carried out with sufficient precision. This re- 
quires that the corresponding scattering data on a proton target are available with 
comparable or better accuracy and that the effect of deuteron binding energy can 
be corrected in a satisfactory manner. In general, both points are relatively easy 
to achieve. 

(2) Three-body effects are negligible. When a nucleon interacts with a deuteron, the 
entire system now consists of three nucleons. If there are fundamental three-body 
forces, their contributions will be present in pd- and nd-scattering but not in the 
scattering of one nucleon off another one. Hence, proton-deuteron scattering, for 
example, may not be the simple sum of p p  and pn-contributions alone. As we 
saw earlier, this may not be a problem, as three-body forces, if they exist, are 
expected to be weak. 

The information obtained from pn- and nn-scattering may not be any different 
from that in n p  and ppscattering. For example, the only difference between pn- and 
npscattering is whether the neutron or the proton is the target. Under time-reversal 
invariance, these two arrangements are expected to give identical results. 

As we have seen earlier, both p p  and nn are T = 1 systems. If nuclear force is 
charge independent, the results of pp- and nn-scattering can only be different by the 
contribution made by Coulomb interaction. Since the latter is well known, a comparison 
of pp- and nn-scattering results can, in principle, test the charge independence of nuclear 
interaction. However, the accuracy that can be achieved with nn-scattering is still 
inadequate for such a task. In the next section we shall see that there is a possible test 
at  low energies where high precision is relatively easier to attain. 

To simplify the notation, we shall use the symbol NN from now on to represent 
a system of two nucleons when there is no need to differentiate between neutrons and 
protons and the symbol np to represent both np and pn unless further distinction is 
required by the occasion. Furthermore, we shall assume that Coulomb contribution, 
where present, has already been taken out and we can therefore ignore it in the discus- 
sion. 

Our primary interest here is to relate scattering data to the "-interaction po- 
tential. A large collection of measured values at a variety of bombarding energies and 
scattering angles have been accumulated over the years. Instead of relating the poten- 
tial V directly to the scattering results, it is more common to reduce the experimental 
information to phase shifts 6t for different Gpartial waves. The merit of a particular 
potential is often judged by comparing the calculated phase shifts with those extracted 
from experimental data, such as the example shown later in Fig. 3-3. For this reason 
we shall briefly review first the subject of partial-wave analysis for NN-scattering. A 
more detailed discussion is given in 5B-2. 

Scattering cross section. The quantity measured in a scattering experiment is the 
number of counts registered by a detector at  angle (0,4).  The counting rate depends on 
the solid angle subtended by the detector at  the scattering center, the intensity of the 
incident beam, the number of target nuclei involved, and the differential cross section 
daldfi. Our primary interest is in da/dn, a function of the bombarding energy as well 
as the scattering angle. 
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In the nonrelativistic limit, the scattering of one particle off another is described 
by the Schrodinger equation. In the center of mass, the wave function is the solution 
of the erruation 

(3-64) 
h2 
2P 

--V2$ + (V - E)$ = 0 

where p is the reduced mass in the two-nucleon system. We shall be mainly concerned 
with short-range nuclear forces here (see $B-5 for Coulomb scattering), and conse- 
quently we can assume that V = 0 except in a very small region where scattering takes 
place. 

In the asymptotic region, far away from the small volume where V is different from 
zero, the wave function has the form 

(3-65) 

where the term exp{ikz} represents the incident plane wave and the part of the incident 
beam unaffected by the reaction. The scattered wave is given by a spherical function, 
T -  1 eikr , radiating outward from the scattering center. The probability of scattering to 
direction (19,d) is specified by the scattering amplitude f(e, #). For simplicity, we shall 
consider first only elastic scattering, and as a result, the wave number k in the center of 
mass of the two particles has the same magnitude before and after the scattering. The 
differential scattering croci? section at angles (el$) is given by Eq. (B-7) as the square 
of the scattering amplitude, 

d”PI 4) = 4)V (3-66) 
dR 

As shown in Fig. 3-2, the geometry of a scattering arrangement is such that it is 
convenient to place the origin of the coordinate system at the center of the scattering 
region and take the direction of the incident beam as the positive direction along the 
z-axis. The incident wave vector k and the scattered wave vector k’ define a plane, the 
scattering plane. 

Figure 3-2: Schematic diagram of a scattering arrangement. The scattering 
angle B is between wave vectors k, along the direction of the projectile, and k‘, 
that of the scattered particle. The result is independent of the azimuthal angle q5 
unless the orientation of the spin of one of the particles involved is known. 

If nucleons in the incident beam and in the target are not polarized-that is, there is 
no preferred direction in space with which the intrinsic spins are aligned-the scattering 
is invariant with respect to a rotation around the z-axis. In such cases, the cross section 
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is independent of the azimuthal angle 4 and the differential cross section is a function 
of the scattering angle 8 alone. We shall return later to the more general case where 
the orientation of the intrinsic spin is also detected for one or more nucleons involved 
in the scattering. 

Partial-wave analysis. For a central potential, the relative angular momentum t 
between the two scattering nucleons is a conserved quantity. Under such conditions, it 
is useful to expand the wave function as a sum over the contributions from different 
partial waves, each with a definite Gvalue, 

00 

(3-67) 

Here at are the expansion coefficients. Only spherical harmonics K,(B, 4) with rn = 0 
appears in the expansion since, in the absence of polarization, the wave function is 
independent of the azimuthal angle 4. We have explicitly included the wave number 
k here in the argument of the radial wave function Rt(k,r)  so as to emphasize the 
dependence on energy. 

For a free particle, I/ = 0, and the radial wave function reduces to 

(3-68) 

where k = m/fi and j&) is the spherical Bessel function of order L. If only elastic 
scattering is allowed by the potential, the probability current density in each partial- 
wave channel is conserved. The only effect the potential can have on the wave function 
is a change in the phase angle. In other words, 

(3-69) 

where 6t is the phase shift in the Ith partial-wave channel. (For more details, see §B-2.) 
Using Eq. (B-16), the scattering amplitude may be expressed in terms of 6t as 

(3-70) 

Using Eq. (3-66), the differential scattering cross section may be written in terms of 

2 
the phase shifts, 

as given in Eq. (B-17). The scattering cross section, the integral of da/dR over all solid 
angles, becomes 

4x 
a = 1 $dfl= - E(2e + 1)  sin2 &(k) 

k2 k 0  
(3-71) 

Decomposition into partial waves is a useful way to analyze the scattering results for 
a given bombarding energy. In particular, only a few of the low-order partial waves 
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can contribute to the scattering at low energies, as shown in $B-2. For realistic nuclear 
potentials, the orbital angular momentum is not conserved. A partial-wave expansion 
remains to be useful as only a limited number of !-values can be admixed by the 
noncentral forces. We shall see how to handle such cases later. 

Nucleon-nucleon sca t te r ing  phase shifts. Realistic nucleon-nucleon scattering dif- 
fers in several important respects from the simple, central potential processes discussed 
above. First, we found out earlier in $3-5 that  nuclear potential is a function of also 
the total intrinsic spin of the two nucleons. As a result, the total angular momentum 
J = L + S,  rather than the orbital angular momentum L, is conserved in the scattering. 
For two nucleons, the value of totat intrinsic spin S can be either 0 or 1. To determine 
the value of S, we need to detect the orientations, or polurizutions, of the spins of 
the nucleons involved. In fact, the information on NN-scattering is incomplete unless 
polarizations are also observed. Second, with sufficient energy, scattering can excite 
the internal degrees of freedom in niicleons, for example, by changing one of them to a 
&particle through such reactions as 

p + p + A" + n 

or producing secondary particles, such as pions, 

p + p  4 p + n  + 7r+ 
and baryon-antibaryon pairs, 

P + P - + P + P + P + F  

These are inelastic scattering events, as part of the incident kinetic energy is converted 
into excitation energies or mass of the particles created. 

Since we are dealing with identical fermions, the scattering of two nucleons can take 
place only in R state that is totally antisymmetric with respect to a permutation of the 
two particles, in the saine way ,w discussed earlier for the deuteron. For pp-scattering, 
we have T = 1 and the two niicleons are symmetric, as far as their total isospin wave 
function is concerned. If the intrinsic spins of the two protons are coupled together to 
S = 0 (antisymmetric state), the relative orbital wave function must be in a symmetric 
state and, as a result, only even !-values are allowed. For S = 0, we have J = !, and 
the partial waves for the lowest two orders of pp-scattering are 'So ( e  = 0) and 'D2 
( e  = 2). The phase shifts extracted from measured pp-scattering data for these two 
partial waves at bombarding energy less than 300 MeV in the laboratory are shown in 
Fig. 3-3(aj as iIliistrat.ive examples. Only the real part of the phase shifts are given. 
At, laboratory energy less than  300 MeV, contributions from inelastic scattering are 
still relatively unimportantr and the imaginary parts of the phase shifts extracted from 
measured scatt,ering cross sections are small. 

By t)he same token, partial waves for t,riplet, (S = 1) ppscat,t,ering have odd Pvalnes. 
The lowest order in this case is a p-wave ( e  = 1). When f? = 1 is coupled with S = 1, 
threcstates, with .I = 0, 1, 2, are produced. The phase shifts for two of the triplet of 
st,ates, 3Po and 3Pl, arc also shown in Fig. 3-3(a).  There is no admixture between the 
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Figure 3-3: Real part of nucleon- 
nucleon scattering phase shifts in de- 
grees for low-order partial waves [lo]: 
(a )  proton-proton scattering with con- 
tributions from the Coulomb potential 
removed, ( b )  isovector neutron-proton 
scattering, and ( c )  isoscalar neutron- 
proton scattering. Filled circles in the 
'So and 3S1 phase shifts of np-scattering 
are the calculated results using a Paris 
potential [138]. 

L I 
I I 

Laboratory energy in MeV 

two J = 0 states, 3 P ~  and 'SO, as they are of different parity. As a result, we find that 
both C and S are good quantum numbers here by default. 

The np-system may be coupled together t o  either isospin T = 0 or T = 1. For 
T = 0, the two nucleons are antisymmetric in isospin. In this case, the S = 0 states 
must have odd [-values in order to be antisymmetric in the total wave function. The 
lowest order partial wave here is b = 1 and the phase shifts for 'P1-scattering extracted 
from experimental da ta  are shown in Fig. 3-3(c). In order for p-wave np-scattering to 
be in the S = 1 state, it  is necessary for the total isospin to be T = 1.  The phase 
shifts in this case are expected to be identical to those found in pp-scattering, if nuclear 
force is charge independent and Coulomb effects are removed. An examination of the 
two sets of empirical p-wave phase shifts, 3P0 and 3P1, given in Fig. 3-3(b), shows that 
they are only slightly different from the corresponding values given in Fig. 3-3(a)  for 
pp-scattering. It is not clear whether the small differences come from the way the phase 
shifts are extracted from experimental scattering cross sections or they are indications 
of a weak charge dependence in the nuclear force. We shall return to this point in the 
next section in a discussion on the difference between the scattering lengths for pp- and 
npscattering. 

The other T = 0 phase shifts in the np-system, shown in Fig. 3-3(c) ,  are for triplet 
(S = I), even [-scattering. This is the first time we encounter a mixing of different, 
[-partial waves. Up to now, each phase shift has been characterized by a definite b- 
value (as well as J- and S-values) even though the orbital angular momentum is not 
fundamentally a good quantum number. Mixing of different b-partial waves has not 
taken place because of parity and other invariance conditions. As in the deuteron case, 
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the tensor force can mix two triplet states of the same J but different in f by two 
units ( P  = J f 1). For a given J-value, the scattering is now specified by two (energy- 
dependent) phase shifts, 65, for [ = J - 1 and 65, for ! = J + 1, as well as a parameter 
f J  to indicate the amount of mixing between the two at  a given energy. 

There are several ways to define the parameter fJ .  The usual convention used in 
the literature today is that of Stapp, Ypsilantis, and Metropolis (1321. In this system 
of definitions, the scattpring matrix (see 5B-6) for a given J is written in the form 

(3-72) 

In other words, t,he scattering matrix element from P = J + 1 channel to the same 
e = J + 1 channel is given by 

and from e = J - 1 channel to the same P = J - 1 channel, 

eZt6J = e2 l6~ ,  cos 2c5 

On the other hand, the matrix elements from P = J - 1 to P = J + 1, and from P = J +  1 
to e = J - 1, are given by 

These are generally referred to as the nuclear bar phase shifts. For the triplet J = 1 
state, the valiies of c1 deduced from experimental data are shown as a part of Fig. 3-3(c) 
for illust,ration. 

e 2 t h ~  = e t ( ~ ~ > + 6 ~ < )  sir1 2rJ 

Spin polarization in  nucleon-nucleon scattering. Because of spin dependence 
in the nuclear potential, the scattering cross sections between nucleons are different 
depending on whether the sum of their intrinsic spins is coupled to S = 0, 1. To observe 
S, it is necessary to detect the orientation of nucleon intrinsic spins. Since each nucleon 
is a spin-; particle, its projection on the quantization axis can either be +f or -f. If 
the spins of all the nucleons in the incident beam are aligned in a particular direction, 
tjhe beam is said tjo be a pol~rized one. Similarly, if the spins of the target nucleons are 
oriented along a given direction, the target is a polarized one. When the orientation of 
spins is taken into account, there are four possible combinations for the two nucleons in 
the initial state, as well as the final state, in a niicleon-nucleon scattering experiment. 
These fair  niay be represented as l + f , + f ) ,  I - f , + $ ) ,  I t f , - f )  and I - f , - f ) ,  Since 
spin orientations can be changed by spin dependence in the interaction, there are 16 
possible different polarization measurements that can be carried out, corresponding to 
starting from any one of the four incident spin combinations to any one of the four final 
ones. 

Mathernatically, we may writ4e the scattering amplitude as a 4 x 4 matrix, with each 
of the elements representing the probability for one of the 16 possible arrangements for 
the scattering. These 16 quantities are not independent of each other. Because of time 
reversal and other symmetries inherent in the scattering, only five matrix elements are 
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unique for each type of nucleon pair, i.e., np or pp-scattering. This can be seen by 
writing the five independent scattering amplitudes in the following manner: 

fl = f++,++ = f--7- f 2  = f++,-- = f--,++ 

(3-73) 
f 3  = f+-,+- = f-+,-+ f 4  = f+-,-+ = f-+,+- 

f s  = f++,+- = f-+,-- = f--,+- = f-+,++ 
= f--,-+ = f+-,++ = f++,-+ = f+-,-- 

where we have used + and - in the subscript to stand, respectively, for +f and -f 
projections of the spins of two nucleons in the initial and in the final states. 

Instead of scattering amplitudes f, it is more common to express NN-scattering as 
the matrix element of the t-matrix operator defined in Eq. (B-64). An element of the 
t-matrix is related to the scattering amplitude in the following way: 

(3-74) 

where I k )  and I k ' )  are, respectively, the initial and final states of the two nucleons. 
In the place of fl to f5, the t-matrix for nucleon-nucleon interaction is often written as 
a function of five coefficients, A, B, C ,  E ,  and F ,  in the form of an operator: 

tk'k(l12) = A + B U n ( l ) u n ( 2 )  + C{'n(l) + Un(2)) 

+ E U q ( l k q ( 2 )  + F%( l )UJ I (2 )  (3-75) 

The three directional vectors n, p ,  and q, along which the nucleon spin components 
are taken, are defined in terms k and k', 

.1 k ' - k  
q=- p = i j x f i  

k x k '  n=- 
Ik x k'( lk' - k (  

(3-76) 

The relation between the five coefficients A to F and the five scattering amplitudes 
f1 to f5, as well as other common ways of writing the NN-scattering t-matrix, can be 
found in standard references such as Bystricky, Lehar, and Winternitz (411. Instead of 
n p  and pp-pairs, decomposition of the NN-scattering amplitude into five independent 
quantities may also be carried out in terms of T = 0 and T = 1 states of the two 
nucleons. 

The amount of independent information obtained from scattering is greatly in- 
creased with polarization measurements. The experiments are, unfortunately, far more 
difficult to carry out than ordinary scattering measurements. Polarized beams are fairly 
common these days, and it is relatively easy to carry out analyzing power (A , )  mea- 
surements. Here, only beam is polarized. Because of spin dependence, the differential 
cross section at  a fixed scattering angle 8 may be different depending on whether the 
spin of the incident nucleon is polarized along the unit vector h defined in Eq. (3-76) 
or antiparallel to it. Such a difference is characterized by the analyzing power. This 
supplies one of the five independent quantities in the scattering. The sum of the same 
two differential cross sections supplies the other. 
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For additional information, the polarization of the scattered particle must be mea- 
sured. The only efficient way to detect the polarization of a nucleon is to carry out 
a second scattering off a target of known analyzing power. The asymmetry in the 
differential cross section of the second scattering provides us with information on the 
polarization direction of the nucleon after the first scattering. Since the cross section is 
low in general for nuclear processes, a second scattering greatly complicates the exper- 
imental setup and reduces the rate of data collection. In spite of such difficulties, more 
and more high-precision data involving the polarization of the scattered particle are 
becoming available. Valuable information can also be obtained using polarized targets. 
However, this requires sophisticated low-temperature techniques to "freeze" the spin 
orientations of the nucleons with respect to some given spatial direction, such as that 
provided by an external magnetic field. Data involving such targets are still quite rare 
as a result. 

Inelastic scattering. With sufficicnt kinetic energy available in the center of mass 
of the two-nucleon system, inelastic reactions become possible. Since the mass of the 
lightest meson, nil is around 140 MeV/?, we expect pion production to take place once 
t,he bombarding energy is above the threshold (see Fig. 3-4). As the energy increases, 
excitation of the internal degrees of freedom of the nucleon as well as the production 
of secondary particles become increasingly more likely. Inelastic scattering represents 
a loss of flux from the incident cliannel, and as far w the incident channel is concerned, 
the probability amplitude is no longer conserved. Such a situation may be described 
by a complex scattering potential. 

Both the scattering amplitude and the phase shifts produced by a complex potential 
are also complex in general. Let us define a scattering amplitude fc for the &h partial 

PROTON LABORATORY ENERGY (MeV) 

Figure 3-4: Energy dependence of the total cross section for pion production in 
ppscattering leading to  final states d + d, p + n + n+, and p + p  -I- no, (Adapted 
from Ref. 1901.) 
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wave by the expression 

f (0) = 2 j/-fc YtO(0) (3-77) 
c=o 

For purely elastic scattering, 

(3-78) 

as we have seen earlier. If inelastic scattering is also taking place, the scattering am- 
plitude becomes complex and may be expressed in terms of two real numbers: qt (the 
inelasticity parameter) and ( t ,  defined by 

(3-79) 

The energy dependence of complex scattering amplitudes is often displayed in the form 
of Argand diagrams in terms of the locus of the point 

1) (3-80) 
1 

= k f t  = -(v eli(t - 
22 

in the complex plane [22 ,  1521. 
An examination of the values deduced from experimental nucleon-nucleon scattering 

data shows that the phase shifts are essentially purely real until the energy is above 
300 MeV in the laboratory (~150 MeV in the center of mass). At much higher energies, 
the real and imaginary parts become comparable to each other, as more and more 
inelastic channels are open. Complete lists of phase shifts up to 1 GeV in laboratory 
scattering energy are available, for example, from Arndt, Hyslop, and Roper [lo]. 

3-8 Low-Energy Scattering Parameters 

Effective range analysis. If we make a partial-wave expansion of the scattering 
wave function, as given in Eq. (3-67) for example, and substitute the results into the 
Schrodinger equation (3-64), we obtain an equation for the radial wave function for 
orbital angular momentum e: 

+ V ( T ) R ~ ( ~ , T )  = ERe(k,T) (3-81) 

The term l ( t+ l ) / r2  comes from the angular part of the kinetic energy and is sometimes 
referred to as a centrifugal barrier, as it is repulsive to an incoming particle. The 
“effective potential” experienced by the scattering particle is then 

ti2 e(e + 1) 
e ( T )  = v ( T )  + -~ 

2p T 2  

as given in Eq. (B-24). Because of the barrier, scattering a t  low energies is dominated 
by partial waves for small [-values. In particular, for E < 10 MeV, nucleon-nucleon 
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scattering is essentially given by $-waves (t = 0) alone, as can be seen from Fig. 3-3 
from the fact that  only 60, the &! = 0 phase shifts, are significantly different from zero. 

When the kinetic energy E --+ 0, the total cross section remains finite for nucleon- 
nucleon scattering. The limiting value is often characterized by a length parameter a 
defined by the relation 

lim D = 47ra2 (3-82) 

The quantity 0. is known as the scattering length, and it is often convenient to discuss 
extremely low energy scattering in terms of it instead of the s-wave phase shift. The 
two quantities are related in the following way, as shown in Eq. (B-28): 

E-0 

1 
k-.O k a = lim W( --er60 sin bO]  

where Ic2  = 2pE/h2 and 8 indicates the real part. The energy dependence of 60 at  low 
energies is given by the effective range parameter T,,  defined by the relation 

1 1  
a 2  

kc0t60 = -- + -Tek2 (3-83) 

A more detailed discussion of these parameters and their relation to the nucleon-nucleon 
interaction potential is given in $B-3. 

Scattering length and effective range provide a useful way to parametrize informa- 
tion on low-energy nucleon-nucleon scattering. hrthermore,  these parameters may be 
related to observations other than "-scattering, such as deuteron binding energy. In 
addition, very accurate results can be obtained for the np-system by scattering slow 
neutrons off protons in hydrogen atoms bound in H2 molecules. For these reasons, 
a great deal of attention is devoted to the measurement and understanding of these 
parameters. 

Neu t ron  sca t te r ing  off hydrogen molecules. The hydrogen molecule, Hz, is a 
homonuclear molecule, a diatomic molecule made of two identical nuclei. Since the 
distance between the two atoms is large (7.8 x lo-" m), compared with the range 
of nuclear force, we do not need to consider any nuclear interaction between the two 
protons in a Hz molecule. On the other hand, being identical particles, they must obey 
the Pauli exclusion principle. Like other two-nucleon systems, the allowed states for two 
protons in a hydrogen molecule must be antisymmetric in the product of their orbital 
and spin wave functions. For this reason, the spin orientations of the two protons are 
correlated with their relat,ive orbital angular momentum, and such a correlation may 
be exploited for neutron-proton scattering length measurements. 

There are two low-lying states for a hydrogen molecule. The lower one in energy is 
the para-hydrogen state, in which the two protons are symmetric relative t o  each other 
in their spatial wave function. The higher energy state is the ortho-hydrogen state, 
in which the two protons are antisymmetric in spatial wave function. For an ortho- 
hydrogen, it is necessary that the intrinsic spins of the two protons be coupled together 
ta SH = 1 to satisfy the Padi principle. For this arrangement, Ms, the projection 
of SH on the quantization axis, can take on any one of three values, -1, 0,  and +1, 
and, consequently, there are three possible states associated with each ortho-hydrogen 
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molecule, The total intrinsic spin of the two protons in a para-hydrogen, in contrast, 
is SH = 0 and there is only one possible state. At room temperature, the thermal 
energy is much higher than the difference between the para- and ortho-hydrogen, and 
we expect ortho-hydrogen to have three times the statistical weight of para-hydrogen 
in a sample at thermal equilibrium. On the other hand, at low temperatures, hydrogen 
molecules tend to  go into the lowest possible energy state and, as a result, are almost 
completely in the lower energy para-hydrogen state. Thus the relative amount of para- 
and ortho-hydrogen in a sample may be controlled by varying the temperature of the 
sample. 

Measurements of low-energy neutron scattering from hydrogen molecules can be 
carried out with high precision partly because of the intense neutron flux available from, 
for example, reactors. By lowering the energy, the wavelength of incident neutrons can 
be made sufficiently long so that scattering off the two protons in a hydrogen molecule 
is a coherent one. Low-energy neutrons are also useful in that very little energy is 
transferred to the hydrogen target. Energy received by a molecule may cause transitions 
from para- to ortho-hydrogen states, and this reduces the accuracy that can be achieved 
in a measurement. For these reasons, the neutron energy is kept low, around 10 meV (1 
meV = eV), corresponding to the average thermal energy a t  temperahre 100 K. 
At such low energies, contributions from the effective range term in Eq. (3-83) may be 
ignored, and the scattering is characterized by the two np-scattering lengths. 

For e = 0, a neutron-proton system is either in its singlet state with S = 0 and 
T = 1 or in its triplet state with S = 1 and T = 0. The scattering length in the form 
of an operator may be expressed in the following way: 

a=-( ; 3a , + a,) + (u, - a,)s, . sp (3-84) 

where at is the scattering length in the triplet state and a, that for the singlet state. 
The operators s, = fg, and sp = !up act, respectively, on the intrinsic spins of the 
neutron and the proton. Similar to CT~ '62 given in Eq. (3-55), the scalar product sn-sp 
is sensitive to the sum of intrinsic spins of the neutron-proton system. It is easy to 
check that the expectation value of a in Eq. (3-84) is a, in a triplet state and a, in a 
singlet state for a neutron-proton system. 

Returning now to the hydrogen molecule, we may write the operator for the sum 
of the intrinsic spins of the two protons as 

S H  = Spl + 3p2 (3-85) 

In terms of SH, the scattering length for a slow neutron from two protons in a hydrogen 
molecule may be written in a form similar to Eq. (3-84) above, 

aH = $(3at + a,) + (at - a , ) s , .  S H  (3-86) 

The scattering cross section is given by the expectation value of aH squared, 

OH = 4?r(a2,) 
2 = 4n{f(3at + as) + (sat + a,) (Ut  - as)(& SH) + (at - a ~ ) ~ { ( S n  . S H ) ' ) )  

(3-87) 
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For iinpolarized incident, neutrons, the second term in the final form vanishes on averag- 
ing over all possible orientations of the intrinsic spin of an incident neutron. The third 
term may he simplified by applying the same argument in the following way. First, we 
expand the operat80r in terms of the Cartesian components of the intrinsic spins, 

(9, . SHy = s:,s;, + s:,s;, + s;,s;, 
+2%dnySffxSHy f 2SnySnzSNySHz + 2snz~nzsHzsHz 

The expectation values of the last three terms in the expression are again zero for an 
iinpolarized neutron beam. For the first three terms we note that, since g2 = s ~ + s ~ + s ~  
and (3’) = 4, we have 

As a result, 

2 2 (sn,) = ( 8  ) = ( S i r )  = a 

(s:,s:;, + S&s;[,, 4 s:,s;,) = :(s;,= + SiV  + SiU) = k ( S i )  = $SH(SH 4 1) 

and 
UIf = a((3a.t + a8)2 + (at - fl,)2SH(Sf{ + 1)) (3-88) 

For para-hydrogen, we have SH = 0, and the cross section is 

opara = ~ ( 3 a t  + a s ) 2  (3-89) 

For ortho-hydrogen, we have SH = 1, and the result is 

gortho = n(3at as)’ + 2n(flt - a,)2 (3-90) 

From the values of upara and (Tortho measured with slow neutron scattering off hydrogen 
molecules, the values of scattering lengths a, and at may be deduced, and the results 
are listed in Table 3-3. Datja of similar qiiality can also be obtained from coherent 
scattering of slow neut,rans from protons boiind in crystals, from crystal diffraction, 
and from reflection of slow neutrons by liquid hydrocarbon mirrors. 

Table 3-3: Nucleon-niicleon scattering length (a) and effective range ( re ) .  

9 = 0, T = 1 (fml 

-17.1f0.2 
2.794f0.015 

-16 .6f0 .6  

2.84f0.03 
-23.715f0.015 

2.73f0.03 

S =  1, T=O (fm) 
- 
-- 
- 
- 

5.423rt0.005 
1.73f0.02 

Neutron-pro ton  scattering length.  Let us examine first t,he singlet scattering 
length for tlie np-systmi. Since this is a system with isospin T = 1, we can corn- 
pare its value with and an,,, the scattering lengths for pp- and nn-scattering. The 
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signs in all three cases are negative. Using the definition for the sign given in 5B-3, this 
means that there is no bound state for two nucleons in T = 1, a fact we encountered 
earlier in the discussion on deuterons. 

The pp-scattering length up is easily measured from low-energy proton scattering 
off a hydrogen target. However, since the cross section for Coulomb scattering, given 
later in Eq. (4-7), is inversely proportional to the square of the energy, the observed pp- 
scattering at low energies is dominated by electromagnetic effects. In principle, one can 
subtract the contributions of the Coulomb term from the measured values. However, 
the accuracy one can achieve in practice is rather limited, as the cross section for 
nuclear scattering is only a very small part of the total measured value. For example, 
the scattering length corresponding to the measured cross section is -7.823 f 0.01 fm, 
and after correction for Coulomb effects, the pp-scattering length is -17.1 f 0 . 2  fm (see, 
e.g., Ref. [112]). 

Measurements of the nn-scattering length are complicated by the absence of fixed 
neutron targets. Several different types of experiment have been carried out to deduce 
the value of a,, using either deuterons or tritons in reactions, such as 

n + d - + p + n + n  n + t - + d + n + n  
d + d - + p + p + n + n  t + d -+ 3He + n + n 

t + t - t a + n + n  

With the availability of good quality pion beams in recent years, the reaction 

A- + d + y + n + n  

has also been used to reduce the measured uncertainty of a,,,,. Here, instead of relying 
on scattering of neutrons off neutrons, the value of a,, is obtained from “final state 
interaction,” that is, changes in the observed reaction cross section due to interaction 
between the two emerging neutrons. The observed values of unn are displayed in Fig. 3-5 

Figure 3-5: Distribution of the measured values of nn-scattering length a,, in 
chronological order from left to right. The average value of -16.6 f 0.6 fm is 
indicated by the dashed line. (Taken from Ref. 1731.) 
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in chronological order, and the average of these values, shown as the dashed line in the 
figure, is listed in Table 3-3. 

A comparison of the three values of T = 1 scattering length is of interest. First we 
find that the value unP = -23.715f0.016 fm is noticeably larger than those for a,,,, and 
a,,,,. It is tempting to treat the difference a.. a possible indication of charge dependence 
in nuclear force. However, most, of the difference may be explained by the following 
argument. At low scattering energies, the two nucleons are never very close to each 
other and, as a result, only the long-range part of the nuclear force is operating. The 
nuclear interaction here is dominated by the exchange of a single pion. For a pair of 
protons and a pair of neutrons, only a neutral pion can be exchanged. On the other 
hand, a charged pion can also be exchanged in the interaction between a neutron and 
a proton, as shown in Fig. 3-6, This can take place by the proton emitting a R+ and 
changing itself into a neutron while the original neutron becomes a proton on absorbing 
the positive pion. Alternatively, the neutron may emit a R-  and change into a proton 
while the original proton converts itself into a neutron on absorbing the pion. These are 
“exchange” processes, as the “identities” of the neutron and proton are interchanged. 
Since in quantum mechanics i t  is not possible to follow the trajectory of a particle as 
it interacts with another indistinguishable particle, there is no way to associate either 
one of the two nucleons in t3he final state with a particular one in the initial state. 
As a result, we cannot distinguish an exchange process from a direct one in which a 
neutral pion is exchanged and the contributions of both processes must be included in 
an npscattering. Because of the small mass difference between charged and neutral 
pions, 

m+ - m,o = 4.6 MeV 

we expect a small difference in the interaction between a proton and a neutron from 
that for two identical nucleons. In this way, most of the difference between the np- 
scattering length in the triplet state and the scattering lengths for pp- and nn-systems 
can be accounted for (for more details, see, e.g., Ref. [149]). The observed difference 
of nnp from upp and an,,, therefore, cannot be taken as an indication of a fundamental 
charge dependence in the nuclear force or in the strong interaction itself. 

P P  n n P n n 

Figure 3-6: One-pion exchange diagrams: ( a )  ppinteraction, ( b )  nn-interaction, 
( c )  direct term, and ( d )  exchange term for np-interaction. 
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The difference between app = -17.1 f 0.2 fm and a,,,, = -16.6 f 0.6 fm is not 
significant at this time because of the large uncertainty associated with the measured 
value of a,,,,. Within experimental error, p p  and nn-scattering lengths are equal to 
each other and the results support charge independence of nuclear force. However, it 
is worth noting that the measurement of nn-scattering length by Gabioud et al. [70] 
gave a value a,,,, = -18.6 f 0.5 fm from R -  + d + y + n + n reactions. Using improved 
techniques, the experimental uncertainty in this measurement is reduced compared with 
previous results. Since the value obtained differs from app by more than one standard 
deviation of experimental uncertainty, the charge independence of nuclear force may 
again be in question. A new type of experiment involving direct scattering of neutrons 
from neutrons using two intense colliding beams of neutrons has been planned at  the 
Los Alamos National Laboratory (731. 

For T = 0, the scattering length can only be measured on the triplet npsystem. 
The large number of significant figures in the value 5.423 f 0.05 fm is a reflection of the 
accuracy that can be achieved in slow neutron scattering. The positive sign indicates 
that there is a bound state, which we have already seen as the deuteron ground state. 
The fact that the value is significantly different from that for T = 1 is a clear indication 
of the isospin dependence of nuclear force. 

The values for the effective range may be obtained from low-energy nucleon-nucleon 
scattering as well as, for example, photodisintegration of deuterons or slow neutron cap- 
ture by protons. The best known values are given in Table 3-3 for comparison. Again, 
we find evidence for isospin dependence but there is no indication of any contradiction 
to the assumption of charge independence of nuclear force. The accuracies of the mea- 
sured values are, however, somewhat poorer than the corresponding scattering length 
measurements, in particular, for the npsystem. This is not surprising, as we are no 
longer in the extremely low-energy region where high precision is possible, as we have 
seen with scattering length measurements. 

3-9 The Nuclear Potent ia l  

One-pion exchange potential. When Yukawa's idea of a simple one-pion exchange 
potential (OPEP) was applied to nuclear force, it was found that it could fit exper- 
imental data only for internucleon distances greater than 2 fm. In retrospect this is 
not surprising. As we have seen earlier in 53-6, the pion mass is around 140 MeV/c2, 
corresponding to a range of approximately 1.4 fm. At shorter distances, contributions 
from sources other than single-pion exchange enter into the picture. This can also be 
seen, for example, from the values of s-wave phase shifts shown in Fig. 3-3. At low 
energies, the values are large and positive, indicating that the force is an attractive one. 
As the energy is increased to around 250 MeV in the laboratory for the 'So-channel and 
to just above 300 MeV for the 3S1-channel, the phase shifts become negative, showing 
that the force is now repulsive. This is generally interpreted as evidence of a hurd core 
in nucleon-nucleon interaction when the two nucleons are within a distance of the order 
of a femtometer between their centers. 

From a quark picture, such a strongly repulsive, short-range term in the interaction 
between nucleons is to be expected. Being fermions, each one of the three quarks inside 
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a nucleon must occupy one of the three lowest available states. When two nucleons 
are close together, a large fraction of their volumes overlap each other. As a result, 
the six quarks in a two-nucleon system can no longer be considered as two separate 
groups consisting of three quarks each. The Pauli exclusion principle between the 
quarks demands that three of the six quarks must go to states above the lowest ones 
already occupied hy the other three. A large amount of energy is required t o  make this 
transition. From the point of view of nucleon-nucleon scattering, this additional energy 
shows up as a great resistance for the two nucleons to come very close to each other, 
almost as if there is some sort of impenetrable barrier between them. Unfortunately, 
it is not easy to  obtain a quantitative predication. To start with, 300 MeV is a very 
low energy for QCD to carry out any sort of reliable calculations. As a result, we have 
no precise way yet of evaluating the range or the strength of the repulsive core from 
fundamental considerations. 

At the hadron level, it is also difficult to generalize the one-pion-exchange picture, 
designed to understand the long-range part of the force. In addition, the OPEP also has 
difficulties in relating the strength of nucleon-nucleon interactions to the observed mag- 
nitiide of pion-nucleon interactions. If two nucleons interact with each other through 
the exchange of a virtual pion, the strength of the interaction must be related to the 
probability of a nucleon emitting and absorbing real pions. Such probabilities are, 
in turn, connected to the coupling constont, or interaction strength, between a pion 
and a nucleon. In the language of field theory, the strength is characterized by the 
pion-nucleon coupling constant & N ,  analogous to the factor g in Eq. (3-62). Models 
of nuclear force built solely upon the one-pion-exchange picture have found that, in 
general, the value of g,,N obtained, for example, from pion-nucleon scattering cannot 
be used directly to calculate the coupling constant for nucleon-nucleon scattering. As 
a result, the value for two nucleons is often treated as a parameter, adjusted to fit the 
nucleon-nucleon scattering data. 

One-boson exchange potential. Our present view is that nuclear force may be 
divided into three parts, as illustrated schematically in Fig. 3-7. The long-range part 
(T > 2 fm) is dominated by one-pion exchange. If exchanges of a single pion are 
important, there is no reason to exclude similar processes involving two or more pions 
and mesons heavier than pions. The range of interaction associated with these more 
massive bosons is shorter, and for this reason, the intermediate-range part of the nuclear 
force (1 fm< T < 2 fm) comes mainly from exchanges of single heavier mesons and two 
pions. The hard core in the interaction (T 5 1 fm) is made of heavy meson exchanges, 
multipion exchanges, as well as QCD effects. 

It is helpful to use pictures based on Feynman diagrams in field theory to represent 
the various boson exchange terms. The exchange of one pion between two nucleons 
may be represented hy the diagram given in Fig. 3-8(n).  An implicit assumption in the 
diagram is that  the time axis is in the vertical direction. Two nucleons with momenta 
p ,  and p , ,  represented by the t,wo solid lines, are moving freely until time tl when a 
(virtual) pion is emitted by nucleon 1. The pion emission, represented by the dashed 
line, changes the momentum of nucleon 1 from p l  to p i .  At time tz ,  the pion is absorbed 
by nucleon 2 and the momentum of the nucleon is changed from p ,  to pa 8~ a result. 
For simplicity, the diagram is often abbreviated in the form shown in Fig. 3-8(h). 
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Figure 3-7: Schematic diagram 
showing the different parts of a 
nucleon-nucleon potential as a func- 
tion of distance r between two nu- 
cleons. The hard core radius is 

ergy >1 GeV to bring two nucleons 
closer than (twice) this distance. 
The main part of the attraction lies 
at intermediate ranges, at radius 
-1 fm, and is believed to be dom- 
inated by the exchange of scalar 
mesons. The long-range part, start- 
ing at around 2 fm, is due to the 
single-pion exchange. 

around 0.4 fm and it takes en- V r )  

L- 

hard scalar meson pion 
core exchange exchange I-* 

Following the same rules, a two-pion exchange process may be represented by that 
shown in Fig. 3-8(c). On possible form of two-pion exchange term is given by Fig. 3-8(d), 
in which the intermediate state of one of the nucleons becomes a A-particle, shown as 
a double line, as a result of absorbing the pion. Since a pmeson decays into two pions 
with a mean life of only 4 x s, the exchange of a pmeson, shown in Fig. 3-8(e) ,  
may be considered as a special type of two-pion exchange term. Similarly, the exchange 
of an w-meson is a type of three-pion exchange (not shown) as w decays to three pions 
with a mean life of 8 x s. Figure 3-8(f) is another type of two-pion exchange 
term where both pions are emitted before either one is absorbed. In contrast, the two 
pions in Fig. 3-8(c) are emitted and absorbed one after another. As a side interest, a 
three-body force may arise, for example, as the result of a nucleon emitting a pmeson. 
The two pions from the decay are absorbed by two different nucleons, as shown in 
Fig. 3-8(g). As a result, there are three nucleons involved in the process. 

Nucleon-nucleon potentials. There are two general approaches to construct a po- 
tential that has the correct form for long-, intermediate-, and short-range parts. The 
first is a phenomenological one which generalizes the one-pion exchange idea to a one- 
boson exchange (OBE) picture. To keep the form simple, only the exchange of a single 
boson is allowed. In addition to pions, heavier mesons are introduced to account for 
the intermediate range. To compensate for multimeson exchanges, the strength for 
each type of meson exchange is left as a parameter to be determined by fitting, for 
example, "-scattering data. The hard core is put in explicitly "by hand" without 
any reference to its source. The strength of such an approach lies in its simplicity. 
There are, however, several problems. The lifetimes of many of the mesons involved 
are sufficiently short that the validity of a model involving the exchange of these par- 
ticles without considering their decay is not very sound. Furthermore, in order to fit 
experimental data with a minimum number of terms, the range of each OBE term and 
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Figure 3-8: Diagrammatic representation of meson exchange between two nu- 
cleons: (a ,  6) one-pion exchange, ( c )  two-pion exchange, (d) two-pion exchange 
with intermediate state involving a A-particle, (e) p-meson exchange, and ( f )  
another type of two-pion exchange term with both pions emitted before either 
one reabsorbed. An example of three-body force is shown by (9) .  

consequently the masses of the mesons exchanged often become adjustable parameters 
as well, with little or no relation to real mesons. These “fundamental” objections to 
such phenomenological potentials, however, should not detract us from their successes 
in a variety of applications. 

A second approach in constructing a nucleon-nucleon potential is to make use of 
our knowledge of hadroris as much as possible and treat phenomenologically only those 
aspects, mainly short-range interactions, of which we have incomplete knowledge. Such 
a program was carried out, for example, by the Paris group 1138) and the Bonn group 
[loll with great, success. The one- and two-pion exchange parts of the potential are well 
known and both groups used essentially the same approach. For the less well known 
short-range parts, different techniques were employed, 

It is perhaps of interest to examine three important differences in the two potentials, 
in part to see the possible future direct)ion in the development of nuclear force studies. 
The first is the treat,ment of three- and four-pion exchanges that form a part of the 
short-range interaction. Here the Paris potential used a phenomenological approach 
and dotermined some of the parameters involved by fitting them to known data. The 
Bonn potential made an estimate of the effect instead. 

A second difference in tho two potentials is in the treatment of the A-particle. 
As we have seen earlier in Fig. 2-3, a strong resonance in the scattering of K+ off 
protons is found at  lnboratory pion energy 195 MeV. Such a dominating feature in pion- 
niicleon reaction milst havc a profoimd influence on the nucleon-nucleon interaction. 
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For example, a nucleon may be excited to  become a A-particle in the intermediate 
state, as shown in Fig. 3-8(d). Since it is distinguishable from a nucleon, the A- 
particle is not affected by the Pauli exclusion principle with respect to nucleons in the 
nucleus. For applications involving nucleon energies above 300 MeV in the laboratory, 
the formation of a A-particle is expected to play a significant role and must be included 
as a part of the potential. On the other hand, it is not easy to  incorporate such a 
strong inelastic channel in a potential except by putting in the resonance explicitly, an 
approach adopted by the Bonn group. 

The interactions between two antinucleons, and between a nucleon and an antin- 
ucleon, are also integral parts of a nucleon-nucleon potential. This is especially true 
if we take a fully relativistic approach where both nucleons and antinucleons appear 
together in the same wave function. Furthermore, experimental data are available for 
scattering of antinucleons off nucleons and nuclei (see, e.g., Fig. 8-9). Studies of such 
scattering using nucleon-nucleon potential, with antinucleons incorporated as a part, 
can tell us more about the two-nucleon system than considering nucleons and antin- 
ucleons as totally separate entities. There are several different ways to carry out the 
extensions to include antinucleons and, in this respect, tthe Paris and Bonn potentials 
differ also from each other. 

In spite of these differences, it is important to  realize that, a t  low energies where 
most of the experimental data are taken, calculations using both potentials have pro- 
duced very similar results. For instance, the values of 'So and 3S1 phase shifts obtained 
with both potentials are essentially indistinguishable from each other and only a rep- 
resentative example is shown in Fig. 3-3 as illustration. The close agreement between 
the two sets of calculated results and with values extracted from "-scattering data 
is a demonstration of the degree of understanding already achieved in nucleon-nucleon 
interaction. 

Nucleon-nucleon interaction for bound nucleons. One of the reasons for having a 
nucleon-nucleon potential is to make use of it in nuclear structure and nuclear reaction 
studies. For this purpose it is not essential, in principle, to have a potential. Most 
of the applications require only many-body matrix elements of the nuclear interaction. 
A two-body force acts between two nucleons at  a time. Many-body matrix elements 
of such an interaction can always be expressed in terms of two-body matrix elements, 
similar in form to the nucleon-nucleon t-matrix given in Eq. (3-75). These matrix 
elements are, however, different from those for free nucleons in two important aspects. 
In the first place, there may be a difference in the interaction between a pair of nucleons 
inside a nucleus from that between a pair of free ones. In this chapter we have dealt 
mainly with the latter category. As we shall see in $7-5, interaction between bound 
nucleons is modified by the presence of other nucleons in the same nucleus and may be 
different from that operating between free or bare nucleons discussed here. 

A second problem is the question of whether a nuclear potential can be specified 
completely within the two-nucleon space. When two free nucleons interact, energy and 
momentum are conserved within the two-particle system. Let us consider only the 
nonrelativistic limit for simplicity. The momenta of the two nucleons, pl and p 2 ,  are 
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(3-91) 

where p1 and I L ~  are the reduced masses of the two particles in their center of mass. In 
other words, the sum of the momenta of the two nucleons is confined to lie on a spherical 
 shell^' in momentum space with t8he square of the radius, p:+pi+p: = 2pE, determined 
by the total available kinetic energy E in the center of niass. Under such circumstances, 
the two-body interaction t-matrix elements are said to he “on the energy shell” and 
are called on-shell matrix elements. Once nucleons are bound to a nucleus, energy- 
momentum conservation applies to the nucleus as a whole and the momenta of a pair 
of nucleons inside a nucleus are no longer restricted by Eq. (3-91). Interaction between 
two niicleons is “off the energy shell,” or of - shd l  for short, if the condition given by 
Eq. (3-91) is not sat,isfied, i.e., the sum of the momenta squared is not constrained 
by the kinetic energy of tlheir relative motion. Such off-shell interactions are usually 
built into a nucleon-nucleon interaction potential. On the other hand, since off-shell 
conditions do not exist for two free nucleons, we have no way of determining these 
parts of the potential using NN-scattering. In this sense, the nuclear potential cannot 
be completely specified by studies made on systems of two free nucleons alone. By the 
same token, purely phenomenological potentials with parameters fitted to data on two 
free nucleons have no way of knowing a priori whether they are correct for off-shell 
effects. 

Again there are two possible ways to solve the problem of the off-shell behavior of 
a niiclear potential. The first is to have a theory connecting off-shell effects to those 
on-shell, a relation that is implicit in all the models of nuclear potential. If we have 
the correct association between these two types, the off-shell behavior of a potential 
is conipletely determined once the on-shell matrix elements are given. However, we 
have not yet arrived at this level of understanding of nucleon-nucleon interaction. In 
the absence of such a theory, an alternative is to take a semi-empirical approach and 
determine the off-shell matrix elements by comparing them with data sensitive to such 
effects. Unfortunately, such investigations must be carried out on systems with more 
than two nucleons; however, not, too many quantities have been found that are useful 
for this purpose. An unambiguous determination of the off-shell behavior of nuclear 
force is still to be developed. 

Rela t ion  w i t h  quark-quark interaction. Although it is generally accepted that the 
foice between nucleons is a facet of the strong interaction between quarks, a quantitative 
connection between nuclear force and quark-quark interaction is still lacking. The root 
of the problem is the difficulty of carrying out QCD calculations at the low energies 
wliere nuclear physics operates. 

To study nuclear interaction in a quark model, we need a system of at least six 
quarks. The force between the quarks must be such that it satisfies the condition of 
confinement; that is, unless the two nucleons are very close together, the six quarks are 
clustered tightly into two separate groups, or “bags,” of three quarks each. At large 
enough distances compared with the average value between quarks inside a nucleon, 
the force betwpen t1iP.w two baEs of quarks must have a form consistent with that 
given successfully by meson exchange. At intermediate distances, the force must be 
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attractive and not too different from what is given by models involving the exchange 
of several pions and heavier mesons. With our present level of knowledge of low-energy 
strong interaction, it is not difficult to demonstrate such a relation must exist between 
quark-quark and nucleon-nucleon interactions; however, a proper derivation of nuclear 
force from QCD is still being developed. 

Qualitatively we can see how nuclear force may arise from a quark-quark interaction 
by making an analogy with the force between chemical molecules. The fundamental 
force here is electromagnetic. Charge distributions in many molecules are spherically 
symmetric so that there should not be any net electrostatic force left to act between 
two such molecules. However, since we know that such molecules do condense into 
liquids and solids, there must be a residual force between them, generally known as van 
der Waals force. It is useful to see how such a force arises between molecules so that 
we may gain some insight into the question of how force between nucleons comes from 
the interaction between quarks. 

Suppose a neutral molecule acquires an electric dipole moment p ,  for instance, as 
a result of fluctuation in its shape and, consequently, in its charge distribution. The 
electrostatic potential a t  a point r from the center of a dipole is given by the expression 

(3-92) 

where the angle 8 is between vectors p and F (+ = r / r  and T = [ P I )  and the factors 
within square brackets are needed if we wish to work with SI units. The electric field 
from such a dipole, 

(3-93) 

induces a dipole moment p‘ in another molecule with a magnitude proportional to the 
polarizability x, 

p’ = xE 
As a result, a dipole-dipole interaction arises between these two molecules with a 
strength 

1 2  2 6  p2 V ( r )  = - p ‘ -  E = -[(-) 4TCo ]x(1+ 3cos )- T6 (3-94) 

Note that the interaction energy is always negative regardless of the orientation of the 
first dipole assumed at the start. Consequently we have a force that is always attractive 
and varies as T-’. 

For a spherically symmetric molecule, the dipole moment is zero on the average, 
( p )  = 0. However, because of fluctuation, the instantaneous value of p may be different 
from zero (i.e., (p*) # 0) ,  resulting in an attractive van der Waals force. In the same 
way, an attractive force between two nucleons can also arise because of fluctuation. 
Instead of electrostatic force, we are dealing with the “color” force between quarks. 
Although strong interactions confine quarks within nucleons, a color van der Waals 
force can, in principle, occur between nucleons, just as a dipole-dipole force appears 
between a pair of molecules. In this way, we can see how a nuclear force arises from 
the residual interaction between quarks in two nucleons. Although the idea of a color 
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van der Waals force is pleasing, the actual form it produces has a range much longer 
than what is observed. Currently, the color van der Waals force does not seem to be a 
correct model for nuclear interaction without modifications. 

Problems 

3-1. Find the possible range of values for the depth of a one-dimensional square well, 
3 fm wide, that has only one bound state for a nucleon. 

3-2. If the surface of a deformed nucleus is given by the equation 

x2 + y2 + 1.22’ = R2 

where R = 1 .2A1f3 femtometers, calculate classically the electric quadrnpole m e  
ment, assuming A = 200, Z = 80, and the nuclear density is uniform inside the 
surface and zero outside. 

3-3. Carry out the angular part of the integration 

in Eq. (3-25) for the expectation value of the quadrupole operator in the L = 2 
and A4 = 2 state using the explicit forms of the spherical harmonics. 

3-4. For an infinite three-dimensional harmonic oscillator potential well, with oscillator 
frequency w ,  the radial wave functions for the lowest s-state and the lowest d-state 
are, respectively, 

where the oscillator length parameter v = M w / h ,  with M as the mass of a 
nucleon. Find the root-mean-square radii in each of these states taking hw = 
15 MeV. Compare the values obtained with the measured deuteron radius. For 
the radial wave function given above, what is the value of the off-diagonal ma- 
trix element (R1,1r21Rld)? Use this model to calculate the deuteron quadrupole 
moment, assuming that the wave function is predominantly made of the 3S1-state 
with a 4% admixture of the 3D1-state. 

3-6. Rewrite the right-hand side of following the rank 1 spherical tensor product 

(4) x @(2)),* = C ( l P l ~ l l m ) ~ P ( l ) a , ( 2 )  
PQ 

given in Eq. (3-36) in terms of the Cartesian components of Pauli matrices a(l> 
and 4 2 )  for nucleons 1 and 2, respectively. Show that, in Cartesian coordinates, 
it has the same form as an ordinary vector product of the two vectors. 
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3-6. Show that the spherical tensor rank of the operator 

is 2 in intrinsic spin space. That is, it may be written as an operator of the form 
CQq,(jlqj2q'IXM)ulquZq' with X = 2 and j ,  = j 2  = 1. Here (jlqj2q'IXM) is the 
Clebsch-Gordan coefficient. 

3-7. In classical electrodynamics, the scalar field 4(r)  produced by an electron located 
a t  the origin is given by the Poisson equation 

V24(r) = -47reS(r) 

Show that the radial dependence of the field is given by 

For a nucleon, the scalar field satisfies the Klein-Gordon equation 

Show that the radial dependence of the field is given by 

e-r/ro 

4 ( T )  = - 9 7  

Derive that the range TO is given by the relation rg = h/mc using the fact that 
the boson, with mass m, is a virtual particle and can therefore exist only for a 
time At given by the Heisenberg uncertainty relation. 

3-8. For a velocity-independent two-body potential, the only two-body scalars that 
can be formed using operators r = r1 - 7-2, S = 6 1  + 6 2 ,  and T= r1 + r 2  are r ,  
ul . u2, r1 s r 2 ,  ul-  a 2 7 1  . TZ and S12, where 4 2  = 3( r .  u1)(r. u2)/r2 - ( 6 1  . a2). 
Show that the operators 

(a) S . S  (b) (.4 
(c) (. x S) * (. x S) ( 4  (. x (Q1 - 6 2 ) )  * ( p  x (-1 - Qz)) 

can be reduced to functions of these scalars. Give the symmetry argument of why 
scalar products r . S and r + T a r e  not allowed for a nuclear potential. 

With velocity or momentum dependence, the only additional operator required 
is L - S,  where L = r x p and p = i(pl - p 2 ) .  Show that the following terms do 
not form independent scalars either: 
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3-9. Calculate the s-wave phase shift of a neutron scattered by an attractive square- 
well potential of depth Vo and width W .  Obtain the scattering length a and 
effective range TO in terms of Vo and W .  

3-10. Show that the angular distribution of an s-wave scattering is isotropic. If the 
only nonzero phase shifts in a hypothetical scattering of a particle off another 
are -9- and p-waves, find the angular distribution of the scattering croas section 
assuming that the particle is a neutron, the s-wave phase shift is 60 = 45", the 
p-wave phase shift 61 = 30°, and the scattering takes place with laboratory energy 
5 MeV. Plot the results for scattering angle between 0" and 180". 

3-11. If, instead of the observed value of J" = 1+, the deuteron ground state were 
J" = 0-, what are now the possible values of orbital angular momentum L ,  
sum of intrinsic spin S, and isospin T in this hypothetical state? What are the 
implications for nuclear force if this were true'? 

3-12. Show that, for any function f ( ~ )  of r ,  

@f laf laf  
V ( a .  01) z= ?(a. e )  - - -- + u-- 

[JT'  T a] T a r  

where .i. is an unit vector and Vz = -V1 = 0. 

3-13. At distances sufficiently large that overlap between their densities may be ignored, 
t,he interaction between two nucleons may be shown to be similar to that between 
two point, dipoles, 

Under the assumption of one-pion exchange, we may take the radial dependence 
t,o have the form 

V ( T )  (Ul . Vl)(UZ ' VZ)f(f-) 

e-r/ra 

f ( T )  = 7 
where 

hC 
7'0 = - 

is the range. The strength of the potential may be related to the pion-nucleon 
coupling constant g (g2/hc cx 0.081 f 0.002). Except for isospin dependence, 
which we shall ignore here for simplicity, the potential may be written as 

m,c2 

Use the result of Problem 3-12 above to show that V ( T )  can be expressed in terms 
of the tensor operator 5'12 given in Eq. (3-38), 



Chapter 4 

Bulk Properties of Nuclei 

In general, observations made on atomic nuclei can be separated into four categories: 
energies, static moments, transition probabilities, and reaction rates. In this chapter, 
we shall be concerned primarily with the first two. In particular, we shall examine 
the energy, spin, isospin, and static moments of nuclei in their ground states. F'rom 
their variations across the periodic table, we can gain some useful insight into the bulk 
properties of nuclei. 

4 1  Electron Scattering Form Factor 

The best tool to study the density distribution of nuclei is electron scattering. Besides 
being a point particle, the electron also can be accelerated easily. It interacts with 
nuclei predominantly through electromagnetic interaction. This is an advantage, as 
the interaction is well known and the results are relatively easy to interpret. On the 
other hand, the scattering is only sensitive to charge and can only probe the distribution 
of protons in the nucleus. 

Form factor. The density distribution of a nucleus is given by the square of the wave 
function !P (T ) ,  usually that for the ground state, 

PtT)  = IWl2 
For the charge in a nucleus with proton number Z, it is more convenient to define the 
charge density distribution as 

In this way the dependence on the total charge is made explicit and the wave function 
Q ( r )  can be taken to be normalized to unity. 

The actual quantity obtained in an electron scattering experiment is the Fourier 
transform of &h(r) ,  given by the integral 

Pch(T) = zI*(r)12 (4-1) 

F ( q )  = 1 p&(T)e iq  dV (4-2) 

This is known as the charge, or longitudinal, form factor, to distinguish from the trans- 
verse form factor to be discussed later. 

105 
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Usually we are only interested in the radial dependence of the density. As a result, 
we can average over the angles and consider only pch(r) .  The angular part of the 
integration in Eq. (4-2) can be carried out explicitly in this case and the (radial) charge 
form factor reduces to the expression 

It, is a function of q2 ,  the square of the momentiim transfer to be defined later in 
Eq. (4-13), as q2 (rather than q )  is a proper Lorentz scalar. We shall also see in 
Eq. (4-19) that F(q2)  is an even function of q. 

In terms of F ( q 2 ) ,  the cross section for elastic scattering of electrons off a spin J = 0 
nucleus may be expressed as 

(4-4) 

where (dc~/dR),,i,~ is the differential cross section for scattering off a point particle 
carrying the same amount of charge. This gives a physical meaning to the (square of 
the) form factor as the ratio of the observed scattering cross section to the expected 
value for a point nucleus. The density distribution is obtained from F(q2)  by applying 
an inverse of the transformation given in Eq. (4-2), 

Examples of charge density distribution obtained this way are shown in Fig. 4-1. 

Radius (fm) 

Figure 4-1: Charge densities of "0, 40Ca, and "'Pb obtained using Eq. (4-21). 
The Fourier-Bessel coefficients come from fits to electron scattering data 1511. 

For elastic scattering off J = 0 states, only the "electric" part of the interaction 
can contribute. On the other hand, states with J 0 have usually nonzero magnetic 
moments that can interact with the intrinsic magnetic dipole moment of the electron. 
As a result, we have an additional term. In the place of Eq. (4-4), the cross section is 
now given by 
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where 6 is the scattering angle. The additional contribution is characterized by the 
transverse form factor F T ( q 2 ) .  In terms of operators, longitudinal and transverse form 
factors are related to electromagnetic moments given in $4-6, and transition probabili- 
ties between states are given in s5-3. 

Scat ter ing off point particles. A convenient starting point for discussing charged 
particle scattering is the Rutherford formula for differential cross sections at  scattering 
anele 8. 

It is intended for a point projectile carrying a charge ze  scattering off a point particle 
target with charge Ze. The original application was to analyze a-particle scattering 
off nuclei. Since the projectile was obtained from the decay of long-lived, naturally 
occurring radioactive nuclei, the kinetic energy T in the center of mass was low. Fur- 
thermore, the ground state spin of an a-particle is 0, and as a result, we can ignore any 
influence due to spin. Departures in the observed scattering can then be attributed to 
finite nuclear size. 

We cannot simply use the Rutherford formula as the quantity (da/di2)p,i,t in 
Eq. (4-6) without some modifications. First, we are primarily interested in electrons 
with de Broglie wavelength on the order of nuclear dimension or shorter. The kinetic 
energy required is much higher than the rest mass energy of 4 . 5  MeV. As a result, a 
relativistic form of the Coulomb scattering formula must be used. Second, electrons are 
Dirac particles, each one with intrinsic spin s = f. The magnetic moment associated 
with it makes a contribution to the scattering in addition to the purely electrostatic 
one given by Eq. (4-7). The replacement is the Mott formula 

It gives the differential cross section for scattering relativistic electrons off point-charge 
particles. Here p is the magnitude of the momentum, E = 4- is the total 
relativistic energy of the incident electron, and p = v /c .  In the nonrelativistic limit, we 
have E M mec2 and the kinetic energy of the incident electron becomes T = p2/21ne. 
This gives US 

1 
P - 2 2 0  - E - 

2pZc2 4T 
and the Mott formula reduces to that of Rutherford. 

Momentum transfer. I t  is often useful to express the scattering result as a function 
of the momentum transfer tLq from the electron to the nucleus. In the nonrelativistic 
limit, we can define a three-momentum transfer 

Q = k, - kb (4-9) 
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where Ak, is the incident electron momentum and hlcb is the final electron momentum. 
If the electron energy is high, it is more appropriate to use, instead, the Mandelstam 
variable t .  Let us represent the four-momenta of incident electron a and scattered 
electron 6 in the center of mass by 

ZE, 
e b  = (-3 kbz, ha) (4-10) Pa = (7 , kaz, kayr kaz) 

C 

where E, and Eb are, respectively, the center-of-mass energies of a and b. The four- 
momentum transfer is given by the difference between Q, and e b .  The square of this 
quantity is a Lorentz scalar given by 

t = -(ea - Cb)’ 

E n E b  = mzc’ + mic’ - 2- + 2ka kb cos 6 
C2 

m.=mb + - 2k,kb + 2ka kb cos 0 = -4k,kb sin’ (4-11) 
2 

For elastic scattering, m, = mb, ka = kb z k ,  and En = Eb. In this case Eq. (4-11) may 
be rewritten as 

t = -2k2(1 - case) = -4kZ sin2 - (4-12) 
e 
2 

The square of momentum transfer is reduced to 

e 2 ~ 2  e 
q2 = - t  = 4k2 sin’ - 2 (‘) sin’ - 

2 2 
(4-13) 

with the magnitrude of q simply related to the scattering angle. 

the solid angle. From Eq. (4-13), we have the relation 
It is also possible to express the differential cross section in terms of q2 instead of 

‘II dn = 2 x d ( ~ o s e )  = ?dq2 (4-14) 
k 

In the limit E 4 p c  = Akc, the Rutherford cross section may be approximated as 

(4-15) 

This result demonstrates that the differential cross section is mainly a function of the 
momentum transfer without any explicit dependence on the energy. 

Dirac formula. Since a nucleus is much heavier than an electron, it is often more 
convenient to express the scattering cross section in the laboratory frame of reference 
in which the target. is at  rest. The difference between the energies E, and Eb of, 
respectively, the incident and scattered electron is the energy taken away by the recoil 
of t,he target particle aa R result, of the scattering, 

E b  1 
En 1 + (2Ea/Mc2) sin2(O/2) 
- =  (4-16) 



94-2 Charge Radius and Charge Densitv 109 

where M is the mass of the target particle. 
In the limit that the electron rest mass may be ignored, the cross section in the 

laboratory for elastic scattering of unpolarized electrons off spinless ( J  = 0), point- 
charge particles is given by 

(4-17) 

For targets with a finite spin, there is an additional contribution coming from “mag- 
netic” scattering. Instead of the above expression, we have 

This is known as the Dirac formula and is used as the point particle scattering cross 
section in, for example, extracting form factors. To differentiate between the two terms 
in the expression, the first one is called the electric term and the second one the magnetic 
term. The relative contributions of these two terms may be found in the following way. 
From Eq. (4-13), we see that 

is much less than unity if the electron energy is much smaller than the rest mass en- 
ergy of the target particle ( E  (< Mc2) .  As a result, the magnetic scattering term in 
Eq. (4-18) may be ignored in elastic scattering. The exceptions are found at high ener- 
gies and backward angles. In the latter case, the c0sz(6/2) factor reduces contributions 
from the electric term compared with the sin2(8/2) dependence for the magnetic term. 
For inelastic scattering, the magnetic term dominates in cases where the electric term 
is forbidden by selection rules. 

4-2 Charge Radius and Charge Density 

Charge radius. From the charge form factor F ( q 2 )  deduced from electron scattering 
experiments, we can obtain the root-mean-square (rms) radius of a nucleus. At low 
momentum transfers, F ( q 2 )  may be expanded as an infinite series in q 2 .  To achieve 
this, we shall start with Eq. (4-3) and write the sine function in the integrand on the 
right-hand side as a power series in terms of its argument (qr).  Upon integrating term 
by term, we obtain the result 

1 
6 

= z(1 - - 4 2  < T 2  > +. . ,} (4-19) 
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where the overall factor Z comes from the riormalization chosen for charge densities 
given in Eq. (4-1). Since the sine function involves only odd powers of q, the final result 
contains only even powers. 

The radial integral in the second term of Eq. (4-19) is the expectation value of the 
radius squared. At low qZ1 the behavior of the form factor is dominated by this term, 
and the slope of F(q2)  in this region gives us the expectation value for the square of 
the radius. A plot of (r2)’/’ deduced from electron scattering and other measurements 
is given as a function of nucleon number A in Fig. 4-2. To see the dependence of (r2)lI2 
on All3,  the figure is made in terms of the ratio (r2)1/2/A1/3. Except for small A ,  we 
see that is roughly constant, with a value of 0.97f0.04 fm. This is a direct 
evidence of the notion that the nucleus is made of an “incompressible fluid,’’ with the 
volume increasing linearly with nucleon number A and radius All3. 

? 
-a 

-A ‘ e‘ 
L 

N 

V ’  

0 100 200 
NUCLEON NUMBER A 

Figure 4-2: Distribution of ( T ~ ) ~ / ~ / A ’ / ~  as a function of nucleon number A using 
values of (rz)’/2 deduced from electron scatkring data 1511. The horizontal lines 
are for ( T ’ ) ~ / ~  = (0.97 f 0.04) x All3  ferntometers. 

Not,e that the value of (rz)1/2 is not the nuclear radius R. This may be illustrated 
by the example of a constant-density sphere of radius R with 

po for r 5 R 
0 r > R  = { 

The volume of tthe sphere is then 

and the expectation value of r2 is given as 

(4-20) 
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This gives R = {(5/3)(r2)}1/2 = 1.29 ( r2 ) l / ' .  For more realistic radial density distribu- 
tions, such as the ones given below, the ratio R2/(r2) turns out to be slightly smaller 
than i .  For the value of M 0.97A1l3 obtained from Fig. 4-2, we come to the 
result R = roA'/3 with ro = 1.2 fm, as given in Eq. (1-2). 

Fourier-Bessel coefficients. Nuclear charge densities are often tabulated in terms 
of Fourier-Bessel coefficients. The density up to some cutoff radius R, is expressed in 
terms of jo(E), with spherical Bessel function of order zero, 

(4-21) 

The parameters a k  are known as Fourier-Bessel coefficients. Only a spherical Bessel 
function of order zero enters here, as the charge density operator is a scalar, carrying 
no angular momentum. For inelastic transitions involving multipole excitation of order 
A, spherical Bessel function j ~ ( [ )  takes the place of jo(E). 

The Fourier-Bessel coefficients may be expressed in terms of the density in the 
following way. Since 

and 1,1 sin(mns) sin(nns) dt = as,,, for integer m and n 

the Fourier-Bessel coefficients are related to the charge density through the integral 

In practice, the form factor F ( q 2 )  can only be measured up to some maximum momen- 
tum transfer. For this reason, the density p(r )  can be determined only up to a certain 
precision. This, in turn, implies that there is only a finite number of Fourier-Bessel 
coefficients that can be found from a given measurement. The accuracy achieved in us- 
ing a finite number of Fourier-Bessel coefficients to represent a charge density depends 
somewhat on the choice of the cutoff radius R, as well. Usually R, is taken to be just 
slightly beyond where the density essentially drops off to zero. For light nuclei, a value 
around 8 fm is often used and for heavy nuclei, 12 fm. 

Other forms of charge density. For many practical applications, density distribu- 
tions in terms of Fourier-Bessel coefficients are still too complicated. Furthermore, the 
density is essentially constant except in the surface ( r  M R )  region, as can be seen from 
examples shown in Fig. 4-1. This is particularly true for heavy nuclei where the nuclear 
size is large enough for the central region to be significant. 

Because of the short-range nature of nuclear force, nucleons near the surface of 
the nucleus are less tightly bound than those inside, for the simple reason that there 
are fewer nucleons in the vicinity with which to interact. As a result, nuclear density 
drops off more or less exponentially in the surface region. A density distribution with a 
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constant central region and a diffused edge may be represented by expressions involving 
fewer parameters than the number of Fourier-Bessel coefficients in Eq. (4-20). Several 
such forms are commonly used in both nuclear reaction and nuclear structure studies. 

The radial dependence of a density distribution with a diffused edge may be written 

(4-22) 

The two parameters c and z are determined, for instance, by fitting to densities derived 
from measured form factors, and the factor po is given by normalization. Equation 
(4-22) is generally known as a two-parameter Fermi or Woods-Saxon form. The meaning 
of c may be interpreted as the radius of the distribution to a point where the density 
drops to half of itjs central value, and t is the dz$lueness, related to the thickness of 
the surface region (see Problem 4-5). Examples of the values extracted from observed 
charge densities are listed in Table 4-1 for illustration. 

Table 4-1: Sample values of ( T ~ ) ~ / ~  and the parameters for two- and three- 
parameter Fermi forms of charge density distribation. 

Yucleiis 

1% 

2% 

4 0 ~ a  

"Sr 
llzCd 

I"Sm 

*OGPb 
2 3 8 u  

l84w 

2.730f0.025 
3.086f0.018 

3.482f0.025 
4.17 f0.02 
4.608f0.007 

4.989f0.037 
5.42 f0.07 

5.509f0.029 
15.84 

C 

2.608 

3.340 
3.766 
4.83 
5.38 

5.771 
6.51 

6.61 
6.805 - 

Z 

0.513 

0.580 

0.586 
0.496 
0.532 

0.596 
0.535 

0.545 
0.605 

W 

-0.051 

-0.233 
-0.161 

A somewhat better description of the observed density is provided by a modified 
Fermi form with an additional paramekr w, 

(4-23) 

generally known as the threeparameter Fermi form. Other formulas, such as the three- 
parnme:ter Gaussian form, 

ant1 t,lip harmonic oscillatm niotlrl form, 

pHo(r)  = pO(l  + z ( r ) z ] e - ( r / r ) z  
C 

are also in use. Tabulated values of these parameters for various nuclei using these 
forms can be found, for example, in de Vries, de Jager, and de Vries 1511. 
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4-3 Nucleon Form Factor 

At sufficiently high energies, giga-electron-volts and above, the de Broglie wavelength of 
an electron becomes much shorter than the size of a typical nucleus. In such cases, the 
scattering result is dominated by the charge distributions within individual nucleons. 
The primary interest shifts to the structure of nucleons rather than that for the nucleus 
as a whole. In the place of nuclear form factors, we are concerned with the analogous 
quantities for nucleons. We shall return at the end of $4-4 to the question of whether 
there is any difference in scattering off bound nucleons instead of free ones. 

Nucleon form factors. Since nucleons are spin-; particles, both electric and magnetic 
scattering contribute to the cross section. For reasons that will soon become obvious, it 
is more convenient t o  use the Sachs form factors G,(qZ) and G,(qZ) rather than F(q2)  
and F T ( q 2 )  of Eq. (4-6). This gives us the Rosenbluth formula for the differential cross 
section of electron scattering off nucleons, 

where the dimensionless quantity ( is given by 

c = 

The relation between Sachs form factors and longitudinal and transverse form factors 
may be seen by comparing Eq. (4-24) with (4-6). The Sachs form factors have the 
property that, a t  zero momentum transfer, 

(4-25) 
for a proton 

G,(O) = { Pp 1 for a proton 
0 for a neutron p, or a neutron, 

where pp and p,, are, respectively, the magnetic dipole moments of a proton and a 
neutron in units of nuclear magnetons (see Table 2-4). 

In the place of G,(q2) and G,(q2), the scattering cross section may also be written 
in terms of Dirac and Pauli form factors Fl(q2) and Fz(qz), defined by 

G E ( Q Z )  = F1(q2) - CF2(Q2) G,(q2) = N q 2 )  f M Q 2 )  
The main difference between these two sets of form factors is that, instead of electric and 
magnetic scattering, Fl(q2) and Fz($) are distinguished according to helicity u - p / l p l ,  
the projection of electron intrinsic spin u along its direction of motion p/lpJ. The Dirac 
form factor represents the helicity-preserving part of the scattering and the Pauli 
form factor Fz (q2) represents the helicity-flipping part. The Rosenbluth formula (4-24) 
is actually derived using a first Born approximation, involving only the exchange of 
one photon for the electron-nucleon interaction. In principle, corrections due to two 
or more photon exchanges are needed. However, comparisons with observations have 
shown that the formula works well to fairly high energies. 

Asymptotic forms. There are two interesting points connected with nucleon form 
factors. The first is that, in the limit of large momentum transfer, the two proton form 
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factors and the magnetic form factor of a neutron are identical to each other except for 
a scaling factor. The required factors can be deduced by examining Eq. (4-25), 

1 
GL(qz) = -G",q2) = L G k ( q a )  = G(q2) 

PP lpnl 
(4-26) 

The function G(g2) may be described by a dipole form, 

Empirically, the parameter 90 is found to be hqo = 0.84 GeV/c. 
Using the dipole form, the proton charge distribution becomes 

Pch(T) = pOe-'Or 

F'rom this, we obtain the square of the charge radius of a proton, 

Recause of the scaling relation (4-26), the magnetic radius of a proton must also have the 
same value. Note that the value 0.81 fm for the rms radius of a nucleon is slightly smaller 
than the corresponding average value ( T * ) ~ / ~ / A ' / ~  = 0.97 f 0.04 for nucleons in nuclei. 
If we use a uniform density sphere to approximate the proton charge distribution, as 
we did in the previous section for nuclei, we obtain the radius of a proton to be around 
1 fm. 

The electric form factor of a neutron Gi(q2)  is only known at small momentum 
transfers, q < 10 GeV/c, and is found to be much smaller than the corresponding 
magnetic form factor G&(q2) at the same momentum transfer. In addition, there are 
two other reasons why measurements of neutron electric form factors are difficult at 
high q. The first is the increase in the value of C in Eq. (4-24) with q, and ;t9 a result, 
the scattering cross section at high q is dominated by the magnetic form factor. The 
second is the absence of a fixed neutron target, and all our experimental knowledge on 
neutrons must be deduced indirectly from scattering off such targets as deuteron and 

qz IN fm" 

Figure 4-3: Dirac and Pauli form factors and charge distributions of proton and 
neutron. (Adapted from Refs. [SS] and 1981.) 
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3He. Based on the information available, the charge distributions obtained by applying 
Eq. (4-5) to the measured form factors are shown in Fig. 4-3. Since a neutron has no net 
charge, it is not surprising to find the Fl(q2) to be much smaller than the corresponding 
values for a proton. On the other hand, the values may be important in understanding 
some of the details in nuclear charge distribution to be discussed later in $4-5. 

4-4 High-Energy Lepton Scattering 

Let us return to the question of electron scattering off nuclei. At low energies, where 
the electron wavelength is much larger than the nuclear size, the scattering cross section 
is essentially given by the Mott formula (4-8). As the energy of the incident electron 
is increased, the extended size of the nuclear charge distribution comes into play and 
the scattering cross section is modified by the nuclear form factors. Our interest is still 
confined to elastic scattering, with the energy of the scattered electron E, differing 
from its incident value E, only by the amount taken up by nuclear recoil. The energy 
transferred to the nucleus is then 

(4-27) 

The relation between w and q2 given above may be taken as a definition of elastic 
scattering. 

Quasi-elastic scattering. As we increase the incident energy further, the electron 
wavelength eventually becomes short enough to be comparable with the size of a nu- 
cleon. At this point, coherence in th’e scattering from several nucleons at  the same 
time is no longer important and the scattering takes place essentially from individual 
nucleons. However, the situation is different from 
the energy transferred is given by 

The difference from Eq. (4-27) is that the nucleon 
of the target nucleus, appears in the denominator 

scattering off free nucleons in that 

mass M N  rather than M ,  thc mass 
Since M N  is different from M ,  the 

scattering of an electron from a “bound“ nucleon is no longer a true elastic scattering 
by the definition given in Eq. (4-27). It is, instead, a qzlasi-elasticscattering of electrons 
off individual nucleons. 

Quasi-elastic scattering differs from elastic scattering off free nucleons also in that 
nucleons in a nucleus are not stationary with respect to the nuclear center of mass. 
The average momentum of a nucleon may be estimated from the uncertainty relation, 

where R is the size of the potential well that binds the nucleon. This is essentially the 
Fermi momentum of a nucleon inside a nucleus. Since R is of the order of the size of the 
nucleus, i.e., a few femtometers, p ,  is of the order of 100 to 200 MeV/c. As a result, 



116 Cham 4 Bulk ProDerties of Nuclei 

there is a spread of the order of 100 MeV in the energy transferred in qumi-elastic 
scattering, around 10% of the total. 

S t ruc tu re  functions. At forward angles, the momentum transferred is small and the 
cross section is dominated by elastic Scattering. Since form factors decrease in value 
very quickly with increasing momentum transfer, the elastic scattering cross section 
rapidly becomes very small as the momentum transfer is increased, and the presence 
of inelastic scattering processes becomes apparent. The reaction cross section now 
depends in general on the amount of energy Rw as well as the momentum q transferred. 
The result is usually expressed as a double differential cross section, 

where the factor 4nZ2n2/y4 is the familiar Rutherford scattering cross section off a 
point charge given in Eq. (4-15). The functions F1(q2,w) and F2(q2,w), related to the 
form factors defined earlier for the (single) differential cross section daldC2, are usually 
referred to as the nucleon structure fimctions, as they express the difference of a nucleon 
from a point, particle. 

The definition of momentum transfer in an  inelastic scattering remains the same as 
that given by Eq. (4-9); however, its relation to energy is slightly different. In the limit 
that the electron rest mass can be ignored, the final form of Eq. (4-11) is equivalent to 

(4-29) 

the same as that given by Eq. (4-13). In addition to the energy taken away by target 
recoil, some of the incident energy is also expended in promoting particles from ground 
to excited states. 

Since nucleons are not “elementary’1 particles, quasi-elastic scattering off the con- 
stituent quarks and inelastic scattering involving excitation of nucleon internal degrees 
of freedom can take place in thr. same way as inelastic scattering off nuclear targets. 
The only difference between these two types of processes is that the energies involved 
in nucleon scattering are usually much higher. In high-energy electron scattering, it is 
customary to express the scattering in terms of the following two dimensionless quan- 
tit,ies: 

h2 x=- 
2Mw 

(4-30) 

instead of q2 and w. Let us rewrite the double differential cross section for inelastic 
scattering in terms of thew two variables. 

Froin Eq. (4-29), we obtain the relation 

0 ( l icq)2 McZ sin2 - = - - - -sl/ 
2 4&Eb 2Eb 

and for high-energy scattcring in the forward directions, 

(4-31) 

(4-32) 
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Instead of Eq. (4-29), we may also write q2 in terms of 1: and y, 

2ME. 
ti2 “Y q 2  = - 

Using Eqs. (4-31)and(4-32), the angular dependence on the right-hand side of Eq. (4-28) 
may be expressed in terms of z and y, 

where we have made use of the fact that 

from the definitions of fiw in Eq. (4-27) and y in (4-30). 

usually found in the literature, 
In terms of z and y, the double differential cross section may be written in the form 

In the derivation, the only property of an electron used is that its rest mass may be 
ignored; the formula can therefore be applied at sufficiently high energies to describe the 
scattering of other charged leptons, such as muons. For neutrino scattering, however, 
one must replace the factor 4?r(r2/q4 for Rutherford scattering with G;/2n, where GF 
is the Fermi coupling constant for weak interactions (see 55-5). The details can be 
found in standard texts on particle physics, such as Perkins (1151. 

EuropeanMuon Collaboration group effect in deep-inelastic scattering. Many 
different types of final states can be reached in high-energy scattering. If the cross 
section includes all the possible final states, the process is called a deep-znelastic, or 
incluswe, scattering, in contrast to exclusive scattering to a particular final state. One 
of the interesting questions in high-energy, deep-inelastic lepton scattering off nuclei and 
nucleons concerns the quark substructure of nucleons. Indeed, it was the identification 
of point-like objects inside nucleons in lepton-nucleon scattering, known as partons at  
the time of discovery, that provided the early experimental evidence for the existence 
of quarks in hadrons. 

The effect of quark substructure in lepton scattering may be formulated in terms of 
the nucleon structure functions introduced in Eq. (4-33). The relation applies equally 
well t o  lepton scattering off nucleons as well as nuclei. For the convenience of com- 
parison between the measured results on nucleon and nuclear targets, we shall define 
the structure functions for nuclear targets in terms of their values for a single nucleon, 
F t ( q 2 ,  x) and F t ( q z ,  x), by taking out a constant factor A from Fl(qz, x) and F ‘ 2 ( q 2 ,  x) 
in Eq. (4-33). This gives us the result 



118 Cham 4 Bulk Propertiea of Nuclei 

IM 

Let us compare the structure functions per nucleon obtained from high-energy lepton 
scattering off free nucleons and off bound nucleons in nuclei. 

From their differences in the charge distributions, we expect the structure functions 
for neutrons and protons to be different from each other and may, principle, be measured 
by separate experiments. However, for scattering off finite nuclei, the measured values 
will be an average between the contributions from neutrons and protons, without any 
rasy way to distinguish between them. Let us assume for simplicity that we have 
N = 2, which is true for light nuclei. For such targets, the contributions from bound 
neutrons and protons are equal in weight. The same relation between neutrons and 
protons is obtained from scattering off a deuteron target. Since the deuteron is a loosely 
bound systein, we can treat the two nucleons as essentially free, as we have done in the 
previous chapter for nucleon-nucleon scattering. 

Again, for simplicity, we shall ignore F1(q2,z), as it contributes only a small amount 
to the measnrad cross sections. If the quark substructure of a free nucleon is the same 
ns tliat of a bound nucleon in a nucleus, we expect the ratio 

(4-34) 

to be unity for ali values of momentum transfer characterized by the dimensionless 
variable 2. The experimental results, first reported by the European Muon Collabora- 
tion (EMC) group [12] and later confirmed by others, however, showed that not only 
R(r )  differs from unity but also the ratio changes as a function of 2. Examples of such 
results are shown in Fig. 4-4. The apparent departure would, on the surface, imply that 

Figure 4-4: Examples of cross sec- 
tions for high-energy lepton srat- 
tering off 4He, 2'Al, and 56Fe as 
ratios to that for deuteron, essen- 
tially the same quantities as R(.T) 
of Eq. (4-34). The points are the 
ineasureci values takrn from Sloan, 
SIriadja, and Voss 1130) and the 
smooth curves are the calculated re- 
sults of Akulinichev et, al. IS], 



$ 4 5  Matter Density and Charge Density 119 

Nucleus 

40Ca 

42Ca 

44Ca 

48Ca 

48Ti 

the internal structure of a bound nucleon, as shown by F2(q2, z), is somewhat different 
from that of a free nucleon. Most of the departure from R(z) = 1 can, however, be 
explained by the binding energy of nucleons in a nucleus. The only exception is in the 
very small z region, where measurements are difficult to make. As a result, it remains 
to be one of the unsolved problems in high-energy nuclear physics. 

(r2)1/2 (fm) t(fm) c(fm) z(fm) w 

3.4869 2.681 3.6758 0.5851 -0.1017 

3.5166 2.724 3.7278 0.5911 -0.1158 

3.5149 2.630 3.7481 0.5715 -0.0948 

3.4762 2.351 3.7444 0.5255 -0.03 

3.5844 2.580 3.8551 0.5626 -0.0761 

4-5 Matter Density and Charge Density 

We have seen in the previous sections that electron scattering is capable of mapping the 
charge density distribution in nuclei. The high precision achieved in the measurements 
enables us to ask a variety of interesting questions. Among these, the influence of 
neutrons on the charge distribution has been studied using zsotopic shift, the difference 
in the charge distributions of nuclei with the same number of protons but a different 
number of neutrons. If charge distribution in a nucleus is independent of neutrons, we 
expect the isotopic difference to be negligible. The measured results indicate that, in 
general, the shifts are small but not zero. The same effect can also be observed in other 
measurements, such as the energy of x-rays from muonic atoms and scattering using 
pions and nucleons. 

Isotopic shifts in  calcium isotopes. Let us take the even calcium isotopes its an 
example. The isotopic shift data, obtained from electron scattering [68], are summarized 
in Table 4-2. In addition to the root-mean-square radius, the values of the surface 
thickness t ,  the distance between 90% and 10% of the peak density, and parameters c, 
z ,  and w of the three-parameter Fermi distribution defined in Eq. (4-23) are also given 
to provide a feeling of the large surface region in these nuclei. 

The differences, for example, in the root-mean-square radius ( T ' ) ~ / ~  between the 
isotopes given in the table are quite small. However, the good accuracies achieved in the 
measured values indicate a genuine difference among them. Since the radius decreases 
by 0.01 fm in going from 40Ca to 48Ca, it means that the addition of neutrons to calcium 
isotopes reduces the size of the charge distribution of the same 20 protons when the 
neutron number is increased from 20 to 28. If we take the simple view that charges 
were distributed evenly throughout the nuclear volume, the charge radius should have 
increased by 6% based on the simple R = r0A1/3 relation. This is found to be true in 
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the case of 4RTi, a nucleus with two more protons and six more neutrons than 40Ca. 
Here, the size of the charge distribution is increased by 0.1 fm for 48Ti, not far from 
the expectation of an A1/3-dependence, instead of decreasing for 48Ca. 

There are two possible explanations for the decrease in the charge radius with 
increasing neutron number among even calcium isotopes. The first is that the addition 
of neutrons makes the protons more tightly bound and, hence, the charge radius is 
smaller. This is, however, not true for nuclei in general and has led to the speculation 
t,liat there are some other nuclear structure reasons for 48Ca to be a more tightly bound 
nucleus than its neighbors. 

A second explanation is based on the charge distribution within a neutron. The 
net, charge of a neutron is zero; however, as we have seen in $4-3, the charge distribu- 
tion inside a neutron does not vanish everywhere. One possible model for the charge 
distribution in a neutron is that the central part is positive and the region near the 
surface is negative, as shown in Fig. 4-3. The detailed charge distribution is not well 
known, because of the difficulty in measuring the small charge form factor. Hawever, a 
small excess of negat,ive charge in t)he surface region can produce about a third of the 
decrease in the charge radius in going from 40Ca to 48Ca, as suggested by Bertozzi et 
R I .  [26]. The other two-thirds may be attributed to the spin dependence (Darwin-Foldy 
term) in the interact,ion of probons with other nucleons in the nucleus. 

Regardless of the exact cause of the isotopic shift among calcium isotopes, it  is 
clear that neutrons liavc a definite influcnc,e on the measured charge distribution of 
a nucleus. Unfortunately data obtained based on electromagnetic interaction are not 
sufficient to provide us with the type of detailed information we need. In principle, 
strong int,eraction probes can be used to deduce the neutron distribution. The difficultty 
here lies in separating oiit the small effects dae to neutrons from a multitude of others, 
including those involving aspects of strong interaction that are not yet very well known. 

Muonic atom. A muon is a lepton with properties very similar to an electron. For 
this reason, it is possible to replace one of the electrons in an atom by a (negative) 
muon to form a m u o m  atom. However, since the mass of a muon is 207 times larger 
than that of an electron, the radii of the muonic orbits are much smaller than those of 
~lectrons. 

Consider first the case of a simple, hydrogen-like atom with Z protons in the nucleus 
and only a single electron outsidc. Using the Bohr model for this hydrogen-like atom, 
the radius of the nth orbit is given by 

n2h2 1 n2h2 
r"(e- )  = [47r€(1) - = -- 

Zm,e2  a h ~  Zm, (4-35) 

where me is the mass of an electron, a is the fine structure constant, and the quantity 
inside the square brackets converts the formula from cgs to  SI units. For a hydrogen 
atom (Z = l),  the ground state (n  = 1) radius is the well-known Bohr radius, 

fi. 
acm., (10 = - = 5.29 x lo-" In 

In arriving at  this result, we have only made use of the electrostatic potential between 
a Iiegativdy rhargtd elrctron and a positively charged nucleus. The charge distribution 
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in this case may be considered to  be concentrated at a point, as the electron is much 
further away than the extent of the nucleus. Since nothing special about the electron 
enters into the derivation, we can obtain the analogous results for a muonic atom by 
replacing me in Eq. (4-35) by m,, the mass of a muon, 

I n2fi2 nzm, 
?-,(p-) = -- - - ao- 

afLcZm, Zm, (4-36) 

Using similar arguments, we can arrive a t  the energy level of a muonic atom consisting 
of a single muon, 

m, (Zac)* En = -- - 
2 n2 

(4-37) 

by starting with the energy levels of a hydrogen-like atom given in most standard 
textbooks on quantum mechanics. 

The results of Eqs. (4-36) and (4-37) apply only to  a hydrogen-like atom. For atoms 
with Z > 1, it  is necessary that all the electrons except one are stripped off so as to 
remove the influence due other electrons. Such “screening” effects are, in general, quite 
difficult to calculate accurately. Fortunately, this is not a serious problem for muonic 
atoms with only a single electron replaced by a muon. Since the muonic orbits are so 
much smaller than the electronic orbits, there is very little chance of finding electrons 
between the muon and the nucleus, in particular for the low-lying orbits of interest to 
us. For this reason, the screening effect due to  electrons in a muonic atom may be 
ignored here and, as a result, the energy levels of a muonic atom may be approximated 
by that of Eq. (4-37) 

For a heavy nucleus, such as 208Pb with 2 = 82, the radius of the lowest muonic 
orbit from Eq. (4-36) is 

0.511 
82 x 106 

q ( p - )  N (10- = 3.1 x m 

or 3.1 fm, using a muon mass of 106 MeV/c2. This is actually smaller than the value 
of 7.1 fm for the radius of 208Pb, estimated using R = roAif3 with TO = 1 .2  fm. 
A more elaborate calculation shows that the muon spends roughly 50% of the time 
inside a heavy nucleus. As a result, the actual muonic orbits differ from those given 
by Eqs. (4-36) and (4-37) for a point-charge nucleus. Being very close to the nuclear 
surface, the low-lying muonic orbits are sensitive to the detailed charge distribution. 
The resulting changes in the energy levels may be observed as shifts in the positions. 
This, in turn, changes the energy of x-rays emitted when the muonic atom decays from 
one level to another. 

When a muon is captured by an atom, it is likely that the orbit is initially one of 
the higher ones. Being a different particle from the atomic electrons, there is no Pauli 
effect to prevent the muon from decaying to lower levels by emitting electromagnetic 
radiations Since the differences in the energy levels are larger than the corresponding 
electronic orbits because of the greater muonic mass, as can be seen in Eq. (4-37), the 
wavelengths of the radiation emitted are in the x-ray range. From the energies of these 
$-rays, we can deduce the muonic energy levels. The differences from the values given 
by Eq. (4-37) provide a measure of the charge distribution in the nucleus (for more 
details, see, e.g., Devons and Duerdoth 1521). 
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Pion-nucleus scattering. We have seen earlier in $2-6 that there is a strong pion- 
nucleon resonance in the spin-isospin (T,  s) = (!, f) channel at pion laboratory energy 
of 195 MeV (see Fig. 2-3). The dominance of the P33-resonance provides us with 
a unique opportunity to examine the difference between neutron and proton density 
distributions in a nucleus. 

There are six different possible reactions in pion-nucleon scattering with charged 
pions as the projectile: 

(a )  T+ + p  a+ + p  ( b )  a - + n - + n - + n  

( c )  7 r + + n + a + + n  (d )  a- + p  -+ a- + p  (4-38) 

(e) R + + ~ + R '  + p  ( f )  7 r - + p + 7 r o  + n  

The last two may be ignored here, as the scattered neutral pions are much harder to 
detect. Among the remaining four, only (a) and (b) have \tol = and must therefore 
t,ake place entirely in the isospin-$ channel. For reactions (c )  and (d), ltol = 4 ,  and the 
isospin is a mixture of 4 and f ,  From simple Clebsch-Gordan coupling of isospin, we 
find that 

That is, only a third of the scattering amplitude of either one of these two reactions is 
jn the isospin t = $ channel and the othcr two thirds are in the t = f channel. 

Since isospin is conserved in pion-nucleus reactions, the scattering amplitudes for 
the first four reactions in Eq. (4-38) may be decomposed in terms of isospin: 

1.) f*+pfO) = ft=a/*(Q) (6 )  f*-"(q = .ft=3/2(S) 

(c) f n + " ( e )  = $.ft=3/2(8) + ~ . f i = l / 2 ( e )  ( d )  f ~ - p ( ~ )  = ift=3/2(8) + :ft=1/2(O) 

1 At energies near the &-resonance, the scattering cross section in the isospin t = 
channel is much smaller than that in the t = 
shall ignore the t = f contributions. In this approximation, we obtain the ratios 

channel. To simplify the argument, we 

by taking squares of the scattering amplitudes. Thus, the difference between the elastic 
R+- and a--scattering cross sections off a nucleus is, to -10% uncertainty, the difference 
between neutron and proton density distributions. The method is particularly useful 
since pion scattering is sensitive mainly to the nuclear surface region where most of 
the differences in the neutron and proton densities are expected. This point has been 
verified in tests applied to n variety of nuclei. 

For the even calcium isotopes discussed earlier, differential cross sections for charged 
pirm sc:&t,ering confirm the observation, made originally with electromagnetic probes, 
that the proton distribution is essentially unchanged as we add more neutrons. When 
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the results of 180 MeV d-scattering off 40Ca and 48Ca are plotted on the same graph as 
shown in the left side of Fig. 4-5, very little difference can be detected. Since the energy 
is very close to the PsJ-resonance and the cross sections are dominated by scattering off 
protons, the data give strong support to the similarity of proton distributions in 40Ca 
and 48Ca. On the other hand, a definite difference is found in the results of scattering 
of n- off the same two nuclei a t  the same energy, as shown in the right side of Fig. 4-5. 
This is caused by the differences in the neutron distribution, a result expected from the 
eight additional neutrons in 48Ca. When we examine the n--scattering data off the same 
two nuclei at energies away from the &-resonance, the same type of difference is also 
observed except that  the magnitudes are smaller, and the ratio between scattering off 
neutrons and protons is closer to unity. However, the precision that can be achieved in 
pion scattering is not yet as high as that  with electrons. As a result, it is not possible 
to examine the detailed differences as we have done earlier with electron scattering 
results. 

lo’,-# , , , , , 

Figure 4-5: Angular distributions of 180 MeV at (left) and n- (right) scat- 
tering off 40Ca (triangles) and 48Ca (circles) targets. Similarity in the x+ cross 
sections shows that proton distributions in the surface regions of the two nuclei 
are essentially the same. The differences in the n- results demonstrate that the 
neutron distributions are different. (Adapted from Ref. [87].) 

Nucleon-nucleus scattering. We shall see later in Chapter 8 that the time spent 
by an  intermediate-energy (100 to 1000 MeV) proton in a nucleus is sufficiently short 
that  i t  is unlikely to suffer multiple scattering, i.e., projectile scattered more than once 
inside a target nucleus. The incident proton has only the opportunity to interact with 
one of the nucleons in the target, and as a result, the scattering is sensitive to  the 
density of nucleons in a direct way. The projectile proton can interact with either a 
proton or a neutron in the nucleus. From the small isospin dependence in the nucleon- 
nucleon interaction, we expect the result to be dependent on the differences in neutron 
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and proton distributions. The isospin dependence of nuclear force is, however, not 
strong enough to clearly differentiate between neutrons and protons, as in pion-nucleon 
scattering at  P3?-resonance. One way to proceed is to take it for granted that the 
proton density distribution in a nucleus is already known through electron scattering. 
Any difference observed in proton scattering may therefore he attributed to the presence 
of neutrons. Neutron density distributions obtained in this way depend a great deal on 
the model used to analyze the data, and the results are somewhat ambiguous compared 
with, for example, those ohtained from charged pion scattering at the P33-resonanre. 

4-6 Nuclear  S h a p e  a n d  Elec t romagnet ic  Moments 

Mul t ipo le  expansion of charge density. In electromagnetism, the potential #(F )  

at a point r due to a finite charge distribution q ( d )  is given by 

where the quantity inside the square brackets converts the expression from cgs to SI 
units. In the region T > T ’ ,  the potential may be expressed as an infinite series in terms 
of spherical harmonics, 

where we have made use of the notat>ion r = (T ,  0, $) and r‘ = ( T ~ ,  O f ,  $’). For a charge 
distribiit,ion pc.,(d) in a nucleiis 

where the multipole coefficients 

(4-39) 

(4-40) 

are quantities characterizing the distribution. Along the z-axis, we have cos 8 = 1 and 
Eq. (4-39) reduces to the familiar form given in many texts on electromagnetism for 
the potential of an arbitrary, finite charge distribution, 

If the charge dist3ribiition is nearly spherical in shape, Eq. (4-39) is a fast convergent 
series and the importance of higher order terms decreases very rapidly with increasing 
A. In fact, the potential of siich a charge distrihiition can often be approximated by 
the contribubion from the lowest nonvanishing order alone. We shall adopt the same 
philosophy here to describe the electromagnetic properties of a nucleus. Our interest 
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is mainly in the lowest few multipoles, as the moments of these are the only ones that 
can be measured in practice. 

Using the normalization for charge density given in Eq. (4-1), we can rewrite the 
right-hand side of Eq. (4-40) as an expectation value, 

This allows us to identify the operator for the (A, p )  electric multipole as 

OA,(E) = erxY;,,(e, 4) 
The complex conjugation on the spherical harmonics is irrelevant in most of the sub- 
sequent discussions, as we shall be concerned mainly with the p = 0 component. If 
we adopt a model that the nuclear wave function is made of products of single-particle 
wave functions (see §7-1), OA,(E) may be expressed a.s a sum of operators, each one 
acting on an individual nucleon, 

A 

OA,(E) = e C ~?Yi,,(o,, $,I = C e(i)?-Yi,,(ei, 4i) (4-41) 
protons i=l 

where, in the final form, we have introduced the symbol 

e for a proton 

{ 0 for a neutron 
e ( i )  = 

so that the summation may be taken over all A nucleons in the nucleus. Equation 
(4-41) is a general one, useful in discussing electric multipole transitions as well. 

If the charge distribution of a nucleus is spherical in shape, only &oo is different from 
zero. All higher order moments vanish, as can be seen from Eq. (4-40). Nonvanishing 
multipole coefficients, other than Qw, are therefore measures of “deformation,” or 
departures from a spherical shape. 

Multipole coefficients can also vanish for reasons of symmetry. For example, under 
an inversion of the coordinate system, 

(T ,B ,  4) p ’ (T ,  ?f - o,7T + 4) 

YAP(. - e,a + 44 = (-~YYAp(& 4) 

as given in Eq. (A-2). On the other hand, spherical harmonics has the property 

As a result, we expect all odd electric multipole coefficients to vanish. 
Since a nonvanishing odd electric multipole implies a breakdown of the symmetry 

under a parity inversion, it is of interest to find out if it  happens in practice. The lowest 
order is dipole. The neutron turns out to be the best candidate for this purpose, as it is 
a neutral particle and, hence, Qoo = 0. To have a nonzero electric dipole moment for a 
neutron, both time and parity invariance symmetries must be violated. Currently, the 
measured upper limit stands at 0.97 x e-cm, consistent with zero. On the other 
hand, it does not rule out the possibility of a small symmetry-violating contribution 



126 Chap. 4 Bulk Properties of Nuclei 

either. For our purposes, we shall a m i n e  that both parity and time invariance are exact 
symmetries and only even-order electric multipole moments may be different from zero. 

Angular momentum coupling imposes a restriction on the highest order multipole 
coefficients a state can have. The multipole operator rXY+(e, 4) is a spherical tensor 
of rank (A, p) and carries an angular momentum A. The expectation value of such an 
operator vanishes for ~1 state with spin J unless J,  A, and 3 can be coupled together 
to form a closed triangle. This is the same as saying that only multipole coefficients of 
X <_ 25 can be nonzero. For this reason, a J = 0 state has no multipole moment except 
X = 0. This may also be illustrated using the following argument. 

Classically, we can “see” the shape of an object, for example, by taking a pho- 
tograph. This is possible even for an object rotating at high angular velocities-all 
we need to do is t o  use an exposure time that is sufficiently short. For a quantum- 
mechanical object, we can also think in terms of taking a photograph of the object 
in order to find ont its shape. The only difference here is that the Heisenberg uncer- 
taint,y relation plays a role. Since A E A t  2 h, small At implies large AE. For our 
“thought experiment” of taking a photograph, At is the exposure time. If it is short, 
the photograph cannot be that for an object in a definite energy state. Instead, it is 
a superposition of all the states in  an energy interval A E  = tt/At. For a picture of 
an object in a particular eigenstatc, we need good energy resolution and consequently 
long exposure time. As a result, t,he rotating object may appear, under certain circum- 
stances, to be “spherical” in the sense that it looks to be the same regardless of the 
direction to view it. Qaantum mechanically, such an object is in a J = 0 state. Instead 
of photography, scattering is used in practice to carry out the observation. The iimi- 
tations imposed by the uncertainty principle on our thought experiment nevertheless 
apply. 

The expectation value of an operator depends on the spin J as well as M ,  the 
projection of J on the qnantization axis. The dependence on M is, however, a trivial 
one and given by a Clehsch-Gortlan coefficient. Using the Wigner-Eckart theorem, we 
find that, from Eq. (A-15), 

where all the dependence of the mat,rix element on M is contained in the 3j-coefficient 
(-Lik). Since the reduced matrix element ( J I I Q A ~ ~ J )  is common to all the states 
c iffering only by their M-values, there is only a single independent quantity character- 
izing multipole coefficients of order X for all 25 + 1 magnetic snbstates. For this reason, 
it is convenient to define the midlipole moment as the expectation value in the state of 
maximum M ,  as we have done earlier for both the magnetic dipole moment of baryons 
and the elect*ric quadrupole moment of the deuteron. 

Elec t r ic  qiiadrupole and hexadecapole moments. The lowest even-order elec- 
tric multipole moment that can give us some idea of the “shape” of a nucleus is the 
quadrupole moment ( A  = 2). The existence of a nonvanishing electric quadrupole 
moment implies that the charge distribution of the state is no longer a spherical one 
and the nucleus is said to be deformed. Usually nuclei near closed shells are more or 
less spherical in shape and have small absolute values for their quadrupole moments. 
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In contrast, nuclei in the middle of a major shell are often deformed and have large 
absolute values for their quadrupole moments. More detailed discussions of deformed 
nuclei are given later in $6-3 and $9-2. 

The quadrupole moment is defined as the expectation value of the operator 
r2Yzo(e, 4)  in the substate of A4 = J ,  

= e ( J ,  M=J1(3z2 - r2)1J, M = J )  (4-42) 

For a spherical nucleus, ( x 2 )  = (y’) = (z’) = i ( r 2 ) ,  and the quadrupole moment 
vanishes. For a deformed nucleus having an oblate shape, one with the polar axis 
shorter than the equatorial axis, Q is negative. On the other hand, for a prolate-shape 
nucleus, with polar axis longer than equatorial axis, the quadrupole moment is positive, 
as we have seen earlier for the deuteron. 

The next higher order electric multipole is hexadecapole. Here, the spherical tensor 
rank of the operator is X = 4 and the expectation value vanishes for states with J < 2. 
For such a state, the quadrupole moment is usually nonzero as well. As a result, it is not 
easy, in general, to measure the hexadecapole moment, as it is difficult to separate the 
contributions from those of the quadrupole in the observed results. Furthermore, since 
most nuclei are very nearly spherical in shape, any measured effect due to deformation 
tends to be dominated by the lowest order, the quadrupole here. The shortage of 
hexadecapole moment data comes also, in part, from the limitation that static moment 
measurements are far easier to carry out on ground states and there are only a few stable 
nuclei with ground state spin J 2 2. Most of the known values of hexadecapole moments 
are for excited states, often deduced in a model-dependent way from measurements such 
as Coulomb excitation (see $8-1). 

Magnetic moments. In addition to (electric) charge distribution, a deformed nucleus 
may also have a nonspherical “magnetic charge” distribution. Nuclear magnetism, as we 
have seen earlier, originates from a combination of two sources, the intrinsic magnetic 
dipole moment of individual nucleons and the orbital motion of protons. Analogous to 
an electric charge density distribution, we may define a magnetic charge densi ty  p m ( r )  
as the divergence of a magnetization density M(r) ,  

p,(r) = -V . M(r)  

The density can, in turn, be written in terms of a magnetization current density, 

C 
9 ( r )  = -V x M(r) 

1.1 
(4-43) 

For J’(r), we can again adopt a model that nuclei are made of point nucleons having 
an intrinsic spin but no internal structure. A neutron is, then, a particle with magnetic 
dipole moment fg., and a proton, one having a magnetic dipole moment fgp as well ils 
a unit of positive charge. In such a point-particle picture, the magnetization current 
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density may be written as a sum of the contributions from all the nucleons in the 
nucleus in the following way: 

(4-44) 

where, in units of nuclear magneton p N ,  

1 for a proton 5.586 for a proton 
0 for a neutron = { -3.826 for a neutron ye= ( 

and MN is the mass of a nucleon. 

bution in terms of milltipole coefficients given by the integral 
Similar to charge distributions, we may decompose a magnetization density distri- 

MA,, = / rAYiP(B, @)p,,,(r) dr = - /r'%&(CJ, 4) V M ( r )  dr (4-45) 

Beraiise of the divergence operator, the parity of the magnetic multipole operator of 
order X is (-l)Atl, instead of (-l)x in the case of the electric multipole moment. As a 
result, even-order magnetic multipole moments vanish for the same reason as odd-order 
electric multipole moments. 

The lowest order nonvanishing magnetic multipole for a nucleus is the dipole. From 
Eq. (4-45), we see that the operator is proportional to rYlp. Since rYlp is given by the 
pth co~nponent of the vector r in spherical coordinates, the expectation value of the 
magnetic dipole operator may be obtained in the following way. Using the definition 
given in Eq. 14-45), the magnetic dipole coefficient may be written as 

MI, = - rYl,,V. M(r)  dr  

From this, we obtain the result 

M I), = / M J r )  dr (4-46) 

using integrat>ion by parts. 
The operator for magnetic dipole 01,(M1) is given by the integrand of Eq. (4-46). 

Consider first the contribution from intrinsic spin alone. By comparing Eq. (4-43) with 
t,hc second term of Eq. (4-44), we can express the intrinsic spin part of M,,(T) in terms 
of sic(?:). This gives 11s the result, 

(4-47) 

for the contrihtion from the nucleon intrinsic magnetic moment to the dipole operator. 
For orbital motion, we note that 
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obtained, again, with the help of integration by parts. For a proton, orbital motion 
contributes ( e / M , ) p  to the magnetization current J'(l), where p is the linear momen- 
tum of the proton. Using the fact that orbital angular momentum is the vector product 
of r and p, 

we obtain the contribution due to proton orbital motion as 

e t i = r x p  

(see also Problem 2-6). 

of orbital angular momentum t ( i )  and intrinsic spin s( i )  of each nucleon, 
Combining Eqs. (4-47) and (4-48), we obtain the magnetic dipole operator in terms 

01,(M1) = 01,(M1,0 + 01,(M1, s) 

(4-49) 

The general expression for a magnetic multipole operator of arbitrary order is 

For a derivation, see, e.g., Bohr and Mottelson (341 or de Shalit and Talmi [50] 

4-7 

The magnetic dipole moment p is defined as the expectation value of O1,(M1) given 
by Eq. (4-49) in a state with M = J .  In units of nuclear magnetons, 

Magnetic Dipole Moment  of Odd Nuclei 

p = (5, M=JIO1,(Ml)IJ, M = J )  
A 

= C(J, M=Jlgt ( i ) to( i )  + gJ(i)so(i)15, M = J )  (4-50) 
i=l 

Since O,,(Ml) carries one unit of angular momentum, the expectation value vanishes 
in states with spin J < f. By making a few simplifying assumptions on the wave 
function, it is possible to evaluate p for a given state, in particular the ground state. 

Single-particle model. As we shall see in the next section, pairs of identical nucleons 
in the ground state of a nucleus prefer to couple to angular momentum zero. For 
such zero-coupled pazrs, contributions to the magnetic dipole moment vanish. This is 
easy to see both from angular momentum considerations and, more explicitly, from 
the following argument. For a zero-coupled pair of protons or a pair of neutrons, the 
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total orbital angular momentum L and intrinsic spin s must be either the combination 
(L, S) = (0,O) or ( L ,  5') = (1,l) to satisfy the Pauli principle. The (L, S) = (1,l) case 
has a higher energy and is of no interest in the ground state. To form an S = 0 state, 
the intrinsic spins of the two nucleons must be aligned antiparallel to each other. AS a 
result, their contributions to the magnetic dipole moment cancel each other. Similarly, 
for a pair of protons coupled to L = 0, the net contribution from orbital motion must 
also vanish, as the two are moving in opposite directions. 

In the limit that pairing completely dominates the nuclear ground state, all pairs of 
neutrons and protons are coupled to J = 0. Since these nucleons make no contribution 
to the magnetic dipole moment, we can leave them out for our present purpose. In 
the case of even-even nuclei, the magnetic dipole moment vanishes due to the fact that 
the spin J must be zero. This is observed to be true in practice for all stable even- 
even nuclei. For odd-mass nuclei, only one nucleon is outside zero-coupled pairs and 
Eq. (4-50) reduces to the expectation value of the unpaired nucleon alone, 

118 p. = I.lN(jr m=jlg& + 9880Ij, m=j)  (4-51) 

where Ij, m) is the single-particle wave function of the unpaired nucleon in a state with 
angular moment ( j ,  m). 

Using the Land6 formula (A-20), as we have done earlier in the case of the deuteron 
magnetic moment in $3-2, we obtain 

l1.s.p = - ( j l  m=jl(P . j ) j O b I  m=d (4-52) 
j(j + 1) 

From Eq. (4-51), we identify the magnetic dipole operator for a single nucleon to be 

Thns, the product p . j in Eq. (4-52) may be expressed as a sum of 4. j and s . j .  The 
expctation values of these operators can come from the relations 

t .  j = t 9 (t + 8 )  = t2 + f(j' - t' - 8')  

8 . j  = S . ( t + S )  = s 2 + ~ ( j ' - P - s 2 )  

This gives us the final result as 

(4-53) 

In this extreme single-particle picture, the magnetic dipole moment of an  odd-mass 
nucleus is completely determined by the I and j values of the unpaired nucleon. 

Schmidt value. We can make use of the same single-particle model to deduce the 
spin and orbital angular momentum of the unpaired nucleon. If all the nucleons except 
one are members of zero-coupled pairs, the spin of the state is also given by that of 
the unpaired nucleon. Thus we have j = J ,  where J is the observed ground state spin. 
For a given j, there are two possible I-values, I = j f i, The choice between them 
is determined by parity. Since all the other nucleons are grouped in pairs, with each 
pair occupying single-particle orbits having the same P-value, the parity of the state is 
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given by the orbital angular momentum of the unpaired nucleon, n = (-1)l. In this 
way, the spin and parity of the state, together with whether the unpaired nucleon is 
a proton or a neutron, provide all the information we need to calculate the magnetic 
dipole moment using Eq. (4-53). For each j-value, the results obtained fall into two 
groups depending on the two possible values of e .  These are known as the Schmidt 
values and they are compared with observations in Fig. 4-6. 

Odd proton Odd neutron 

Ground state spin Ground state spin 

Figure 4-6: Magnetic dipole moment of odd-mass nuclei. The solid lines are cal- 
culated results using Eq. (4-53) and the observed values are taken from Ref. [95]. 

From the figure, we see that most of the observed magnetic dipole moments for 
odd-mass nuclei fall in between the two Schmidt values for l = j f 1. This is not 
surprising. The main approximation used in the model is that all the nucleons except 
one are tied in zero-coupled pairs. A more realistic ground state wave function includes 
other components a8 well. For our purpose here, we can characterize them by the 
number of "broken" zero-coupled pairs, pairs of nucleons coupled to J > 0. From 
considerations based on angular momentum coupling alone, it is unlikely that these 
non-zero-coupled pairs can contribute to the magnetic dipole moment of the nucleus in 
some coherent way to change the values given by ps above by any substantial amount. 
More quantitative calculations also tend to support such an intuitive argument. Since 
configuration mixing of components with broken pairs decreases the weight of the single- 
particle component, the absolute value of the magnetic dipole moment is reduced from 
that given by the single-particle model. For this reason, the Schmidt values form, more 
or less, the limits of the possible ground state magnetic dipole moments. 

Corrections to single-particle model. The model should work best for nuclei with 
one nucleon away from a closed shell (see $7-2). Consider the closed shell nuclei *He 
and l6O. By removing one neutron from the former, we obtain 3He, and removing one 
proton from the latter results in 15N. Similarly, by adding a nucleon to l6O, we obtain 
1 7 0  and 17F. In such cases, the single-particle model is expected to be good, and as 
a result, we have the best chance to see the corrections required to such an extreme 
picture. The actual results found are, however, somewhat surprising. Corrections to 
the Schmidt values from nuclear structure considerations alone are found to be much 
larger than those required to account for the differences between the observed and 
Schmidt values. This implies that other factors are playing a role here. 
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In calculating the expectation values, we have assumed that each nucleon in the 
nucleus has the same properties as a free one. For example, the intrinsic magnetic dipole 
moment of a proton is taken to he i g p  and that of a neutron is,,. Such an assumption is 
sometimes referred to as the impulse npprozzrnatton, a term originated from scattering 
studies (see $8-4). There are t8wo ways by which the impulse approximation may fail. 
The first is the effect of mesons in nuclei. If charged mesons are exchanged between 
nucleons, their flow constitutes an electric current which may also contribute to the 
observed magnetic moments. The influence of such a mesonic current may also be 
responsible for the discrepancies in calculating other nuclear properties based on the 
impulse approximation. Tlie second is that we have made the naive assumption in 
Eq. (4-44) that niicleons in nuclei behave like point particles carrying the same charge 
and magnetic dipole moments RS free nucleons. Instead, effective values should be 
used to account for modifications of nucleons bound in nuclei, in the same spirit as 
we did earlier in our calculation of the magnetic dipole moment in the quark model 
for the baryon octet in $2-8. These two possibilities, mesonic current and the effective 
nuclear operator, are related to each other and to the more general question on the 
modifications a nucleon experiences in the nuclear medium. In the case of the magnetic 
dipole moment of odd-mass nuclei near closed shells, these two effects seem to cancel 
each other to a large extent, resulting in much closer agreement to the Schmidt values 
than expected from the size of either correction term alone. 

4-8 

The ground state is t,he lowest one in energy for a nucleus. It is a special state of a 
system of N neutrons and Z protons by virtue of the fact that it is the most stable one. 
In addition, it is in general the most accessible md, as a result, often the best known 
and most extensively studied state in the nucleus. 

The properties commonly observed are binding energy, spin, isospin, and static 
electromagnet,ic moments. We have already discussed the lowest order electromagnetic 
moments in t,he previoiis two sections, and we shall return to the question of binding 
energy in the next section. Other observahles such as transition rates to and from 
ground states and reactions involving ground states will be covered in the later chapters. 
In this section, we shall concentrate on the possible values for the ground state spin 
and isospin of it nucleus. 

Ground State Spin and Isospin 

Ground state spin. Since each nucleon has  an intrinsic spin 8 = f and an (integer) 
orbital angular momentum t ,  the total angular momentum or spin j carried by a nucleon 
is a half integer quantity. As a result, the total spin, the vector sum of the spins of all 
the nucleons in a nucleus, 

J = c j i  

is half integer for odd-mass ( A  = odd) nriclci and integer otherwise. The same consid- 
erations apply to isospin as well, 

T =  Ct, 

A 

i=l 

A 

1=1 
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where t ,  = f is the isospin of the ith nucleon. Even-mass nuclei can be divided further 
into two categories: Those with both neutron and proton numbers even ( N  = even, 
2 = even) are called even-even nuclei and those with both neutron and proton numbers 
odd ( N  = odd, 2 = odd) are called odd-odd nuclei. 

For even-even nuclei, the ground spin is observed to be zero without any exception. 
This remarkable phenomenon reflects a fundamental property of nuclear interaction 
known as pairing. Since ground state spins of odd-odd nuclei are observed to  be nonzero 
in general, we conclude further that pairing interaction is important only between two 
identical nucleons, two protons or two neutrons, but not between a neutron and a 
proton. For example, we have seen that the deuteron ground state spin is J = 1 (and 
isospin T = 0). If there were a strong pairing force between a neutron and a proton, 
the spin would have been J = 0 instead. In terms of isospin, we see that pairing force 
is present only in the T = 1 state of two nucleons but not in the T = 0 state. Because 
of antisymmetrization, a neutron and a proton occupying the same single-particle orbit 
and having relative angular momentum l = 0 form an isoscalar pair three-fourths of 
the time and an isovector pair one-fourth of the time (see $3-8). If the T = 1 pairing 
were strong enough to dominate over the T = 0 contribution, a neutron-proton pair 
would have preferred to be in a T = 1 state instead. Since this is not observed to be 
true, we have here another piece of information saying that the isospin dependence of 
nuclear force is not very prominent. 

Because of pairing, the ground state spin of an odd-mass nucleus is given by the j- 
value of the unpaired nucleon. We have made use of this point already in the previous 
section. The basic idea here is that an odd-mass nucleus may be considered as a 
nucleon coupled to an even-even core consisting of neutrons and protons locked in zero- 
coupled pairs. The total angular momentum of such a core is zero and, as a result, the 
ground state spin of an odd-mass nucleus assumes the value of the unpaired nucleon. 
In Chapter 7 we shall see that the j-value of the unpaired nucleon may be found from 
the single-particle energy level spectrum, and as a result, the ground state spin of an 
odd-mass nucleus can often be deduced from its neutron and proton numbers. 

For odd-odd nuclei, it is not easy to predict the ground state spin. An estimate 
may be made in the following way. As an extension of the idea used for deducing the 
ground state spin of odd-mass nuclei, we can treat an odd-odd nucleus as made of an 
even-even core plus a neutron and a proton outside. Again, the even-even core may 
be ignored here, as its lowest state must have spin zero due to  pairing. If the spin of 
the unpaired proton is j ,  and that of the unpaired neutron is j , ,  the total angular 
momentum of the neutron-proton pair outside the core is the vector sum of these two 
spins. The possible range of values is then 

Ij, - j n l  I J I j ,  + jn 
We can find the value of j ,  from the ground state spin of the neighboring odd-mass 
nucleus with one less neutron. Similarly, the value of j, may be obtained from the 
neighbor with one less proton. However, it is not possible to narrow down the possible 
J-values any further. Some guidance may be obtained from the empirical Nordheim 
rules: 

Strong rule: 
Weak rule: 

J = Ijp - j n l  

J = either lj, - jnl or j, + j ,  

for 17 = 0 

for 77 = fl 
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Here, q = j ,  - &, + j ,  - en. In practice, many exceptions are found and the rule can 
only provide a general guide to the likely value for the ground state spin of an odd-odd 
nucleus. 

Ground state isospin. The possible isospin of a nucleus may be deduced from the 
proton and neiitron numbers. For a system of 2 protons and N neutrons, the projection 
of isospin on the quantization axis is 

To = f ( 2  - N )  

The absolute value of TO gives the minimum of the possible isospin of a nucleus. 
The maximum possible value is limited by the total number of nucleons. This may 

be seen from the following arguments. Isospin is related to the symmetry in interchanges 
between protons and neutrons. Since each nucleon has It01 = 4 ,  the maximum absolute 
value of To for a system of A nucleons is Aj2,  attained when all the nucleons are either 
protons or neutrons. This must be the maximum value of T itself, as a larger value 
requires a larger IT01 and this is impossible. Together with the minimum value given 
above, the value of isospin is limited within the range 

- IVJ 5 T 5 f ( Z  + N )  

The isospin dependence of the nuclear force is not strong enough to put states belonging 
to different T into isolated groups in energy. However, except for odd-odd nuclei, the 
lowest member of each allowed T-value is well separated in energy from each other. 

Based on the fact that there is a bound two-nucleon state for T = 0, the deuteron, 
hut not for T = 1, we can infer that nuclear force favors the minimum value, T = 
(2 - N ) / 2 ,  as the isospin for the ground state. For higher isospins, the lowest member 
of each group iisually appears at  successively higher energies. For example, in l60 the 
ground state has T = 0 and the lowest T = 1 state occurs around 13 MeV excitation 
and the lowest T = 2 state at 23 MeV, as shown later in Fig. 4-8. States with T 2 3 
are expected to be at energies above 30 MeV. However, the density of states is too high 
at these excitation energies for individual states to be identified. 

In odd-odd nuclei, the separation in energy between the lowest members of the two 
smallest possible isospins is often quite small. This is the result of competition between 
T- and J-dependence in nuclear force Because of this, the ground state isospin is often 
a choice between the minimum value of i l Z  - N (  and one larger. For example, the 
ground state of :!A1 has ( J " ,  T) = (5+ ,  0) and the first excited state at 0.229 MeV has 
( J " ,  T )  = (0+, 1). In ::Sc, the ground state has (J", T)  = (O+, 1) and the lowest state 
with T = 0 occurs at 0.6 MeV with J" = 7+. 

Isospin mixing. We have assumed from the start that nuclear force depends only on 
the isospin and not the charge state of the interacting nucleons. This is, however, not the 
complete picture. In addition to strong interaction, we have also Coulomb interaction 
between protons. (We shall not be concerned with the much weaker magnetic dipole- 
dipole interaction between nucleons that depends on whether it is a proton pair, a 
rientron pair, or a proton-neutron pair.) Any charge-dependent term in the interaction 
violates the symmetry between proton-neutron exchange. Although at the nucleon 
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level Coulomb force is much weaker than nuclear force, and may be ignored for most 
purposes, it is not true for the nucleus as a whole. As we have seen in 51-3, through 
short-range nuclear force a nucleon can only interact with a few of its neighbors. For this 
reason, its contribution in a many-body system increases, to a first-order approximation, 
only linearly with nucleon number. In contrast, the Coulomb term has a long range 
and its contribution to the binding energy, for example, increases quadratically with 
proton number. As a result, the effect of Coulomb interaction may be quite significant 
in heavy nuclei and isospin may no longer be a good quantum number. 

We can investigate whether isospin is conserved by examining the amount of admix- 
ture of different isospin components in an eigenstate of a Hamiltonian containing such a 
symmetry-breaking term. Consider two eigenstates of the isospin-conserving part of the 
Hamiltonian, I JTz)  and I J’T’y ). Here, z and y are labels other than spin and isospin 
required to specify these two states. When we include also an isospin-breaking term, 
1 J T x )  and I J’T’y) are no longer eigenstates. If the symmetry-breaking term does not 
make connections to states outside our model space, we can find the new eigenstates 
I ) and I +2 ) using I J T x )  and 1 J’T’y ) as the basis and solve the eigenvalue problem 
in this model space. 

It is convenient to carry out this calculation using a matrix method, as we have 
done earlier in $3-4 for the deuteron D-state problem. The Hamiltonian matrix in the 
present case may be represented as 

{ H }  = (kz Hzy) 
H Y Y  

The diagonal matrix elements 

are expected to be large, as they include contributions from nuclear interaction. In 
contrast, only isospin-breaking terms are effective in the off-diagonal elements 

H,, = (J’T‘y 1 HI JTz)  

in the basis we have chosen. They are, in general, much smaller than the diagonal ele- 
ments. Furthermore, the Coulomb force preserves rotational symmetry and is invariant 
under time reversal. As a result, the Hamiltonian matrix is real and symmetric. We 
can therefore take 

H,, = Hy5 = SS,,, 

where S is the size of the off-diagonal matrix element. The eigenvectors are now linear 
combinations of the two basis states 

= cos 6IJTs )  + sin 61J‘T’y) 

I&) = -sinBIJTz) + cosB(J’T‘y) 

where the angle f.J is given by the relation 

(4-54) 
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From this expression, we see that the amount of mixing among the two basis states 
depends on the size of the off-diagonal matrix element as well as the difference in the 
values of the diagonal matrix elements. 

In a real niicleiis, the number of states that can be admixed by isospin-breaking 
forces is likely t,o be larger. However, the general features are well illustrated by our 
simple, two-dimensional example. Several interesting problems may be studied using 
this model. The first is that the admixture is important only between states whose 
“unperturbed” locations, given essentially by the values of the diagonal matrix elements 
in the example abovc, ace close to each other in energy, as can be seen by looking at 
the denominator on the right-hand side of Eq. (4-54). The second is that  since the 
isospin-breaking term in the Hamiltonian is rotational invariant, off-diagonal matrix 
elements vanish between states having different J-values. As a result, isospin mixing 
can take place only between states of the same 3. 

We can go one step further by examining more closely the value of the off-diagonal 
matrix element. Since Coulomb force has a long range, the value is small unless the 
wave functions of the states involved are very similar to each other in every respect 
except isospin. This can be most easily seen in the limit that the isospin-breaking term 
has an infinite range, and as a result, the radial dependence may be approximated by 
a constant. In this case, the off-diagonal matrix elements vanish unless 2 = y. In 
other words, the two states milst, be identical except for isospin. In reality, we find that 
isospin mixing is important only between nearby states having the same spin and a 
large overlap betweeri their spatial wave functions. 

In light, nuclei, the isospin purity of a state is preserved by a combination of two 
factors. First, the Coulomb force is relatively weak, as the number of protons is still 
small. As a result, the value of S in Eq. (4-54) is small in general. Second, the density 
of states is relatrively low in the low-lying regions of interest. It is, therefore, rare to 
find two (unperturbed) states of different isospin near each other in energy and having 
a large overlap in their radial wave functions as well. 

In heavy nuclei, isospin remains pure for the ground state and a few of the low-lying 
states nearby for a quite different set of renmns. Because of neutron excess, the Fermi 
energy for neutrons is much higher than that for protons. The lowest possible isospin 
is Tmin = IT01 = $12 - N J ,  as we saw earlier, and the dominant component in the 
ground state wave function is given by the configuration with nucleons occupying the 
lowest available single-particle states. Admixtures of isospin will have to come from 
states with T = Tmin + 1. The location of the lowest member of such a state may be 
found by estimating the excitation cnergy of the isobaric analogue (see below) to the 
ground state of a neighboring isobar with one more proton and one less neutron. The 
main configuration for the ground state of such a nucleus may be obtained by changing 
a proton in the nucleus with TO = Tmin to a neutron. Since the neutron and proton 
Fermi levels are quite different, it takes a large amount of energy to make the change. 
A crude estimate puts the amount to be the same as the neutron-proton Fermi energy 
diffcrcnce and is therefore a function of the neutron excess, as can be seen from looking 
at Fig. 4-7. As a result, the location of the isobaric analogue to the ground state of the 
T = T,,, + 1 niicleus is quite high for nuclei with a large neutron excess. This, in turn, 
means that it is difficult to have any significant isospin mixing in the low-lying states 
of heavy nuclei. 
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Figure 4-7: Occupancies of neutron 
and proton single-particle states. The 
location of the isobaric analogue state 
of an isobar with one more proton 
and one less neutron may be found 
by changing a valence neutron (cir- 
cles) to a proton (squares). Because 
of neutron excess, such states are much 
higher in energy in heavy nuclei (right) 
than in light nuclei (left). 

n P n 

n P 
n 

light nuclei heavy nuclei 

In a sense, isospin is no longer a meaningful symmetry in heavy nuclei, as the active 
neutrons and protons are occupying different single-particle states and are therefore 
distinguishable by the states they occupy. Furthermore, the argument for isospin purity 
given above applies only to  the ground state region. For excited states, the strong 
Coulomb effect leads to  large mixing, and isospin ceases to  be a meaningful quantum 
number altogether. 

Isobaric analogue state. The importance of isospin in light nuclei can also be seen by 
the similarities in the properties among members of an isobar, nuclei having the same A 
but different 2 and N .  An example was shown earlier in Fig. 3-1 for the low-lying states 
in A = 11 and A = 21 mirror nuclei. A more interesting one for oiir present purpose 
is the case of the A = 16 isobar shown in Fig. 4-8. Let us start with 16N with N = 9 
and 2 = 7. The ground state isospin is T = 1, on account of the fact that To = -1. 
If we apply an isospin-raising operator T+ on the ground state wave function of 16N, 

we obtain a state with (T,T,) = ( 1 , O ) .  This is a state in l S 0  ( N  = 2 = 8). Since 
the ground state of l60 is T = 0, the state produced by operating T+ on the ground 
state of 16N must be an excited state in I 6 0 .  The isospin-raising operator does nothing 
other than change a neutron to a proton. Furthermore, since nuclear force is charge 
independent, the state produced must also be an eigenstate of the nuclear Hamiltonian 
and, hence, correspond to an actual state in l60. This state should be very similar 
in properties to the ground state of 16N, since the wave functions are identical except 
for To. Two such states, one in 16N and one in l 6 0  in our example here, related by 
isospin-lowering and isospin-raising operators, are called isobaric analogue states (IAS) 
of each other. 

We can easily estimate where such an excited state in l60 should lie. If the forces 
acting on a nucleon are completely charge independent, the excitation energy of the 
isobaric analogue to  the ground state of 16N in “0 is given by the binding energy 
differences of these two nuclei. From a table of values, we find that 

EB(leO) = 127.62 MeV EB(16N) = 117.98 MeV 

The difference is 9.64 MeV. 
Two corrections must be applied before we can compare the result with the observed 

value in l 6 0 .  The first is that contributions of the Coulomb interaction to the binding 
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energies depend on the number of protons. The difference in the Coulomb energy 
between l60 and 16N may be estimated using the uniformly charged sphere model 
given by Eq. (1-7). The result, calculated with a radius of R = l.2A1I3 = 3.02 fm, 
is 4.00 MeV. This means that, instead of 9.64 MeV, the IAS should be at excitation 
energy 13.64 MeV. A second correction comes from the difference in mass between a 
neutron and a proton [together with an  atomic electron to keep the atom neutral as 
required in the definition of binding energy given in Eq. (1-l)]. Since “0 has one more 
proton and one less neutron than 16N, the calculated value of the excitation energy 
of the IAS we obtained above is too large by an amount equal to the neutron-proton 
inass difference of 0.78 MeV. This puts the calculated excited energy of the IAS to the 
ground state of I6N in I6O at 13.64 - 0.78 = 12.86 MeV. The ground state spin and 
parity of 16N are J“ = 2- and there is a 2-,  T = 1 state at 12.97 MeV in ‘‘0, as shown 
in Fig. 4-8. It is also known that this state is very similar in property to the ground 
state of lGN. 

Figure 4-8: The A = 16 isobar with known isobaric analogue states connected 
by dashed lines. The energies of I6C, “N, I6F, I‘Ne relative to the ground state of 
“0, corrected for Coulomb effect and neutron-proton mass difference, are shown 
inside square brackets. (Plotted using data from Ref. [136].) 

The difference of 0.11 MeV hetween our estimate and the observed excitation energy 
may be attributed to the crudeness of ow Coulomb energy calculation and to a possible 
small difference in the wave function of the 12.97-MeV state in “ 0  and that produced 
by applying T+ to the ground state of 16N. In fact, a more careful examination of 
Fig. 4-8 shows that there is a qiiartct of states with J“ = 2-, 0- ,  3-, and 1- in the 
ground state regioii of l‘N. The same quartet of T = 1 states is also found in l60 at 
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around 12.9 MeV. However, the sequence of the four levels is different from what is 
observed in 16N, showing that some small violation of the IAS idea is found in actual 
nuclei. 

Besides T = 1 states, the IAS for T = 2 are also known in the A = 16 isobar. The 
ground state of ‘;C (TO = -2) is O+ and an excited 2+ is found a t  1.77 MeV. Similarly, 
the ground state of 16Ne is ( J ” ,  T )  = (O+, 2) and a 2+, T = 2 state is found at 1.69 
MeV. The IAS of these two T = 2 states are found in 16N at 9.93 MeV for the O+ state 
and a t  11.90 MeV for the 2+ state. Similarly, the same T = 2 pair is found in l6O at 
22.72 MeV (O+) and 24.52 MeV (2+). On the other hand, since the ground state of 
16F is not stable   TI,^ N lO-”s), the level structure is not known to sufficiently high 
excitation energies to identify the T = 2 states. 

4-9 Semi-Empirical Mass Formulas 

We saw in §l-3 that nuclear binding energy is more or less a smooth function of nucleon 
number and other lLmacroscopic” degrees of freedom. In fact, if we are willing to  ignore 
small local departures, it is possible to develop simple formulas that express the binding 
energy EB(Z,  N ) ,  or the equivalent quantity M ( 2 ,  N ) ,  the mass of a nucleus, in terms 
of variables such as nucleon number A, proton number 2, and neutron number N .  To 
keep the forms as simple as possible, it will not be possible to make a direct connection 
to the underlying nucleon-nucleon interactions responsible for the binding energies. We 
shall, instead, take a semi-empirical approach and determine the parameters involved 
by fitting appropriate observed values; hence the name semi-empirical mass formulas. 
The power of these formulas lies in providing us with some idea of the general trends 
in nuclear binding energies that is useful for a large variety of purpose. 

Weizacker mass formula. One of the popular ways to find nuclear binding energy 
is based on the analogy of a nucleus with a drop of incompressible fluid. We have seen 
earlier that nuclear volume increases linearly with the number of nucleons, in support of 
such a “liquid drop” model. For binding energy, we saw in Fig. 1-2 that, to a first-order 
approximation, it is linearly proportional to the nucleon number, 

where 01 is known as the volume energy parameter. Several corrections must be applied 
before the formula can provide us with useful results. 

Similar to a drop of liquid, nucleons on the surface of a nucleus are less tightly 
bound, as there are fewer particles nearby with which to interact. As a result, we expect 
a decrease in the binding energy with increasing number of nucleons on the surface. 
Since the nuclear volume increases linearly with A,  the surface area is proportional to 
A2I3, With the correction, the expression for nuclear binding energy becomes 

Here 0 2  is the surface energy parameter. 
The next correction term comes from the repulsive Coulomb interaction between 

protons. For a uniformly charged sphere, the Coulomb energy is given by Eq. (1-7). 
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Taking R = l.2A1/3 fm, the result is 

A real nucleus has a diffused surface region and its shape may not necessarily be 
spherical. For these reasons, we do not expect the uniformly charged sphere value to 
be completely correct. On the other hand, the expression captures the essence of the 
dependence on A and 2. We shall therefore adopt the form of the Coulomb correction 
given above but leave the strength as an adjustable parameter. The binding energy 
now takes on the form 

Z(Z - 1) E B ( Z ,  N )  = a l A  - a2A2I3 - a3 
A113 

with a3 as the Coulomb eiiergy parameter. 
So far piirely classical ideas have been used. The first quantum-mechanical consid- 

eration is the isospin dependence of nuclear force. We have seen in earlier sections that, 
apart from Coulomb repulsion between protons, stable nuclei prefer to have N % 2. 
Such an effect may he expressed by a quadratic dependence on N - 2, and the binding 
energy forniula expands to 

Z(Z - 1) ( N  - Z)2 
A 

EB(Z, N )  = ( Y ~ A  - a2A2I3 - a3 A,l3 - @I( (4-55) 

The new contribution is sometimes known as symmetry energy, with a4 a9 the ad- 
justable parameter. The factor A in the denominator is used to compensate in part for 
the observed fact that the increase in neutron excess ( N  - 2) with A is much faster 
than that for the isospin effect. 

We have also seen earlier that, because of pairing force, even-even nuclei are more 
tightly bound than their odd-odd counterparts with the same A ,  and odd-mass nuclei 
have interrnediatc values between them. To account for pairing, a factor A is included. 
The complete binding formula now has the form 

Z(Z - 1) ( N  - 2)2 
+ A  (4-56) 

A 
E B ( Z ,  N )  = ( Y ~ A  - Q A ” ~  - a3 A’l3 - C Y ~  

where t,he pairing energy parameter 

6 for even-even nuclei 
A = {  0 for odd-mass nuclei 

-6 for odd-odd nuclei 

with 6 taken as a parameter to be fitted to known data. 
The final form, Eq. (4-56), is known as the Weizacker mass formula. The values 

of the five parameters ( ~ 1 ,  nz, m3, cy4, and 6 depend somewhat on the binding energies 
used to find their values. A commonly used set, 

a1 = 16 MeV 
a4 = 25 MeV 

a2 = 17 MeV 
6 = 2 MeV 

a3 = 0.6 MeV 
(4-57) 
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provides some idea of the magnitude of each of the terms. The value of the pairing 
parameter S is, perhaps, the least well determined quantity among the five and is found 
to be much larger, for example, if we restrict the fit to heavy nuclei alone (see Problem 
4-11). 

The usefulness of such a mass formula lies, for example, in obtaining the energies 
involved when a heavy nucleus undergoes fission into lighter fragments. The calculated 
results give a correct overall picture of the dependence on A ,  Z ,  and N values. However, 
there are local increases in the binding energy for nuclei near closed shells, known as 
the shell efect ,  that are important for a number of applications. Corrections may be 
included in the ways suggested by Myers and Swiatecki [lo81 and Strutinsky [134], as 
we shall see later in 39-2. 

Kelson-Garvey mass formula. The primary aim of the Weizacker mass formula is 
to obtain global agreement with observed values. For this reason, it does not always 
give the best result for the binding energy difference between neighboring nuclei. In 
applications where such values are important, the Kelson-Garvey approach [88] is more 
useful. Instead of a liquid drop, a microscopic model is used as the starting point. 
Nuclear binding energy is considered to be a sum of one- and two-nucleon interaction 
terms. The values of these terms may vary from one mass region to another, but in 
a small region differing only by a few nucleons, they must be essentially constant and 
their values may be found from neighboring nuclei. 

Let us illustrate the procedure by considering first an example consisting of one- 
body terms alone. This is not a realistic approximation and is used here only for its 
simplicity. In this limit, the binding energy of a nucleus made of Z protons and IV 
neutrons is given by 

where parameters a and @ represent, respectively, the average values of the interaction 
of a neutron and a proton with the rest of the nucleons in the nucleus. 

We can deduce the values of (Y and a for a small region in mass from the differences 
in the known binding energies in, for example, the following way: 

EB(Z, N )  = &N + pz 

= E,(Z, N + 1 )  - E,(Z, N )  = E,(Z + 1, N )  - E,(Z, N )  

In terms of these parameters, the difference between E B ( Z  + 1, N + 1 )  and E,(Z, N )  
is given by 

E , ( Z + l , N + l ) - E B ( Z , N ) = a +  P 
= EB( 2, N + 1) - EB( 2, N )  + E,( Z +  1 , N )  - EB( 2, N )  

This may be rewritten as a difference equation relating the binding energies of four 
nearby nuclei, 

E,(Z + 1, N + 1) + E,(Z, N )  - EB(Z,  N + 1) - EB(Z + 1, N )  = 0 

In other words, the binding energy of any one of the four nuclei may be deduced from 
the known values of the other three. Such a simple relation is, of course, the result of 
our one-body model and is correct only if the binding energy is predominantly one body 
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in  nature. We can test whether the premise is correct by calculating the differences 
between four such nuclei using known binding energies, 

A E ~ = E , ( Z + l , N + l ) + E , ( Z , N ) - E B ( Z , N + l ) - E e ( Z + l , I V )  

In practice, we find that the vahies of A E B  are rather large, reflecting the shortcomings 
in ignoring two-body terms. 

There are, in general, three types of two-body contributions to be included: proton- 
proton, neutron-nent3ron, and neutron-proton interactions. For a nucleus of N neutrons 
and Z protons, the number of pairs for each type is 

i Z ( Z  - I) proton-proton 
Number of pairs = i N ( N  - 1) neutron-proton 

" 2  neutron-proton 

Using these results, we can express a model for the binding energy of a nucleus in terms 
of one- and two-hody contributions as 

E,(Z, N )  = aN + bZ + c N ( N  - 1) + dZ(Z - 1) + e N Z  (4-58) 

wit,li flvtr ~ ) ~ . r ~ r n ~ t ~ e r s ,  a, 6 ,  c, d,  and e ,  l u  bc deterr~iincd from known binding energies 
in neighboring nuclei. 

We CaIJ follow the samc approach as used earlier in the one-body model and rewrite 
Eq. (4-58) as a difference equat,ion. One of the several possible forms is 

E , ( Z + l , N -  l ) + E B ( Z - l , N ) + E B ( Z , N + l )  

-E,(Z,N - 1) - E,(Z + 1, N )  - EB(Z - l , N  + 1) = 0 (4-59) 

To derive this relation, we can, for example, rearrange the six binding energies into 
three groups, each one consisting of the difference between a pair of nuclei having the 
same neutron number. In this way, terms depending only on neutron numbers do not 
criter and the difference equation reduces to one involving only three parameters: b,  d ,  
and e. 

We shall do this for two different pairs of nuclei. First consider a pair with neutron 
number N - 1 and proton numbers 2 and Z + 1. For such a choice, the purely neutron 
t,erins in Eq. (4-58) can be ignored and we obtain the difference in the binding energy 
at 

E,(Z+ 1, N - 1)= b ( Z +  l)+dZ(Z+ l)+e(N - 1)(Z+ l)+f(a,c,N) 

+./(a, c, N )  - E:, (Z ,N - 1) = b Z  +d Z ( Z  - l)+e ( N  - l ) Z  

E,(Z + 1, N - 1) 
-E,(Z, N - 1)  = b +2dZ +e(N-1)  

Similarly, the difference for a sccond pair of nuclei with neutron number N + 1 and 
proton numbers Z and Z + 1 is givcn by 

EB(Z ,  N + 1) = 6 2 +d Z ( Z  - 1) +e ( N  + l ) Z  +g(a, c, N )  
- E,(Z - 1, N + 1)= b ( Z  - l)+d(Z - 1)(Z - 2 ) + e ( N  + 1)(Z- l ) + g ( a , c , N )  

N f 1) 
-E,(Z - 1, N + 1)= 6 +2d(Z + 1) +e ( N  + 1)  
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The sum of these two differences is the same as the difference between a pair with N 
neutrons and proton number differing by 2, 

E B ( Z + I , N ) = b ( Z +  l )+dZ(Z+l)  + e N ( Z +  I ) + h ( a , c , N )  
- .Fg(Z  - 1 , N ) =  b ( Z  - l)+d(Z - I)(Z - 2)+e N(Z - l)+h(a, c, N )  

Eg(Z + 1, N) - EB(Z - 1, A’)= 2b + 2 d ( 2 2  + 1) +2e N 

By eliminating b, d, and e from these three equations, we obtain the result given 
in Eq. (4-59). The same relation can also be derived by considering three pairs of 
differences with each pair having the same proton number. 

We can check how well Eq. (4-58) works in practice by calculating, from six known 
binding energies, the difference 

AEg = E,(Z + 1, N - 1) + E g ( Z  - 1, N )  + E g ( Z ,  N + 1) 

-Eg(Z,  N - 1) - E,(Z + 1, N )  - Eg(Z - 1, N + 1) 

in the same way as we did earlier when we had only one-body terms. We do not expect 
AEB to be exactly zero for an arbitrary group of six neighboring nuclei even with 
two-body terms included. However, if the assumptions that went into constructing 
Eq. (4-58) are essentially correct, AEB should be much smaller here and distributed 
randomly around zero. This was found to be true and the standard deviation for a 
sample of N such differences turns out to be 

We can take this result to mean that Eq. (4-59) may be used to calculate the binding 
energy for any one of six nuclei from the other five with an uncertainty of about 100 
keV on average. 

The usefulness of a relation represented by Eq. (4-58) is not limited to extrapolating 
binding energies for nuclei one nucleon away from known masses. To make estimates 
for nuclei further away, we can use the Kelson-Garvey mass formula to calculate the 
values of the unknown intermediate ones and include them as a part of the input. The 
uncertainties in the prediction, however, increase roughly as the square root of the 
number of steps. 

One can, in principle, include contributions other than one- and two-body effects to 
reflect higher order terms that may occur in an effective nucleon-nucleon interaction. 
The difference equation, in this case, involves more than six nuclei. Since binding 
energies are known for a large number of nuclei, it is possible to consider such a higher 
order approach for nuclei far away from the valley of stability. 

4-10 Alpha-Particle Decay 

In light nuclei, the threshold for a-particle decay is comparable with that for nucleon 
emission, as can be seen from the plot of separation energies given later in Fig. 7-2. For 
this reason, a-particle decay is not energetically favored until about A > 150. Even 
for heavy nuclei, the lifetimes are long by strong interaction time scales. Furthermore, 
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the energy of a-particles emitted tends to be confined in a narrow range of 5 to 9 MeV 
whereas the half-lives vary by several orders of magnitude. As mentioned in Chapter 1, 
these observations led to the discovery of quantum-mechanical tunneling, a milestone 
in the development of modern physics. 

Barrier for a-particle emission. It is perhaps easier to visualize the barrier an 
a-particle must tunnel through by considering first the inverse process of a low-energy 
a-particle approaching a heavy nucleus from large distances away. For simplicity, we 
shall take the nucleus to be a uniform density sphere of radius R = T o A ' / ~ .  Outside the 
nuclear surface, 7' > R, the interaction is purely Coulomb and the repulsive potential 
may be represented as 

(4-60) 

where Z is the charge number of the nucleus and T is measured in femtometers in the 
final equality. 

Once the a-particle is inside the nuclear surface, short-range nuclear force becomes 
effective. The fact that it is bound at distances r < R means that the combination 
of Coulomb and nuclear forces must be attractive. For simplicity, we shall take the 
potential for this part to he a square well, as shown schematically in Fig. 4-9. In 
this approximation, the height of the barrier that retains the a-particle inside the 
potential well may be estimated from the amount of work required to overcome Coulomb 
repulsion in bringing an a-particle to the surface of a heavy nucleus, such aa 2iiU, 

Better estimates put the Coulomb energy of an a-particle in this region of mass number 
to be just below 30 MeV. 

Classically, an a-cluster inside a heavy nucleus must acquire enough energy to reach 
the top of the potential barrier before it can escape. Furthermore, the kinetic energy 

V(r) 
Figure 4-9: Schematic diagram 
showing the wave function of an (Y- 

particle tunneling through a poten- 
tial barrier. Inside the potential 
well, T 5 R, the partirle is hound 
and the wave function is sinusoidal. 
In the region R < T < R1, the en- 
ergy of the particle is less than the 
harrier height and the amplitude of 
the wave c1wrt.ase.s more or less cx- 
ponerrtially. Once outside, T > Rl, 
the a-partirle is essentially free ex- 
rept for Coulomb interaction with 
the residual nucleus. 

r 
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of the particle emitted is expected to be as least as large as the barrier height, as the 
a-particle carries with it all the energy it acquired to reach the top of the barrier. The 
observed values, however, are much smaller and, consequently, some other mechanism 
must be operating here. The quantum-mechanical explanation is that the a-particle 
does not have to go over the top of the potential barrier before being emitted. Instead, 
it tunnels through the barrier. The basic reason comes from the fact that the a-particle 
wave function does not vanish inside a small region of (finite) repulsive potential. In 
quantum mechanics, it is well known that the amplitude of a wave function, to a first- 
order approximation, decays exponentially inside such a barrier, and as a result, there 
is a finite probability to find the particle outside, as shown schematically in Fig. 4-9. 

The reason that a-particle emission is an important channel of decay for heavy 
nuclei comes from a combination of two reasons. The first is the saturation of nuclear 
force which favors a pair of neutrons and a pair of protons inside a nucleus to form 
an a-cluster. As we have seen earlier, the average binding energy between a-clusters 
is much less than the corresponding value between nucleons within the same nucleus. 
This makes it energetically more favorable to emit an a-particle rather than a nucleon. 
The second reason is the increase in Coulomb repulsion in heavy nuclei due to the 
larger number of protons present. The combined effect of both reasons enables the 
&-value for a-emission to become positive (negative in terms of the separation energy) 
for A > 150, as can be seen from Fig. 7-2. Examples of Q-values for some of the 
heavy nuclei as measured by the kinetic energy of the a-particles emitted are given in 
Table 4-3, together with the half-life associated with each case. 

a-Emitter E,, (MeV) ~ 1 1 2  

4.49 2 . 3 9 ~ 1 0 ~  yr 

4.20 4 . 5 1 ~ 1 0 ~  yr 

2 3 6 ~  

2 3 8 ~  

238P~1 5.50 86 yr 

24OPu 5.17 6 . 5 8 ~ 1 0 ~  yr 

242Pu 4.90 3 . 7 9 ~ 1 0 ~  yr 

244Pu 4.66 8x107 yr 

240Cm 6.29 26.8 days 
242Cm 6.12 163 days 

244Cm 5.80 17.6 yr 

24sCm 5.39 5.5 x lo3 yr 

Table 4-3: Half-lives and energies of a-particle decay in typical heavy nuclei. 

a-Emitter E, (MeV) 

206PO 5.22 

208PO 5.11 

2'0Po 5.31 

212PO 8.78 

2 1 4 ~ ~  7.68 

216PO 6.78 
228u 6.69 

2 3 0 ~  5.89 

2 3 2 ~  5.32 

2 3 4 ~  4.77 

Decay probability. Even before there were any theoretical models, it was found 
empirically that the large range of a-decay half-lives, from lo-' s to 1017 years, may 
be related to the square root of the kinetic energy E,, of the a-particles emitted in the 
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where W is the decay probability. The parameters C and D are weakly dependent on 
2 but not on the neutron number, as can be seen from the plot in Fig. 4-10. This 
is known as the Geiger-Nuttall law. A simple, one-body theory of a-particle decay 
described below provides the foundation for this observed relation. 

c 
R 

t- 

Figure 4-10: Semi-log plot of the transition rate W a8 a function of the ratio ,!?/a for a-decay of heavy nuclei with proton number 2 and a-particle kinetic 
energy Em. The clustering of data along R straight line, described by Eq. (4-61), 
is known as the Geiger-Nuttall law. (Plotted using data from R.ef. [95].) 

The probability W for a-particle emission from a heavy nucleus by tunneling may 
be separated into a product of three factors. The first is the probability p a  to find an 
a-particle inside the nucleus. In a heavy nucleus, there is a good chance for two protons 
and two neutrons to form an a-like entity. We shall call such an object an a-cluster. 
However, this is only one of the many possible components of the wave function for 
such a nucleus. As a result, it  is not easy to make an estimate for the value of p a .  A 
crude way is t o  say that it must be essentially of the same order of magnitude for all 
heavy nuclei, as there are only small fractional differences in their masses and we shall 
take p ,  N 0.1 as a rough guide. 

Once an a-cluster is formed inside the nucleus, i t  must come to the surface before 
it can tunnel through the barrier. The frequency u with which it appears at the edge 
of the potential well depends on the velocity u it travels and the size of the potential 
well. A reasonable way to estimate u is to take the well size as twice the nuclear radius 
R. With t,his assumption we obtain the result, 

u &KIM, 
2R 2R 

where K is the kinetic energy of the a-cluster inside the well and M, its mass. The 
precise value of K depends on the depth of the potential well and is not well known. 

v = - =  



$4-10 Alpha-Particle Decay 147 

It is reasonable to expect that K is of the same order of magnitude as E,, the kinetic 
energy of the a-particle emitted. For our simple model, we shall take I< = E,. This 
leads to the result 

where E, is measured in mega-electron-volts and, as usual, we have taken R = r0A1I3 
with r0 = 1.2 fm. F'rom this we obtain, for example, a value of v = loz1 s-l for 238U with 
Ea = 5.6 MeV. i t  is about an order of magnitude larger than the best values deduced 
from measurements. Part of the reason for the poor agreement comes from the fact 
that heavy nuclei do not have the simple spherical shape assumed here. Furthermore, 
the replacement of K by En may also have cost some loss of accuracy. 

Transmission coefficient. Once at  the barrier, the probability for an &-particle 
to tunnel through it is given by the transmission coefficient 7. For a one-dimensional 
square potential barrier of height VO and width b, the value is given in standard quantum 
mechanics texts as 

7 = ( 1 +  '' sinh2 ~ 6 )  -' 
4Ea(% - Ea) 

Here 
1 

E, is the kinetic energy (En < &), and m is the mass of the particle. Outside the 
potential barrier, the particle is free and the wave function is sinusoidal. Inside the 
barrier, the wave function decays exponentially, as the kinetic energy of the particle is 
less than the barrier height. An extreme situation with VO >> E is particularly simple 
to calculate. In this limit, K b  -+ 00, and sinhIcb + e6". The transmission coefficient 
in Eq. (4-62) simplifies to the form 

7 4 e-2*b (4-63) 

The factor e-"b expresses the attenuation of the amplitude of the wave in going through 
the barrier, and it is quite reasonable to expect that the transmission coefficient is 
essentially given by the square of this factor. For our case of V, M 30 MeV and E, in 
the range 4 to 9 MeV, the condition of V, >> E,  is adequately satisfied for the accuracies 
we need. As a result, we can use the approximate form of 7 given in Eq. (4-63) for the 
rest of the discussion. 

The true potential barrier experienced by an a-particle in heavy nuclei is more 
complicated than the square-well example in the previous paragraph. However, the 
results of the one-dimensional treatment remains valid on the whole. As long as the 
potential well is spherically symmetric, the radial part of the Schrodinger equation has 
the form 

}u(r )  = 0 
d2u(r) P(! + 1)EZ 

dr2 

where p is the reduced mass of the a-particle inside the barrier and u(r )  is the radial 
wave function divided by r. 
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Since we are interested here in the region outside the range of nuclear force, the 
potmtial V(T)  may be t8aken as purely Coulomb, having the form given by Eq. (4-60). 
All the angular dependence is contained in  the e(4 + l)/r2 term and may be taken as a 
part of the potential barrier. For this piirpose, we shall define an "effective" potential 
barrier, 

1 zZe2 t ( t+ 1)fi2 z ~ a f i c  t ( t+  1)h2 
2 p T 2  

+ - -- 
vb(T) = [GI 7 + 2 p T 2  T 

The radial equation reduces to the form 

This result has essentially the same form as that for a square well used for our simple 
model above, except that the barrier height is now a function of T .  The equation must 
now be solved by hetter techniques, such as the Wentzel-Kramers-Brillouin (WKB) 
method. 

The form of the solution, however, remains very similar to that given in Eq. (4-63) 
i f  we make the replacement 

The integration is taken from T = R at the nuclear surface to T = R1, where R, is the 
classical turning radius given by the relation 

Vb(R1) - E, = 0 

For 4 = 0, we have 

Ea 
In this case, the integral can be carried out explicitly, and trhe result for the transmission 
coefficient becomes 

Sinc,e we can take R << R1 for the accuracies we need, the arc cosine term may be 
approximated by (n/Z - \/n/R., and R/R1 may be dropped in the last term. The 
result simplifies to 

At low energies, such as those encountered in stellar evolution in astrophysics (see 
$10-2), the first term dominat,es. In this limit, the transmission coefficient is generally 
referred to as the Coulomb penetration factor and often written &s 

(4-64) 
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with q known as the Sommerfeld number. 

Energy and mass dependence. Using p, ,  u,  and T obtained above, we can write 
the transition probability as 

To put this expression into a form so that i t  can be compared with the Geiger-Nuttall 
law of Eq. (4-61), we take the logarithm in the base 10 for both sides and obtain the 
result 

w = p,vT 

(4-65) 

The dominant energy dependence comes from the last term, in agreement with the 
empirical result of the Geiger-Nuttall law. 

In addition to energy, there is also a dependence of log,,W in Eq. (4-65) on Z 
and, to a lesser extent, on A.  To show the 2-dependence, we can plot log,,W as a 
function of separately for each element. The observed values are now found to 
cluster much closer to straight lines than we have seen earlier in Fig. 4-10. The curves 
belonging to different Z-values are running, more or less, parallel to each other, as 
shown in Fig. 4-11. The remaining deviations in the distribution of data points from 
straight lines, usually too small to be noticed in such a plot, are due to nuclear structure 
effects that  can only be explained by a proper account of pa .  For our purposes, we shall 
be satisfied with the success of a relatively simple theory to explain almost 30 orders 
of magnitude difference in the half-lives. 

20 
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Figure 4-11: Semi-log plot of the transition rate W for a-decay as a function of 
the square root of E,, the kinetic energy of the a-particle emitted. The observed 
values for different isotopes of each element, labeled by proton number 2,  are 
closer to straight lines than those given in Fig. 4-10. (Plotted using data from 
Ref. (951.) 



150 Cham 4 Bulk ProDerties of Nuclei 

We have implicitly assumed in the above discussion that there is only a single 
kinetic energy E, for all the a-particles emerging from a nucleus. In fact, it is common 
to find several different groups of a-particles emitted by the same parent nucleus. The 
example of 212Bi shown in Fig. 4-12 has more than 14 different decays known and each 
one leaves the residual nucleus in a different state. 

a (36%) /=\ f(64%) 

Figure 4-12: Energy level diagram 
showing the decay of *I2Bi. The 
&-value for a-decay is 6.206 MeV k(McV) 

// leading to the ground state of zoPTl 
and 2.246 MeV for B-decay to the 

0.80 ~ 

/ 
ground state of 212Po. (Plotted US- 

ing data from Ref. 1951.) 
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4-1 1 Nuclear Fission 

In addition to @-decay, heavy nuclei can also lower the energy of the system as a 
whole by fission into two or more fragments. Nuclear fission can either take place 
spontaneously or be induced by another reaction. In the latter case, the reaction is 
the result of stimulation from energy supplied by an external source, such as neutron 
capture. In general, spontaneous fission reactions are rare events, and most of our 
knowledge on the subject of fission is derived from induced fission. 

Fission involves the movement of many nucleons at the same time and is therefore 
an example of collective motion in nuclei. We may visualize the process in the following 
way. For a heavy nucleus, it may be energetically more favorable to assume a shape 
sncl1 that the nucleons are divided into two overlapping groups separated by some 
distance d between their centers of mass. In this way, the repulsive Coulomb energy 
is decreased by t,he larger average distance between protons. On the other hand, the 
binding energy due to nuclear interactions is not lowered in any significant way, as the 
Xaiige of nuclear force is short and the saturation property favors interaction among 
a few nearby nideons. In terms of the Weizacker maSs formula, the reduction comes 
mainly from a small increase in the siirface area as a result of deformation. By sacrificing 
some siirface energy, the binding energy of the system is increased by a larger decrease 
i n  Coulomb repulsion and the equilibrium shape of heavy nuclei becomes deformed. 

For such nuclei, spontaneous fission is possible in principle, as the system may 
gain even more binding energy by splitting into two completely separated pieces. The 
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only thing preventing spontaneous fission from happening more often is the fission 
barrier through which the fragments must tunnel. We shall retrirn to the source of 
this barrier later. Since the condition for large deformation required for fission is found 
only in extremely heavy nuclei, spontaneous fission does not become an important decay 
channel until A > 240. For example, the partial half-life for spontaneous fission of 232U 
is around 1014 years, whereas the value for a-decay is only 2.85 years. On the other 
hand, by the time we get to 'g";Cf, the half-life reduces to 60 days with a branching 
ratio of 99% for spontaneous fission. 

Induced fission. Nuclear fission was actually first found through induced fission before 
the discovery of spontaneous fission. Induced fission may be defined as any reaction 
of the type A(a,b)B with final products b and B being nuclei of roughly comparable 
mass. The best-known example is the fission of 2$J induced by thermal neutrons. 
A compound nucleus 236U* (where the asterisk in the superscript indicates that the 
nucleus is in an excited state) constitutes the intermediate state for the reaction. For 
all practical purposes, we may regard the kinetic energy of the incident thermal neutron 
to be zero. In this limit, the excitation energy of the compound nucleus is simply the 
excess in binding energy for 235U plus a "free" neutron over that for (the ground state 
of) 236U. The value found from a table of binding energies is 6.5 MeV. The ground 
state of 236U is unstable toward a-particle emission with a half-life of 2.4 x 10' years. 
However, the excitation energy brought along by the neutron capture sets the entire 
nucleus into vibration, and as a result, fission into a number of different products 
becomes possible. A typical channel is the reaction 

235 92U + n + i iKr  + 'i:Ba + 2n (4-66) 

The energy liberated in this example is around 180 MeV. The two neutrons emitted in 
the process are called prompt neutrons, since they are released as a part of the fission 
process. However, both 92Kr and '42Ba are neutron unstable, as the heaviest stable 
isotopes are, respectively, "Kr and 138Ba. Among other possibilities, neutrons are 
released either directly from 92Kr and I4'Ba or from unstable daughter nuclei derived 
from their decays. These neutrons are the delayed neutrons since they emerge after 
some delays-as, for example, due to  intervening p- and y-ray emissions. 

It is often found that there is a preference for asymmetric fission, fission into two 
fragments of unequal mass. When a heavy nucleus with large neutron excess undergoes 
fission, for instance, into two medium-weight nuclei with nucleon number roughly Aj2 
each, the fragments would have to be nuclei far away from the valley of stability. As a 
result, many prompt neutrons would have to be emitted, greatly increasing the number 
of independent entities in the final state. Phase space considerations, on the other hand, 
strongly favor exit channels with a minimum number of products. Fission involving 
one heavier fragment, together with one lighter counterpart, reduces the number of 
prompt neutrons that have to be emitted. The net result, shown schematically in 
Fig. 4-13, is that the fission fragments have a bimodal distribution as a function of 
mass. Besides binary fission involving two final nuclei (plus prompt neutrons), ternary 
fission consisting of three final nuclei is also commonly observed. In principle, larger 
numbers of fragments are also possible, but, again, phase space considerations reduce 
their probability. 
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Figure 4-13: Schematic diagram 
showing the distribution of fission 
fragments as a function of nucleon 
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The reason for using thermal neutrons to induce '"U fission in most nuclear reactors 
is related to the neutron absorption cross section. As can be seen from Fig. 4-14, 
the probability at low energies for 235U to form a compound nucleus decreases almost 
exponentially with increasing neutron energy. The only exceptions are small resonances, 
related to the single-particle states of 236U at neutron threshold energy. For our purpose 
here, we may ignore them, as their combined contribution to the fission cross section 
is not significant. In contrast, the induced fission cross section for 238U, the dominant 
component in uranium ore, is negligible ttntil the neutron energy is above 1 MeV, or 
1 O l o  K in terms of temperature. Consequently, fast neutrons are more suitable to induce 
238U fission, the principle behind breeder reactors. 
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Figure 4-14: Schematic diagram 
showing the cross sections for 
neutron-induced fission on 235U 
and 238U as functions of neiitjron 
energy. Large values for 235U at 
low energies favor thermal neu- 
t,ron fission. In contrast,, neritron 
induced fission for 23AU is insignif- 
icant until the energy is above 
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Fission barrier. A crude simulation of the barrier that inhibits fission may be con- 
structed from a liquid drop model using the Weizacker mass formula given in Eq. (4-56) 
as the starting point. For simplicity, we shall take for our calculation a hypothetical 
nucleus of A = 300 and 2 = 100 and symmetric fission into two equal fragments of 
A = 150 and 2 = 50 each. The volume energy term in Eq. (4-56) is unchanged when 
the nucleus is split into two separate pieces and may be omitted from our considera- 
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tions here. Similarly, changes in the pairing and symmetry energy terms are too small 
for us to be concerned with here. Only two terms, the surface energy (r2A2I3 and the 
Coulomb energy a 3 Z ( Z  - l)/A1l3, remain and they form the main components of the 
fission barrier. Since both terms enter the binding energy equation with negative signs, 
a decrease in either term will increase the binding energy of the system as a whole. 

When the hypothetical nucleus undergoes a transformation from A = 300 to two 
fragments of A = 150 each, the loss in binding energy due to changes in the surface 
energy is given by 

Eaurfafe = a2 { 2 x - = 0 . 2 6 a ~ A ~ / ~  M 200 MeV 

where we have used the value a2 = 17 MeV from Eq. (4-57). The amount is the decrease 
in binding energy of the system when the two clusters are sufficiently far away from 
each other that  there is no more nuclear interaction remaining between them. Let 11s 

use d, the distance between the two centers of mass, as a measure of the separation 
between the two fragments. Before fission, we shall assume d = 0, and after the reaction 
is completed, d is greater than twice the radius of each of the fragments. For simplicity, 
we shall take the radius of each fragment to be R, = r0(150)'/~ M 6.4 fm. It  is not easy 
to calculate the contribution from the surface energy term at distances between d = 0 
and d = 2Rf M 13 fm. Schematically, it may take on a form as shown by the dashed 
line in Fig. 4-15(a). 

S_U$tC$ 

Figure 4-16: Schematic diagram of 
fission barrier as a function of the 
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Let us now consider the contribution to fission due the Coulomb energy term. For 
A = 300, the Coulomb energy from Eq. (4-56) is 

Z(Z - 1) 
M 900 MeV 

a3 A1/3 

using a3 = 0.6 MeV. For each of the fragments, the value is found to be roughly 
275 MeV by the same method. There is therefore a gain of 350 MeV in binding energy 
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from the Coulomb t,errn as a result of splitting the nucleus into two. The amount is 
ot)t,aiIied under the assumption that the two fragments are separated by an infinite 
distance without any Coulomb interaction between them. As the distance decreases, 
the Coulomb energy increases with a l / r  dependence if we ignore any possible shape 
changes in the fragments. At d < 13 fm, the value cannot be estimated easily. Again, 
we can take it t,o be sometthing like that shown by the solid curve in Fig. 4-15(a). 

The net change in binding energy as a result of fission in our simple model is the 
difference between the gain in the Coulomb energy and the loss in the surface energy 
outlined above. The value 350 - 200 = 150 MeV is of the correct order of magnitude 
as, for example, compared with the energy released through the reaction given by 
Eq. (4-66). The fission barrier may therefore be schematically represented by a sum of 
the two curves shown in Fig. 4-15(a) and plotted as the dashed curve in Fig. 4-15(b). 
For lighter nuclei, the difference between the contributions from surface and Coulomb 
terms is not as clearly marked as in our example. The resulting barrier is much broader 
and spontaneous fission is supprcssed. For extremely heavy nuclei, the opposite is true 
and the nucleus becomes unstable toward fission. 

Deformation, however, complicat>es the shape of fission barriers, even though the 
main features are given correctly by our simple model. The most interesting aspect 
due to deformation and other finer considerations is that the detailed shape of the 
fission barrier may be somewhat different, as shown schematically by the solid line in 
Fig. 4-15(b). Sometimes a local minimum in the potential, marked as 11 in the figure, 
may develop. The evidence for such a secondary potential well is obtained from narrow 
resonances found in the fission cross section that cannot come from levels in the main 
well, marked as I in the figure. Such a barrier is often called a double-hump potential 
for obvious reasons. With such a potential, it is possible that the nucleus may be 
trapped in the excited states of well 11. Such states, especially the low-lying ones, may 
prefer to tle-excite by fission rather than returning to the main well by y-ray emission. 
In some cases the rate of spontaneous fission for some of the low-lying states in well I1 
may be hindered by a sufficiently large factor that a fission isomer may develop as a 
result,. 

Partly \wcause of its importance to  applied work, fission of heavy nuclei hm been 
investigated extensively by many experiments. Theoretical studies to understand the 
equilibrium shape and the process leading to fission are, however, complicated, and it 
is somewhat difficult to make progress. 

4-12 Infinite Nuclear Matter 

We saw in 54-2 and 54-5 that a finite nucleus has a large surface region where the density 
drops gradually to zero with radial distance. Even for a heavy nucleus, only a small 
fraction of the nucleons are in the central region where the density may be considered to 
he constant (see Problem 4-4). For many theoretical investigations, it is much easier if 
the density is uniform throughout the nuclear volume. For this reason, infinite nuclear 
matter is created as an idealiztd system of bound nucleons with an uniform density 
that approximatm the interior of a heavy nucleus. To make the situation even simpler, 
we shall assume that the neutron number is the same as the proton number. Such a 
system is convenient for testing nucleon-nucleon interaction as well as techniques for 
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solving many-body problems. Furthermore, being an infinite system, we do not have 
complications caused by motion of the center of mass, as in the case of finite nuclei. 
Electromagnetic interactions are usually ignored in such studies, as the primary interest 
is nuclear. 

There is obviously no observed data on such an idealized system. A neutron st,ar 
is as close to an infinite system of nuclear matter as we can imagine; however, exper- 
imental measurements on neutron stars of direct interest to nuclear physics may not 
be forthcoming for a while. As a result, most information concerning infinite nuclear 
matter must be inferred from our knowledge on finite nuclei. 

Energy and density. Let us first try to deduce the binding energy in nuclear matter, 
for instance, using the Weizacker mass formula given in $4-9. For a finite nucleus, the 
volume is proportional to nucleon number A and the surface area to A2I3. The ratio 
of the surface term to the volume term therefore varies as A-1/3. For infinite nuclear 
matter, we can ignore the surface term in Eq. (4-56), as A-'I3 -+ 0. Contributions 
from Coulomb repulsion between protons can also be put to zero, as we do not wish to 
consider any electromagnetic effect here. Similarly, the symmetry energy vanishes with 
the assumption of N = 2. Pairing effect may also be ignored because A is infinite. 
This leaves only the volume term in the binding energy. Fkom studies made on finite 
nuclei, we have the result 

- EB = 1 6 f 1  MeV (4-67) 
A 

for the binding energy per nucleon in infinite nuclear matter, the same value as a1 given 
in Eq. (4-57). The uncertainty of 1 MeV here, in part, reflects variations in the values 
obtained by different ways of determining the parameter. 

The density of infinite nuclear matter can be inferred from the maximum or satu- 
rat ion density in finite nuclei. The value commonly used is 

po = 0.16 f 0.02 nucleons/fm3 (4-68) 

It is slightly higher than the average density of 3/(4s$) = 0.14 nucleons/fm3 obtained 
using r0 = 1.2 fm. The difference comes from the absence of a surface region here. 

Fermi gas model. We can also relate po to the Fermi momentum of nucleons in 
the following way. If the excitation energy is not very large-we shall come back at  
the end of this derivation to give an estimate of what is considered to be large-most 
of the low-lying single-particle states are occupied. As a result, the Pauli exclusion 
principle plays a more important role than nucleon-nucleon interaction in determining 
the motion of nucleons inside infinite nuclear matter. For such a system, we can adopt 
a degenerate Fermi gas model to study the momentum distribution of the nucleons. In 
this approximation, nucleons are treated as noninteracting fermions, with the ground 
state formed by filling up all the available low-lying single-particle states. 

For a free particle in a cubic box of length L on each side, the wave function may 
be represented by a plane wave, 
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In the absence of spin and isospin degrees of freedom, the allowed values for the wave 
numbers k = (kz, k,, k,) are given by the condition that the wave function vanishes at 
the boiindary of the box. As a result, 

2n 271 2n 
L 

k ,  = -nt k,, - nz k, = pY ‘-z 
where n,, nu, and n, are integers 0, f l ,  f2,. . . . The number of allowed plane wave 
states in a voliime element d3k is t3hen 

3 
d n = 4 ( & )  d3k (4-69) 

where the factor of 4 comes from the fact that there are equal numbers of protons and 
neutrons and that each of them can be in a state with either spin up or spin down. 

We can now relate nuclear density to the Fermi momentum. Since the total number 
of nucleons is A and, in the ground state!, they fill all the low-lying states up to Fermi 
momentum kF, this gives 11s the relation 

The nucleon density is found from the number of nucleons in volume L3, 

On inverting the relation, we obtain the Fermi momentum in terms of the density of 
infinite nuclear tnat ter , 

k~ =(?PO) 1’3 = 1.33 f 0.05 fm-’ (4-70) 

where the final result is calculated using the value of po given in Eq. (4-68). 
The average kinetic energy of nucleons in infinite nuclear matter may be found from 

Eq. (4-69) using the fact that the value for a nucleon is ( h k ) * / 2 M N ,  with MN as the 
mass of a nucleon. On averaging over all the nucleons, we obtain the result 

The value of the Fermi energy c F  can be found using I E F  given in Eq. (4-70), 

(4-71) 

(4-72) 

The average energy of a nucleon is then 7 x 22 MeV. From this result, we see that only 
a small fraction of the nticleons in a nucleus of nucleon number A can be excited unless 
the energy involved is comparable to AEF,  of the order of lo3 MeV for a medium-weight 
nucleus. This in turn justifies the use of the Fermi gas model above. 
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Compression modulus. The state of minimum energy is an equilibrium for infinite 
nuclear matter, stable against small variations of the density. Variations of the binding 
energy per particle due to changes in Fermi momentum must therefore vanish, 
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Figure 4-16: Binding energy per 
nucleon as a function of nucleon 
Fermi momentum in infinite nuclear 
matter. Shaded area represents the 
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ner calculation. (Adapted from Ref. 
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The second-order derivative of E B / A  depends on the difficulty, or stzffness, of nuclear 
matter against changes in the density. This is measured by the compression modulus, 

P=Po 
(4-73) 

which is the slope in the variation of binding energy per nucleon as a function of kF. 
Since it is evaluated at the energy minimum, it is a positive quantity. The compression 
modulus is the equivalent of the bulk modulus in mechanics that characterizes variations 
of the volume of a material as a function of applied pressure (see Problem 4-19). 

For nuclear matter, generally 

K. x 200 MeV (4-74) 

estimated, for example, from the energy required to excite a nucleus without changing 
its shape. This is called a breathing mode of excitation (see 56-1) and is most easily 
recognized in even-even nuclei, in particular, closed shell nuclei. Since the ground state 
spin and parity of such a nucleus is O+, one way to excite to another O+ state is by a 
change in the density. 

Nuclear matter calculations. One of the aims of infinite nuclear matter calcula- 
tions is to reproduce the values of the three pieces of known “data” deduced from finite 
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nuclei: the binding energy per nucleon of Eq. (4-67), the saturation density in terms 
of the Fermi momentum of Eq. (4-70), and (not aIways carried out) the compression 
rnodulus of Eq. (4-74). The hope is that the simple geometry offered by the idealized 
system provides us with a direct and meaningful test for nucleon-nucleon interactions 
and t,echniques for many-body problem. The test is a nontrivial one. For example, 
most of the properties of finite niiclei are not very sensitive to  the hard core in nucleon- 
nucleon interactions. In contrast, the value of this term is crucial in reproducing the 
saturation density in infinite nuclear matter. Without the short distance repulsion, 
infinite nuclear matter can gain binding energy by increasing its density. In fact, many 
calculations failed to produce the correct binding energy per nucleon at the correct sat- 
uration density. The sitnation is more promising for some of the relativistic approaches. 
Results, obtained using a version of the Bonn potential for nucleon-nucleon interaction 
and a relativistic version of the most fruitfill many-body technique, seem to produce 
the correct answers for both quantitics, as shown in Fig. 4-16. We shall not go any 
further into these calculations, as it would require a lengthy discussion of the various 
techniques required to solve the many-body problem involved here. 

Problems 

4-1. The differential cross section for Rntherford scattering is proportional to 
sin-'((e/2) where 0 is the scattering angle. Explain why, in reality, experimental 
differential cross sections remain finite as 0 4 0. 

4-2. Derive an expression for the form factor F(qZ) ,  assuming that the nuclear density 

4-3. Show that, for high-energy inelastic scattering where the projectile rest mass may 

is given by a uniform sphere of radius R. 

be ignored, the momentum transfer is given by 

e 
= 4EE'sin' - 

2 

of Eq. (4-29), where E is the energy of the projectile, E' the energy of the scattered 
particle, and 0 the scattering angle. 

4-4. Use the values of the parameters given in  Table 4-1 to calculate the number of 
nucleons in the surface region of 206Pb, i.e., the region where the density is 90% 
or less of the value at the center of the nucleus. 

4-5. The radial dependence of the density of a nucleus may be described by a two- 
parameter Fermi distribution, 

as given in Eq. (4-22). Show that the parameter c is the radius of the nucleus 
measured from the center to a point where the density falls to ronghly half of its 
value at the center and the parameter z z t14.4, where t is the radial distance 
between two points in the nucleus whose densities are, respectively, 10% and 90% 
of the maximum value. 
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4-6. A muon ( p - )  can take the place of an electron in an atom and form a muonic atom, 
Since the muon is 207 times more massive than an electron, the radii of its orbits 
in an atom are much smaller. For a heavy atom, the low-lying muonic orbits may 
have a substantial overlap with the nuclear wave function as a result. Calculate 
the fraction of time a muon is inside a spherical nucleus of radius R = l .2AV3 fm, 
when the muonic atom is in the lowest energy state. Take A = 200 and 2 = 70. 

4-7. Use a table of binding energies (e.g., from http://www.nndc.bnl.gov) to: 

(a) Calculate the energy released in fusing two free protons and two free neutrons 
into an a-particle. 

(b) Show that 23aU is unstable toward a-decay and calculate the kinetic energy 
of the a-particle emitted. 

(c) Calculate the maximum possible energy released in the fission of 235U induced 
by thermal neutrons. Make a reasonable assumption of the fission fragments 
released in the process. 

4-8. The radius of a nucleus may be approximated as R = T ~ A ' / ~ .  From the binding 
energy differences between odd-A mirror nuclei (i.e., a pair of nuclei having the 
same A but with neutron and proton numbers interchanged) in the mass range 
A = 11 to A = 17, estimate the value of TO assuming a uniform spherical charge 
distribution for each nucleus and ignoring effects other than Coulomb. 

4-9. From the binding energies of members of the A = 16 isobar, I6C, I6N, I6O, 
16F, and 16Ne, calculate the position of the T = 1 isobaric analogue state to 
the ground state of I6F in l60. Use a uniformly charged sphere of radius R = 
l.2A1I3 femtometers t o  find the Coulomb energy difference between the two nuclei. 
Repeat the calculation starting from the ground state of 16N and compare the 
results obtained. Deduce also the positions of the lowest J" = Ot, T = 2 states 
in 16N, l60, and 16F from the binding energies of I6C and "Ne. Compare the 
results with the observed values shown in Fig. 4-8. 

4-10. From a table of binding energies show that the ground state of 'Be is stable 
against @-decay and nucleon emission but unstable against decay into two Q- 

particles. Calculate the energy released in the decay 'Be -+ Q + a. 
4-11. Obtain the masses of members of the A = 135 isobar from a table of binding 

energies and plot the results as a function of 2. From the results deduce the 
value of the symmetry energy parameter a4 in Eq. (4-56) for the Weizacker mass 
formula. Carry out the same calculation for members of the A = 136 isobar and 
estimate the value of the pairing parameter S from the results. 

4-12. The Weizacker mass formula is useful t o  obtain global distribution of binding 
energies as a function of A,  2, and N .  Use this formula to show that the Q-value, 
i.e., kinetic energy released, in fission is positive only for heavy nuclei. 

4-13. Use the Kelson-Garvey mass relation to find the binding energy of l20 from 
the values of nearby nuclei. Estimate the uncertainties in the value deduced. 
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may be estimated using a triangular- 
shaped, one-dimensional barrier as 
shown in the figure on the right. For 
a heavy nucleus with 2 = 72, we can 
use R = 9 fm. The height of harrier 
Vo may be taken as the Coulomb en- 
ergy at distance R and the distance 

"0 

R1 may be estimated rising the point 
where the Coulomb energy is equal 
to the kinetic energy E,, of the a- 

A 

.__------ 

I----" 
%I 

r 

where the negative sign simply means that volume ahrinks when the pressure 
is increased. Find the relation of B to the compression modulus K defined in 
Eq. (4-73). 



Chapter 5 

Electromagnetic and 
Weak Interaction 

The wave functions of nuclear states are usually taken as the eigenvectors of a Hamil- 
tonian in which the only interaction is nuclear. Electromagnetic and weak interactions 
are treated as perturbations, inducing transitions from one state to another. In this 
chapter we shall examine the rates of these transitions and see what they can tell us 
about the atomic nucleus. Other processes, such as nucleon and a-particle emission, 
also change the state a nucleus. They are examined in Chapters 4 and 8. 

5-1 Nuclear Tkansition Matrix Element 

Transition probability. If we have a sample of N radioactive nuclei, the probability 
for any one of them to decay at  a given time is independent of the status of other 
members in the sample. The number of decays taking place in a given time interval is 
therefore proportional to N ( t ) ,  the number of radioactive nuclei present at time t ,  

dN 
dt 
- = -WN(t )  (5-1) 

The constant of proportionality, W ,  is the transition probability or decay constant, and 
its value depends on the nature of the perturbation that causes the decay as well as the 
properties of the initial and final states involved. For this reason, the decay constant 
is the quantity of central interest in examining nuclear transitions. 

From Eq. (5-1), we obtain the familiar exponential decay law, 

N ( t )  = Nee-"" 

where No is the number of radioactive nuclei at time t = 0. The half-life, Tip, is 
the amount of time it takes for the activity of a sample to be reduced by half and is 
inversely proportional to the transition rate, 

In2 0.693 
w w  Tip, = - = - 
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The lifetime, or mean life, of an excited state is the average amount of time it takes for 
R radioactive niicleus to decay. It, is connected to the transition probability and half-life 
by the relation 

- J,"te-wtdt 1 TI/? T =  

Transition probability, half-life, and lifetime are three different ways to characterize the 
same physical observable. 

=-=-  
J r e e - W i d t  W 0.693 

W i d t h .  If a nucleiis is in an excited state, i t  must discard the excess energy it has by 
undergoing a decay. I t  is, however, impossible to predict when the decay will actually 
take place. As a result, there is an uncertainty in time At = T associated with the 
rxistcnce of the excited state. Because of the limited lifetime, it is not possible for 
us to measure its energy to infinite precision. This is independent of the instrumental 
accuracy in the menwrement. In fact, for our purpose here, we can regard uncertain- 
ties introduced by the ineastiring apparatus to be sufficiently small that they may be 
ignored. 

In quantum mechanics, the expectation value corresponding to an observable is 
interpreted m the average over measurements for a large number of identically prepared 
samples. In other words, if we carry out the energy measurement for N nuclei in the 
same excited state, there will be a distribution of the values obtained. If the value for 
the ith excited nucleus is E,, the average ( E )  is given by 

An idea of the spread in the measured values is provided by the square root of the 
variance. 

The Heisenbcrg uncertainty principle says that the product of I' and T is equal to ti 
under the best circumstances, or 

h 
T r=,=hw (5-2) 

The quantity f is known as the natural line width, or width for short, of a state, as we 
saw earlier in 52-6. It is also a way to indicate the transition probability of a state and is 
proportional to (the inverse of) the lifetime and half-life. Since ti = 6.6 x MeV-s, 
a widijh of 1 MeV corresponds to a lifetime of 6.6 x 

One can also relate r to the probability of finding the excited state at a specific 
energy E.  In terms of the wave function, the decay constant W may be defined in the 
following way: 

For a stationary state, the time-dependent wave function may be separated into a 
product of spatial and t,ernporal parts, 

s. 

I @ ( T ,  t)I2 = l ~ ( r ,  t=O)I2e-"" (5-3) 

@(TI t )  = $J(T)e- 'Et /h  
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To carry such a separation over to a decaying (excited) state, the energy E must be 
changed into a complex quantity, 

E + ( E )  - iitiW 

The time-dependent wave function now takes on the form 

Q(r ,  t )  = $( ,.)e-Wt/fi-wt/2 

so as to satisfy Eq. (5-3). 

(5-4) 

Alternatively we can make use of the fact that the ex c... ed state is one without a 
definite energy and write the wave function as a superposition of components having 
different energies, 

Q(r,  t )  = $(r) 1 a(E)e-’Et/h dE 

where a ( E )  is the probability amplitude for finding the state at energy E .  Comparing 
this form with Eq. (5-4), we arrive at  a relation between the decay constant W and 
probability amplitude a(E) ,  

, - W 2  = a ( ~ ) e - * ( E - ( E ) ) t / h  d~ I 
That is, e-wt/2 is the Fourier transform of a ( E ) .  

The relation can be inverted and we obtain the result 

The probability for finding the excited state at energy E is given by the absolute square 
of the amplitude, 

1 1 
2 - -  
- 47r2 ( E  - (E>)2 + (ir)2 

where we have replaced fiW with r using Eq. (5-2). The shape of such a distribution 
is Lorentzzan and the width r may be interpreted as the full width at  half maximum 
(FWHM) of such a distribution. Since the question of instrumental uncertainty does 
not enter here, the width is the “natural line width” of the distribution in energy of 
the excited state. 

Branching ratio. A given excited state may decay to several final states. If the 
transition probability to the ith final state is W(i ) ,  the total transition probability for 
the initial state is the sum of the probabilities to all final states, 

w = c W(i)  
i 

(5-5) 

Similarly, the total width r is the sum of all the partial widths, 

r = c r(i) 
i 
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The relation between half-life TI12 and partial half-lives T1/2(2) = In 2/W(i) is given by 

as evident from Eq. ( 5 - 5 ) .  
The braiichznq ratzo gives the partial transition probability to a particular final state 

as a fraction of the total from a specific initial statc. For example, the mean lifetime 
of a n0-meson is 8.4 x lo-'' s and decays 98.8% of the time to two y-rays, 1.17% of 
the t h e  to a ?-ray t,ogrther with an electron-positron pair, and 2 x lo-' of the time 
to an electron-positron pair alone. The branching ratios to these three decay channels 
are therefore 98 .8%~~ 1.17%, and 2 x lo-', respectively. Among the radioactive nuclei, 
the ground stat,e of the odd-odd nucleus 2i!A~ at the start of the actinide series has 
a half-life of 29 h and can decay by emitting an electron to '$Th, transform to 2i:Ra 
by capturing one of the atomic electrons, or decay by a-particle emission to "?F'r with 
branching ratios 83%, lo%, and 0.06%, respecthely. 

Trailsition m a t r i x  element.  The transition probability is proportional to the square 
of the nuclear ~na t r ix  element, 

M f i ( M j ,  Mi) == (J~M~EIOA~IJ~M~C) (5-6) 

where 1 JiM,<)  and I J , M f < )  are, respectively, the wave functions of the initial and 
final states and OX,, is the nuclear part of the transition operator (see $5-3 and $5-6) 
wit,h spherical tensor rank ( A , p ) .  The labels ( and < here denote quantum numbers 
other than J and M associated with angular momentum that are required to specify the 
nuclear states uniquely. Since the transition may also involve the emission of a particle 
such as an electron or a niicleon, the initial and final statcs are not necessarily in the 
same nucleus. The transition may also be induced by the interaction of the nucleus with 
an external field, For this reason, the exact relation between the transition probability 
W and the nuclear matrix element M f ,  depends also on factors related to the external 
field. We shall treat, each t,ype of transition separately in later sections. 

The dependence of the matrix element M f ,  on Mi and M I ,  respectively, projections 
of the initial and final total angular momentum on the quantization axis, may be 
factored out using the Wigner-Eckart t,heorern, 

where (-$, i,) is the 3j-symbol and (J,<llOAIIJ,S) is the reduced matrix element 
defined in Eq. (A-15). Our main interest will be in (Jf<l\O~llJi(), as i t  is invariant 
under a rotation of the coordinate system. 

If the measurement is not sensitive to the spin orientation of the final state, the 
transition includes all the possible final states differing only by the value of M,, Further- 
more, if the operator is not restrictcd to any specific direction in space, all the allowed 
valrirs of p must be included in considering the transition. Under these conditions, the 
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square of the transition matrix element reduces to 

In arriving at the final result, we have made use of the orthogonality relation between 
the 3j-symbols given by Eq. (A-12), 

The factor 
1 for Jf = X + Ji 
0 otherwise 

~ ( J J ,  A ,  J1) = { 
expresses the angular momentum selection rule that forbids transitions where the trian- 
gular relation among the three angular momentum vectors J J ,  A, and J ,  is not satisfied. 
Note also that IMf$ defined in Eq. (5-7) is independent of M,. 

5-2 Transit ion Probabili ty in  Time-Dependent Per turba t ion  Theory  

A connection between the transition probability and the transition matrix element may 
be established using time-dependent perturbation theory. Consider a time-dependent 
Hamiltonian 

H ( t )  = Ho + N‘( t )  (5-8) 

with Ho independent of time. All the time dependence is contained in H‘(t) .  In 
particular, we are interested here in the case where the strength of H’(t) is sufficiently 
weak that it may be considered as a perturbation to Ho. 

Let &(r) represent the eigenfunction of H,, 

Ho&(r) = &A(r) 

We shall assume that all 4,,(r) together form a complete set of orthonormal functions. 
Again, we have suppressed any indications of possible dependence of &(r) on spin, 
isospin, and other variables so as to simplify the notation. The eigenfunction $(r ,  t )  
for Ho alone is the solution of the time-dependent Schrodinger equation, 

and may be expressed in terms of & ( P ) ,  
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Here, the expansion coefficients, 

c, = 4:(r)e'Ent/h+(rl t )  d~ 

are independent of time, since we have not yet included H'( t ) .  

terms of &(r) except that the expansion coefficients are now time dependent, 
For the complete Hamiltonian, the eigenfunctions Q(rI t )  may still be expressed in 

(5-9) 

The coefficient cn(t) may be interpreted as the probability amplitude for finding the 
system in the unperturbed state 7~ at time t .  On substituting the results of Eq. (5-9) 
into the time-dependent Schrodinger equation for H ( t ) ,  

iN(r t )  i h 2  - 
at - {Ho + H'(t)}Q(T, t )  (5-10) 

we obtain the equation governing coefficients cn(t), 

By taking products with &(r)  exp{i&i!/h} on both sides of the equation and integrat- 
ing over all the independent variables except t ,  we obtain the result 

= C Cn(t) { ( h ( r ) I H o I h ( V ) )  + (~k(r)(H'(t)ldn(r)))e'(Ek-En)f'h (5-1 1) 

Since & ( T )  is a member of an orthonormal set of eigenfunctions for Ho, we have the 
conditions 

n 

(h (r) = &n (dk(r) I H O  I'#n(r)) = En6kn 

On inserting these results into Eq. (5-11)1 we obtain a differential equation for ck( t ) ,  

C(hIHf(t)ldn(t)) erwknf 
d C k ( t )  ih- = 

dt  n 

where wkn = (Ek - En)/h. 

is, 
As initial conditions, let us assume that at t = 0 the system is in state 40(r). That 

1 for n = 0 
0 for n # 0 

Cn(0) = 

If the perturbation is sufficiently weak, we expect that 
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for all time t of interest. As a result, we can approximate Eq. (5-10) by retaining only 
the n = 0 term in the sum on the right-hand side. This gives us the result 

(5-12) 

Furthermore, if the time variation of H’(t) is slow compared with exp{iwkot}, we may 
take H‘ to be a constant. In this approximation, Eq. (5-12) can be solved explicitly 
and the result may be expressed as 

Fkom this, we obtain 

as the probability for 
at  time t = 0. 

finding the system in state k at time t if it  started from state 0 

The total probability to a group of states within some interval labeled by f is given 
by a summation over all the final states k in the interval, 

In the last step, the summation over all possible final states is replaced by an integration 
over energy multiplied by the density of final states p(&)  for reasons that will soon 
become clear. 

The transition probability per unit time, W, corresponds to the rate of finding the 
system in the group of final states labeled by f and may be expressed as 

Since the function sin wkot/wko oscillates very quickly except where WkO M 0, only a small 
region around Ek = EO can contribute to the integral. In this small energy interval we 
may regard the matrix element (&(r)lH‘I&(T)) and the state density p(Ek) = p(E,) 
to be constant and may be taken outside the integral. Furthermore, the limits of 
integration over Ek may be replaced by f m  under these conditions without sacrificing 
too much accuracy. The final form of the transition probability per unit time becomes 

(5-13) 

where we have made use of the fact that 
+m sin Wkot 

dug0 = 71 I-, wko 
This is the starting point for our calculations of transition probabilities in the next two 
sections. Since Fermi called it the “golden rule of time-dependent perturbation theory,” 
it is often referred to as Fermi’s golden rule. 
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5-3 Electromagnetic Transit ion 

In this section we shall deal mainly with nuclear decay through the emission of a 
y-ray. The transition is caused by the interaction of the nucleus with an  external 
electromagnetic field. For our purpose here, we may regard the nucleus as made of 
point nucleons, each carrying a magnetic dipole moment and, in the case of protons, 
a net charge as well. The charge distribution couples with the external field, causing 
“electric” transitions. At the same time, interaction with the intrinsic magnetism of 
each nucleon and the magnetism generated by current loops due to proton orbital 
motion induces “magnetic” transitions. 

Electromagnetic transitions form the dominant mode of decay for low-lying excited 
states in nuclei, particularly for the light ones. The main reason is that nucleon emis- 
sion, a much faster process than y-decay, is not possible until the excitation energy is 
above nucleon separation energies. As we can see later in Fig. 7-2, these are of the order 
of 8 to 10 MeV for neutrons and somewhat lower for protons because of Coulomb re- 
pulsion. Other possible modes are p-decay, a-particle emission, and fission. Generally 
speaking, t,hese are slower processes than y-decays. 

Besides y-ray emission, electromagnetic perturbation can also induce nuclear decay 
through internal conversion whereby one of the atomic electrons is ejected. This is 
usually more important for heavy nuclei, where the nuclear electromagnetic fields are 
st,rong and the orbits of the inner shell electrons are close to the nucleus. Similarly, 
the decay can also proceed by creating an electron-positron pair. The probability for 
such internal pair creation processes is, in general, much smaller than y-ray emission 
and becomes important, for example, where y-ray emission is forbidden by angular 
momentum considerations. This happens, for example, in the case of transitions from 
an initial state with .la = Of to a final state that is also Ot. 

The first s k p  in a discussion on electromagnetic transitions is to establish a connec- 
tion between the transition probability W of Eq. (5-1) and the nuclear matrix element 
M,,  of Eq. (5-6) using first-order time-dependent perturbation given by Eq. (5-13). 
The perturbation H’ comes from coupling between nuclear and electromagnetic fields, 
arid the density of final states p(E,) is R product of the number of nuclear and electro- 
rriagnetic states per energy interval at E f .  Similarly, the initial and final wave functions 
& ( T )  and $ k ( ~ )  of Eq. (5-13) are products of nuclear and electromagnetic parts. In 
keeping with the custom used by most workers in the field, all the electromagnetic 
calculations in this section will be carried out only in cgs units. 

Coupling to electromagnetic field. Our primary interest is in the nuclear part of 
the matrix element of H’. For this purpose, we shall first separate H’ into a product 
of two operators, one acting only on the nuclear wave function and the other on the 
external electromagnetic field. Since each nuclear state involved has a definite angular 
momentum, it. is necessary that the external electromagnetic field is also quantized and 
decomposed by a multipole expansion into components with definite spherical tensor 
ranks. As WP shall sre later, the decomposition is an important one, as the lowest order 
multipole tends to dominate the transition. Both quantization and multipole expansion 
of the electromagnetic field are fairly straightforward but tedious procedures. We shall 
attempt here only a bripf outline of the steps involved and leave the proper derivations 
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to more advanced textbooks, such as Blatt and Weisskopf 1321 and Sakurai [121]. 
We can visualize the form of electromagnetic perturbation in a nucleus in the fol- 

lowing way. Consider first the simple case of a point particle carrying a charge q and, 
for the time being, no magnetic moment. In the absence of any external electromag- 
netic field, the particle is free and the Hamiltonian consists of only the kinetic energy 
term, 

(5-14) 

where p is the momentum. In the presence of an electromagnetic field, the momentum 
conjugate to r is modified from that for a free particle by the following transformation: 

where A is the vector potential for the electromagnetic field. The Hamiltonian for the 
charged particle now takes on the form 

(5-15) 

For simplicity we have not included in the Hamiltonian terms pertaining solely to the 
external electromagnetic field or the effect of any electrostatic potentiaI that may be 
present to interact with the charged particles. We shall return to this point later. 

The Hamiltonian of Eq. (5-15) may be written in the form of Eq. (5-8) as a sum 
of two terms: a free-particle term ffo given by Eq. (5-14) and a perturbation term H’ 
expressing the coupling with external electromagnetic field. Comparing Eq. (5-15) with 
(5-14), we can make the identification 

9 + - - A  * p 
mc 

(5-16) 

where we have replaced p . A by A p using the requirement that an electromagnetic 
field can have only transverse components, i.e., p = 4710 and V . A = 0, generally 
known as the transversality condition. The quadratic term in A involves two photons 
at  the same time and may therefore be ignored in the lowest order consideration we are 
interested in here. 

In general, H’ may be written in a more convenient form by expressing the mo- 
mentum of the charged particle in terms of a current density, 

P 
m J = q v = q -  

The first-order term in Eq. (5-16) becomes 

(5-17) 

(5-18) 
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In addition to the electric charge carried by protons in a nucleus, the intrinsic magnetic 
dipole moment of the nucleon can also int,eract with the external electromagnetic field. 
We have seen earlier, in Eq. (4-44), in the discussion of static magnetic moments, that 
the intrinsic magnetic dipole moment of a nucleon may also be expressed in the form of a 
current. Consequently, it is unnecessary to change the form of H' given in Eq. (5-18) to 
include the effect of nucleon magnet,ic moments, except that  we need a new definition 
for the current density J' than what is given in Eq. (5-17). The most general form 
of H' must also incliide t,he possibility for the charge distribution to interact with an 
external electrostatic field. Such a perturbing Hamiltonian is most conveniently written 
in four-component notation, 

- 4  
1 H' = -- C A,,J,, 
c p=l 

(5-19) 

where A,, = ( A ,  iV) includes a scalar potential V and J,, = (9, ipc) a charge distribu- 
tion p .  Contributions from t.he fourth components are usually not important in nuclear 
transitions. 

Externa l  electromagnetic field, The electromagnetic field is given by the solution 
to Maxwell's equations. In a region outside any charge and current distributions, the 
fonr-potential is obtained from the time-dependent partial differential equation, 

Our primary interest is in the vector potential A(r, t ) ,  the first three components of 
Al,. The time dependence may be removed from the equation by expanding A(r, t )  in 
terms of components with definite wave number k, 

(5-20) 

where w = kc, with k being the magnitude of k. The spatial dependence of A is given 
by the equation 

The solution of this second-order differential equation has the familiar form 

(v2 k2)&(T)  = 0 (5-21) 

&(T)  = Bke'"' -t- cke-'' ' 
where Bk and Ck are constants to be determined by boundary conditions. Among 
others, these conditions must simulate the source of the electromagnetic field. Sub- 
stituting the spatial dependence of the vector potential into Eq. (5-20), we obtain the 
expression 

(5-22) 

where N is a normalization constant, Being the quantum of a vector field, each 7- 
ray carries one unit of angular momentum. However, because of the transversality 
condition V.A = 0, only two of the three components of the vector field .are independent 
quantities. These two components may be identified by two unit vectors e,,, with 7 = 1, 
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2. This is similar to expressing ordinary light waves as a linear combination of horizontal 
and vertical polarizations. At this stage, the factors bktl and b:,, remain as constants 
related to Bk and c k  and must be determined by boundary conditions. 

Up to now the solution we have obtained for Maxwell's equation is purely classical in 
nature. Since the form of Eq. (5-21) is identical to the equation for a harmonic oscillator, 
we may think of the electromagnetic field as a collection of harmonic oscillators, one 
for each frequency (or wave number k) and polarization direction g. The separation 
in energy between harmonic oscillator states is in units of hu = hck. It is now quite 
straightforward to have a quantum-mechanical description of the electromagnetic field. 
The quantity hw may be taken as the energy of a field quantum for a given wave number 
and the electromagnetic field is now characterized by the number of quanta for each k 
and 11. We may also interpret b f  and b b  in Eq. (5-22) as the creation and annihilation 
operators, respectively, of a photon with labels (k, g). In this way we see that the lowest 
order term of H', given by Eq. (5-19), involves a linear combination of bL and bk,,. The 
physical interpretation of H' is that coupling between nuclear and electromagnetic fields 
makes it possible for the nucleus to create a photon when it decays from a higher state 
to a lower one and to absorb a photon when it is excited to a higher state. A proper 
derivation of the quantized electromagnetic field will require us to demonstrate that 
b:,, and bkrl are indeed creation and annihilation operators of photons by showing that 
they have the correct commutation relations, and so on. We shall dispense with this 
important step here to keep the discussion focused on the concerns of nuclear physics. 

Multipole expansion of t h e  electromagnetic field. The expansion of A(r,  t )  
in Eq. (5-22) is carried out, implicitly, in Cartesian coordinates. For applications to 
problems with rotational symmetry, it is more convenient to express A(r,  t )  in terms 
of operators having definite spherical tensor ranks, as we have done on several earlier 
occasions. The advantage here is quite obvious. We have already seen that the nuclear 
current density 3 may be written as a sum over terms, each carrying a definite amount 
of angular momentum. Since H' is a scalar, only multipoles of the same order in both 
3 and A can be coupled together. For this purpose, we shall first rewrite the radiation 
field in terms of the eigenfunctions of angular momentum operators, 

where the vector function AAp(r, t )  with spherical tensor rank (A, p )  satisfies the fol- 
lowing relations as the eigenfunction of angular momentum operators 52 and Jo: 

The time dependence, given by Eq. (5-ZO), is sufficiently simple that we shall drop 
it from now on so as to simplify the notation. The functions Axp(p, t )  are, however, 
different from spherical harmonics in that they are vector functions. They may be 
expressed in terms of vector sphencal harmonics, vector functions constructed from 
(scalar) spherical harmonics yC, (B,  4) .  

Instead of the two polarization directions allowed for A(r, t )  in Eq. (5-22), we have 
now two different types of multipole fields satisfying Eq. (5-21). The decays induced by 
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them are called electric multipole transitions, indicated hereafter as EX, and magnetic 
multipole transitions, labeled MA. In terms of spherical harmonics, they may be written 
in the following ways: 

(5-24) 

where j x ( k r )  is a spherical Bessel function of order A .  A general solution of A(r,  t )  is a 
linear combination of both types of terms, with time dependence given by Eq. (5-20). 
Again, we shall refer the reader to standard references, such as Morse and Feshbach 
(1061, for a demonstration that A,+(EX, r )  and AA,,(MX, r )  satisfy Eq. (5-23). 

Electromagnetic multipole transition operators. Using the operators given in 
Eq. (5-24), we can write the ( A ,  p )  multipole part of the perturbing Hamiltonian H' of 
Eq. (5-19) EIS 

OA,(EA) = - 

(5-25) 

where (2X + l)!! = 1 3 5 . - .  (2A + 1). The normalizations used in the definitions of 
these operators are such that they reduce to those for the static moments of Eqs. (4-41) 
and (5-43) in the limit k + 0. For now, we shall not be concerned with the multipole 
expansion of t,he nuclear current density J ( r ) .  Since both Ox,,(EX) and OA,,(MA) are 
scalar operators in the combined nuclear and electrom.zgnetic fields, only the (A, -p) 
mnltipole part of J ( r )  can make a nonvanishing contribution in the transition. 

The spherical Bessel fnnction in  Eq. (5-25) may expanded in a power series, 

(5-26) 

The typical y-rays involved in ~iuclear transitions have energies E7 less than 10 MeV, 
corresponding to wave numbers of the order k = E,/hc w 1 /20  fm-' or less. Since the 
miiltipole nperat>ors act on the nuclear wave function, they cannot have contributions 
corning from regions outside the nucleus. The dimension of a nucleus is characterized by 
the nuclear radius R, and even for a heavy nuclens, snch aa 208Pb ( R  = r0A*/3 N 7 fm), 
it is less than 10 fm. As a resnlt, the dimensionless argument kr of the spherical Bessel 
function is much less than unity fnr typical y-rays involved in a nuclear decay. The series 
given by Eq. (5-26) is, then, a fast convergent one and j ~ ( k r )  may be approximated by 
its first term in the expansion alone. This is called the long-wavelength limit. Physically, 
it comes from the oliservation that, for y-rays at  these energies, the wavelength is 
2xh.c/&, of the order of lo2 fm, much larger than nuclear dimension. As a result, 
these y-rays cannot be sensitive to the details of the nuclear radial wave functions. 
Under such conditions, the expectation value of j~(kr) is simply proportional to that 
for its leading-order term (k r ) ' .  
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We are now in a position to calculate the contribution of each multipole order to the 
transition probability given in Eq. (5-13). On inserting the density of final states and 
using the multipole operator given in Eq. (5-25) for H' ,  we can express the transition 
probability for multipole A from an initial nuclear state I J,M,<) to a final nuclear state 

I J r M A )  as 

where the reduced transition probability B(X; J;< -+ J,() may be written in terms of 
the reduced matrix element of the multipole operator for either electric or magnetic 
transition, in the same way as we did in Eq. (5-7), 

It is worth noting here that the reduced transition probabilities are quantities with 
dimensions. For electric transitions, the units are e2fmzX, and for magnetic transitions, 
p&fm2A-2. The transition rate W is the number of decays per unit time. In relating 
the numerical values of W and reduced transition probability, one must be careful with 
the factors e2 in electric transitions and p& for magnetic transitions. For example, the 
values in Table 5-1 are obtained using the following relations: 

1 
W(X) = 

where we have used short-hand notation B(EX) for reduced electric transition proba- 
bility and B ( M A )  for reduced magnetic transition probability. The numerical values 
for e2 and p; may be obtained using the relation e2 = ahc in cgs units. 

Table 5-1: Electromagnetic transition probabilities for the lowest four multipoles. 

W(E1)=1.59 x 1015 E ; x B ( E l )  

W(E2)=1.23 x lo9 E ; x B ( E 2 )  

W(E3)=5.71 x lo2 E;xB(E3) 

W(E4)=1.70 x 10-4E:~B(E4) 

E, are in MeV, B(EX)  in e2fmZx, an 

W(M1)=1.76 x 1013 E ; x B ( M l )  

W(M2)=1.35 x lo7 E ; x B ( M 2 )  

W(M3)=6.31 x 10' E ; x B ( M 3 )  

W(M4)=1.88 x 10-'E;xB(M4) 

B ( M X )  in p~frn(2x-2) .  

If we take that the electric charge in a nucleus consists of point charges carried 
by individual protons and the magnetization currents are due to  the magnetic dipole 
moments of individual nucleons and the orbital motion of protons, the electric and 
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magnetic multipole operators in the long-wavelength limit simplify to the following 

(5-29) 

Here j ,  = f?, + s, and 

5.586~~ for a proton 
c ( i )  = { t" g s ( ' i )  = { - 3 . 8 2 6 1 ~ ~  for a neutron 

the same values as given in $4-6. The multiplication symbols here indicate the angular 
momentum coupled products defined in Eq. (A-10). We have omitted the derivation 
from Eqs. (5-25) to (5-27), (5-29), and (5-30), as it involves a large amount of angular 
momentum recoupling and properties of vector spherical harmonics. For a proper 
treatment, the reader is directed to references such as Blatt and Weisskopf [32]. Note 
that, for historical reasons, the definitions of the operators for the static moments of a 
state differ from those for OX,' here by constant factors, for example, as in the case of 
tlhe quadrupole moment operator given in Eq. (4-42). 

Dimensional check. It may be helpful to make a dimensional analysis of some of 
the results obtained so far in this section. From Eq. (5-1), we see that W is measured 
in number of transitions per unit time interval. For electric multipole transitions, the 
operator OAlr(EX) given in Eq. (5-29)  is proportional d. This gives the reduced 
transition probability B(EX) of multipolarity X in units of charge squared times length 
to the power 2X. It is customary to measure charge in units of e, the magnitude of 
the charge on a proton, and length in units of femtometer (fm). Electric rnultipole 
operators are therefore in units of vfm'. For magnetic transitions, we have the nuclear 
magneton / L ~  i n  the place of electric charge e. Because of the gradient operator, the 
power for length is redriced by one compared with the corresponding electric transition 
of the  same order. As a result, operator OA,(MX) in Eq. (5-30) is in nnits of pNfmA-', 
From Eq. (5-28), we find that trhe wits for the reduced transition probabilities are as 
follows: 

Electric mnltipole X B(EX) : ezfrn2A 

Ma.griet,ic rnultipole X B(MX) : p ~ f m 2 A - 2  

Note that since the units for retlricetl transition probabilities involve e2 or pk,  the 
explicit values of these two quantities in conventional units must be put into the ex- 
pressions in order to evaluate the transition probability W .  

Besides tlie redaced transition probability, the only other dimensioned quantity in 
the  expression for W(X) given in Eq. (5-27)  is the factor k2"+'/fi. Since k is in units 
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of inverse length and li is in units of energy multiplied by time, the units of electric 
transition probability is 

Using the relation e2 = ahc and the fact that the fine structure constant (Y is a dimen- 
sionless quantity and fic is in units MeV-fm, we obtained the correct result, 

as expected. For magnetic multipole transitions, we need only to examine the difference 
between &, and e2. Since 

eh 
pN = 2Mpc 

in cgs units, the dimension of p i  is 

,& : e2[fm12 

Since B ( M X )  is measured in units of p&fm2x-2, we see that W ( M X )  also has the correct 
dimension of inverse time. 

Selection rules. We have stated earlier that, for y-rays with energy of the order of 
a few mega-electron-volts, transitions of different multipolarities have quite different 
rates. We can also see this from the energy dependence of W(X) given by the factor 
PA++’. In terms of the ratio between two multipole transitions X and X + 1, we find that 

A length factor T is included in the calculation so as t o  make the ratio a dimensionless 
quantity. Since nuclear size is of the order of a few femtometers, we can take T to be 
1 fm for the purpose of making an estimate. This gives us the result that, for a 1-MeV 
y-ray, R is of the order 3 x lo-’. A more precise calculation of the factor relating 
transition probabilities with reduced probabilities for both electric and magnetic tran- 
sitions produces the results shown in Table 5-1. Note that the difference in numerical 
factor between electric and magnetic transitions of the same multipolarity is ( h / 2 M , ~ ) ~  
femtometers squared, coming from the difference in the units for B(EX) and B ( M X ) .  

Because of the large reduction in probability with increasing multipolarity order, 
the transition between an initial nuclear state with spin-parity J:‘ and a final state 
J/”’ is usually dominated by the lowest order allowed by angular momentum and par- 
ity selection rules. For transition of order A ,  the operator carries X units of angular 
momentum. As a result, the transition vanishes unless J ,  = X + J, .  The angular 
momentum selection rule for the Xth multipole electromagnetic transition is therefore 
given by 

I J f  - J S I  5 I Jf + J ,  
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The same condition is expressed also by the factor A(J,,  A, 5,) in Eq. (5-7) and is im- 
plicit in the reduced matrix element of Eq. (5-28). Together with the energy dependence 
in W(X), we have the multipolarity selection rule that, for allowed values of A,  

W(EX) >> W(E(X -t 1)) W(MX) >> W(M(X + 1)) 

We shall not) make a comparison of electric with magnetic transitions until later, as the 
nature of these two operators is quite different. 

The operator for an EX-transition is proportional to spherical harmonics YA,,(B, q5), 
as can be seen from Eq. (5-29). Under an inversion of the coordinate system, the 
transformation property of Oh,,(EX) follows that for spherical harmonics of order ( A ,  p),  
This gives us the transformation property under parity for EX-transitions, 

OA~(EX) + (-1)’o~b(EX) (5-31) 

The magnetic operator, on the other hand, is related to V(rAYA,,(B, 4)). The presence 
of the V-operator introduces an “extra” minus sign under B parity transformation, and 
the net result is 

OA,‘(MX) p (-l)Atlap(MA) (5-32) 

Equations (5-31) and (5-32) give us the parity selection rule, 

nixf = (-l)A for EX 11,~f  = ( - - I ) ~ ~ ’  for M A  

where x, and 7rf are, respectively, the parities of the initial and final states. Because 
of this selection rille, EX- and MA-transitions of the same multipolarity cannot occur 
between the same pair of nuclear states. For example, in a 2+ + Ot transition, only 
an E2-transition can take place, whereas in a 2- --+ O+ transition, only M 2  is allowed. 

The difference in the nature of electric and magnetic transition operators also plays 
a role in determining the dominant mode of transition between a pair of nuclear states. 
In general we find that, magnetic transitions are weaker than electric ones. It is not 
casy to make a direct comparison here, as electric and magnetic transitions of the 
same multipolarity cannot both occur between a given pair of nuclear states because 
of parity selection rules. The alternative is the following. For a given pair of nuclear 
states, if l x h h  EX and M(X + 1) are allowed by angular momentum and parity selection 
rules, t,hc EX-mode iisiially dominates the transition by a large factor. On the other 
hand, if both M(X) and E(X + 1) t,ransit,ions are allowed, the higher multipole order 
electric transition may be competitive, as far as trmsition rates are concerned, with 
the magnetic transition. This is triie in spite of the hindrance factor due to energy 
dependence. In fact,, it is common to find both types of transitions between a pair of 
st,ates, such as in the case of 2+ to I+,  where both M1- and EZ-transit,ions are allowed. 
The mixture is characterized by the misin,g rutto 6, defined by the relation 

62 = W(E(X f 1); J t C  + J f r )  

W ( M k  J1S + J f E )  

Tlir sign of 6 is given by the relative sign of the reduced matrix elements of the two 
transitions where such a sign can be determined. 
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The reason for the dominance of electric over magnetic transitions may be inferred 
from the fact that the operators for magnetic transitions differ from the corresponding 
ones for electric transitions by a gradient operator V. Since it is a differential operator, 
it tends to reduce the size of the matrix element. Similar differences are also found in 
other electromagnetic processes. 

Internal conversion and internal  pair production. Besides y-ray emission, elec- 
tromagnetic decay can also take place through internal conversion and internal pair 
production. In internal conversion, an atomic electron is ejected instead of a y-ray. 
The kinetic energy of the electron is equal to the de-excitation energy E, - ,TI(= E7) 
minus the (atomic) binding energy of the electron. As a result, electrons emitted from 
internal conversion processes have discrete energies and can therefore be distinguished 
from the continuous spectrum of electrons emitted in B--decays to be discussed later in 
$5-6. Since both types of decay can take place from the same excited state in medium 
and heavy nuclei, the difference makes it possible to distinguish between them. 

The process of internal conversion may be visualized in the following way. When 
a nucleus de-excites, for example, either by a nucleon jumping from one single-particle 
orbit t o  another or by a change in the rotational motion of the nucleus as a whole, a 
sudden disturbance is sent to the surrounding electromagnetic field. Atomic electrons, 
especially those in the innermost orbits, such as the K- and L-orbits, spend a large 
fraction of the time in the vicinity of the nucleus, the source of the electromagnetic field 
of interest here. It is therefore probable for the disturbance in the electromagnetic field 
to transfer the excess energy in the nucleus to one of the electrons and eject it from 
the atomic orbit. This is similar t o  the atomic Auger effect where, instead of emitting 
a photon when an atomic electron de-excites from a higher to a lower energy orbit, one 
of the atomic electrons is ejected. 

Internal conversion is important in heavier nuclei for two reasons. First, the radii 
of atomic electron orbits are smaller because of the strong Coulomb fields provided by 
heavy nuclei. The probability of transition is increased as a result of the larger overlap 
between the wave functions of the nucleus and the inner shell atomic electrons. For 
this reason, the electrons ejected come mainly from the innermost shells. Second, the 
stronger Coulomb field in heavy nuclei exerts a larger influence on the surrounding. 
For these reasons, the importance of internal conversion increases roughly as Z 3  and 
becomes competitive with y-ray emission for medium and heavy nuclei. 

In znternal paw production, an electron-positron pair is emitted in the place of a 
?-ray when an excited nucleus decays through electromagnetic processes. As long as 
the energy of decay is greater than 2m,c2 G 1.02 MeV, pair production is possible, a t  
least in principle. However, the process is not an efficient one and is usually several 
orders of magnitude retarded compared with allowed y-ray emissions. Pair production 
therefore becomes important only when y-ray emission is forbidden. For example, a 
O+ -+ O+ transition is not allowed by y-ray emission, as a y-ray must carry away at  least 
one unit of angular momentum. In such cases, pair production (and internal conversion 
for heavy nuclei) becomes the dominant decay mode. Other possibilities include such 
second-order processes as emitting a pair of y-rays, which we have excluded from our 
discussions. 

The inverse of y-ray emission is Coulomb excitation. Here, the nucleus is excited 
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to a higher state as a result of changes in the surrounding electromagnetic field. This 
can take place, for example, as the result of a charged particle passing nearby. We shall 
see in $3-1 that the nuclear transition matrix elements involved are identical to y r a y  
transitions we have been discussing here. 

5-4 Single-Particle Value 

It is useful to have some feeling of the magnitude of reduced transition probability 
between a pair of states. For this purpose, we shall make an estimate of the sizes of 
B(EX) and B(MX) that  can be expected on the average. A second motivation for doing 
this is to have a basis with which we can form some judgment on observed values. As 
we shall see later, this is an important function. Since transition probability W(X) is 
dominated by the energy-dependent factor k Z x + l ,  it is difficult to obtain an idea of the 
size of the nuclear matrix element involved by looking at the numerical value of W(X). 
The common practice is to compare these values with Weisskopf estimates. In fact, 
these estimates are so widely used that they are often regarded as the “standard,” or 
units, for measuring transition rates. 

EX-transition. A calculation of the reduced transition probability requires a knowl- 
edge of both the initial and final wave functions. As the first step toward establishing 
an average, we shall make some assumptions about these wave functions so that a rea- 
sonable estimate mxy be made without reference to the specific states involved in a 
traIisition. Again, we shall adopt an extreme independent particle picture and consider 
nuclear transitions to be taking place by a nucleon moving from one single-particle 
orbit to another without affecting the rest of the nucleus. In the case of EX-transitions, 
this means that a proton moves from an initial single-particle state I j im i )  to a final 
one j j jmf ) .  In this limit, the matrix element of operator Ox,,(EX) between many- 
body nuclear wave functions 1 J,M,() and I J f M f t )  reduces to a single-particle matrix 
element, 

A 
(Jj~j€Iz e ( k ) r : y ~ p ( f l k ,  d)k ) lJ iMic )  (3p,IerAYxp(B, 4)Ijimz) (5-33) 

k=1 

where we have made use of the explicit form of Ox,,(EX) given in Eq. (5-29) to express 
the EX-transition operator as a sum of single-particle operators. 

A single-particle wave function may be decomposed into a product of three parts: 
a radial wave function R,t(r), an orbital angular momentum part given by spherical 
harmonics Yt,(B, c$), and an intrinsic spin part x1/2. By coupling Ycm(6, 4) with 
to  angular momenturn (j, m), we have the result 

lj.4 = RndT){Yt(e, 4 )  x Xl,2)jm 

where n is the principal quantum number. The single-particle matrix element on the 
right-hand side of Eq. (5-33) can now be written in terms of a product of a radial 
integral and a matrix element, in angular momentum space, 

W 

(jp,lerAY+/j,m,) = 1 ~ ; , , , ( r )  r A ~ , l , t i ( T )  r2 dr 

x ( {Yq(Q,  4)  ~ ~ l , ~ } j , ~ , l ~ ~ ~ ( f l , d ) ) l { ~ , ( e ,  4) X X ~ / ~ ) ~ , , , , , )  (5-34) 
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We shall now make some further simplifying assumptions so that the averages of both 
quantities on the right-hand side may be evaluated without having to specify explicitly 
the single-particle states involved. 

The radial dependence of Eq. (5-34) is contained in the integral 

(rA) = / K I L , ( r )  rAR,,t,(r) r2 dr 

where h J t , ( r )  and h , t , ( r )  are, respectively, the normalized radial wave functions of 
the initial and final single-particle states. The exact value of the integral depends on 
the radial shapes. However, to a first approximation, it is determined by the power 
X and the size of the nucleus. For the purpose of an estimate, we can simplify the 
situation greatly by assuming that the nucleus is a sphere of uniform density with the 
radius R = roA113. In this approximation, the radial integral reduces to 

(5-35) 

For r0, we can use the value of 1.2 fm from electron scattering. (See Problem 5-5 for 
values obtained with the more realistic harmonic oscillator radial wave functions.) 

Using Eq. (5-28), an estimate for the reduced transition probability of an EX- 
transition may be put into the form 

&.&.(EX) = c I (J ,~,El0X,(~X)IJtM~)l2 
PMJ 

The only matrix element remaining involves angular momentum and can therefore be 
evaluated using standard techniques of spherical tensors. However, there is very little 
point to do this. Since the total solid angle about a point is 4a steradians, an average 
of any angular dependence must be around the value 1/4a. Hence, for the purpose of 
an estimate, we can take 

2 A 2 1  
Best (EX) = e (. ) 

On substituting the value of the radial integral given in Eq. (5-35) and using 1.2 fm 
for ro, we obtain the Weisskopf single-particle estimate for the Xth multipole reduced 
electric transition probability, 

As mentioned earlier, this value is often used as the unit for EX-transition and is also 
called the Weisskopf unit for reduced transition probability for this reason. 

MA-transition. Estimates for magnetic transitions are slightly more complicated, 
as we have contributions from both nucleon intrinsic spin and proton orbital motion. 
We may proceed essentially along the same line as we have done above for electric 
transitions. This involves adopting an extreme single-particle model and making use 
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of the last form of operator OA,(MX) given in Eq. (5-30) to reduce the nuclear matrix 
element to a single-particle matrix element. In parallel with Eq. (5-36), we have the 
expression 

2 
+ % Y p ,  X f l  4)  x x l / ~ ) ~ / ~ , l ( ~ A - ~ ) ( ~ , # )  x & t ( ~ , ( W ) x  xl/2),,m,)) 

(5-37) 

Again, we shall take the nucleus to be a constant-density sphere of radius R and average 
over the angular clepcndence. The result of the radial integral may be taken to be 

the same as we have done to arrive at Eq. (5-35). [Strictly speaking, the factor in front 
on the right-hand side should instead be 3/(A + 2) but is kept in the form given to 
conform with that for EX-transitions.] 

For the purpose of an estimate, it is adequate to evaluate either one of the two terms 
inside the curly brackets in Eq. (5-37) and multiply the result by 2 (before taking the 
square). Factors related to the gyromagnetic ratios in the first term may be replaced 
hy a reasonable average value, and this is generally taken to be 

4 2 x  + l)(gs - -y 29, 25 10 
X + 1  

For the average of the square of the angular part, we can again take the value 1 / 4 ~  
used earlier for EX-transitions. This gives us the result 

(5-38) 

as the final form of the Weisskopf estimate for reduced magnetic multipole transition 
probability. 

The results of Eqs. (5-36) and (5-38) may be substituted into (5-27) to produce the 
Weisskopf units for transition prohahility: 

Explicit values in terms of nucleon number A and transition energy E, are listed in 
Tahie 5-2. 



Order 
X 

1 

2 

3 

4 

5 

In terms of Weisskopf units, the measured reduced rates are observed to  vary by 
several orders of magnitude, sometimes even for transitions within a single nucleus. 
This shows the richness of physics contained in electromagnetic transitions between 
nuclear states. For a transition to be enhanced by an order of magnitude or more over 
the single-particle values we have estimated, many nucleons must be acting together in 
a coherent manner. As we shall see in Chapter 6, this leads to the concept of collective 
motion in the form of nuclear vibrations and rotations. 

EX MA 
W (s-l) r (MeV) W (s-') r (MeV) 

1.02 x 1014 6.75 x A2I3E; 3.15 x l O I 3  2.07 x E; 
7.28 x lo7 4.79 x A4I3E; 2.24 x lo7 1.47 x A2I3E; 
3.39 x 10 2.23 x lo-'' AzE; 1.04 x 10 6.85 x A413E; 
1.07 x 7.02 x A8I3E: 3.27 x 2.16 x A2E; 
2.40 x lo-'' 1.58 x A10/3Et1 7.36 x 4.84 x A8/3E+1 

5-5 Weak Interaction and Beta Decay 

Nuclear @-decay is one of the many facets of weak interaction. In addifion to transitions 
between nuclear states, a variety of other phenomena involving hadrons and leptons 
share the same origin. Being slower by several orders of magnitude, these weak processes 
cannot be observed if there are competing reactions induced by electromagnetic and 
strong interactions. For this reason, weak interactions can be studied only in cases 
where these faster processes are either forbidden or hindered by selection rules. 

The basic reaction involving weak interaction in nuclei may be characterized by the 
decay of a neutron and a (bound) proton, 

n ---f p + e - + ~ ~  

Pbound --+ n + e+ + u, 

(5-39) 

(5-40) 

introduced earlier in Eqs. (2-1) and (2-2). These transitions are examples of a general 
class of decay taking place in other hadrons as well. For example, 

7r- --$ { 

(5-41) 

(5-42) 

C- + n + r -  (5-43) 

(5-44) 



182 Chap. 6 Electromagnetic and Weak Interaction 

Reactions siich as those given by Eqs. (5-39) to (5-42) are referred to as semi-leptonic 
processes, since both hadrons and leptons are involved. Some weak interaction processes 
do not involve any leptons at all and are called non-leptonic processes, such as those 
given 1Jy Eqs. (5-43) and (5-44). There are also purely leptoiiic processes, such as the 
dway of a muon, 

/L- -+ e- + Fe + v, 

Our main concern will be the semi-lcptonic mode, as nuclear P-decay is a part of it. 

(5-45) 

Universal  weak interaction. Weak interaction processes are often said to be unt- 
tiersal, as the strength of the basic process is the same for all three different types of 
reactions described in the previous paragraph. This point is illustrated by the fact that 
the coupling constant Gp, generally known as the Fermi coupling constant, has the 
same vahie, 

GF = 1.43572(3) x J-m3 = 1.16639(2) x lO-" (h~)~  MeV-' (5-46) 

regardless of whether it is measured through superallowed &decay in nuclei (see next 
section and Problein 5-2), the decay of inuons shown in Eq. (5-45), or other weak 
interaction processes. 

Weak interactions are mediated by vector bosons W* and Zo, in the same way as 
* elect,romagnetic interactions are carried by photons. However, because of their large 

I1lassI:s. 

m w c 2  = 80.36 f 0.12 GeV 7nzc2 = 91.187 f 0.007 GeV 

t,lie range of weak interactions is ext,reinely short (TO = R/mc N fm), about three 
orders of magnitude smaller than the long-range part of nuclear force. For this reason, 
weak interactions may he considered as zero-range, or "contact," interactions for all 
practical purposes in nuclear physics. 

Since hosons W' carry net charges, they change the charge state of a particle as, 
for examplc, in the reactions given in Eqs. (5-39) and (5-40). Pict,orially, these two 
processes may be represented by the diagrams shown in Fig. 5-1. Most weak decays 

n P 

Figure 5-1: Diagram showing P--decay of a neutron into a proton by emitting 
a W--hoson and /3'-tlecay of a (hound) proton into a neutron by emitting a 
W+-hoson. In botli caws, the W-boson decays into a pair of leptons. 
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are mediated by charged bosons, as illustrated by the examples given in Eq. (5-41) to 
(5-45). The neutral boson 2' is the source of neutral weak current and is responsible 
for reactions such as neutrino-electron scattering: 

Weak Interaction and Beta Decay 

In spite of its small cross section, such processes are important, for example, in trapping 
the energy inside the outer shell of a supernova, preventing large amounts being carried 
away by neutrinos immediately after the explosion (see $10-4). 

On a more fundamental level, P-decay of hadrons may be viewed as the transforma- 
tion of one type of quark to another through the exchange of charged weak currents. As 
we have seen in Chapter 2, the flavor of quarks is conserved in strong interactions. How- 
ever, through weak interactions, it is possible for quarks to change flavor, for example, 
by transforming from a d-quark to a u-quark, 

d -t u + e- + ve 

This is what takes place in the /3--decay of a neutron. In terms of quarks, Eq. (5-39) 
may be written as 

(udd) -+ (uud) + e- + ve 

Similarly, the @+-decay of a bound proton to a neutron involves the transformation of 
a u-quark to a d-quark, 

u + d + e+ + v, (5-48) 

Diagrammatically, the processes given by Eqs. (5-47) and (5-48) may be represented 
by Fig. 5-2(a) and ( b ) .  The other weak transitions given in Eq. (5-41) to (5-45) are 
represented by diagrams such as those shown in Fig. 5-2(c) to  (e). 

When a quark decays, it does not necessarily have to result in a quark of definite 
flavor. For the simple case of weak decay among the four lightest quarks, u, d ,  s, and c, 
the flavor mixing in the decay product may be expressed in terms of a single parameter, 
the Cabibbo angle O,, 

(5-47) 

u - d' = dcos8, + ssin8, 

c - s' = -a!sinB, + scos8, 
(5-49) 

This is reminiscent of what we saw in $2-7 on S&(flavor) symmetry mixing. There, 
the observed pairs of neutral mesons, (7,~') and ( p ,  a), are mixtures of the SUs(flavor) 
symmetry-conserving pairs (Q, 78) and (40 ,  d8), respectively. 

The observed weak transitions are, however, between quarks of definite flavor, for 
example, u- and d-quarks, as in the decay of a neutron to a proton. The relation 
given in Eq. (5-49) implies that the observed P-decay strength in reactions is not the 
fundamental weak interaction coupling constant GF itself, but a value modified by the 
mixing angle. 

It is customary to express the transformation given by Eq. (5-49) in the form of a 
charged current, 

cos OC sin 8, ) ( c l )  
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Figure 5-2: Weak decay of quarks: ( a )  a d-quark becomes a u-quark by emitting 
a W--boson, similar to a neutron decaying into a proton; ( b )  a n-quark is changed 
into a d-quark similar to a bound proton decay; (c) an example of semi-leptonic 
decay givcn hy Eq. (5-42); ( d )  an example of nonlept,onic weak decay in Eq. (5-43); 
and (e) an example of piirely leptonic decay given by Eq. (5-45). 

In terms of such a current, the  more general case involving all six quarks may be written 

where the 3 x 3 matrix is known as the Cabibbo-Kobayashi-Maskawa matrix. T h e  nine 
matrix elements are functions of three mixing angles and a phase factor. A complete 
determination of all the independent, mat,rix element,s involves weak decays of the heavy 
qiinrks as well. 

For nuclear IJ-deca.~, we are mainly concerned with the  transition between u- and 
d-quarks. As a result, only the  product between the  Fermi coupling constant GF and 
cos 8, enters into the process. The  mixing angle is sufficiently small tha t  we can ignore 
it for most of our purposes. In order tfo simplify the notation and to avoid any possible 
confusion, we shall use the symbol Gv, the  vector conpling constant, to represent the  
product and omit the explicit presence of the mixing angle. However, we must be  aware 
of the difference, for example, when we compare the value of GF with the  measured 
st,rengt,h of weak decays in nuclei, as clone in Problem 5-2. 

P a r i t y  nonconservation. One of the more remarkable properties of weak decay 
is that parity is not conserved. We need to go into this point somewhat, since it 
is closely linked with the nature of nuclear P-decay operator. As described in $A-l ,  
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parity transformation is the operation that inverts the spatial coordinates, 

( $ 1  3172) p ' (-x, -Y, -2 )  

It is often described in terms of taking a mirror image of the coordinate system, as 
can be seen from Fig. 5-3. Under a parity operation a scalar (S) is unchanged, but 
a vector (V) of the type we normally use changes sign. Where needed, we shall refer 
to such vectors as polar vectors, to distinguish them from axial vectors, t o  be defined 
next. Examples of polar vectors are spatial location T and momentum p.  

X i; y4 X 

Figure 5-3: Parity and direction of spin. Under a parity transformation, a 
right-handed rotation, shown in ( a ) ,  is changed into its mirror image, a left- 
handed rotation, shown in ( b ) .  The transformation in the coordinate axes is 
accomplished by (5, y, 2 )  + (-z, -y, -2) followed by a rotation of 180" around 
the y-axis, 

We can also construct vectors that  do not change sign under a parity transforma- 
tion. For example, the angular momentum vector l h  = T x p does not change sign 
under a parity operation, as both r and p reverse signs. Vectors that do not change 
sign under an inversion of the coordinate system are called axzul vectors ( A ) .  All an- 
gular momentum operators, including intrinsic spin operators, are axial vectors. The 
scalar product of an  axial vector and a polar vect>or is a scalar that  changes sign under 
a parity operation. Such scalars are called pseudoscalars ( P ) .  There is also a fifth 
category of quantities called tensors (not to be confused with spherical tensors, which 
we use for angular momentum algebra) that behave differently from S, V, A ,  and P 
under a parity transformation, but we shall not be concerned with them here. 

An operator made of a linear combination of scalars and pseudoscalars, or vectors 
and axial vectors, does not have a definite parity, and as a result, parity is not con- 
served under its action. For strong and electromagnetic interactions, parity is strictly 
conserved. That is, all such processes are invariant under spatial inversion. However, 
this is not true for weak interaction. 

The suspicion of parity violation in weak interaction originated from observations 
made on the decay of a K+-meson. Two different modes have been observed, one 
having two pions in the final state and the other having three pions, as shown in 
Eq. (5-44). Since these two modes have different parities, parity nonconservation in 
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weak decays was proposed as the resolution. The confirmation of this suggestion came 
from observing the P--decay of 6oCo [154], 

6oCo + “Ni f e- i- lii, 

The ground state of odd-odd nucleus !yCo has spin-parity J“ = 5+, as shown in Fig. 5-4. 
A nonzero spin is essential here so that the nucleus can be polarized (that is, have the 
nuclear spin aligned) along the direction of an external magnetic field. The ground 
sttate decays predominantly (99% of the time) t,o the J“ = 4+ excited state of !:Ni at 
excit,ation energy 2.51 MeV. Thc decay is purely of the Gamow-Teller type (see next 
section). 

Figure 5-4: Decay scheme of “Co -‘;::i 
to 60Ni. The main branch leading 
to the 4+-st8ate at 2.51 MeV in 6nNi 
is a Gamow-Teller transition and is 

:: 
2.16 

‘--. n 2.28 
0.12% 

used in one of the first experiments 
to demonstrate parity nonconserva- 
tion in P-decay. (Plotted using data 
from Ref. (951.) 

L 1.33 

0 
o+ 

60Ni 

If the spins of all t8he “Co nuclei are aligned, we have a fixed direction in space 
that, is defined in a natural way by the experimental setup. This direction may be 
indicated by a unit vector u parallel to the alignment of the 6oCo ground state spin 
J .  The angular distribution of electrons emitted with momentum p and energy E may 
be expressed in the following form (see, for example, p. 67 of Morita (1051 or p, 290 of 
Eisenberg and Greiner [55] for a derivation), 

u . p c  2) 

E c 
W ( 0 )  oc 1 +a- = 1 +a-cosd  (5-50) 

where d is the angle with respect to J by which the electron is emitted, E is the total 
(relativistic) energy of the electron, and the parameter a gives the intensity of angular 
dependence. Under a parit>y operation p ,  being a polar vector, changes sign and u, 
being an axial vector, does not change sign. The product u p in the second term of 
Eq. (5-50) is then a psencloscalar and changes sign under an inversion of the spatial 
coordinak system. On the other hand, the first term (unity), being a scalar, remains 
invariant. If parity is conserved in the decay, the second term of Eq. (5-50) must vanish 
on ticcount of the fact that u .  p -+p -u . p .  As a result, we expect a = 0 and the 
angular distribution of electrons emitted to bc isotropic. Experimentally, a turned out 
to be -1, iiidicating a maximum degree of parity violation. The game conclusion is 
later confirmed by other measurements, such m the decay of pions and muons. 

The result a = -1 may also be examined from the point of view of the hdicities of 
the leptons involved. The helicity of a particle is defined as the projection of u, which 
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we shall take here as twice the intrinsic spin s along its direction of motion 

(5-51) 

For a massless particle, the eigenvalues of h can only be f l .  An example of a particle 
with only two possible orientations is provided by the photon, which, as we have seen 
earlier, can have only two linearly independent polarization directions. For electrons 
and other particles with nonzero rest mass, the helicity takes on values f v / c .  Particles 
with positive helicity are often referred to as “right-handed” particles and negative- 
helicity particles are often called “left-handed” particles. If the neutrinos are massless, 
they should behave in ways similar to photons and h can have values f l .  Experimen- 
tally the helicity of neutrinos was first determined by Goldhaber, Grodzins, and Sunyan 
175) through electron capture (see next section) in the O+ ground state of 15’Eu leading 
to the 1- excited state of lszSm at 963 keV, 

e- + lszEu -+ v, + ls2Srn’(l-) - v, + 152Sm(O+) + y 

By measuring the polarization of the y-ray emerging from the decay of lszSm to its O+ 
ground state, the helicity of u, emitted in the electron capture process was determined 
to be -1. Other nuclear P-decays put the helicity of pe to be +1, as well as h = -v/c 
for the electrons and h = +v/c for the positrons emitted. 

Two important consequences follow from these experimental observations. The 
first comes from the fact that all the leptons emitted in P-decays are observed to be 
left-handed ( h  < 0) and all antilepton right-handed ( h  > 0). For reasons we shall not 
go into here, operators that  are scalars, pseudoscalars, and tensors produce leptons 
(as well as antileptons) of both helicities under a parity transformation. Only vector 
operators V and axial-vector operators A can accommodate the observed result that 
all leptons are of one helicity and antileptons are of the other value. Furthermore, since 
V and A are of different parity, a linear combination of V and A is required as the 
operator for P-decay. This leads to the V - A theory of ,&decay. [The minus sign is 
related to the fact that a = -1 in Eq. (5-50) rather than +la] 

A second consequence of the observation that neutrinos are found only with helicity 
h = -1 and antineutrinos with h = +1 is that neutrinos may be described by a two- 
component wave function. In Dirac theory, wave functions of spin-; particles have four 
components so as to describe both particle and antiparticle, each with projections of 
spin &f along the quantization axis. If neutrinos are always of one helicity and antineu- 
trinos always of the opposite helicity, then a two-component theory wili be adequate, 
as particles have h = -1 and antiparticles h, = +l. However, such a simplification 
also implies that neutrinos are massless, and an experimental determination whether a 
neutrino has a nonzero rest mass is of fundamental interest here as well. 

Fermi and Gamow-TeIIer operators. Since &decay contains both a vector part 
and an axial-vector part, we expect that there are two independent operators, each with 
its own strength and its own radial dependence. As far as nuclear P-decay is concerned, 
the situation is somewhat simpler for two reasons. The first comes from the fact that 
weak interaction has very short range, much smaller than nuclear dimensions, as we saw 
earlier. For this reason, the radial dependence of the operators may be approximated 
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by a delta function. This leaves ctnly the strengths, or coupling constants, of each of 
the two operators to be specified. 

The two coupling constants for nuclear P-decay may be put in the form of a vector 
coiipling const,ant Gv for the vector part of the operator and a Gamow-Teller coupling 
constant GA for the axial-vector part. We have already seen that Gv is related to GF, 
the coupling constant underlying all weak int,eraction processes, The second simplifying 
feature of nuclear P-decay processes is that GA is related to Gv. This results from the 
belief that the difference between GA and Gv is only becaiise of modifications of the 
axial-vector operator in the presence of strong interaction. The vector current, which 
may be indicated by a four-vector V,, is known to be a conserved quantity, i.e., 

(5-52) 

This is generally referred to as the conserved vector current (CVC) hypothesis and is 
analogous to the continuity equation in electromagnetism. 

On the other hand, t,he axial-vector current A,, does not have such a relation, 
i.e., the divergence of A,L does not vanish. (This is related to the decay of pions, which 
are pseiidoscalar particles.) Since A,, is an axial vector, its divergence is a pseudoscalar. 
As wc have seen in $2-7, the pion is a pseudoscalar particle and therefore is described by 
a pseudoscalar field. This leads to the partially conserved asial-vector cirrrent (PCAC) 
hypothesis, 

(5-53) 

where $,, represents the pion field and n is B constant. In other words, the axial current 
is not conserved, hut it,s divergence is proportional to the pion field &, The weak 
axial-vector cnrrent is now related to a strong interaction field through a PCAC. (For 
fiirther details, see, e.g., de Shalit and Feshbach [49) and Lee [96].) 

A connection between the tfwo weak coupling constants GA and Gv can be made 
in a similar way. This is known as the Goldberger-Trieman rclation, which, for our 
piirpose here, may be stated in the form of the ratio between GA and Gv,  

(5-54) 

wliere M ,  is the nucleon mass. The quantity f,, = F,/& is measured to he -93 MeV 
aiid pT is kriown h s  the  pion decay constant. T h e  qiiantity g,,N is the pion-nucleon 
coupling const,aiit ant1 its value is known empirically to be 

From t,hese vdiic~s, Eq. (5-54) gives the result 

1 ~ ~ 1  x 1.31 

The measured value from nuclear /%decay is g,, = -1.259 f 0.004 (see also Problem 
5-2), i r i  agrrcrnp'nt with the result of the Goldberger-Trieman relation. This in turn 
confirins t,lic PCAC. 
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5-6 Nuclear Beta Decay 

Nuclear P-decay is the process by which a nucleus made of Z protons and N neutrons 
decays to a nucleus of the same nucleon number A but with (Z* 1, N 1). A P--decay, 

A ( 2 ,  N )  -4 A(Z + 1, N - 1) + e- + ve (5-55) 

may be regarded as the transformation of one of the neutrons in the nucleus to a proton, 
and a Pi-decay, 

A ( 2 ,  N )  --t A(Z - 1, N + 1) + e+ + v, 
as that one of the protons to a neutron. 

be captured by the nucleus instead of emitting a positron in P+-decay, 
Analogous to internal conversion in electromagnetic decays, an atomic electron may 

e- + A ( Z , N )  -+ A(Z - 1, N + 1) -t v, 

Except for a small difference in the energies involved, which we shall return to later, 
such an electron capture process has the same selection rule as P+-decay and is usually in 
competition with it. The probability of electron capture increases as Z 3 ,  again, because 
of increased strength of the nuclear Coiilomb field and decreased radii of electronic orbits 
in atoms with increasing proton number. 

Q-values. Some care is needed in calcdating the Q-value for nuclear @-decay and 
electron capture. The &-value of a reaction is defined as the difference in the total 
kinetic energies of the system before and after a reaction, 

Q = T / - T ,  

For a nuclear P-decay, the parent nucleus may be assumed to be a t  rest in the laboratory, 
and the initial kinetic energy T, in the system is zero. For the decay to take place, the 
total kinetic energies in the final state Tf and, hence, the Q-value must be positive. 
Since either an electron or a positron is emitted in the process, the &-value is not 
simply the difference between the energies of the initial and final nuclear states. (The 
neutrino mass is too small, if nonzero, to play a significant role in the considerations 
here.) 

A further complication comes from the fact that mass and binding energy of a 
nucleus are defined in terms of those for the corresponding neutral atom, as we have 
seen earlier. That is, the mass difference between the parent and daughter nuclei in a 
P-decay, 

includes the mass and the binding energy of an atomic electron as well. For this reason, 
the Q-value of p--decay is given by the expression 

AM,* = M ( 2 , N )  - M ( Z r  1 , N f  1) 

Qp- = ( M ( 2 ,  A') - M ( Z  + 1, N - 1 ) ) ~ ~  

as the electron emitted in the decay may be used, as far as energy calculations are 
concerned, to compensate for the additional electron required to make the daughter 
atom neutral. On the other hand, the Q-value for P+-decay is given by 

&a+ = ( M ( 2 ,  N )  - M ( Z  - 1, N + 1 ) ) ~ '  - 2m,c2 
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The “additional” amount of 2mec2 is required to create the positron emitted and the 
atomic electron that must be ejected in going from a neutral atom of 2 electrons to 
one with 2 - 1 electrons. 

In contrast, for electron captiire, we have the relation 

QEC= ( M ( Z , N ) - M ( Z - ~ , I V + ~ ) ) C ~ - B ,  

where 13, is the ionization energy of the atomic elect,ron captured. Since Be is of the 
order of 10 eV, we may ignore it unless we are concerned with accuracies of such order 
as, for example, in  the case of neut,rino mass measurements. The difference of 2m,c2 
in the Q-values between P+-deray and electron capture is, however, important. For 
example, the mass difference bet,ween ?Be arid ‘Li is 0.86 MeV/c2, less than 2mecZ, 
As a result, Pt-decay from 7Be to 7Li is impossible, and the transition goes purely 
by electron capture with a half-life of 53.4 days. Only a neutrino emerges from an 
elcctron capture. Because of the difficulty in detecting neutrinos, the most prominent 
signat,ure of electron capture processes is the x-ray emitted when atomic electrons in 
higher orhitals decay to the lowcr orbitals left empty when an inner shell electron is 
absorbed by the nucleus. 

In terms of binding energies, the Q-values above correspond to the following ex- 
pressions: 

Qp- = E B ( 2  + 1, N - 1) - E,(Z, N )  + 0.782 MeV 

Qp+ = E,(Z - 1 ,  N + 1 )  - E,(Z, N )  - 2m,c2 - 0.782 MeV 

QEC = EB(Z - 1, N + 1) - E,(Z,N) - Be - 0.782 MeV 

(5-56) 

where the arnonnt of 0.782 MeV comes from the mass difference between a neutron and 
a neutral hydrogen atotn, 

Transit ion rates for &decay. To relate the transition probability W for a @decay 
with the nuclear matrix element involved, we shall follow a procedure that closely 
resembles the one used earlier in electromagnetic transitions. To simplify the discussion, 
we shall ignore electron captiire. Again, we start with Fermi’s golden rule, 

given earlier by Eq. (5-13). The initial state is simple, involving only the parent nucleus, 

and we shall assume it to be stationary in the laboratory. 
The final state consists of three particles, a neutral lepton, a charged lepton, and 

the (laughter nucleus. For simplicity, we shall begin by ignoring any Coulomb effect 
between the charged lepton and the daughter nucleus. In this limit, both leptons are 
free particles and are described by plane waves traveling with wave numbers lee and k,, 
respectively. The final state wave function is then a product of three parts, 
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where I J f M f E )  is the wave function of the daughter nuclear state. The two factors of 
V-’ f2  are required to normalize the two lepton wave functions. We may expand the 
product of the two plane waves in terms of spherical harmonics, as done in Eq. (B-ll), 

elkr = J-i’j,(kr) Yxo(S,O) 

where k = lkl = Ik, + kul and 0 is the angle between k and P.  The spherical harmonics 
Yxp(B, 4) are independent of the azimuthal angle C#J for p = 0. 

We can, again, make use of the long-wavelength approximation, as the Q-value 
of the transition is typically of the order of a few mega-electron-volts. In t,his limit, 
we only need to retain the first term in the expansion of the spherical Bessel function 
j’(k~), as we did earlier in Eq. (5-26), 

X=O 

The final state wave function may now be written as 

(5-59) 

This is very similar to what we have done earlier in the multipole expansion of electro- 
magnetic transition matrix elements. The only difference, as we shall see later, is that 
the higher order terms are retarded by even larger factors in P-decay than in the cor- 
responding reduction between successive higher orders in electromagnetic transitions. 

Nuclear t ransi t ion matrix elements. Let us examine first the possible forms of the 
nuclear part of the &decay operator before proceeding to find the transition matrix 
element. Since a neutron is transformed into a proton in ,F-decay and the other way 
around in Dt-decay, the nuclear operator must be one body in nature, i.e., only one 
nucleon is involved at  a time, and must involve the single-particle isospin-raising or 
isospin-lowering operator 71. Furthermore, according to the V - A theory, there are 
two terms in the weak interaction, a polar vector part with coupling constant Gv and 
an axial-vector part with coupling constant G A .  In the nonrelativistic limit, the vector 
part may be represented by the unity operator times r1 and the axial-vector part by 
a product of the intrinsic spin operator u and rk. A proper derivation of this result 
requires manipulations with Dirac wave functions and y-matrices. We shall not carry 
out the discussions here, as they can be found in standard references such as Morita 
(1051. 

Putting this result for the operator together with those obtained earlier for the 
wave functions in Eqs. (5-58) and (5-59), we can write the a*-decay transition matrix 
element of Eq. (5-57) as 
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For the moment, we shall be mainly concerned with the two leading-order terms in 
the expression, generally known as the operators for “allowed transitions.” The higher 
order terms involve spherical harmonics of orders greater than zero, and these induce 
the “forbidden decays.” 

For the allowed decays, the nuclear part of the @*-decay operator has the form 

(5-61) 
J=1 J = 1  

The angular momentum carried by trhe first term is X = 0 and the second term is X = 1. 
The transition matrix element for this @-decay operator is then 

+gA ( J /  Mfr 1 (5-62) 

where g A  = GA/Gv.  The first term here is usually referred to as Fermi decay and the 
second term as Gamow- Teller decay. Transitions matrix elements of operators with 
X > 1 are usually much smaller in value, as they come from the higher order terms in 
Eq. (5-60). Their contributions are important only in cases where the two lowest order 
terms are forbidden by angular momentum and parity selection rules. 

u(j 77 ( j  ) 1 Ji Mi 0) 
j=1 

Density of final states. The density of states in Eq. (5-57) is complicated somewhat 
by the three-body final state in nuclear &decay . Because of conservation laws, the 
energy and momentum of one particle are limited in value in a two-body situation by 
the amounts taken up by the other. For this reason, the two-body problem simplifies 
to an equivalent one-body one. In a nuclear P-decay, the available kinetic energy, after 
taking care of the nuclear recoil, is shared between the neutrino and the electron (or 
positron). As a result, continuous energy spectra of the charged lepton and the neutrino 
are produced, subject only to the condition that their sum, together with the nuclear 
recoil, satisfies energy-momentum conservation for the decay. Furthermore, the charged 
lepton is emitted in the Coulomb field of the daughter nucleus and its wave function 
is “distorted” as a result of electromagnetic interaction. This also has an effect on the 
tlrrisity of final states available to tjhc charged 1ept)on. 

Since a neutrino hardly interacts with its surroundings, it may be considered as a 
free partick once it is created. For such a particle, the number of states with momentum 
pv (= My) ,  without any regard to the direction in which the particle is moving, is given 
in statistical mechanics to be 

I, 

(5-63) 

where V is the same volume as that used for normalizing a three-dimensional plane 
wave in Eq. (5-58). If the rest mass of the neutrino is m,,, its total energy is given by 
the relativistic relation 

E: = (m,,c2)’ +pfc* (5-64) 
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The amount E, is a part of the energy released by the nucleus in going from the initial 
to the final state. The rest of the energy is taken up by the charged lepton and the 
daughter nucleus. 

Instead of the Q-value, it is customary to express the energies involved in a &decay 
in terms of the maximum kinetic energy of the charged lepton emitted. The r e son  for 
this is a practical one, as the electron (or positron) energy is a quantity that can be 
observed directly. The maximum value, Eo, is generally referred to as the end-point 
energy in the sense that it is the point, in a plot of the number of charged leptons 
observed as a function of the kinetic energy, beyond which no more particle is detected. 
In terms of the end-point energy, we have the relation 

E, = Eo - E, 

where E, is the kinetic energy of the charged lepton. For simplicity, we have ignored 
variations of the end-point energy due to small differences in the recoil energy of the 
daughter nucleus in a three-body final state. Since nuclear mass is much larger than 
those of leptons, the nuclear recoil needs to be accounted for only where high precision 
is required. In terms of EO and E,, the density of neutrino states in Eq. (5-63) may be 
expressed as 

dn, = J (Eoi E e ) { ( E ~  - E,)’ - (m,c 2 ) 2 } d E, 
2a2ii 

(5-65) 

where we have made use of the result p,c = 
The charged leptons emitted cannot be treated as free particles, as the decay takes 

place in the Coulomb field of the daughter nucleus. A good approximation may be 
obtained by starting from a free particle and folding in a distortion factor F ( Z ,  E,) 
to correct for Coulomb effects. Analogous to Eq. (5-63), the density of charged-lepton 
states may be written as 

dn, = -F(Z, E,)pE dpe 

The correction factor F ( Z ,  E,) is known as the Fermi function. In nonrelativistic limit, 
with the velocity of the charged lepton v << c,  the function is related to the absolute 
square of the Coulomb wave function at  the origin [see also Eq. (B-50)] and has the 
approximate form 

from Eq. (5-64). 

(5-66) 
V 

2+ft3 

(5-67) 
X F ( Z ,  E,) = ___ 

1 - e-z 
where x = $27rcrZc/v for ,&-decay, with Q as the fine structure constant. The general 
form of the function is much more complicated and does not have a simple analytical 
representation. Extensive tabulated values are available and they are the ones usually 
used in practical applications. A full discussion of the Fermi function can be found in 
Morita (1051. 

The results of Eqs. (5-62), (5-65), and (5-66) can now be put into (5-57), and we 
arrive at  the transition probability for an electron or positron emitted with momentum 
~ e ( =  lpel), 
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where all factors related to V ,  the (arbitrary) normalization volume, cancel each other, 
and the summation over Mf takes care of the requirement to include all the possible 
nuclear final states. 

Let us ignore the possible small neutrino mass for the time being. The expression 
for W(pe) simplifies to 

(5-68) 

The approximation affects mainly the region where E, is very close to the end-point 
energy Eo and the influence of m, is most evident. From Eq. (5-68), we see that 
{W(pc)/p~F(Z,Ee)}'/2 is proportional to Eo - E,. A plot of the former quantity 
as a function of the latter produces a straight line (except in the region of the end- 
point energy) with a slope proportional to the nuclear matrix element. Such a graph, 
represented schematically in Fig. 5-5, is called a Kurie plot. 

I 

m,c' 

ENERGY OF ELECTRONS EMITTED 

Figure 5-5: Schematic diagram of a Kurie plot. The solid lines are for the case 
of finite neutrino mass m,,, and the dashed lines are for rn, = 0. With perfect 
resolution the plot, as shown in ( a ) ,  is a straight line intersecting the horizontal 
axis at the end-point energy Eo if m, = 0. Finite resolution of the detector 
modifies the region near the end-point energy, a8 shown in ( b ) .  

Neutrino ma55 measurement. It is convenient to digress here into a few remarks 
on the measurement of m,", the mass of an electron neutrino. All evidence to date 
indicates that mu is small, of the order of electron-volts, although the possibility of 
m, = 0 is not ruled out either. The masses of the other two neutrinos, vp and v,, are 
expected to  he larger; the present upper limits are, respectively, 0.5 and 70 MeV/cZ. 

Most direct measurements of m, make use of the P--decay of the triton, consisting 
of one proton and two neutrons. There are many reasons for favoring this reaction. 
The decay 

t 3 3He + e - + D ,  

has a half-life of 12.3 years. The Q-value is low, 18.6 keV, so that the influence of a 
small m, stands out, more prominently than otherwise, for example, in a Kurie plot. 
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The excited states of the daughter nucleus 3He are very high in energy, and as a result, 
the ground state is the only possible final nuclear state for the decay. In addition, the 
radioactive tritium source is relatively easy to prepare. There are, however, several 
difficulties associated with the measurement that are hard to overcome. The first 
one arises mainly from the low counting rate near the end point, a common problem 
in all nuclear P-decays. The second one comes from the fact that  the expected rest 
mass energy of the neutrino is comparable to the excitation energies in atoms. As a 
result, atomic effects, which are seldom a problem in nuclear measurements, become 
an important issue here. For example, there are two possible final atomic states for 
3He, and the relative probability of forming them must be known fairly well in order 
to obtain a reliable final answer on mu. Currently, there is still no agreement between 
the measured values from different laboratories. One of the quoted values, - 30 eV/cZ, 
came from the first measurement of Lubimov et al. 1991, and the results are shown 
in Fig. 5-6. Observations of neutrinos from the supernova SN 1987a, atmospheric 
neutrinos produced from cosmic rays, and those obtained from reactors and accelerators 
put the possible value to be much lower, somewhere around a few electron-volts divided 
by ca. However, the possibility of zero is by no means ruled out. 

Figure 5-6: Kurie plot near 
the end-point energy for tritium 
0-decay, used for neutrino mass 
measurements. The dashed curve 
is for m, = 0 and the dash-dot 
curve for m, = 80 eV/c2. The 
best-fit value of mu = 37 eV/c2 is 
given by the solid curve. Adapted 
from Ref. 1991. 
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Total transition probability. Let us return to  the question of nuclear ,B-decay. If 
we are not interested in the distribution of charged leptons emitted as a function of Ee,  
we can integrate W(p,),  given by Eq. (5-68), over all possible values of momentum p ,  
and obtain the total transition probability W, 
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where the dimensionless function 

Eo - E, 
m,c 

- - / F ( Z ,  Ee)p:(Eo - Eel2 dp, (5-69) 
~ 4 ~ 7  

is known as the Ferrni integral. Except in the  trivial case of 2 = 1 for t h e  daughter 
nucleus, the  integral must be evaluated numerically. Extensive tables of calculated 
values are available 1601, and some of the typical values are plotted in Fig. 5-7. 
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Figure 5-7: Fermi integral f ( 2 , E o )  of Eq. (5-69) as a function of the end-point 
energy Eo for different proton number Z in the daughter nucleus. The long dashed 
curves in the upper half of the diagram are for P--decay and the short dashed 
ones in the lower half are for /?+-decay. (Adapted from Refs. 159, 611.) 

From the transition prohahility, we obtain the expression for P-decay half-life, 

, , 111 2 1 2+3h,7 In 2 1 ,p  = - = ~- w f (Z  Eo) m:c4 Ic,M,(J/M,FlOX,(P)IJ1M;C)Iz 

Instead of half-lives, nuclear P-decay rates are  often quoted in terms of ft-values, the 
product of the Fermi integral f ( Z ,  Eo) and TI/*,  

As we can see from the definition, the ft-value is a more meaningful physical quantity 
in nuclear @-decay studies, as it is directly related t o  the square of the  nuclear transition 
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matrix element. The half-life, on the other hand, involves f(2, Eo), which depends in 
a complicated way on the proton number of the daughter nucleus and the end-point 
energy. We have already encountered a similar problem in the study of electromagnetic 
decays. There, half-lives are dominated by energy dependence and the quantities more 
directly related to nuclear physics are the reduced transition probabilities B( A) and 
transition rates measured in Weisskopf units. The ft-value in b-decay plays a similar 
role as B(X) in electromagnetic transitions. 

The measured f t-values are found to vary over many orders of magnitude, especially 
when we consider both allowed and forbidden decays. For this reason, it is often more 
convenient to use log ft values, the logarithm to the base 10 of the ft-values. The 
distribution of measured logft values is shown in Fig. 5-8. 
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Figure 5-8: Systematics of observed logft values. The grey area in the upper 
panel shows 718 cases of O+ + 1+ allowed transitions, and the remaining 1741 
cases of other allowed decays are shown by the white histogram. The peak of 
the distribution for the 24 cases of O+ -+ O+ superallowed decay is indicated 
by the arrow. The 216 first-forbidden unique transitions (14 - J,l = 2) are 
shown by the shaded part in the lower panel and the 1086 cases of other first- 
forbidden transitions by the white histogram. Only 37 second-forbidden and 3 
third-forbidden cases are known. The four reported cases of the highest order, 
fourth, have log f t values above 20. (Based on data in Ref. 1791, selected by Singh 
et al. (1281.) 
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Allowed @-decay. Let us  return to the operator for allowed decays, given earlier 
in Eq. (5-61). The Fermi term involves only the isospin-raising or isospin-lowering 
operator. As a result, it is possihle to carry out the summation over all the nucleons 
explicitly, 

A 

3=1 
c 7d.d = T, 

where T, lowers or raises the third component of the isospin for the nucleus m a whole. 
If isospin is an exact quantum number, the matrix element for the Fermi operator can 
be evaluated without having to know explicitly the wave functions involved, 

A 

(Jf Mf Tf To1 I c 75 ( j  ) I  31 MTlTOl) 
J = 1  

= d T i ( X  + 1) - 'f 1) ~ ~ , J , ~ ~ , M , ~ T I T , ~ T ~ ( ( T ~ , ~ F )  (5-71) 

As we have seen earlier, both the Coulomb force and the difference in the mass between 
charged and neutral pions violate isospin symmetry and, consequently, affect the actual 
value of the Fermi matrix element. In practice, it  is found that, for light nuclei, the 
necessary correction factors are qiiite small and, in certain cases, can be evaluated to 
sufficient accuracy so that the final results are reliable to an uncertainty of 0.1% or less. 

From the results given by Eq. (5-71), we find that the angular momentum and 
isospin selection rules of Fermi-type /.?*-decay are the following: 

J f  = Ji 

Ti = Ti # 0 

(AJ = 0) 

(AT = 0, but T, = 0 --$ T, = 0 forbidden) 
(5-72) 

To, = To, 7 1 (AT0 = 1) 

A T  = 0 no parity change 

In other words, Fermi decay goes primarily between isobaric analogue states where the 
only difference between the initial and the final states is the replacement of a proton by 
a neutron or vice versa. However, since the operator has isospin rank unity, the matrix 
element vanishes if both initial and final states has T = 0. For this reason, the decay 
is forbidden between T = 0 states. 

u(j)r,(j) ,  the summation over nucleons cannot 
be carried out explicitly, as both spin and isospin of a nucleon are acted upon at  the 
same tfime. Unlike Fermi decays, matrix elements for the Gamow-Teller operator, in 
general, cannot be evaluated unless both the initial and the final wave functions are 
known. The angular momentum and isospin selection rules, however, can be deduced 
from the properties of the operator itself. Since the spherical tensor ranks are unity in 
both spin and isospin spaces, i t  is necessary that the initial and final states are related 
in the following ways: 

For t8he Gamow-Teller operat,nr, 

A J = O , l  

AT = 0, 1 

but 51 = fl --$ J ,  = 0 forbidden 

blit T, = 0 -+ T, = 0 forbidden 
(5-73) 

Tnr = To, =F 1 (AT0 = 1) 

AT = 0 no parity change 
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The last point, on the parity selection rule, comes from the fact that n is an axial-vector 
operator and, consequently, cannot change the parity between initial and final states. 
The absolute values of Gamow-Teller matrix elements are generally smaller than those 
for Fermi transitions, as both spin and isospin are involved. 

For allowed decays, the square of the nuclear transition matrix element may be 
written as 

3 GC{(F)2 + gi(GT)2}  (5-74) 

There is no cross term between the Fermi and Gamow-Teller operators, as the matrix 
element vanishes on summing over all the possible projections on the quantization axis. 
To simplify the notation, we shall use the abbreviations for the matrix elements adopted 
in the final form of Eq. (5-74). 

For allowed P-decays, the jt-value of Eq. (5-70) may be written as 

where the vector coupling constant Gv, as well as other universal constants, is absorbed 
into the definition of the constant, 

= 6141.2 f 3.2 s 
2r3ti7 In 2 
rn: c4 G$ 

K =  

Among the factors included, the value of the vector coupling constant Gv is perhaps 
least well known. A determination of K is then one way to deduce the absolute value 
of Gv. The best measured value of K is currently 6141.2 f 3.2 s, obtained from 
superallowed decays after applying such corrections as the finite size and the charge 
distribution of the nucleus [129]. The value of the vector coupling constant deduced 
in this way is Gv = 1.41556(74) x J-m3 or, in its more commonly quoted form, 
G ~ / ( h c ) ~  = 1.14984(60) x lo-" M e V 2 .  In order to obtain the Fermi coupling constant 
of G ~ / ( h c ) ~  = 1.16639(2) x lo-" M e V 2 ,  further correction factors are required (see, 
e.g., Ref. [33]). 

Superallowed ,&decay. Transitions from an initial nuclear state with J," = O+ to a 
final state with JT = O+ with the same isospin T form a special class of 0-decay, as the 
Gamow-Teller term does not contribute. These are known as superallowed &decays. 
The transitions are purely Fermi and, as a result, are least sensitive to the details of 
nuclear wave functions. Such decays are useful, for example, in determining the value of 
K, and hence Gv, as mentioned in the previous paragraph. Light nuclei are preferred 
here, as isospin-breaking effects are smaller than in heavier ones. Superallowed P-- 
decay is often forbidden by Q-value considerations, as Coulomb energies are higher for 
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AJ AT AT 

Ot -P O+ 0 no 

0 , I  0 , l  no 

0,1,2 0 , l  ye8 

1 , 2 , 3  0 , l  no 

2 ,3 ,4  0 , l  yes 

3,4,5 0 , l  no 

daughter nuclei with one more proton than the parent. Most examples of superallowed 
0-decay are positron emitters for this reason. An example is the case of 

1 4 0  + I4N + eS + v, 

leading to the O+ first excited state of I4N at 2.311 MeV. The half-life of 140 is 74 s and 
the Q-value of the reaction is 1.12 MeV. The ft-value is 3037.7 s, among the smallest 
known. If the initial and final nuclear states are truly isobaric analogue states of each 
other, the value of the Fermi matrix element may be obtained using Eq. (5-71) without 
referring explicitly to the nuclear wave functions. 

The det,ermination of gA,  the ratio between axial-vector and vector coupling con- 
stants, requires nuclear Gamow-Teller decay, as can be seen from Eq. (5-74). The 
best-known value is 

GA 
GV 

g A  = - = -1.269 rfr 0.004 

In principle, @--decay of free neutrons is the ideal reaction to use for the purpose, as 
only t,he nucleon intrinsic spin wave functions enter into the calculation. In this case, 
the Gamow-Teller matrix element can be evaluated using the relation 

c l(Xm,l~,llXm,)12 = 3 
IimJ 

However, we are limited here by our knowledge of the half-life of neutrons. The value 
that is quoted nowadays is T,12 = 614.6 f 1.3 s. Unfortunately, it  belongs to the class 
of data that change with time, as newer and better measurements are carried out. 

loglo j t l / z  

3.1-3.6 

2.9-10 

5-19 

10-18 

17-22 

22-24 

Forbidden decay. From t,he selection rules given in Eqs. (5-72) and (5-73) and sum- 
marized in Table 5-3, we see that, for allowed o-decays, the spins of the initial and 
final states can be different at most by unity and the parities must be same. Tran- 
sitions between states of different parity and AJ > 1 are also known to take place, 
albeit with much larger ft-values (Le., smaller probabilities). These are referred to as 
forbidden decays. As we can see from Eq. (5-59), the operators for forbidden decays 
involve spherical harmonics of order greater than zero. 

Forbidden decays are classified into different groups by the l-value of the spherical 
harmonics involved. For a given order P ,  the possible operators with definite spherical 

Table 5-3: Selection rules and observed range of log f t  values for nuclear P-decay. 

Decay type 

Superallowed 

Allowed 

First forbidden 

Second forbidden 

Third forbidden 

Fourth forbidden 
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tensor ranks are Km(d,4) and (&(B,4) x u)~,, .  The angular momentum and parity 
selection rules for the tth-order forbidden transition are then 

An = (-1)' AJ = t or C f  1 

The isospin selection rule remains the same as for allowed decays, 

AT, = 1 AT = 0,  1 but T, = 0 -+ T, = 0 transitions forbidden 

as nothing is different in the isospin structure of the operators between forbidden and 
allowed decays. Thus, for first-order forbidden transitions, the operators are r Y1,,(8,4) 
(proportional to r )  and (o x rYl(O,4))~,, with A = 0, 1, 2. Since the parity of Yl,(e, 4 )  
is -1, a parity change between the initial and final states is necessary. 

The reason for the large ft-values in forbidden ,&decays comes from the angular 
momentum barrier that inhibits lepton emission when t' > 0. This results in a reduc- 
tion in the size of the nuclear transition matrix element and, hence, an increase in the 
ft-values. Typical values for the various order decays are given in Table 5-3. Distri- 
butions of observed logft values for different orders are shown Fig. 5-8. In general, it 
is quite difficult to calculate the nuclear matrix elements for forbidden @-decays with 
any reliability, and as a result, relatively few theoretical investigations are found in the 
literature. 

Charge exchange reactions. Charge exchange reactions can also replace a proton 
in a nucleus by a neutron or the other way around. Although the process involves 
primarily nuclear interaction, the nuclear matrix element that enters into the reaction 
rate is essentially the same as that in a @-decay induced by weak interaction. Relations 
between /?-decay and charge exchange reactions are therefore of interest both from the 
point of making a connection between these two types of interaction and in studying 
the nuclear matrix elements involved. 

A typical charge exchange may be illustrated by a ( p , n )  or (n,p) reaction. In the 
former case, a nucleus A is bombarded by a beam of protons. Among the different 
possible reactions, we are interested here in the one where the proton is absorbed by 
the nucleus and a neutron is emitted in exchange. The nuclear structure part of this 
reaction bears strong resemblance to /?--decay. Apart from the dynamics of scattering, 
the main difference between them is that the (pin) reaction is not restricted by Q- 
value considerations leading only to  final states that are lower in energy, as given by 
Eq. (5-56) for the P--decay. 

Analogous to the relation between the (p,n) reaction and P--decay, we have the 
(n, p )  reaction, 

as the complement of P+-decay. From a practical point of view, the reaction is dif- 
ficult to study because of the scarcity of energetic neutron beams. A combination of 
( p ,  n)  and ( n , p )  reactions, however, allows a whole range of interesting questions to be 
investigated. 

Charge exchange processes may also be induced by reactions involving nuclei as the 
projectile and scattered particles, such as (3He,t), (6Li,6He), and their inverses. The use 
of 3He and heavier ions has the complication that both the incident and the scattered 

A ( 2 ,  N )  + n --t A ( Z  - 1, N + 1) + p 
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particle, as well as the target nucleus, may be excited in the process. In addition, 
(rt, T O )  and (T- ,  T O )  reactions are also used to examine charge exchange processes, as 
we shall see later in $8-6. 

With pions and heavy ions, it  is also possible to initiate double-charge exchange 
reactions, such as (r-, T + )  and (rt, c). In such reactions, a pair of nucleons change 
their charge states at the same time. These reactions are sensitive to two-body correla- 
tions in nuclei, a question of importance in nuclear structure studies. The information 
is closely related to that obtained through two-nucleon transfer reactions discussed in 
88-2 and is also related to double p-decay described below. 

Double P-decay. 
positrons are emitted, 

Double P-decay is the process by which two electrons or two 

A ( 2 , N )  -+ A ( Z +  2 , N  - 2 )  + 2e- + 2Ve 

A(Z, N )  -+ A ( Z  - 2 ,  N + 2) + 2e' + 2v, 

These reactions are the result of second-order perturbations induced by weak interaction 
and are far slower than normal &decays in which only a single charged lepton is emitted. 
As a result, double &decays are expected to  be long-lived, with typical half-lives of 
the order of lozo years. Processes with such long half-lives may be observed only in 
nuclei where ordinary p-decay and other faster reactions are forbidden by Q-value 
considerations. A number of such cases are known and they can be identified by 
comparing the binding energies of neighboring nuclei. For example, !:Se is stable 
against @--decay to !$Br, as the Q-value is -0.90 MeV. However, it  is unstable against 
double @--decay to !iKr, with a &-value of +3.00 MeV. 

It is not surprising that a number of nuclei can, in principle, undergo double p- 
decay. In general, these are even-even nuclei with large neutron excess near, but not at ,  
the bottom of the valley of stability. Because of pairing energy, they are more tightly 
bound compared with neighboring odd-odd nuclei (see 54-9). On the other hand, a 
neighboring even-even nucleus with two more protons and two less neutrons may be 
more tightly hoiind if the symmetry energy is larger. As we have seen earlier in the 
disciission of binding energies, this term is proportional to ( N  - Z)'. Since most nuclei 
i n  the medium to heavy range have a large neutron excess, an isobar with two neutrons 
less can often be more tightly bound as a re8ult. For this reason, more nuclei are known 
to be capable of double P--decay than those for double @+-decay. Double @+-decay is 
possihle, for example, in the case of ':gCd to ':iPd; the Q-value of 0.7 MeV is, however, 
smaller tlian the typical double ,!--decay values of 2 to 3 MeV. 

One of the interests i n  nuclear double /%decay is the question of whether the reaction 
can take place without emitting neutrinos. If neutrinos are Majorana fermions, with no 
distinction between particles and antiparticles, we can imagine that the neutrino from 
the first ,&decay in a double P-decay process is absorbed in the intermediate state and 
that this absorption induces the emission of the second charged lepton. In such cases, 
no neutrinos emerge from the decay. On the other hand, such "neutrinoless" double 0- 
decay processes are strictly forbidden if the neutrinos are Dirac particles, with particles 
distinct from their antiparticles. 

TIic fact t<hat neutrinos and antineutrinos are different particles has been confirmed 
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in an experiment using the reaction 

neutrino + 37Cl 4 e- + 37Ar 

The source of the neutrino for this classic experiment by Davis [48] in 1955 was a reactor 
which produces mainly 17,. The observed cross section for this reaction was much smaller 
than one expected for Majorana neutrinos. The result therefore constitutes a proof that 
neutrinos are Dirac particles. 

However, in a neutrinoless double P-decay, the neutrinos are virtual particles and 
may be different from the real neutrinos observed in the experiment of Davis. If virtual 
neutrinos are Majorana particles, then double &decay can take place without emitting 
any physical neutrinos and can, therefore, proceed on a much faster scale, perhaps by 
as much as six orders of magnitude. An important factor in support of the faster rate 
is that  the phase space available for the final states of a neutrinoless double @-decay is 
much larger than the competing two-neutrino mode. 

One way to distinguish between the two possible types of double ,&decay is the 
spectrum of the electrons emitted. If no neutrinos are emitted, the sum of the energies 
of the two electrons is equal t o  the &-value of the decay (again ignoring the small 
amount of energy taken away by nuclear recoil). On the other hand, if two neutrinos 
are also emitted, the sum of the energies of the two electrons has a continuous distribu- 
tion given by energy-momentum conservation of the five-body final state. One recent 
measurement of the double P--decay of 82Se to "Kr by Elliot, Hahn, and Moe [57] 
gives a limit of the half-life of the decay to be 4.4 x lozo years and an energy spectrum 
of the two electrons emitted consistent with the two-neutrino mode. 

Long lifetimes alone do not necessarily rule out the possibility of neutrinoless double 
P-decay. As we have seen in the case of single @-decay, there is a large spread in the 
logft  values, even ammg the allowed decays. Such a divergence in the rate is due, 
primarily, to the wide range of possible values for the nuclear transition matrix element 
involved. The same may also be true for double P-decays. If the nuclear matrix elements 
in double @-decays are much smaller than expected, the lifetimes of 10" years could 
even be an underestimate of the rate for the two-neutrino mode. Consequently, long 
measured half-lives by themselves do not rule out the neutrinoless mode. In this sense, 
the energy spectrum of the experiment of Elliot, Hahn, and Moe is a more conclusive 
evidence against the neutrinoless mode than lifetime measurements. 

Since we are considering very slow processes, there are also other possibilities for 
double P-decay in addition to two-neutrino and neutrinoless modes. One is the weak 
decay of a A-particle to a nucleon with the emission of two charged leptons. The 
normal decay mode of A is to a pion plus a nucleon via strong interaction. However, 
a weak branch involving leptons cannot be ruled out, especially when the A-particle is 
a part of a nucleus. The other possibility is that, instead of two neutrinos, a boson, 
given the name "Majaron," may be emitted. The detection of any such events requires 
measurements involving half-lives of the order of 10" year or longer, and they are not 
easy experiments to carry out. 
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Prob lems  

5-1. The first excited state of 20Ne at 1.634 MeV has J" = 2+ and decays to the O+ 
ground state with a half-life of 0.655 ps. Find the reduced transition probability 
B(E2) in units of e2fm4 and the transition rate W in Weisskopf units. 

5-2. The following list of corrected superallowed ft-values in seconds are taken from 
Sirlin 11291: 

140 +14N 3074.0 f 3.9 2smAl-+2eMg 3068.1 f 3.7 

34Cl -+34S 3069.0 f 4.7 38mK -3RXr 3066.6 f 4.6 

42Sc +"Ca 3077.5 f 7.5 46V - + 4 G T i  3074.7 f 4.3 

50M~1-+50Cr 3069.6 f 4.4 54Co +54Fe 3069.0 f 1.6 

Find the vector coupling constant GV from this list of results. F'rom the value 
Gv obtained, find the ratio JGA/GvI using the value of 615 s for the half-life of 
neutron P--decay and an estimate of the value of f(2, &) from Fig. 5-7. 

5-3. Since the end-point energy Eo is difficult to measure precisely, the Q-value of 
a nuclear @-decay is often determined from the corresponding (p,n) or (nip) 
reaction. Calculate the Q-value for the superallowed B+-decay of ZsmAl (E, = 
0.229f0.003 MeV) to the ground state of 26Mg, given that the measured Q-value 
for the 26Mg(p, n)26Al reaction leading to the ground state of *'A1 is -4.786 f 
0.002 MeV. 

5-4. The 7/2+ state at 1.72 MeV in 21Ne has a half-life of 48 fs (1 fs = s) 
and decays 94% of the time to the 0.33-MeV 5/2+ state with a mixing ratio 
6 = 0.14 z t  0.02 and 6% of the time to the 3/2+ ground state. Find the B(E2) 
and B(M1) values for the transitions involved. 

5-5.  A more realistic radial wave function for nucleons than the uniform-denfiity-sphere 
model used i n  $5-4 to calculate the Weisskopf single-particle estimates of electro- 
magnetic transitions is the spherical harmonic oscillator radial wave function. 
Use the explicit forms given in Table 7-1 to evaluate the matrix element (?) and 
compare the results with those given by Eq. (5-35). 

5-6. The orbital angular momentum part of R single-particle wave function is given 
by spherical harmonics Y,,(B, 4).  Use this together with the radial integrals 
evaluated above in Problem 5-5 to calculate the single-particle values for E2- 
transitions. 

5-7. The nucleus ':N decays to ',$ with a Q-value of 16.38 MeV. Calculate the maxi- 
mum recoil energy of the daughter nucleus. If the probability of emitting leptons 
with momenhm p v ,  up to p - Q/c, is "pz d p ,  given purely by phase space condi- 
tions, calculate the distrihution of the number of positrons emitted as a function 
of energy. Ignore Coulomb corrections to the charged lepton emitted. 
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Nuclear Collective Mot ion 

The experimental observations outlined in the previous two chapters on energy level 
positions, static moments, transition rates, and reaction cross sections provide us with 
the basis for nuclear structure studies. Many of the observed properties of a nucleus 
involve the motion of many nucleons “collectively.” For these phenomena, it is more 
appropriate to describe them using a Hamiltonian expressed in terms of the bulk or 
macroscopic coordinates of the system, such as mass, radius, and volume. 

6-1 Vibrational Model 

We have seen earlier in the discussion of nuclear binding energies in $1-3 and $4-9 that, 
in many ways, the nucleus may be looked upon as a drop of fluid. A large number 
of the observed properties can be understood from the interplay between the surface 
tension and the volume energy of the drop. In this section, we shall take the same 
approach to examine nuclear excitation due to vibrational motion. 

For simplicity we shall take that, at equilibrium, the shape of a nucleus is spherical, 
i.e., the potential energy is minimum when the nucleus assumes a spherical shape. This 
is purely an assumption of convenience for our discussion here. I t  is made, in part, for 
the reason that spherical nuclei do not have rotational degrees of freedom, and it9 a 
result, vibrational motion stands out clearly, without complications due to rotation. In 
practice, the most stable shape for many nuclei is deformed, as we shall see later in 
$6-3, and vibrational motions built upon deformed shapes are also commonly observed. 

Breathing mode. When a nucleus acquires an excess of energy, for example, from 
Coulomb excitation due to a charged particle passing nearby, it can be set into vibration 
around its equilibrium shape. We can envisage several different types of vibration. For 
example, the nucleus may change its size without changing its shape, as shown in 
Fig. 6- l (a ) .  Since the volume is now changing while the total amount of nuclear matter 
remains constant, the motion involves an oscillation in the density. Such a density 
vibration is similar to the motion involved in respiration and, for this reason, is called 
a breathing mode vibration. 

For an even-even, spherical nucleus, the ground state spin and parity are O+. To 
preserve the nuclear shape, breathing mode excitation in this case generates states that 
are also J“ = O+. In Fig. 6-2, we see that, in the case of doubly magic nuclei of l60, 
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Figure 6-1: Time evolution of low-order vibrational modes. The monopole 
oscillation in (a) involves variations in the size without changing the overall shape. 
The nucleus moves as a whole in an isoscalar dipole vibration shown in ( b ) .  In 
contrast, an isovector dipole vibration consists of neutrons and protons oscillating 
in opposite phase, as in ( c ) .  In quadrupole vibrations the nucleus changes from 
prolate to oblatc and back again, as in (d ) .  Octupole vibrations are shown in ( e ) .  

40Ca, gOZr, and  *'*Pb, a low-lying J" = Ot s ta te  is found among the first few excited 
states. Such low-energy states are  often the result of collective excitation and may be 
identified as breathing mode states. On the other hand, nuclear matter is rather stiff 
against compression, and one expects the  main par t  of the  breathing mode strength to 
be much higher in energy. T h e  observed value depends on the number of nucleons in 
the nucleus, and the peak location is usually found at around 80A-'I3 mega-electron- 
volts. The energy of breathing mode excitation is one of the few ways to find out 
something about  the stiffness of nuclear mat ter  t h a t  are  important in understanding, 
for an example, the s ta te  of a star just before a supernova explosion (see 310-6) and in 
the study of infinite miclear mat ter  ($4-12). 

Shape vibration. The more common t,ype of vibration involves oscillations in the 
shape of the nucleus without changing the density. This is very similar to a drop of 
liquid suspended from a water faucet. If the drop is disturbed very gently, i t  s tar ts  to 
vibrate. Since the amount of energy is usually too small to compress t h e  liquid, the 
motion simply involves an oscillation in the shape. 

For a drop of fliiid, departures from spherical shape without density change may 
be described in terms of a set of shape parameters ~+,(t) defined in  the following way: 

where R(6,d; t )  is the distance from the  center of the nucleus to the surface at angles 
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Figure 6-2: Observed low-lying energy level structure of doubly magic nuclei 
l6O, 40Ca, 'OZr, and 208Pb, showing the location of O+ breathing mode and 3- 
octupole vibrational states. (Plotted using data from Ref. [95].) 

(Old) and time t .  The equilibrium radius RO here is that for a sphere having the same 
volume. Each mode of order X has, in general, 2X + 1 parameters, corresponding to 
p = -A,  -X + 1, . . . , A. However, symmetry requirements reduce the number of 
independent ones to be somewhat smaller. For example, since 

it is necessary for 

to keep R(O,d; t )  real. Furthermore, rotational and other invariance requirements also 
impose a set of conditions on rwA,,(t). We shall see an example for quadrupole deforma- 
tion later in 86-3. 

The X = 1 mode corresponds to an oscillation around some fixed point in the 
laboratory, as shown in Fig. 6-l(b). If all the nucleons are moving together as a group 
without any changes in the internal structure of the nucleus, the vibration corresponds 
to a motion of the center of m a s  of the nucleus. This is known as the isoscalar (T = 0) 
dipole mode and is of no interest if our wish is to study the internal dynamics of a 
nucleus. On the other hand, the corresponding isovector (T = 1) mode, as we shall 
see in the next section, corresponds to  a dipole oscillation of neutrons and protons in 
opposite directions, as shown in Fig. 6-l(c). This is the cause of giant dipole resonances 
observed in a number of nuclei. The X = 2 mode describes a quadrupole oscillation 
of the nucleus, A positive quadrupole deformation means that the nuclear shape is 
a prolate one, with polar radius longer than equatorial radius. On the other hand, a 
negative quadrupole deformation is one in which the nucleus has an oblate shape, with 
equatorial radius longer than polar one. A quadrupole vibration corresponds to the 
situation that the nucleus changes its shape back and forth, from spherical to  prolate, 
back to  spherical and then to oblate, and then back again to spherical, as shown in 
Fig. 6-l(d). Similarly, an octupole (A = 3) vibration is depicted in Fig. 6-l(e). 

= ( - - 1 Y Q A , - / I ( 4  
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The energy associated with vibrational motion may be discussed in terms of the 
variat,ions in the shape parameters axll(t) as functions of time. When a nucleus changes 
its shape, nucleons are moved from one location to another. This constitutes the 
kinetic energy in the vibration. At the same time, when a nucleus moves away from its 
equilibrium shape, the potential energy is increased, the same as a spring is compressed 
or stretched. Unless constrained, it will return to its lowest potential energy state. The 
amount of energy involved in each case is related to the nuclear shape and, as a result, 
the shape parameters become the appropriate canonical variables to describe the motion 
(rather than, for example, coordinates specifying the position of each nucleon in the 
nucleus). 

For small-amplitude vibrations, the kinetic energy may be expressed in terms of 
the rate of change in the shape parameters, 

where Dx is a quantity playing an equivalent role as mass in ordinary (nonrelativistic) 
kinetic energy in mechanics. For a classical irrotational flow, DA is related to the mass 
density p and equilibrium radius Ro of the nucleus in a liquid drop model, 

Similarly, the potential energy may he expressed as 

1 v = - p x l a x p ( t ) l ’  
AP 

Such a form follows naturally from the fact that we have assumed the equilibrium shape 
to be spherical and, as a result, the minimum in the potential energy lies at ax,,(t) = 0. 
In this case, there is no linear dependence of V on a ~ , ( t )  and the leading order is the 
qiiadratk term. For small-amplitude vibrations, terms depending on the higher powers 
of w A I 1  may be ignored and we are led to Eq. (6-2). The quantity CA may be related 
tjo the surface and Coulomb energies of the fluid in a liquid drop model for the nucleus 
(see p. 660 of Ref. [35]), 

1 3 A - 1  Z ( Z - 1 )  
CA = - ( A  - 1)(X + 2) - -- 

47r 27r 2X + 1 *’ A113 

where w2 and a3 are the surface and Coulonib energy parameters defined in Eq. (4-56). 
In terms of Cx and DA,  the Hamiltonian for vibrational excitation of order X may 

be written as 

If different modes of excitation are decoupled from each other, and with any other 
degrees of freedom the nucleus may have, H A ,  Cx, and DA are constants of motion. 
Under these conditions, we can differentiate Eq. (6-3) with respect to time and obtain 
the eaiiation of motion. 
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Comparing with the expression for an harmonic oscillator, 

d2x 
dt2  
- + w 2 x = o  

we obtain the result that, for small oscillations, the amplitude a ~ , ( t )  undergoes har- 
monic oscillation with frequency 

with AWA as a quantum of vibrational energy for multipole A. 

Quadrupole and octupole vibrations. A vibrational quantum of energy is called 
a phonon, as it is a form of “mechanical” energy, reminiscent of the way sound wave 
propagates through a medium. Each phonon is a boson carrying Ah units of angular 
momentum and parity T = (-l)A. Consider the example of vibrations built upon the 
ground state of an even-even nucleus. In this case, the O+ ground state constitutes the 
zero-phonon state. The lowest vibrational state has J = X and T = (-l)A, obtained by 
coupling the angular momentum of the phonon to  that of the ground state. Examples 
of one-phonon octupole excitations are found in the form of a low-lying 3- state in all 
the closed shell nuclei from I6O to 208Pb, as shown earlier in Fig. 6-2. In terms of the 
single-particle picture discussed in the next chapter, excited states may be produced 
by promoting, for example, a particle from an occupied orbit below the Fermi surface 
to an empty one above. Since orbits below and above the Fermi surface near a closed 
shell have, in general, opposite parities (see §7-2), negative-parity states are formed 
from such one-particle, one-hole excitations. We shall see later in $7-2 that the typical 
energy involved in such cases is around 41A-’I3 mega-electron-volts, about 16 MeV in 
l60 and 7 MeV in 2a8Pb. As can be seen in Fig. 6-2, the observed 3- vibrational states 
are much lower than this value. One way to lower the excitation energy in this case is 
to have the nucleons acting in a coherent or “collective” manner. 

In nuclei such as the even-even cadmium (Cd) and tin (Sn) isotopes, the first excited 
state above the J” = O+ ground state is inevitably a 2+ state and, at roughly twice 
the excitation energy, there is often a triplet of states with J“ = O + ,  2+, 4+. Such 
behavior is typical of nuclei undergoing quadrupole vibration. The first excited state 
is the one-phonon state, having J” = 2+ of a quadrupole phonon. The two-phonon 
states are expected a t  2 h w ~  in excitation energy, twice that for the one-phonon strate. 
The possible range of spin is from 0 to 4 (=2X). However, symmetry requirements 
between the two identical phonons excludes coupling to 1+ and 3+ states (see Problem 
6-1), and the only allowed ones are J” = O + ,  2+, 4+. If vibration is the only term in 
the nuclear Hamiltonian, we expect the three two-phonon states to be degenerate in 
energy. In practice, they are observed to  be separated from each other by an amount 
generally much smaller than h w ~ .  We can take this as the evidence that forces in 
addition to vibration are also playing a role in forming these states. The fact that  the 
order among these three levels is different in different nuclei implies that the nature of 
the J-dependence may be a complicated one. 

With three quadrupole-phonons, there are five allowed levels, O + ,  2+, 3+, 4+, and 
6+. Since these states lie high in excitation energy, where the density of states is large, 
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admixture with states formed by other excitation modes becomes important. As a 
result, it is not always easy to identify a complete set of three-phonon excited states. 
One such exampie, shown in Fig. 6-3, is found iu l18Cd. 

2.074 

1.929 

'"Cd 

Figure 6-3: Observed low-lying energy levels of '''Cd, showing quadrupole vi- 
brational states up to three-phonon excitations. The spin and parity of the 1.929- 
MeV state may be either 3+ or 4+ and of the 1.93G-MeV state, 5+ or 6+, with the 
possibility of 4+ not ruled out. The Ot sthte at 1.615 MeV may not be a member 
of the Vibrational spectrum. Vertical arrows indicate B(E2) values relative to 
the observed stronKest transition from each state and the dashed lines indicate 
transitions with only upper limits known. (Based on data from Refs. [8, 791.) 

Electromagnetic transitions. Besides energy level positions, the vibrational model 
also predicts the elect,romagnetic transition rates between states having different num- 
bers of excitation phonons. Since vibrational states have the same structure as those 
for an harmonic oscillator, we can make use of the result that the transition from an 
n-phonon state to an (n  - 1)-phonon state takes place by emitting one quantum of en- 
ergy. If nuclear vibrations are purely harmonic in nature, the electric transition operator 
Oxp(EA) for a vibrational mode of order X must be proportional to the annihilation 
operator bxp for a phonon of miiltipolarity (A, p ) ,  

Because of its collective nature, nuclear excitations induced by quadrupole vibrations 
have large E2-transition rates between states differing in excitation energy by one 
phonon, compared with Weisskopf single-particle estimates given in 55-4. Similarly, 
strong E3-transition strengths to the ground states are also observed from octupole 
vibrational stat,es. 

The matrix element of a phonon annihilation operator b between two harmonic 
oscillator states is given by 

(n'lbln) = h & ~ , n - l  
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B(E2; 4: +2:) 

10' e2fm4 W.U. 

2.3 16 

2.6 18 

19 66 

14 46 

20.0 62.4 

19 58 

19.4 57.8 

large 

Since the reduced transition probability is proportional to the square of the transi- 
tion matrix element, we find that its value between n- and (n - 1)-phonon states is 
proportional to n, the number of phonons in the initial state of the decay, 

B(EX, n + n - 1) cc n 

Because of this relation, we expect the transition probability from a two-phonon state 
to a one-phonon state to be enhanced in comparison with single-particle estimates and 
roughly twice the value from a one-phonon state to a zero-phonon state in the same 
nucleus. Transitions between states differing by more than one phonon are higher in or- 
der, as they involve simultaneous emission of two or more phonons. The probability for 
such processes is much lower than that for single-phonon emission, and the correspond- 
ing transition rates are expected to be small. Both points are observed to be essentially 
correct in vibrational nuclei, as can be seen from the examples given in Table 6-1. 

B(E2; 4+ + 2:) B(E2; 2: - O f )  

2 t  -+ o+) 1 0 2 ~ 2 f ~ 4  w.U. 

1.2 0.03 0.22 

1.5 0.09 0.6 

1.5 0.31 1.09 

1.7 0.42 1.34 

2.1 0.21 0.65 

1.9 1.8 5.4 

1.8 0.37 1.1 

2.0 small 

Table 6-1: Quadrupole moment and B(E2)  values of vibrational nuclei. 

librational 
model 

1.88 

1.8 

12.4 

8.58 

9.69 

10 

large 

13.5 

12 

43.9 

27.4 

30.2 

31 

'"Cd I 10.6 1 31.6 

3 
efm2 

3.c 

8.8 

- 

-68 

- 39 

-37 

-36 

-42 

O* 

- 

- 
Note: W.u.=Weisskopf unit. *Spherical nuclei. 

Implicit in our discussion is the assumption that the vibration is an axially sym- 
metric one; i.e., variations along the x- and y-directions are equal to each other, only 
their ratio to that along the z-axis is changing as a function of time. This type of vibra- 
tion is generally known as P-vibration. More generally, we can also have y-vibrations, 
in which the nucleus changes into an ellipsoidal shape in the equatorial direction. In 
other words, a section of the nucleus in the zy-plane a t  any instant of time is an ellipse 
rather than a circle, as in the case of P-vibration. (The definitions for parameters ,b 
and 7 are given later in Eq. 6-11.) In addition to purely harmonic vibrational motion, 
anharmonic terms may be present in a nucleus. Furthermore, vibrations may also be 
coupled to other modes of excitation in realistic situations. 

If the amplitude of vibration is large, the above treatment no longer applies. In 
fact, if the vibration is energetic enough, a "drop" of nuclear matter may dissociate into 
two or more droplets. Such ideas are used with success in fission studies. However, in 
order for a nucleus to develop toward a shape for splitting into two or more fragments, 
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there must be a superposition of many different vibrational modes. Furthermore, the 
vnrious modes must be strongly coupled to each other so that energy can flow from one 
mode to another. The mathematical problem involved here is not simple, but the basic 
physical idea is a sound one. However, we shall not examine this topic here. 

6-2 Gian t  Resonance  

Giant resonance is a term used to describe the observed concentration of excitation 
st,rength at energies tens of mega-electron-volts above the ground state. Both the total 
values and distribution widths are fonnd t o  be much larger than typical resonances 
h i l t  iipon single-particle (noncollective) excitations. In the energy region where such 
resonances appear, the density of states is sufficiently high and the number of open 
decay channels sufficiently large that states in a narrow energy region cannot be very 
different from each other in character. As a result, only smooth variations are expected 
in the reaction cross sections, as can be seen from the example of the zosPb(p,p’)208Pb’ 
reaction shown in Fig. 6-4. The concentration of strength localized in the region of a 
few mega-electron-volts is interesting, as it must be related to some special feature of 
the niiclear system particular to the energy region. 

Figure 6-4: Differential cross sec- 
tion of 2oePb(p, p‘ )  reaction with 200- 
MeV protons at different scattering 
angles, showing the angular depen- 
dence of giant resonances excited in 
the reaction. (Taken from Ref. 1281.) 

For most giant resonances, the strength is found to be essentially independent of 
the probe u s ~ d  to excite the nucleus, y-rays, electrons, protons, a-particles, or heavy 
ions. Furthermore, both the width and peak of strength distribution vary smoothly 
with nucleon nnmber A, without any significant dependence on the structure of the 
individual nucleus involved. For example, the location of the isovector giant dipole 
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resonance in different nuclei is well described by the relation 

(6-4) El M 78A-'/3 

Prominent dipole resonances, as well as other types of giant resonances, have been 
observed in almost all the nuclei studied, from l60 to 208Pb, as can be seen later in 
Figs. 6-5 and 6-6. 

Giant resonances come from collective excitation of nucleons. As we shall see later 
in 57-2, the energy gap between two adjacent major shells, is roughly 41A-'l3 mega- 
electron-volts and the parity of states produced by lplh-excitations up one major shell 
is negative in general. To a first approximation, this is the cause of negative-parity giant 
resonances. For positive-parity excitations there are two possibilities, rearranging the 
particles in the same major shell (Ohw-excitation) or elevating a particle up two major 
shells (2hw-excitation). Other possibilities, such as excitations by four major shells 
(4hw-excitation) for positive-parity resonances and three major shells (3Rw-excitation) 
for negative-parity resonances are less likely because of the higher energies involved. 

Giant dipole resonance. Isovector giant dipole resonances have been studied since 
the late 1940s. They are the J" = 1- excitation strength when nucleons are promoted 
up one major shell. In light nuclei, the observed peaks of strength occur around 25 MeV 
in energy and, in heavy nuclei, the values are lower, just below 14 MeV in zo8Pb. The 
variation with nucleon number A ,  as can be seen in Fig. 6-5(a), is fairly well described 
by the relation given by Eq. (6-4). The peak position is higher than that expected 
of a simple lhw-excitation process of 41A-1/3 mega-electron-volts. The difference is 
caused by the residual interaction between nucleons which pushes isovector excitations 
to higher energies. The width of the resonance is found to be around 6 MeV without 
any noticeable dependence on the nucleon number, as can be seen in Fig. 6-5 (b ) .  

An explanation of giant dipole resonance is provided by the Goldhaber-Teller model, 
based on the collective motion of nucleons. Here, neutrons and protons act as two 

ISOVECTOR MPOLE RESONANCE 

Figure 6-5: Variations of the ob- 
served peak location ( a ) ,  width (b) ,  
and total strength (c) of isovector 

of nucleon number. Dashed line 
in ( c )  is the value of the Thomas- 
Reiche-Kuhn (TRK) sum rule with 
1 = 0. (Taken from Ref. [27].) 
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separate groiips of particles and excitation comes from the motion of one group with 
respect to the other, with little or no excitations within each group. In the dipole mode, 
the neutrons are moving in one direction along some axis while the protons are going in 
the opposite direction, as shown schematically in Fig. 6-l(c). The opposite phase keeps 
the center of mass of the entire nucleus stationary. Since neutrons and protons are 
moving “ont of phase” with respect to each other, it  is an isovector mode of excitation. 
In contrast, if the neutrons and protons move in phase, it is an isoscalar dipole vibration, 
with all the nucleons moving in the same direction at any given time. The net result, 
in this case, is that the entire nucleus is oscillating around sotne equilibrium position 
in the laboratory. Such a motion constitutes a “spurious” state and is of no interest to 
the study of the nucleus, as it does not correspond to an excited state of the nucleus 
involving nuclear degrees of freedom. 

Sum rule quantities. One quest,ion of interest in giant resonance studies is to find 
the fraction of total transition strength represented by the observed cross section. The 
amoiint may be estimated by calculating the corresponding sum rule quantity. The 
simplcst one is the transition strength of a given multipolarity to all the possible final 
states. The starting state is usually chosen to be the ground state, as this is the only 
type that can be measured directly. The non-energy-weighted sum of the reaction cross 
section is then 

s = Jom o ( E )  dE 05-51 

where a ( E )  is the cross section at excitation energy E. Since an integration is carried 
out over all the final states, the resulting quantity is a function of the initial state 
only. For transitions originating from the ground state, S is the ground expectation 
value of an operator related to the transition. An example is given later for the case 
of Gamow-Teller giant resonance. Other sum rule quantities, such as energy-weighted 
ones, have also been shdied; we shall, however, restrict ourselves to the simplest one 
defined in Eq. (6-5). 

For isovector dipole transitions, the total strength S can be evaluated in a straight- 
forward way if we make two simplifying assumptions (see, for example, pp. 709-713 
of de Shalit and Feshbach [49]). The first, is to ignore any possible velocity-dependent 
terms in nucleon-nucleon interaction. This has been done in a variety of other nuclear 
problems M well and is expect,ed to he of very little consequence. The second is to 
neglect antisymmetrization among all the nucleons. The result is the Thomas-Reiche- 
Kuhn (TRIO sum rule, 

N Z  
A 

M 6.0- MeV-fm2 
00 2i~~fi’rrNZ 1 a ( E ) d E  = -- 

MP A 

To make corrections for antisymmetrization, an overall multiplicative factor (1 + 9) is 
often included. The value of 9 is estimated to be around 0.5, depending on the model 
used to simulate the effect of antisymmetrization. 

For isovector dipole transitions, the total strength is known experimentally up to 
around 30 MeV in many nuclei. The results are compared in Fig. 6-5(c) together with 
the value of the TRK sum rule evaluated with 9 = 0, i.e., no correction for antisymmetry 
effects. As long as the actual corrections to the TRK sum rules are not too different 
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from the generally accepted value of 7) - 0.5, we see that the measured giant dipole 
cross sections exhaust most of the total possible strengths. Furthermore, the result is 
essentially independent of the particular nucleus from which the strength sum is taken. 
The large variety of nuclei included in Fig. 6-5 represents a wide spectrum of ground 
state wave functions. The fact that the value of S is essentially given by the TRK 
sum rule, without any specific reference to the ground state wave function of any of 
the nuclei involved, may be taken as another evidence of the collective nature of the 
excitation process itself. 

Besides isovector dipole excitations, other giant resonances have also been observed 
in recent years. Both giant quadrupole (E2)  and giant octupole (E3)  resonances have 
been extensively studied in a variety of nuclei. The results for the former are shown in 
Fig, 6-6 as an example. 

ISOSCALAR OUADRUPOLE RESONANCE 

Figure 6-6: Variations of 
the observed peak location ( a ) ,  
width ( b ) ,  and total strength ( c )  
of isoscalar giant quadrupole res- 
onances aa functions of nucleon 
number. (Taken from Ref. [27].) 
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Gamow-Teller resonance. In addition to y-rays, giant resonances have also been 
observed in charge exchange reactions. For example, in the neutron spectra observed 
in the gOZr(p,n)goNb reaction induced by 45-MeV protons shown in Fig. 6-7, we see 
that a sharp peak is found leading to the (J",  5") = (O+, 5 )  state in "Nb at  5.1 MeV 
excitation. The concentration of strength here is expected from the fact that  the final 
state in 90Nb is the isobaric analogue to the ground state of 90Zr. The operator involved 
in the reaction is similar to that in Fermi ,%decay, namely, the isospin-raising operator 
T+. However, since the strength is concentrated in a single state, the distribution is 
essentially a delta function. The Fermi type of charge exchange strength, therefore, 
does not fit into the category of a giant resonance. 

Unlike the Fermi case, the Gamow-Teller strength is shared by a number of states. 
However, in &decay, the transition is allowed only if the initial state is higher in energy 
than the final state. As a result, only a small part of the total strength is actually 
observed. The main portion usually lies higher in excitation energy and is observed 
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in charge exchange reactions. For example, in the case of the "Zr(p, n)"Nb reaction, 
part of the strength appears as a "giant resonance" in the neutron spectra, as shown 
in Fig. 6-7, at energies just below the isobaric analogue strength peak. 

0.1 - 

Figure 6-7: Neutron spectra at 
different scattering angles from the 
reaction "Zr(p, n)"Nb indiicprl hy 
&%MeV protons. The results give 
the angular dependence of the giant 
Garnow-Teller resonance and iso- 
baric analogue strength excited in 
a charge exchange reaction. (Taken 
from Ref. [71].) 
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Let us evaluate the sum of Gaxnow-Teller transition strength in a charge exchange 
reaction as an illnstration. From Eq. (5-61), we find that the operator for the axial- 
vector transition has the form 

A 

Following Eq. (6-5), we may define the S U R ~  rule strength in the following way: 

s* = G i 2  ~l(fl~CT(~*)l~)lz 
f 

where l i )  arid I f )  are, respectively, the initial and final nuclear st,ates. We have 
removed the axial-v&or coupling constant GA from the definition of the operator 
itself so as to simplify the appearance of t8he f i n d  result. Since we are summing over 
all the final states, S* may he transformed into an expectation value using a closure 
relation, 

S* = GjZ  C(~loG~(p~)ll:)*(fIoc.~(pf)li) 

= GA' C ( i  lot,, (P* )  ~ f )  ( J  PGT(P*> 12) 

f 

f 
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Components of the operators involved here have the following properties: 

as can be seen for up in Eq. (3-31) and for T& in Eq. (2-20). On substituting the 
explicit form of the Gamow-Teller operator into Eq. (6-6), we obtain the strength sum 
for @+-transitions, 

A 

s+ = CilC ~ ( - l ) p u - P ( k ) ~ + ( k ) u P ( k ) r - ( k ) l z )  
&=l P 

A 

= (2 1 bz (k)T+ (k)T- (k) li) 
&=l 

where we have made use of Eq. (A-19) to obtain 6' from ~ ( - l ) ~ ~ - ~ u ~ .  Similarly, for 
P--transitions, 

A 

s- = (ilC u2(k)r-(k)7+(k)li) (6-7) 
k=l 

Since r + ( n )  = I p ) ,  7-1~)  = In ) ,  and T + ( P )  = .-In) = 0, where l p )  is the wave 
function of a proton and I n )  is that for a neutron, we have the results 

T+T-lP) = lP )  T+T-l?7,) = 0 

7-7+112) = In)  T - T + ] ~ )  = 0 

In other words, we can treat T+T- as the projection operator for protons and r-r+ as 
the corresponding quantity for neutrons. 

Using these results, we can write 

Z 

S+ = (ilz a2(k )1 i )  = 3 2  
k=l 

(6-81 

where 2 is the number of protons in the initial state. The summation is restricted to 
protons in the target nucleus, because of the projection operator T+T-. In obtaining 
the final result, we have made use of the fact that, for a single nucleon, s = $u and 
the expectation value of u2 is 3. By the same token, Eq. (6-7) can be simplified to 

S- = 3N (6-9) 

where N is the neutron number for the target. 
Equations (6-8) and (6-9) are not very useful sum rules, as they represent, re- 

spectively, the total strength if all the protons and all the neutrons are excited by 
the reaction. Such processes involve extremely high energy components and cannot 
be achieved in practice. Experimentally, only nucleons near the Fermi surface are af- 
fected, and there is no easy way to estimate the numbers of such nucleons. However, 
the difference between the two sum rules 

S- - S+ = 3(N - 2) (6-10) 
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may not depend on how high in energy the excitation strengths are measured and may 
therefore be tested against observations. 

A departure from Eq. (6-10) may also indicate the presence of particles other than 
nucleons in the nucleus, such as A-particles, resulting from exciting the internal degrees 
of freedom in nucleons. Such a component in the intermediate state has been conjec- 
t>ured as a possibility in many other reactions. For this reason, there is a great amount 
of interest in measuring the difference in strength between (p, a) and (alp) reactions. 
However, the experiments are difficult to carry out and, a.t this moment, the results are 
still too preliminary to draw any conclusion. 

The strength of Gamow-Teller excitation is related to the spin-isospin term in the 
nucleon-nucleon interaction, VCT(r)@(1) . U ( 2 ) T ( 1 )  . T ( 2 ) .  A good knowledge of the 
giant Garnow-Teller resonance will therefore also shed light, on this important term 
in the interaction between nucleons inside a nucleus. The same is true of other giant 
resonances m well, as each may be shown to be dependent predominantly on a particular 
t,erni in the interaction. 

6-3 Rota t iona l  Model  

Deformation. In the previous two sections we have assumed, for the convenience 
of discussion, that the basic shape of a nucleus is spherical and excitations are built 
upon such an equilibrium configuration in the form of small vibrations. There is no 
compelling reason why the nuclear shape cannot be different. The interplay between 
short-range nuclear force, long-range repulsive Coulomb force, and centrifugal stretch- 
ing due to rotation may well favor a nonspherical or deformed equilibrium shape. 

In general, spherical nuclei are foiind around closed shells. This is easy to under- 
stand. As we shall see later in $7-2, the single-particle spectrum for nucleons is not 
uniform. Instead, the states are separated into groups, with energy differences between 
states within a group smaller than those between groups. This makes it more favorable 
for nucleons to fill up each group, or shells, before occupying those in the next one. A 
closed shell niicleus is formed when all the single-particle states in a group are fully 
occupied. When this condition is met, the total M-value, the projection of spin along 
the quantization axis, of the nuclear state is zero. Such an object is then invariant 
under a rotation of the coordinate system and must, therefore, be spherical in shape. 

On the other hand, for nuclei in regions between closed shells, many single-particle 
states are available. In this case, it may be more favorable for a nucleus t80 minimize 
its energy by going to a deformed shape. In general, the nuclear shape tends to be 
prolate, i.e., elongated along the z-axis, at the beginning of a major shell and oblate, 
i.e., flattened at the poles, toward the end. This comes from a preference, arising from 
the pairing term in nuclear force, for nucleons to occupy single-particle states with the 
largest absolute m-values, starting from m = & j .  As a result, there is an  increase in 
the probability at the beginning of a shell to find nucleons in the polar regions. For 
example, among the light nuclei in the ds-shell, we find that the deformation is positive 
for lgNe and "Na, with three nucleons outside the closed shell at leg. At the middle 
of the major shell, around 28Si, the deformation changes sign, as can be seen from the 
negative quadrnpole moment for most of the nuclei in the ds-shell with A > 28. 
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For stable nuclei, departure from spherical equilibrium shape is generally small 
in the ground state region. Relatively large deformations are found, for example, in 
medium-heavy nuclei with 150 5 A 5 180 and heavy nuclei with 220 5 A 5 250, 
as shown in Fig. 6-8. The largest deformations, or “superdeformations,” as we shall 
see later in $9-2, are observed in the excited configurations of medium-weight nuclei, 
created when two heavy ions are fused together into a single entity. 

Figure 6-8: Regions of deformation. Deformed nuclei, indicated by the shaded 
areas, lie in regions between closed shells and among very heavy nuclei beyond 
2!!Pb. 

Quantum mechanically, there cannot be a rotational degree of freedom associated 
with a spherical object. For a sphere, the square of its wave function is, by definition, 
independent of angles-it appears to be the same from all directions. As a result, there 
is no way to distinguish the wave functions before and after a rotation. Rotation is 
therefore not a quantity that can be observed in this case and, consequently, cannot 
correspond to a degree of freedom in the system with energy associated with it. In 
contrast, rotational motion of a deformed object, such as an ellipsoid, may be detected, 
for example, by observing the changes in the orientation of the axis of symmetry with 
time. 

Quadrupole deformation and Hill-Wheeler variables. The simplest and most 
commonly occurring type of deformation in nuclei is quadrupole. To simplify the dis- 
cussion, let us assume that the nuclear density is constant throughout the volume and 
drops off sharply to zero at  the surface. In this case, the surface radius R(6,d ; t )  of 
Eq. (6-1) reduces to 

2 

p=-2 
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There are five shape parameters, az,,(t) for p = -2 to p = +2. 
The orientation of a nucleus in space is specified by three parameters, for example, 

the Eiiler angles (wd, u p ,  u7). Since the orientation is immaterial, 89 far M the intrinsic 
nuclear shape is concerned, we can regard the Euler angles as three “conditions” to be 
imposed on the five parameters. This may be expressed formally by transforming the 
coordinate system to one fixed with the nucleus, 

2 

where ’D~,,,,(W,,LJ~,W~) is the rotation matrix defined by Eq. (A-5). Since there are 
only two degrees of freedom left, the body-fixed shape parameters a,,, have the following 
properties 

Instead of a 2 , 0  and a,2,2, the two parameters remaining, it is common practice to use 
the Hill-Wheeler variables @ and y. They are defined by the relations 

a2,-] = u2,1 = 0 a2,-2 = a2,2 

(6-11) Ir 
d2 

= a22 = - sin 7 0.20 = [3 cos y 

Using p and y, the siirface radius may be written as 

R(O,4) = R o { l + p  - (cosy(3cos2B-  1 ) + & s i n y s i n 2 0 c o s 2 ~ ) )  (6-12) 

Since we are most,ly interested in fixed, permanently deformed shapes here, the surface 
radius in the body-fixed coordinate system is independent of time. The same is true 
for parameters /3 and e. From t,hr definitions given by Eq. (6-ll), we see that the 
parameter p provides a measure of the extent of deformation and 7, the departure 
from axial symmetry. A negative value of ,O indicates that the nucleus is oblate in 
shape while a positive value describes a prolate shape. This is illustrated in Fig, 6-9 
for the axially syrnmetric case (y = 0). 

/z 

Figure 6-9: Quadrupole-deformed shapes for axially symmetric nuclei. On the 
Irft, the oblate shape has p = -0.4, and on the right, the prolate shape has 
R = +0.4. 

We have t.wo different sets of coordinate systems here. The intrinsic coordinate 
system, with frame of reference fixed to the rotating body, is convenient for describing 
the symmetry of the object itself. On the other hand, the nucleus is rotating in the 
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laboratory and the motion is more conveniently described by a coordinate system that 
is fixed in the laboratory. Each system is better suited for a different purpose, and we 
shall make use of both of them in our discussions. Following general convention, the 
intrinsic coordinate axes are labeled by subscripts 1, 2, and 3 to distinguish them from 
the laboratory coordinates, labeled by subscripts 2, y, and z. 

We can also see from Eq. (6-12) that there is a certain degree of redundancy in the 
values of p and y. For example, with positive values of P, we have prolate shapes for 
y = 0", 120", 240". However, the symmetry axis is a different one in each case: 3 for 
y = 0", 1 for 7 = 120", and 2 for y = 240". Similarly, the corresponding oblate shapes 
are found for y = 180", 300", 60". For this reason, most people follow the (Lund) 
convention in which P 2 0 and 0" 5 y 5 60" if the rotation is around the smallest 
axis. If the rotation is around the largest axis, -120" 5 y 5 -60", and if around the 
intermediate axis, -60" 5 y < 0". 

Rotat ional  Hamiltonian. Classically, the angular momentum J of a rotating object 
is proportional to its angular velocity w, 

J = Z w  ((3-13) 

The ratio between J and w is the moment of inertia Z. The rotational energy EJ is 
given by the square of the angular frequency and is proportional to J2 as a result, 

By analogy, we can write the rotational Hamiltonian in quantum mechanics as 

ti2 
i=l 2zi 

H = ~ - - J ;  

where 1, is the moment of inertia along the ith axis. For an axially symmetric object 
with 3 as the symmetry axis, the moment of inertia along a body-fixed, or intrznsic, 
set of coordinate axes 1, 2, and 3 has the property 

ZI = z, E z 
(and 2, # Z, or else it is spherical). The Hamiltonian in this case may be written as 

(6-14) 

If we use I( to represent the projection of J along the symmetry axis in the intrinsic 
frame, the expectation value of the Hamiltonian in the body-fixed system is then a 
function of J ( J  + l), the expectation value of 9, and K ,  that of J3.  

In classical mechanics, a rotating body requires three Euler angles (a ,  0, y) to spec- 
ify its orientation in space. In quantum mechanics, the analogous quantities may be 
taken as three independent labels, or quantum numbers, describing the rotational state. 
For two of these three labels we can use the constants of motion J ,  related to the eigen- 
value of p, and M, the projection of J along the quantization axis in the laboratory. 
For the third label, we can use K .  
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Rota t iona l  wave function. For the convenience of discussing rotational motion, 
we shall divide the wave function of a nuclear state into two parts, an intrinsic part 
describing the shape and other properties pertaining to the structure of the state and a 
rotational part describing the motion of the nucleus aa a whole in the laboratory. Our 
main concern for the moment is in the rotational part, labeled by J ,  M ,  and K .  Since 
it is a function of the Euler angles only, it must be given by V h K ( a ,  ,B, y) of Eq. (A-8), 
which relates the wave functions of an object in two coordinate systems rotated with 
respect to each other by Euler angles (a ,  p, y). In terms of spherical harmonics, the 
function 'Dh,(a, p, y) may be defined by the relation 

wliere Y J K ( B ' ,  4') are spherical harmonics of order J in a coordinate system rotated by 
Euler angles a ,  p, y with respect to the nnprimed system. 

The transformation property of the V-function under an inversion of the coordinate 
syst,em (i.e., parity transformation) is given by 

An arbitrary V-function, therefore, does not have a definite parity since, in addition 
to the phase factor, the sign of label IC is also changed. To construct a wave function 
of definite parity, a linear combination of 'D-functions, with both positive and negative 
K ,  is required. As a result, the rotational wave function takes on the form 

where the plns sign is for positive parity and the minus sign for negative parity. Since 
both +K and -K appear on the right-hand side of Eq. (6-15), only K 2 0 can be used 
to label a rotational wave function. The value IC itself is no longer a good quantum 
number, but the absolute value of K remains a constant of motion for axially symmetric 
nuclei. In the more general tri-axial case with # 12 # 1 2 ,  a linear combination of 
I J M K )  with different I( values is required to  describe nuclear rotation. In such cases, 
only J and M remain as good quantum numbers. 

To complete the wave function for an observed niiclear state, we must also give 
the intrinsic part. Depending on the energy and other parameters involved, a nucleus 
can take on different shapes, and as a result, there can be more than one rotational 
band, each descri1)etl by a different intrinsic wave function, in a nucleus. For the axial 
symmetric case, the constant of motion Ir' is often used as a label to identify a particular 
intrinsic state. 

Rota t iona l  band. A nucleus in a given intrinsic state can rotate with different angular 
vdncit,ies in the lahoratory. A group of states, each with a different total angular 
momentum J but sharing the same intrinsic state, forms a rotational band. Since the 
only difference between these states is in their rotational motion, members of a band are 
related to each other in energy, static moments, and electromagnetic transition rates. 
In fact, a rotational band is identified by these relations. 
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The parity of a rotational state is given by Eq. (6-15). Because of the phase factor, 
the wave function for a positive-parity K = 0 state vanishes if the J-value is odd. As a 
result, only states with even J-values are allowed for a K = O+ band. Similarly, there 
are no states with even J-values in a K = 0- band. The results may summarized as 

0, 2, 4,.  . . 
1, 3, 5 , . .  . 

for K" = O+ 

for K" = 0- 
J = {  

For K > 0, the only restriction on the allowed spin in a band is J 2 
the fact that K is the projection of J on the body-fixed quantization 
The possible spins are then 

J = K ,  K + 1 ,  K i - 2 ,  ... for K > O  

K ,  arising from 
axis, the 3-axis. 

For the rotational Hamiltonian given in Eq. (6-14), the energy of a state is given by 

(6-16) 

where EK represents contributions from the intrinsic part of the wave function. An 
example of such a band is shown in Fig. 6-10 for '"Hf. 

Figure 6-10: Rotational levels in '7;Hf. For a simple rotor, the relation between 
EJ and J ( J  + 1) is a curve with constant slope. The small curvature found in 
the plot indicates that Z increases slightly with large J ,  a result of centrifugal 
stretching of the nucleus with increasing angular velocity. (Plotted using data 
from Ref. (951.) 

Fkom Eq. (6-16) we see that the energy of a member of a rotational band is pro- 
portional to J ( J  + l),  with the constant of proportionality related to the momentum 
of inertia Z. The quantity EK enters only in the location of the band head, the po- 
sition where the band starts. Different bands are distinguished by their moments of 
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inertia and by the positions of their band heads. Both features, in turn, depend on the 
structure of the intrinsic state assumed by the deformed nucleus that is rotating in the 
laboratory frame of reference. 

Quadrupole moment. Besides energy level positions, the static moments of members 
of a band and the transition rates between them are also given by the rotational model. 
The discussions below depend on the property that all members share the same intrinsic 
state and differ only in their rotational motion. Let us start with the quadrupole 
moment given by the integral, 

QO = / ( 3 z 2  - rz))p(r) dV (6-17) 

where p(r) is the nuclear density distribution. Since it is related to the shape of the in- 
trinsic state, QO is known as the intrinsic quadrupole moment. For an axially symmetric 
object, it is related to the difference in the polar and equatorial radii, characterized by 
the parameter 

(6-18) 

where RJ is the radius of the nucleus along the body-fixed symmetric (3-) axis, R l  
is the radius in the direction perpendicular to it, and R is the mean value. To the 
lowest order, 5 is approximately equal to 345m’ times the parameter f l  defined in 
Eq. (6-11) for small, axially symmetric deformations. In terms of 6, 

4 A  
Go = @’) 6 

r=l 

The quantity QO defined here is the “mass” quadrupole moment of the nucleus, as 
the density distribution p(r) in Eq. (6-17) involves all A nucleons. The usual quantity 
measured in an experiment, for example, by scattering charged particles from a nucleus, 
is the “charge” quadriipole moment, differing from the expression above by the fact that 
the summation is restricted to protons only. 

The observed quadrupole moment of a state given by Eq. (4-42) is the expectation 
value of the electric quadrupole operator Q in the state M = J .  We shall represent 
this quantity here as QJI(  for reasons that will become clear soon. The value of QJK 
differs from Qo, as the former is measured in the lahoratmy frame of reference and the 
latter in the body-fixed frame. The relation between them is given by a transformation 
from the intrinsic coordinate system to the laboratory system. Since this requires a 
D-function, the result depends on both J and IC. Inserting the explicit value of the 
D-function for the A4 = J rase, we obtain the relation 

3K’ - J ( J  + 1) 
( J  + 1)(25 + 3) Qo 

Q J K  = (6-19) 

In practice, direct measurements of quadrupole moments are possible, in most cases, 
only for the ground state of nuclei. For excited states, the quadrupole moment can 
sometimes be deduced indirectly through reactions such as Coulomb excitation (see 
$8-1). 
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To compare the values calculated using Eq. (6-19) with experimental data, we need 
a knowledge of the intrinsic quadrupole moment Qo as well as the value of K for the 
band. The latter may be found from the minimum J-value for the band. For Q0, one 
way is to make use of the measured value of Q J K  for another member. If the values 
deduced in this way are available for several members of a band, they can be also 
used as a consistency check of the model. Unfortunately, it is difficult to measure the 
quadrupole moment for more than one member of a band. The alternative is make use 
of electric quadrupole transition rates, as we shall see next. 

Electromagnetic transitions. In the rotational model, electromagnetic transitions 
between two members of a band can take place by a change in the rotational frequency 
and, hence, the spin J ,  without any modifications to the intrinsic state. We shail 
concentrate here on electric quadrupole (E2) and magnetic dipole (MI) transitions, 
as these are the most commonly observed intraband transitions. A change in the 
rotational frequency in such cases is described by the angular momentum recoupling 
coefficient. There are three angular momenta involved, the spin of the initial state 
J i ,  the spin of the final state J f ,  and the angular momentum rank of the transition 
operator A. The recoupling is given by Clebsch-Gordan coefficients (see §A-3). For 
quadrupole deformations, the size of the E2-transition matrix element is also related 
to the deformation of the intrinsic state, characterized by Qo. The reduced transition 
probability is given by 

5 
B(E2; 5, 4 J,) = -e2Q~(J,K201J,K)2 

1 6 ~  
(6-20) 

(For a derivation see, e.g., Bohr and Mottelson 1351.1 For K = 0, Ji = J ,  and J ,  = 5-2, 
the square of the Clebsch-Gordan coefficient simplifies to 

3 J ( J  - 1) 
2(25 + 1)(25 - 1) (5020)(5-2) 0)2 = 

with the help of the identities given in Table A-1. The reduced transition rate for decay 
between adjacent members of a K = 0 band becomes 

15 J ( J -  1) B(E2; J -+ 5-2) = -e Q0 
3 2 ~  (25 + 1)(2J - 1) 

Alternatively, for electromagnetic excitation from J to J + 2, 

15 ( J + l ) ( J + 2 )  
3 2 ~ ~  “(23 + 1)(2J + 3) 

B(E2; J -+ J+2) = - 

(6-21) 

(6-22) 

a form more useful, for example, in Coulomb excitation. From the values of B(E2)  
deduced from a measurement of the transition rates, we can again calculate the value 
of QO. The intrinsic quadrupole moment obtained this way may be different from that 
of Eq. (6-19), as it involves two members of a band. For this reason, it is useful to 
distinguish the value obtained from B( E2) by calling it transition quadrupole moment 
and that from Eq. (6-19), by calling it statzc quadrupole moment. 
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Magnetic dipole transitions may be studied in the same way. The K = 0 bands 
are not suitable for our purpose here, as the J-values of the members differ by at 
least two units and M1-transitions are forbidden by angular momentum selection rule. 
The magnetic transition operator defined in Eq. (5-30) is given in terms of single 
nucleon gyromagnetic ratios gt  for orbital angular momentum and gs  for intrinsic spin. 
Here, we are dealing with collective degrees of freedom. Instead of gr and g a ,  it is 
more appropriate to use gR and g,(, respectively, the gyromagnetic ratio for rotational 
motion and the intrinsic state of a deformed nucleus. In terms of these two quantities, 
the magnetic dipole operator for I< > f bands remains to have a simple form, similar 
to that given by Eq. (4-49), 

where K = J3,  the operator measuring the projection of J o n  the 3-axis in the intrinsic 
frame, For a symmetric rotor, t,he expectation value is K ,  85 we saw earlier. 

In the same spirit as Eq. (6-20) for E2-transitions, the B(M1) value in the rotational 
model is given by 

3 
1 4a 

B(M1, J, .J,=J$l) = -(gK - gR)2K2(JlK10)J,K)2 (6-23) 

in units of &, the nuclear magneton squared. F’rom Eqs. (6-20) and (6-23) the mixing 
ratio between E2- and Ml-transition rates between two adjacent members of a K > 0 
band can be calculated. The quantity relates the intrinsic quadrupole moment Qo 
with gyromagnetic rat,ios g R  and gK and provides another check of the model against 
experimental data. 

Transitions between members of different rotation bands, or interband transitions, 
involve changes in the intrinsic shape of a nucleus in addition to the angular momentum 
recoupling discussed above for intraband transitions. The main interest of interband 
transitions concerns the intrinsic wave function. However, we shall not be going into 
this more complicated subject here. 

Corrections to the basic model. On closer examinations, the energy level positions 
of the members of a rotational band often differ from the simple J ( J  + 1) dependence 
given by Eq. (6-16). Similarly, the relations between transition rates are not governed 
exactly by those of Eqs. (6-20) and (6-23). There are many possible reasons for devia- 
tions from a simple rotational model. The main ones may be summarized as: 

0 We have seen that K is a constant of motion for a symmetric rotor. However, 
r~tat~ional wave functions require linear combinations of both +I< and -K com- 
ponents in order t)o be invariant under a parity transformation. It is therefore 
possible to have a term in the Hamiltonian that couples between fK, analogous 
to the Coriolis force in classical rotation. The size of the coupling may depend 
on both J and IrT in general but is observed to be negligible except for K = $. 
This gives rise to the decoupling term in K = 

0 The moment of inertia, which gives the slope in a plot of EJ versus J ( J  + I), 
may not be a constant for states of different J .  This is expected on the ground 

bands to be described later. 
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that the nucleus is not a rigid body and centrifugal force generated by the rota- 
tion can modify slightly the intrinsic shape when the angular velocities are high. 
Centrifugal stretching is observed at the higher J end of many rotational bands. 
In general, such small and gradual changes in the moment of inertia may be ac- 
counted for empirically by adding a J 2 ( J  + l)*-dependent term in the rotational 
Hamiltonian. 

0 Rotational bands have been observed with members having very high spin values, 
for example, J = 40h and beyond. Such high-spin states occur quite high in 
energy with respect to the ground state of the nucleus. As a result, i t  may be 
energetically more favorable for the underlying intrinsic shape to adjust itself 
slightly and change to a different stable configuration as the excitation energy 
is increased. Such changes are likely to be quite sudden, reminiscent of a phase 
change in chemical reactions. Compared with the smooth variation in centrifugal 
stretching, readjustment of the intrinsic shape takes place within a region of a 
few adjacent members of a rotational band. This gives rise to the phenomenon 
of “backbending,” to be discussed later in $9-2. 

In practice, departures from a J ( J + l )  spectrum are small, except in the case of I< = !j 
bands because of the decoupling term. As a result, the J ( J  + 1)-level spacing remains, 
for most purposes, a signature of rotational band. 

Decoupling parameter. For odd-mass nuclei, rotational bands have half-integer 
K-values. In the case of K = f, the band starts with J = f and has additional 
members with J = 4, s, f ,  . . . . If the energy level positions of the band members are 
given by the simple rotational Hamiltonian of Eq. (6-14), we expect, for example, the 
J = member in energy by an amount larger than 
the difference between the J = and J = 3 members. The observed level sequence, 
however, can be quite different and, in many cases, is more similar to the example of 
‘“Tm shown in Fig. 6-11. Instead of a simple J(J + 1) sequence, we find the J = $ 
member of the band is depressed in energy and is located just above the J = f member, 
the J = 5 member is just above the J = 5 member, and so on. 

The special case of K = f bands can be understood by adding an extra term 
H’(AK) to the basic rotational Hamiltonian given in Eq. (6-14). The term connects 
two components of a rotational wave function different in K by AK for K # 0. The 
contribution of this term to  the rotational energy may be represented, t o  a first approx- 
imation, by the expectation value of H’(AK)  with the wave function of Eq. (6-15), 

member to be above the J = 

The first two terms on the right-hand side vanish since, by definition, H‘(AK) cannot 
connect two wave functions having the same K-value. For AK = 1, the last two terms 
are nonzero only for K = i. 
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Figure 6-11: Rotational spectrum for the I(" = f' band in 16gTrn, showing the 
effect of the decoupling term of Eq. (6-25). (Plotted using data from Ref. 1951.) 

A term in the Hamiltonian that operates only between wave functions different in 
1C-value by unity may be written as 

H'(AZi' = 1) N W ,  J1 = 3 ~ 1 ( J +  + J - )  (6-24) 

where J1 is the component of the angular momentum operator J along the body-fixed 
1-axis and C J ~  the corresponding angular frequency. The analogue of such a contribu- 
tion is the Coriolis force in classical mechanics responsible, for example, for deflecting 
movement of air mass from polar to equatorial regions on Earth to a counterclockwise 
direction in the Northern Hemisphere and clockwise in the Southern Hemisphere as a 
result of Earth spinning on its own axis. Since a K = f band is associated with an 
odd-mass nncleus, we can view the situation as a single nucleon moving in the average 
potential of an even-cvt'n core. Since the core is rotating, an additional force is felt by 
the nucleon, and the interaction does not preserve the sign of ZC in the intrinsic frame 
of rrfermce. 

band. Because 
of H'(AlC) ,  the rotational cncrgy of a member of the K = f band becomes 

The decoiipling term given in this way is effective only for the K = 

(6-25) 

where a is the strength of the cleconpling term. Instead of a J ( J  + 1) spectrum, each 
level is now moved up or down from its location given by Eq. (6-16) for an amount 
depending on whether J + f of t,he level is even or odd. In cases where the absolute 
value of the decoupling parameter n is large, a higher spin level may appear below one 
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with spin one unit less, as seen in the lgF example in Problem 6-3. The signature of a 
rotational band can still be recognized by the fact that one-half of the members, J = i, 
g, i, . . . , possess a EJ versus J ( J  + 1) relation with one (almost constant) slope, and 
the other half with a different slope, as can be seen from Eq. (6-25). 

The basic concept behind rotational models is the classical rotor. Quantum me- 
chanics enters in two places, a trivial one in the discrete (rather than continuous) 
distribution of energy and angular momentum and a more important one in evaluat- 
ing the moment of inertia. The latter is a complicated and interesting question, as 
illustrated by the following consideration. 

The equilibrium shape of a nucleus may be deduced from such measurements as 
the quadrupole moment. At the same time, the moment of inertia can be calculated, 
for example, by considering the nucleus as a rigid body, 

Zrlg = $ 4 R i ( l +  i6) (6-26) 

where M is the mass of the nucleus and Ro its mean radius. The quantity 6 may be 
expressed in terms of Qo using Eq. (6-18). Compared with observations, the rigid-body 
value turns out to be roughly a factor of 2 too large. Furthermore, the observed value 
of Z for different nuclei changes systematically from being fairly small near closed shell 
nuclei, increasing toward the region in between, and decreasing once again toward the 
next set of magic numbers. An understanding of this question requires a knowledge of 
the equilibrium shape of nuclei under rotation. We shall discuss this point further in 
59-2. 

6-4 Interacting Boson Approximation 

We have seen the importance of pairing and quadrupole terms in nuclear interaction in 
a number of nuclear properties examined earlier. For many states, the main features are 
often given by these two terms alone. In fact, it is possible to build a model for nuclear 
structure based on this approximation. One of the advantages in such an approach is 
that analytical solutions are possible under certain conditions. We shall examine only 
one representative model in this category, the interacting boson approximation (IBA). 

Boson operators. A good starting point for IBA is to follow the philosophy behind 
vibrational models and treat the principal excitation modes in the model as canonical 
variables. Here, two types of excitation quanta, or bosons, can be constructed: a J = 0 
quantum, or s-boson, and a J = 2 quantum, or d-boson. Both types may be thought to 
be made of pairs of identical nucleons coupled to J = 0 and J = 2, respectively. Such 
a realization of the bosons in terms of nucleons is important if one wishes to establish 
a microscopic foundation for the model. However, it is not essential for us if we only 
wish to see how the model accounts for the observed nuclear properties through very 
simple calculations. 

Let st be the operator that creates an s-boson and dfi be the corresponding op- 
erator for a d-boson. Since a d-boson carries two units of angular momentum, it has 
five components, distinguished by the projections of the angular momentum on the 
quantization axis, p = -2, -1, 0, 1, 2. Corresponding to each of these boson creation 
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operators, we have the conjugate annihilation operators s and d,. To complete the 
definition of these operators, we need to specify the commutation relations between 
them: 

[8’ ,8]  = 1 id, st] = [s, s] = 0 

[df,, d,] = 6,” [d’, d’] = [d,  d] = 0 (6-27) 

[ ~ ~ , d , , ] = [ ~ , d l ] = [ ~ , d , J = [ ~ t , d ~ ] = O  

All other operators necessary to calculate nuclear properties in the model are expressed 
in terms of these operators. 

Using st, 8 ,  d!,, and d,, the number operators for s- and d-bosons are, respectively, 

where the bar on top indicates the (spherical tensor) adjoint of d and 8 ,  with 

- - 
d, = (--1)’+”d-,, 8 = 8  

as shown in Eq. (A-9). In addition, we can construct five irreducible spherical tensors 
made of products of two boson operators 

P=;{a.a-?j.a} L = f i ( d + x z ) l  

Q = (dt x X)’ + (st x a), - Jlr(dt x a), (6-28) 

T3 = (d’ x a), Td = (dt x a), 
where the multiplication symbol x stands for the angular momentum coupled product 

(A,  x mt, = C(~Psqltm)Ar,B,‘l 
P’l 

defined in Eq. (A-10). 

The simple model. If we restrict ourselves to the simple case of having either active 
neutrons or protons, the most general IBA Hamiltonian we can construct may be 
expressed as a linear combination of the five operators given in Eq. (6-28) together 
with the boson number operators. This is generally referred to 89 IBA-1. In this limit, 
t,here are six parameters in the Hamiltonian, 

H ~ B A - ~  = e n d  + Q P  . P+ L * L + QQ . Q + ~3T3 . T3 + ~4T4 * T4 (6-29) 

where 6 is the energy difference between a d- and an s-boson and CLJ for J = 0 to J = 4 
are the strengths of the other five components in the expression. The dot between two 
spherical tensor operators in Eq. (6-28) represents a scalar product, angular momentum 
coupled product with final tensorial rank zero. The number operator n, for s-bosons 
does riot enter into the expression, as the energy associated with it is taken to be zero 
and is absorbed into the definition of the energy scale. In the absence of a microscopic 
connection to the nucleon degrees of freedom, these six parameters must be  found, for 
pxnmple, by fitting results calculated with the Hamiltonian to known data. 
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In addition to energy, operators corresponding to other observables in the space 
span by the s- and d-bosons can also be expressed in terms of tensor products of the 
boson creation and annihilation operators. For example, the possible electromagnetic 
transition operators in the space are 

Oo(E0) = po(d' x a), + 7 0 ( s t  x a), Ul,(Ml) = Pl(d+ x a>,, 
0,(E2) = cr2{(st x a)2p + (dt x qZp} + D,(dt x a),, 

0 3 , ( M 3 )  = P3(dt x 0 4 p ( E 4 )  = L%(dt x z).+ 
where aZ, 

One of the interesting features of IBA-1 is that it has an underlying group structure, 
and as a result, powerful mathematical techniques may be applied to find the solutions. 
The communication relations among the boson creation and annihilation operators 
expressed in Eq. (6-27) imply that the operators form a group, the V, group, a unitary 
group in six dimensions. The energy of a state corresponding to  one of the irreducible 
representations of this group may be expressed as a function of the six parameters in the 
Hamiltonian. Once the values of these parameters are determined, a large number of 
energy levels can be calculated. Examples of results for energy level positions obtained 
with IBA-1 are shown in Fig. 6-12. 

and the 13's are, again, adjustable parameters. 

NEUTRON NUMBER 

Figure 6-12: Comparison of experimental (squares, circles and triangles) and 
calculated level spectra (lines) in the IBA for octupole states in samarium (left) 
and xenon isotopes (right). (Taken from Ref. 191.) 

The underlying group structure of IBA-1 lends itself also to  three limiting cases 
that are of interest in nuclear structure. The Us group may be decomposed into a 
variety of subgroups. Among these, we shall limit ourselves to  cases where the chain 
of reduction contains the three-dimensional rotational group as one of the subgroups. 
This is necessary if angular momentum is to  be retained as a constant of motion. 

If d-bosons are completely decoupled from the system, the Hamiltonian may be 
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written in terms of s-boson operators alone, 

t t t  
Hseriiority = 6,s 8 + a08 8 8s 

This is the seniority scheme [49], known to be useful in classifying many-nucleon states 
in the jj-coupling scheme (see 57-1). Here, pairs of nucleons with their angular momen- 
tum coupled to zero are treated differently from those that are not coupled to J = 0. 
From this property, we see also that IBA-1 has a pairing structure built into the Hamil- 
tonian and can therefore account for many of the observed nuclear properties in which 
pairing interaction dominates. 

On the other hand, if all the terms related to the s-boson operator are ignored, we 
obt,ain a system dominated by quadrupole excitations induced by d-bosons, 

In this limit, we obtain quadrupole vibrational motion in nuclei similar to that described 
in $6-1. 

If we put all the parameters in Eq. (6-29) to zero except a1 and u2, we obtain the 
SU3 limit 

H,,,, = a l L .  L + n2Q * Q 
This has been used with success in understanding rotation-like structure in ds-shell 
niiclei from oxygen to potassium. Because of the L2-term, the Hamiltonian gives a 
spectrum that has an L ( L  + 1) dependence. If the nucleon intrinsic spins are coupled 
together to S = 0 in a nucleus, we have J = L, and an L(L+ 1) spectrum is the same as 
one with the J ( J  + 1) dependence we have seen earlier in rotational nuclei. The Q a Q 
term provides a constant in the energy for all the levels in a “band” and can therefore 
be interpreted ;ts the dependence on the intrinsic structure of the rotating nucleus. In 
this way, we expert that IDA-1 can explain rotational structure in nuclei &s well. 

The full model. In practice, IBA-1 is found to be limited by the fact that only 
excitations of either neutrons or protons can take place. To overcome this restriction, 
the Hamiltonian given in Eq. (6-29) is expanded to include both neutrons and protons, 
as well as interactions hetween therri. This gives us 

HIBA-2 = Hnn 4- Hpp v n p  

where H,, and Hpp are, respectively, the neutron- and proton-boson Hamiltonians. The 
intcraction between these two types of bosons is provided by VnP. The most general 
form, known as IBA-2, contains a maximum of 29 parameters, 9 for H,,, 9 for Hpp,  and 
11 for Vnp. This is too complicated, and a simplified version is found to be adequate 
for most applications. 

The IBA-2 permits a connection to be made with the underlying single-particle 
basis. All the nucleons In a nucleus can be divided into two groups, those in the inert 
core and those in the active, or valence, space. The core may be taken to be one of the 
closed shell nuclei (to he discussed in 57-2) and may be treated as the “vacuum” state 
for the problein. The nucleons in  the core are assumed to be inactive except in providing 
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a binding energy to the valence nucleons. Active neutron pairs and proton pairs can 
be put into the space by boson creation operators acting on the vacuum. The IBA-2 
therefore provides a basis to study a wide variety of nuclear structure phenomena, from 
single-particle to collective degrees of freedom (for more details, see Arima and Iachello 

Interacting boson models belong to a more general type of approach to nuclear 
structure studies sometimes known as algebraic models. We have seen evidence that 
symmetries play an important role in nuclear structure. For each type of symmetry, 
there is usually an underlying mathematical group associated with it. Although there 
are very few exact symmetries, such as angular momentum, there is a large number of 
approximate, or "broken," symmetries that are of physical interest and can be exploited. 
One good example of the latter category is isospin, or SV, symmetry, the symmetry in 
interchanging protons and neutrons, or a- and &quarks. Although isospin invariance in 
nuclei is broken by Coulomb interaction, it is nevertheless a useful concept, as we have 
seen earlier on several occasions. One of the aims of group theoretical approaches to 
nuclear structure problems is to make use of these symmetries to classify nuclear states 
according to the irreducible representations of the underlying mathematical groups. 
We have seen some features of such an approach in IBA-1. A few other elementary 
applications will also be made in the next chapter to classify single-particle states in the 
nuclear shell model. A general discussion of algebraic models is, however, inappropriate 
here, in part because of the amount of preparation in group theory required. 

191). 

Problems 

6-1. When two identical phonons, each carrying angular momentum A, are coupled 
together, only states with even J-values ( J  = X + A) are allowed. Show that this 
is true by counting the number of states for a given total M ,  the projection of 
angular momentum on the quantization axis. Use the same method to show that 
when three quadrupole phonons are coupled together, only states with J" = O+, 
2+, 3+, 4+, 6+ are allowed. 

6-2. Three rotational bands have been identified in 25Mg: a K" = 5/2+ band starts 
from the ground state (J" = 5/2+) and has three other members, 7/2+ at 
1.614 MeV, 9/2+ at  3.405 MeV, and 11/2+ at  5.45 MeV; a K = 1/2+ band 
with six members, 1/2+ at 0.585 MeV, 3/2+ at  0.975 MeV, 5/2+ a t  1.960 MeV, 
7/2+ at  2.738 MeV, 9/2+ at 4.704 MeV, and 11/2+ at  5.74 MeV; and a second 
K = 1/2+ band with four members, 1/2+ at 2.562 MeV, 3/2+ at  2.801 MeV, 
5/2+ at  3.905 MeV, and 7/2+ at  5.005 MeV. Calculate the moment of inertia and 
the decoupling parameter, where applicable, for each band. 

6-3. The following energy level positions in mega-electron-volts are known for two 
rotational bands in l9F: 1/2+ 0.000, 112- 0.110, 5/2+ 0.197, 512- 1.346, 312- 
1.459, 3/2+ 1.554, 9/2+ 2.780, 712- 3.999, 912- 4.033, 13/2+ 4.648, and 7/2+ 
5.465. Calculate the moment of inertia and the decoupling parameter for each 
band. Comment on the likelihood of the 1112" level a t  6.5 MeV to be a member 
of the 1/2+-band. 
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6-4. The ground state of IiiEu is known to be 3- with an electric quadrupole moment 
of i-3.16 x 102efm2. Find the intrinsic quadrupole moment of the nucleus for 
the ground state and deduce the value of 6 defined in Eq. (6-18), the difference 
between R3 and R,. What is the shape of this nucleus? 

6-5. The following E2-transition rates appear in a table of nuclei in terms of natural 
line width I' for the K = O+ band in 20Ne: 2+ (1.63 MeV) -t O+ (ground) 
6.3 x eV, 6' (8.78 MeV) 
-+ 4+ (4.25 MeV) 0.100 eV, and 8+ (11.95 MeV) -+ 6+ (8.78 MeV) 1.2 x eV. 
From the information provided, 

eV, 4+ (4.25 MeV) 4 2+ (1.63 MeV) 7.1 x 

(a) find the moment of inertia of the band, 

(b) find the intrinsic quadrupole moment of the band, and 

(c) predict the quadruple moment of the 2+ member. 



Chapter 7 

Microscopic Models of 
Nuclear Structure 

The nucleus is a quantum-mechanical many-body system. Powerful and elegant meth- 
ods have been developed over the years to handle such problems. Several factors, 
however, contribute to make the nuclear many-body problem somewhat unique. First, 
the interaction is complicated and still unknown in many aspects. Second, rotational 
symmetry imposes the condition that each observed state has a definite spin. Thus 
angular momentum coupling becomes an important issue in any practical calculations. 
Finally, even in the heaviest nucleus, the nucleon number is not large enough to be 
treated as an infinite system where many simplifications can be applied. 

A nucleus is made up of neutrons and protons. It is therefore natural to adopt 
a Hamiltonian based on nucleons, interacting with each other through a two-body 
potential. The eigenfunctions obtained by solving the Schrodinger equation may be 
used to calculate observables and the results compared with experiments. In principle, 
such a calculation is possible once the nucleon-nucleon interaction is given. In practice, 
special techniques are needed and we shall examine a few of the more basic ones. 

7-1 Many-Body Basis States 

To describe a nucleus using nucleon degrees of freedom, we need to express the wave 
functions in terms of those for individual nucleons. The first step in a microscopic 
calculation for the nuclear many-body problem is then to find a suitable set of single- 
particle wave functions. Antisymmetrized products of such functions form the basis 
states for our many-body system made of A nucleons. 

Mathematically, we can take any complete set of functions as the basis states. 
However, the Hilbert space is in general infinite in dimension, and truncation of the 
space to a small finite subset is essential in any practical calculations. The selection 
of this truncated, or actwe, space depends on the basis states chosen. For this reason, 
selection of the basis states is an important step in a calculation. As we shall see in 
the later sections in this chapter, a well-chosen single-particle basis wave function can 
greatly simplify the problem. 

235 
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Matrix method to solve the eigenvalue problem. Oiir calculation is centered 
around the solution to the many-body eigenvalue problem 

where E, is the energy of the state with wave function @o(rl ,  r2,. . . , ?-A). The Hamil- 
toiiian consists of a slim of the kinetic energy of each nucleon with reduced mass pi 
and the interaction between any two nucleons, 

A a 2  

To simplify the notation, we shall not make any explicit reference here to the intrinsic 
spin and other degrees of freedom and we shall use r ,  to represent all the independent 
variables of the system pertaining to nucleon i. From the eigenfunctions obtained, 
we can find other properties of the system by calculating the matrix elements for the 
corrcsponding operators, such as those given in Chapter 4. 

For many purposes, it is more convenient to solve Eq. (7-1) using a matrix method. 
In this approach, we start with a complete set of basis states for the A-particle system, 
{ @ k ( q ,  rz, . . . , P A ) }  for k = 1, 2, , . . , D ,  where D is the number of linearly independent 
states in the Hilbert space. For mathematical convenience, we shall assume that the 
basis is an orthogonal and normalized one. Any eigenvector \kn(rlr rz,  . . . , T A )  may be 
expressed as a linear combination of these D basis states, 

k=1 

Here C; are the expansion coefficients for the a t h  eigenfunction. In principle, the 
solution to Eq. (7-1) is independent of the basis states chosen; in practice, the ease 
of solving the problem depends critically on the choice. As mentioned earlier, this is 
especially true if we wish to truncate the active space to a manageable one. We shall 
return to the question of truncation in the next few sections. 

Once the basis is fixed, the unknown expansion coefficients C; in Eq. (7-3) may be 
foiind by proceeding in the following way. First, we multiply both sides of Eq. (7-1) 
from the left with @J(P,, rZ,. . . , P A )  and integrate over all the independent variables. 
In terms of Dirac bra-ket notation, the result may be expressed as 

( @ j ( r l , ~ ~ , .  . . ,TA)IH(QIla(ri,Pz,. . . , P A ) )  = &(Qj(ri,Tz,. . . , T A ) I * ~ ( P I , T ~ , .  . . , ra ) )  

Using the expansion given in Eq. (7-3) and the orthonormal property of the basis wave 
functions, the expression can be reduced to 

where HJk is the matrix element of the Hamiltonian between basis states QJ and @ k ,  

H 3 k  ( @ j ( V , T 2 , . .  3 I ~ A ) I H I ~ ~ ( T ~ , T Z I . I T A ) )  
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In terms of matrices, Eq. (7-4) may be written as 

The eigenvalues E, are the roots of the secular equation, 

Once an eigenvalue E, is found, the coefficients Cp, i = 1, 2,.  . ., D, may be obtained, 
in principle at least, by solving Eq. (7-5) as a set of D algebraic equations. This gives 
us the eigenvector corresponding to E,. The complete set of eigenvectors for a = 1, 
2 , .  . ., D may be viewed as a matrix {Cp} that transforms the Hamiltonian from the 
basis representation into a diagonal one. In this way, the eigenvalue problem posted by 
Eq. (7-1) is solved by diagonalizing the Hamiltonian matrix { H J k } .  Powerful numerical 
techniques are available to handle eigenvalue problems by matrix diagonalization [153]. 

Single-particle basis states. In microscopic nuclear structure calculations, the basis 
states {Qk} for many-body wave functions are usually constructed out of products of 
single-particle wave functions $i(rJ). To ensure proper antisymmetrization among the 
nucleons, a many-body state is often written in the form of a Slater determinant, 

where the factor is required for normalization. Different sets of single-particle 
states form different many-body basis states. The choice of single-particle wave func- 
tions therefore determines the type of many-body basis states that can be constructed. 

The single-particle spectrum is an infinite one. It is bound a t  the low-energy end 
by the ground state but extends to infinity at  the other end. This is very similar to 
the energy spectrum of a harmonic oscillator. In fact, we shall see that the harmonic 
oscillator is often used as the starting point of nuclear single-particle wave functions. 
If we select a set of states with single-particle energies close to those found in actual 
nuclei, it  is possible to truncate the Hilbert space based on energy considerations. 
Partly for this reason, it is more convenient to take as basis states the eigenfunctions 
of a single-particle Hamiltonian, 

h ( T i ) 4 k ( T i )  = c k @ k ( T t )  

Here f k  is the singleparticle energy. We shall see an example of h ( ~ , )  in Eq. (7-10) 
of the next section. In terms of such a single-particle Hamiltonian, the many-body 
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where v ( r ; ,  r,) is the residual two-body interaction, the original nucleon-nucleon inter- 
action K, in Eq. (7-2) minus contributions already included in /L(T,), We shall not be 
concerned here with the technical question of transforming the Hamiltonian from the 
form given by Eq. (7-2) to that in (7-7). One method is given in '$7-3, and the formal 
procedure is given in 57-5. On the other hand, it is clear that if we choose h(r ; )  such 
that a large part of the effect of the two-body interaction in Eq. (7-2) is included, the 
residual interaction e( r i , r l )  will be sufficiently weak that, in some cases, it may even 
be adequate to ignore it. This gives us various independent particle models. Alterna- 
tively, we can make use of the energies ck to reduce the Hilbert space to a manageable 
size and solve the eigenvalue problem with the residual interaction in the truncated 
space. An example is the spherical shell model described in 57-5. 

7-2 

The best, evidence for single-particle behavior is found in closed shell nuclei, *He, l60, 

40Ca, "Zr, and *oaPb. These are nuclei with proton number 2 = 2, 8, 20, 40, 82 and 
neutron number N = 2, 8, 20, 50, 82, 126. They have special features, such as: 

Magic Number and Single-Particle Energy 

a Energies of the first few excited states are higher than those in nearby nuclei, as 
shown in Fig. 7-1. 

3 Figure 7-1: Energy of the first ex- 
cited state of even-even nuclei as a 
function of proton numlJer (upper) 

.c c 10 

10 
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-10 

0 Single-neutron and single-proton removal energies, 

u - PARTICLE t #If--\ 

SEPARATION ENERGY \/r 
v 

I 1 I I 

s"(z, N )  = E,(Z,  N )  - EB(Z, N-1) (7-8) 
Sp(Z,N) = EB(Z,N)-EB(Z-l,N) (7-9) 

are much larger than those in the neighboring even-even nuclei, as shown in 
Fig. 7-2. 

0 The intrinsic shape of the ground states is spherical, as can be seen from observations 
such as electromagnetic transitions. 

Figure 7-2: Neutron and a-particle separation energies for stable nuclei as a 
function of nucleon number A.  The values are calculated from a table of binding 
energies. 

These properties are sufficiently prominent that the sequence of numbers, 2, 8, 20, 
40(50), 82, and 126 are known as magic numbers. One of the early achievements of nu- 
clear physics was in explaining the cause of these magic numbers using an independent 
particle model, based on a Hamiltonian that is a slight extension of that for a simple, 
three-dimensional harmonic oscillator. 

Independent particle model. We saw in the previous section that an independent 
particle model is one in which the residual interaction is ignored. In this approximation, 
the nuclear Hamiltonian is a sum of single-particle terms, 

A 
H = C h(r , )  

Physically, we can think of a nucleon i moving in a potential v(r,) that is a good 
representation of the average effect of the two-body interaction the nucleon has with 
all the other nucleons in the nucleus. If ch  is the kth eigenvalue of this Hamiltonian, 

i=l  

h(r)4k(r) = '%'$k(r) 
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the many-body Hamiltonian in t,he independent particle model may be rewritten in 
terms of the single-particle energies 

H = C € k n k  
k 

Here the summation on k is over all single-particle states and n k  is the number operator 
measuring the occupancy of single-particle state k. 

In this picture, the magic numbers arise because of the fact that  the nuclear single- 
particle spectrum is not a smooth one. Instead, they are grouped into “shells” with 
relatively large energy gaps between shells. When each group of states is completely 
filled, the Fermi energy of the nucleus is just below one of these large energy gaps. The 
ground state of the nucleus is made up by filling all the single-particle states below 
the Fermi level. To form an excited state in such an independent particle model, a 
nucleon must be promoted from an occupied single-particle state below to an empty 
one above. Since the gap is large, it takes more energy to excite the nucleus. For this 
reason, nuclei satisfying this condition for both neutrons and protons are also called 
closed shell nuclei. With all the orbits filled, the ground state of the nucleus is tightly 
bound and spherical in shape, as explained at the beginning of 56-3. 

Harmonic  oscillator single-particle spec t rum.  We can construct a simple model 
to see why energy gaps appear in the single-particle spectrum. A one-body Hamiltonian 
may be written in the form 

h2 
h(r)  = --V* + v(r) 

2P 
(7-10) 

where r is the coordinate of the nucleon and p is its reduced mass. For mathematical 
convenience, we shall assume for the moment that the potential v(r) is a central one 
that depends only on the magnitude of T but not on its direction. A good approximation 
of such a pot>ential is given by the harmonic oscillator well, 

V ( T )  = i [ L W i T 2  (7-11) 

where wo is the frequency. This is a reasonable assumption for the bound nucleons. To 
provide binding, the potential must have a minimum, and near this minimum it must 
have a quadratic dependence on the spatrial coordinates. Such a form is well represented 
by that given in Eq. (7-11). Examples of single-particle radial wave functions generated 
by such a potential are shown in Table 7-1. We expect that the radial dependence may 
not bc realistic near the nuclear surface, especially for single-particle states around the 
Ferrni encrgy. However, this is not a problem for us here. 

For an isotropic, three-dimensional harmonic oscillator potential, each (major) shell 
is characterized hy N ,  the number of oscillator quanta. All states belonging to a given 
shrll are degenerate with energy 

€ N  = ( N +  ; p w 0  (7-12) 

For each shell, the allowed orhit,al angular momenta are 

t = N ,  N - 2 , .  , . , 1, or 0 
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Table 7-1: Harmonic oscillator radial wave functions. 

L 

Note: As approximate single-particle wave functions for a nucleus, the oscillator 
parameter, w = mu& may be taken to be A-'l3 ferntorneters squared. 

(See, e.g., p. 818 of Ref. [46].) Since each nucleon also has an intrinsic spin s = f ,  the 
number of states, D N ,  i.e., the maximum number of neutrons or protons a harmonic 
oscillator shell can accommodate, is given by 

N+1 

allowed C k = l  
D~ = 2 c ( 2 e +  1) = 2 C k: = ( N +  1 ) ( ~  + 2 )  

where the factor of 2 in front of the summations is to account for the two possible 
orientations of nucleon intrinsic spin. The total number of states, D,,, up to  some 
maximum number of harmonic oscillator quanta, A',,,, is given by a sum over all 
N-values to N,,, 

(7-13) 

In arriving at the final result, we have made use of the identity 
n 

kZ = in(n + 1)(2n + 1) 
k=l  

From Eq. (7-13) we obtain the values Dm, = 2,8 ,  20, 40, 70, 112, 168,. . . for Nmax = 0, 
1, 2,. . . . 

The harmonic oscillator frequency wo is related to the size of the nucleus and, 
hence, to the nucleon number A. The expectation value of T' in a state of Nhwo can 
be obtained from that for the harmonic oscillator potential energy, 

(~jLw;T2)N = t ( N  + !)hwo 
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where the factor $ on the right-hand side comes from the fact that, for a particle in 
a three-dimensional harmonic oscillator well, the average of potential energy is half of 
the total energy. Using this relation, we obtain the expectation value of T~ in a state 
with N harmonic oscillator quanta to be 

(7-14) 

The mean-square radius of a nucleus made of A nucleons is given by the average over 
all occupied harmonic oscillator states for both neutrons and protons, 

(7-15) 
2 Nmmx 2 Nmex i i C ( N  + 1 ) ( N  + 2 ) ( N  + !)- 
A N=O N =O P O  

(I?’) - C D N ( T ’ ) N  = 

whcre the factor 2 in front of the summations arises from the need to consider both 
neutrons and protons. For simplicity, we shall assume here that neutron and proton 
nrimbcrs are equal to each other. The final result is obtained by substituting the explicit 
values of DN given in Eq. (7-13) and (T’ )N  in (7-14). 

The summation over N in the final form of Eq. (7-15) may be carried out with the 
help of the mathematical identity 

5 k3 = (;.(TI + 1)y 
k = l  

together with those for C k2 and C k given earlier. The result is 

Nm.x 

N=D 
C ( N  + 1) (N  + 2)(N + $1 = i ( N m a x  + l ) ( ~ m z s  + 2 l 2 ( ~ r n a x  + 3) 

N m m x > l  ’ f ( N m a x  + 214 
In t)he limit of large N,,,,,, we obtain the result 

2 t i l  

A PO 4 
(P) = --- (Nmax + 2)4 

which relates the square of the nuclear radius to the value of NmaX, 

oscillator energy, in terms of N,,, 
Alternatively, we can use this relation to express hwo, a quantum of harmonic 

(7-16) 

The number of nucleons A can also be related to N,, using Eq. (7-13), 

N,... 

N=O 
A = 2 DN = f(Nmax + 2)3 

where the factor of 2 is used to account for the fact that each harmonic oscillator state 
can take a neutron a9 well aa a proton with R given spin orientation. On inverting the 
rehtion, we obtain the expression 
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Combining the results of Eqs. (7-16) and (7-17), we obtain 

(7-18) 

where we have adopted a constant-density sphere model to convert ( r 2 )  to i ( r ~ A ' / ~ ) ~ ,  
as done in Eq. (4-20), and used TO = 1.2 fm to arrive at the final result, invoked earlier 
to characterize the energy required to excite a nucleon up one major shell. 

Spin-orbit energy. Let us go back to the question of magic numbers. From Eq. (7-13), 
we find that the first part of the sequence, 2, 8, 20, and 40, is accounted for by, 
respectively, filling up harmonic oscillator shells with either neutrons or protons up to 
N,, = 0, 1, 2, 3. This gives us an indication that the harmonic oscillator potential is 
a reasonable starting point for understanding the structure of single-particle states in 
nuclei. However, deviations are found beyond N,,, = 3. To correct for this, additional 
terms must be introduced into the single-particle Hamiltonian beyond what is given by 
the harmonic oscillator potential of Eq. (7-11). 

The departure of the sequence of magic numbers from the values given by D,, 
in Eq. (7-13) is explained by single-particle spin-orbit energy, suggested by Mayer and 
Haxel, Jensen, and Suess in 1949 (see Ref. [102]). If the potential that binds a nucleon 
to the central well has a term that depends on the coupling between s, the intrinsic 
spin of a nucleon, and t ,  its orbital angular momentum, the single-particle energies will 
be a function of the j-value of a state as well. Since j = s + t ,  two possible states 
can be formed from a given e and the energies of the two are different, depending on 
whether s is parallel to t (2 = e + f )  or antiparallel to t ( j  = e - f). The mime 
of this single-particle spin-orbit term may be traced back to the spin dependence in 
the nucleon-nucleon interaction. For our purpose here, we shall, for simplicity, take a 
semi-empirical approach without any concern for the origin. 

Let a be the strength of the spin-orbit term. The single-particle Hamiltonian of 
Eq. (7-10) now takes on the form 

(7-19) 

where the parameter a may depend on the nucleon number A and can be determined, 
for example, by fitting observed single-particle energies. When the spin-orbit term is 
included, the single-particle energy of Eq. (7-12) becomes 

The splitting in energy between the j ,  G I + f single-particle level and the j ,  
level is a(2e + 1)/2, However, the centroid energy of the two groups is not affected. 

l - 1 2 
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For n < 0, a single-particle state with j = j ,  = e+  f is lowered in energy. Since the 
amount of depression increases with increasing &value, a &-state for large e may be 
pushed down in energy by an amount comparable to  hwo, the energy gap between two 
adjacent harmonic oscillator major shells. As a result, the j,-states of the largest t in a 
shell with N oscillator quanta may be moved closer to the group of states belonging to 
the N - 1 shell below. [In practice, as we shall later in Eq. (7-29), one needs also an .tz- 
dependent term in t,he single-particle Hamiltonian to  lower the centroid energy of states 
with large !-values so that the j,-states are prevented from moving up to join the states 
in the harmonic oscillator shell higher up.] Because of spin-orbit splitting, we find that 
the j = i single-particle states for t = 4 in the N = 4 shell are depressed sufficiently 
i n  energy that their location is closer to the N = 3 group. As a result, the j = states 
join those of N = 3 to form a major shell of 30 single-particle states instead of 20. For 
this reason, we have 50 instead of 40 as the magic number for neutrons. Similarly, the 
magic number 82, instead of 70, is obt,ained if the j = states of the .! = 5 group in 
tlie N = 5 shell are lowered in energy to join the N = 4 group. By the same token, the 
magic number 126 is formed by summing all the particles in the N 5 5 shells (totaling 
112) together with those filling the j = orbit (which accommodates 2 j  + 1 = 14 
identical nucleons) froin the major shell above. Following this line of reasoning, the 
first magic number beyond the known ones is 184. 

A point to he noted here is the absence of a doubly magic (both N and 2 magic 
numbers) niicleus with 2 = 50. Because of Coulomb repnlsion, nuclei beyond 40Ca 
must liave an excess of neutrons over prot,ons to be stable and the amount of neutron 
excess required increases with Z. For "Zr (Z = 40), we find that the neutron excess 
is N - 2 = 10 and for zoRPb (2 = 82), the excess increases to N - 2 = 44. To form a 
stable niicleiis with 2 = 50, we expect a neiitzon excess somewhere between 10 and 20. 
The next higher magic number after 50 is 82. Since N = 82 gives too large a neutron 
niimber for Z = 50, a doubly magic nucleus with 2 = 50 cannot be constructed. In 
spite of this, we do find that the element Sn (Z  = 50) has more stable isotopes than 
those nearby. Other properties of the stable tin isotopes also support the observation 
that empirically Z = 50 is one of the magic niimhers, producing nuclei that are more 
tightly bound than their neighbors. 

Superheavy nuclei. Tlie heaviest closed shell nucleus known is zo6Pb with Z = 82 
and N = 126. Calculations indicate that, the next stable proton number may he 114 
becaiise of the large separation in  single-particle energy between two groups of proton 
orbits, one consisting of lh9/2, li1312, and 25712 and the other of 3p3/2 and 2f7/2. There 
is ii similar separation for the neutron orbits hut the energy gap is smaller and no clear 
indication for a neutron snhshell at N = 114 is found among empirical evidence. Since 
Z = 114 is not too far from t,he end of t,lie actinide series at Z = 103, there is some 
possibility that a "superheavy" element with A = 298 (Z = 114 and N = 184) can 
be made in the lahorat,ory. Alternatively, we may use the known magic number of 
126 as the proton nunilia arid end up with A = 310 as the possihle candidate for a 
superheavy nucleus. Many experimental attempts have been made to  find these nuclei 
and to discover a new group, or "island," of stable nuclei around the next set of magic 
numbers. As an important step in this direction, the element 2 = 112 and N = 165 
was created in t,he laboratory, as we shall see later in $9-1. 
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Figure 7-3: Schematic diagram of single-particle energy spectrum for spherical 
shell model. The lowest three major shells, Is, lp and 281d, are the same as those 
produced by a three-dimensional, isotropic harmonic oscillator well. The higher 
major shells include also the orbit with the largest j-values lowered in energy from 
the harmonic oscillator shell above by spin-orbit energy. 

Spectroscopic notation. We shall end this section with a description of the standard 
nomenclature for (spherical) single-particle orbits in nuclear physics. Each orbit is 
identified by three labels, N ,  e,  and j. The convention is to use spectroscopic notation 
with a single letter s, p ,  d ,  f, g, h, i, j, . . . to stand for P = 0, 1, 2, 3, 4, 5,  6, 7, , . . , 
respectively. The j-value is indicated as a subscript following the letter and the label for 
major shell is given as a prefix. It is customary to replace N ,  the number of harmonic 
oscillator quanta in a major shell, by n, the number of nodes in the (modified) radial 
wave function. There are at least two conventions to number n, depending whether 
one counts the node at the origin. We shall follow the one with n = 1, 2, . . . for the 
first time (one node), the second time (two nodes), and SO on for a particular P-value to 
appear in the sequence of single-particle orbits arranged in ascending order according 
to energy. For example, the single-particle orbit with the lowest energy is P = 0 without 
a node in the wave function. It is called the ls1p-orbit. A higher C = 0 orbit found 
in the N = 2 shell is labeled 2s1l2. The next higher P = 0 orbit at N = 4 is the 
3 ~ , / ~ ,  and so on. Figure 7-3 gives a more complete illustration of this way of Labeling 
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the single-particle orbits. The alternate convention is basically the same except that 
instead of starting with 1 for the first occurrence of a particular &value, it  starts with 
0. Both convcntions are equally well used and some confusion may arise on occasion. 
Furt,hermore, both conventions are different from that used in atomic physics and in 
certain quantum mechanics textbooks. 

7-3 Hartree-Fock Single-Particle Hamiltonian 

In its most elementary form, the nuclear Hamiltonian, as given earlier in Eq. (7-2), 
is a sum of two terms, one coming from the kinetic energy of the individual nucleons 
and t,hP other from the mutual interaction between nucleons. There is no fundamental 
cine-hody potential as, for example, in the case of electrons in an atom where the 
Coulomb attraction from t,he nucleus provides a one-body interaction. When this is 
coupled with the fact that the two-body interaction between nucleons is fairly strong, 
it is not easy in general to truncate the Hilbert space involved down to sizes suitable 
for practical calculations. We saw in the previoiis section that one way to solve this 
difficulty is to make a transformation of the single-particle basis wave functions so that, 
the single-particle energies reflect a large part of the nucleon-nucleon interactions. One 
of thc aims of the Hartree-Pock approach to the nuclear many-body problem is to find 
a single-particle representation such that the residual interaction is small. 

Variational calculation. For the purpose of discussion, we shall start with an arbi- 
trary set of single-particle states as the trial functions. The final result is, in principle, 
independent of this choice; in practice, it is advantageous to take a set that is convenient 
from a mathematical point of view, such as harmonic oscillator wave functions. 

In the absence of a two-body residual interaction, the ground state is given by the 
configuration with thc lowest A single-particle states occupied and the Fermi energy 
c I z  is tlctermined hy the highest occupied single-particle state. The wave function I @O ) 
for a system of A nucleons is a Slnter determinant constructed out of this set of single- 
particle wave functions. To simplify t.he notation, let us use 1q51&. . . d ~ )  to represent 
the Slater det,erminant given by Eq. (7-6). Thus, we have 

I @ O )  = Id142 ' * ' $ A )  (7-20) 

If I @ o )  is the true ground state wave function of the system, it must satisfy the varia- 
tioiial condition 

That is, the function I @ o )  is one that produces a minimum in the energy. The aim of a 
Hartree-Fock calculation is to find a set of single-particle states that, as far as possible, 
fulfills this condition. 

Since variations on the bra (a,-,( are not independent of those on the ket J@po), 

Eq. (7-21) is eqiiivalent to the condition 

s ( ~ l ~ Z ' . ' d A " I 4 l d 2 ' ' ' ~ A )  = 0 (7-2 1) 

(6qHpo)  = 0 (7-22) 

In other words, the aim of Eq. (7-21) can be achieved by a variation of either the bra or 
the ltet alone. There are two possible ways to carry out the operation on a many-body 
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wave function. Either we can modify the single-particle wave functions themselves such 
that Eq. (7-22) is satisfied or, alternatively, we can keep the single-particle basis fixed 
and alter @a by adding to it small amounts of Slater determinants made of products 
of different A single-particle states. As long as there is a complete set of states and all 
possible variations are applied, these two methods are equivalent to each other. 

We shall take the latter approach for our derivation here. With a fixed single- 
particle basis, each many-particle basis state may be labeled by the single-particle 
states occupied. For example, the trial ground state wave function @O in Eq. (7-20) 
is one with the lowest A single-particle states occupied (and those above empty). A 
different many-body wave function will have a different set of occupied single-particle 
states. A linear combination of two or more such many-body basis states then means 
that some of the single-particle states are partially occupied, and the occupancies of 
these states take on fractional value between 0 and 1 as a result. 

Let us label the basis, for instance, by numbering all the single-particle states with 
an index T = 1, 2, . , . , d in ascending order according to single-particle energy cr. 
A many-body basis state may be specified in this case by giving the indices of the 
occupied single-particle states. Thus, the lowest many-body state, as far as the sum of 
single-particle energies is concerned, may be represented as 

Such a scheme of displaying a many-body state is sometimes referred to as the occupancy 
representation. 

A variation on IQo) may be carried out by mixing a small amount of I @ k t  ) , made 
by promoting a particle from single-particle state t below the Fermi energy to single- 
particle state k above. Such a state may be represented as 

l @ k t )  = 1 1 , 2 , . . . , ~ - 1 , ~ + 1 , . . . , A , ~ )  

Many-body states constructed in this way, by promoting a nucleon from an occupied 
single-particle state below the Fermi level of the A-nucleon system to an unoccupied 
state above, are called one-particle one-hole states, or lplh-states for short. Other vari- 
ations, involving two-particle two-hole (2p2h) and more complicated types of excitation, 
can also be considered, but we shall ignore them here. 

An arbitrary variation consisting of all possible lplh-excitations may be written in 
the form 

Is@) = v k t l @ k t )  
k t  

where Vkt denotes the amount of each component in the variation. To ensure that the 
variations are carried out in small steps, the absolute value of r]kt must be kept to be 
much smaller than unity. If we restrict ourselves to Iplh-excitations, Eq. (7-22) may 
be written as 

~ r ] k t ( @ k t l ~ I @ O )  = 0 
kt 

Since different lplh-components, represented by different occupied single-particle state 
k and empty single-particle state t ,  are independent of each other, it  is necessary that 



248 Chap. 7 Microscopic Models of Nuclear Structure 

each term in the sum vanishes. Fkom this requirement, we obtain the condition 

A A 

( Q k t  IHIQo) = ( Q k t  IC h(r t )  + C V(ri, rj)(QO) = 0 (7-23) 
i= 1 t#j=l 

For the one-body part of the Hamiltonian, the only possible nonvanishing contribution 
comes from cases where the left- and right-hand sides of the matrix element differ by no 
more than the single-particle state of one nucleon. Similarly, for the two-body part of 
the Hamiltonian, only matrix elements with occupied single-particle states on the two 
sides of V ( r , ,  rJ) differing by no more than two can be nonvanishing. Upon integrating 
over all the single-particle coordinates other than those acted upon by the operators, 
the condition expressed in Eq. (7-23) for a one- plus two-body Hamiltonian reduces to 

(7-24) 

where t,he summation is over all the occupied states. 
The first term in Ey. (7-24), ( k ( h , ( r ) l t ) ,  is the matrix element of the one-body part 

of the Hamiltonian between single-particle states 1 t ) and I k). Similarly, the matrix 
element of the two-body part, (krJV(r1,  rz) l tr) ,  is between two antisymmetrized two- 
particle states, Ikr) and It,,.), given by 

Using these results, the two-body matrix element, in Eq. (7-24), the second term on the 
left-hand side, may be expressed explicitly in terms of single-particle wave functions in 
tlie following way: 

Hartree-Fock Hamiltonian. I t  is perhaps more instructive to write the relation 
expressed by Eq. (7-24) in an oparabor form. For this purpose, the left-hand side of the 
equation may he regarded as the tnatrix element of a one-body operator, m it, operates 
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only on the single-particle state k t o  its right (or the single-particle state t t o  its left). 
However, V(r1,r.t) is a two-body operator, and we shall see how to  “reduce” i t  to 
one-body. 

Let us distinguish between two sets of single-particle states here by using Greek 
letters a, p, . . . t o  indicate the original, or trial, single-particle states and the Roman 
alphabet, T, s, . . . , for the Hartree-Fock single-particle states that  satisfy Eq. (7-24). 
A two-body interaction potential may be expressed in the original basis as an operator 
in the following way: 

C V(r i ,  rj) = C (7-26) 
I J  0076 

where 
Vap76 (ap/V(pI, p2))?’6) 

is the matrix element of V(r1, r2) between antisymmetrized and normalized two-body 
wave functions IaO) and Ira), such as those given in Eq. (7-25). Using this form of 
the two-body potential, we can write the left-hand side of Eq. (7-24) as the one-body 
matrix element of the following operator: 

(7-27) 

This is the Hartree-Fock single-particle Hamiltonian operator. The left-hand side of 
Eq. (7-24) is the matrix element of ~ H F  between single-particle bra I k )  and single- 
particle ket I t ) .  The quantity (tlafl) in Eq. (7-27) is a one-body operator since it is 
the overlap of a two-body ket with a one-body bra. Except for the implied antisym- 
metrization in the two-body wave function, we may take the quantity as 

( T I N 3  Iv (rl.>l P )  
The second term of ~ H F  in Eq. (7-27) may be interpreted as the average one-body 
potential, or the mean field,  experienced by a nucleon as the result of (two-body) 
interactions with each one of the other nucleons in the nucleus. 

It is also possible to write Eq. (7-24) as an eigenvalue equation using the operator 
form given in Eq. (7-27), 

(7-28) 

where et  is the Hartree-Fock single-particle energy. The solution provides us with a 
transformation from the set of basis states 1 a ) ,  1 p ) ,  . . . , used as the trial wave func- 
tions, to the eigenstates of the Hartree-Fock single-particle Hamiltonian I k), I t ), . . . , 
defined by Eq. (7-28). 

The calculation is not as straightforward as it may seem on the surface. To find both 
(v {a@) and (7+-t) in Eq. (7-281, or the equivalent quantity of (kr (V( t r )  in &. (7-24), 
we need an a priori knowledge of the solution, as these matrix elements are evaluated in  
the Hartree-Fock basis that forms a part of the end result of the calculation. This means 
that the calculation must be carried out iteratively starting with an arbitrary set of 
single-particle wave functions, such as harmonic oscillator wave functions. Using these 
trial functions, we can evaluate all the necessary matrix elements and solve Eq. (7-28) 
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Figure 7-4: Charge density of s€ . 

approximately using the trial functions for IT) and It) .  The solutions obtained are 
only a first approximation, as we have not used the proper wave functions to evaluate 
the matrix elements to start with. On the other hand, the results represent a better 
approximation of the “true” Hartree-Fock wave functions than the trial wave functions 
used w the input. Now we can make improvements by using the first approximation 
results a.9 the input and carrying out the calculation again. The process is repeated 
until self-consistency in the solution is achieved; that is, the solutions obtained are 
essentially identical to the wave functions used to evaluate the matrix elements. 

Hartree-Fock calculations have been used extensively to study low-lying states in 
nuclei, as, for example, that for znRPb shown in Fig. 7-4. However, since each nuclear 
wave function is made of a single Slater determinant, it does not correspond to a state 
with definite spin and isospin, In order to use them to calculate quantities that can 
be compared with experimental data, states of good J and T must be projected out 
of the Hartree-Fock wave function. We shall not go into the technical detail of how 
to carry out the projection or extensions of the topic to projected Hartree-Fock where 
the variational calculation is carried out after spin and isospin projections. The self- 
consistent single-particle basis obtained here is, however, important for understanding 
nuclear ground states as well as the nuclear shell model to be discussed in 97-5. 

- EXPERIMENT --- GOGNY 
NEGELE .. I..... 

7-4 Deformed Single-Particle States 

So far, we have taken the effect.ive one-body potential arising from the average interac- 
tion of a nucleon with all the other nucleons in the nucleus to be spherical. This is a 
reasonable assumption only if t8he equilibrium shape of the nucleus itself has the same 
shape. As we saw earlier in 56-3, for many nuclei, a deformed shape is actually more 
stable. For these nuclei, it is more appropriate to use a deformed average potential well 
to generate the single-particle basis states. 
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Deformed single-particle Hamiltonian. Let us again assume axial symmetry for 
simplicity. Instead of Eq. (7-19), we can adopt a semi-empirical single-particle Hamil- 
tonian of the following form: 

h(r)  = ho + hs + a t .  s + b e 2  (7-29) 

Here ho is the spherical part, generally taken to be the Hamiltonian of an isotropic 
three-dimensional harmonic oscillator similar to that given in Eq. (7-lo), 

The deformation is produced by ha and is often taken to be that due to a quadrupole 
field, 

ha = - ~ S o s c p w ~ r 2  EY,o(B, 4) 

where So,, to be defined later in Eq. (7-32), provides a measure of the departure from 
a spherical shape. We have already encountered the other two terms in the single- 
particle Hamiltonian. The spin-orbit term a t .  s, given in 57-1, is required to account 
for the magic numbers, and the term b e 2  is used to give the proper ordering of single- 
particle states in the spherical limit. Deformed single-particle states, produced as the 
eigenvectors of the Hamiltonian given in Eq. (7-29), are often referred to as the Nilsson 
states or Nilsson orbitals. 

Labels for deformed single-particle states. With a deformed Hamiltonian, the 
spin j is no longer a constant of motion and a new set of labels must be found to 
identify a single-particle state. As we have seen earlier in 56-3 in a discussion of the 
rotational model, the third component of j remains a good quantum number for axially 
symmetric nuclei. This gives us R, the projection of j on the body-fixed quantization 
axis (the 3-axis), as one of the IabeIs. 

The wave function of a Nilsson state may be expressed as a linear combination of 
spherical harmonic oscillator states 1 N l j n  ), 

(7-30) 
(3 

as deformation mixes spherical orbits. The expansion coefficients Cp,tj depend on the 
value of the deformation parameter So,,. In the limit of zero deformation, the states 
become identical with those in the spherical case used in the previous sections. If 
admixtures between spherical states belonging to different major harmonic oscillator 
shells are not permitted in constructing the deformed single-particle basis, N ,  the 
number of harmonic oscillator quanta remains a constant of motion and may be used 
ax one of the quantities to describe a deformed state. 

Labels N and 0 alone cannot uniquely specify a deformed state; two additional 
quantities, n3 and A, are commonly used. The origin of these labels may be summarized 
in the following way. For large deformations, we can ignore the effects of the . s and 
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f? t,erms and treat h o  + h g  in a cylindrical coordinate system. The Hamiltoninn of 
Eq. (7-29) can now be written as 

(7-31) 
ti2 
2/1 

h = --v2 + ;/L{w;.%; + w:(.; + xi)} 

where the oscillator frequency along the symmetric axis has the value, 

and in the directions perpendicular to it, 

In  terms of w l  and w3, the deformation parameter 6,,, is given by the relation 

(7-32) 

where the average frequency 

lj = f ( ~ 1  + ~2 + wg) = i(2w.j- + wg) x wg 

iriay be taltrn to  be the same as wg, the harmonic oscillator frequency in the spherical 
case. The parameter b,,, is very similar but not identical to p of Eq. (6-ll) ,  For an 
axially symmetric nuclciis, it can be shown' that 

/3 = L\i$608c -t O(C~:~,) = 1.0576,,, + O(6iw) 

The difference between 6,,, here, 0 of Eq. ( C - l l ) ,  and 6 of Eq. (6-18) is that boSc is given 
in terms of the harmonic oscillator frequencies for different directions, whereas and 
6 arr given in terms of the values for various radii. All three ways of parametrizing 
quadrupole deformation are used in the literature. To first order, boSc x 6 x 0.9458. 
More detailed relation between these two quantities are given in Ref. [35]. 

In the limit of large deformation, the single-partirie ewrgy of a deformed state may 
be expressed in terms of the number of oscillator quantum n, along each of the three 
priricipal (body-fixed) axes, 

f N n l n  = ( n 3  + i) fiws + (712 + t )  ~ w z  + (n1+ ;) tiwl 

3 

= (nR + $) hw3 + ( n l +  1) t i w l  (7-33) 

where, for the  axially syrnrrietric casc under discussion here, n l  = nl +n2 is the number 
of quanta i n  the  clirec.tion perpendicular to the symmetry axis. Since the total number 
of harmonic oscillator quanta is fixed, we have 

N = n3 + n1 

'Scc, cg. ,  Eq. (2.82) of Ref. [ l lS]  
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The label n3 (or n l )  is a good quantum number in this limit and may be used as a 
label for Nilsson states even in cases where the deformation is not large. 

When the term adas is included, states with different projections of orbital angular 
momentum on the symmetry axis are no longer degenerate. As a result, in the limit of 
large deformation, the projection of the orbital angular momentum along the symmetry 
axis, 

may be used as the fourth label. The set of four labels [NnJR] completely specifies 
a deformed state within one major shell. Examples of the variation of energy with 
deformation for the low-lying Nilsson states are shown in Fig. 7-5. More complete 
results can be found, for example, in Ref. (951. 

x = fn1 ,  f ( n 1  - 2), . . . , f 1 , O  

C3l2l 
t32Il 

t3211 

r202l 
I3301 cm 
c m21 

t2111 

ti3 I1 

Figure 7-5: Low-lying Nilsson singleparticle energies, the eigenvalues of the 
Hamiltonian given by Eq. (7-29), as a function of deformation parameter So,,. 

Many-body states in the Nilsson scheme. The Nilsson orbitals for a deformed 
nucleus may be thought of as the equivalent of Hartree-Fock single-particle states in 
the spherical limit. The major difference, apart from the shape of the potential, is that 
a Hartree-Fock calculation starts with a nucleon-nucleon potential. In contrast, the 
Nilsson model, in its most elementary form, adjust,s the deformation parameter to fit 
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t,he nuclear shape. Furthermore, the Hamiltonian given by Eq. (7-29) is a very simple 
and intuitive one. The fact that, it, works so well in describing a wide range of nuclear 
properties has led to a number of interesting developnients in nuclear structure. Some 
of these will be discussed in $9-2. 

For an independent particle approximation in the deformed basis, we can ignore 
t,he residual interaction I The nuclear Hamiltonian is then a sum of the single-particle 
Harniltoiiian given in Eq. (7-29) for all the active nucleons. The single-particle states 
may be divided into three groups: the core states, the valence states, and the empty 
states. To restrict the size of the Hilhert, space for a calculation, we shall take some of 
the single-particle states as permanently filled with nucleons. Since these nucleons are 
never excited, the only role they play is to provide an average (deformed) potential for 
the rest of nucleons. In other words, they form an “inert core” for our active nucleons. 
This is a reasonable assumption if we put, for example, nucleons in the lowest few states 
as the core, as it takes more energy to promote these particle to the unoccupied states 
t,lian the range of excitation energy of interest to us. 

By the same token, single-particle states that are far above the Fermi energy are not 
of interest, as any excitations to them will take more energy than we are concerned with. 
As a result, these states will not, for all practical purposes, enter into our calculations 
and we may as well leave them out. These form the empty states. The remainder are 
the active states. They are made of single-particle states near the Fermi level, both 
occupied ones from which nucleons can be excited and unoccupied one into which the 
excited nucleons can be put. 

Since the single-particle Hamiltonian h ( ~ )  is the result of the valence nucleons in- 
teracting with the core, the value of the deformation parameter depends on the shape of 
the core. Since the core itself is left out of the calculation, we have no way of determin- 
ing the deformation parameter 6,,, within such an independent particle approach. As 
we shall see in 59-2, the equilibrium shape of the core is usually considered separately, 
in the same manner as determination of the moment of inertia Z is outside a simple 
rotational model, as we have seen in §6-3. 

For a given value of b,,,, the single-particle energies are given by the eigenvalues of 
the defoririecl Hamiltonian equation (7-29) and some of the low-lying ones are shown 
as a function of b,,, in Fig. 7-5. Nilsson orbits are degenerate in energy with respect 
to the sign of SZ, and as a result, each orbit can accommodate two identical nucleons, 
one wit,h positive value of R and the other with Cl negative. To construct the ground 
state configiiration of n active nucleons, we proceed by filling up the lowest available 
single-particle states with activc nucleons. Since the order of Nilsson states €Nns,,n is 
different for different deformations, as can be seen in Fig. 7-5, the many-particle states 
formed depends on the value of bosc. Let us illustrate this point using a few specific 
examples. 

Examples of Nilsson model calculation. For simplicity we shall examine the 
ground state spin of a few nuclei at  the beginning of the ds-shell. For these, we can 
take l60 as the inert core and the ds-shell as the active space. In a spherical basis, the 

single-particle energy is the lowest one among the ds-shell orbits, as can be seen 
in Fig. 7-5 for b,,, = 0. In this case, we expect that the lowest energy configuration 
of nuclei in the beginning of the ds-shell, from I7O to 28Si, is made up by filling the 
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Nucleus Proton configuration Neutron configuration 

"F ;[220]' 4(220]2 

lgNe ;[220]2 ;[220]' 

21Ne i(22012 f[220]2;[211]' 

23Ne i[220)2 ;[211]2 4 122012 ; 121 1)' 

ld5p-orbit with nucleons. The even-even nuclei are not of interest here, as the ground 
states must have J" = O+ because of pairing interaction. For an odd-mass nucleus, 
the ground state spin in an independent particle model is given by that of the single- 
particle state occupied by the unpaired nucleon. Consequently, nuclei 19F, IgNe I 21N e, 
and 23Na are expected to have J" = :+ for their ground state spins if they are spherical. 
Experimentally, they turn out to be different and have, instead, values f+, f', t', and 
!+, respectively. 

In the deformed basis, the observed values are understood in the following way. The 
nuclei in the lower half of the ds-shell are known to be deformed and have predominantly 
prolate spheroidal shapes (axially symmetric with 6,,, > 0). From Fig. 7-5, we see 
that, for positive deformation, the positions of deformed orbitals above the l60 core 
( N  = 2 = 8) are C![Nrt3X] = f[220), :[211], ;[211], in ascending order according to 
energy. Since each Nilsson orbit can accommodate two identical nucleons, the ground 
state configurations of the four nuclei in question are those shown in Table 7-2. 

K = C Ri 
1 
5 
1 
2 
3 z 
3 z 

With deformed single-particle states, we do not have a definite spin j for each 
nucleon. As a result, it is not possible to couple the angular momenta of all the active 
nucleons to form the nuclear ground state spin J .  Instead, we shall proceed in the 
same way as we did in the case of rotational model. Since the projection of j on the 
body-fixed 3-axis is a constant of motion, the sum 

I 

for all the active nucleons is also a constant of motion. Using the fact that K is the 
projection of J on the 3-axis, the ground state spin of a deformed nucleus must have 
spin J = K .  This is the same argument used earlier to deduce spin in the rotational 
model. From the last column of Table 7-2, we find that K = !j for IgF and lgNe and 
K = for the second 
pair, in agreement with observation. If the deformation were oblate (b,,, < 0 ) ,  the 
unpaired nucleon would have been in orbitals $[202], 5[202), !j[220], and f[220] instead, 
and the ground spins of the nuclei would have been i, $, f, and i, in contradiction to 
the observed values. 

The residual interaction in the deformed single-particle basis is, in principle, small. 
However, for any detailed properties of nuclei, we need to go beyond the independent 

for 2'Ne and 23Ne. Hence J = f for the first two nuclei and J = 
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particle model. We shall discuss this topic in the next section for the spherical case. In 
a deformed basis, the mathematics involved is far more complicated, as we no longer 
have the simplicity of rotational symmetry, and hence spherical tensors and angular 
momentum algebra, t o  help us. 

7-5 Spherical  Shell Model 

We have seen in the previous three sections that independent particle models, using ei- 
ther spherical or deformed basis, are able to account for a number of nuclear properties. 
For more precise information, it is necessary to include the residual interaction in our 
study. Since the independent particle states are already good approximations, we can 
make use of them as the basis for our more detailed studies. The role of the residual 
interaction may be viewed as introducing configuration mixing among such states so 
that the wave functions, now made of linear combinations of these “basis” states, give 
a hetter description of the actual physical situation. 

The many-particle space spanned by different products of the single-particle states 
is infinite in dimension. To carry out any practical calculations, it  is necessary to 
truncate the Hilhert space to a finite one. Since our choice of single-particle states and, 
hence, the many-body basis states is based on physical grounds, such as the Hartree- 
Fock approach discussed in 57-3, we expect trhat reasonable approximations to the 
t,rue nuclear wave functions can be achieved in a relatively small part of the complete 
space. Furthermore, we saw earlier in $7-2 that single-particle orbits are separated into 
“shells” because of the large energy gaps between groups of orbits. This provides us 
with a natitral way to select the active space. For this reason, the approach is given 
the name shell model. In principle, a shell-model calculation can also be carried out 
in a deformed basis. However , mathematical convenience makes the approach viable 
mainly in the spherical limit, and this is what we shall restrict ourselves to. 

There are three steps that must be carried out before we can perform the calcn- 
lations: the choice of a single-particle basis, the selection of an active space, and the 
tlerivat,ion of an effective interaction. These three steps are intimately related to each 
other, as we shall see from the discussion following. 

Selection of t h e  shell-model space. In the spherical shell model, each nucleon has 
an intrinsic spin 8 and occupies a state of definite orbital angular momentum t!. The 
many-body basis states formed by putting A nucleons into single-particle states are 
coupled together to form states with definite total angular momentum J and isospin 2’. 
There are two ways to carry out the angular momentum coupling. In the LS-coupling 
scheme, the orbital angular momentum t!, and the intrinsic spin si of each one of the 
nucleons are first coupled separately to total orbital angular momentum L and total 
intrinsic spin S: 

A A 

L = p i  S = x 8 i  
1 = l  i=l 

The total angular momentum, or spin, of the state ifi the vector sum of L and S, 

J = L + S  
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Alternatively, in the jj-coupling scheme, the orbital angular momentum and the in- 
trinsic spin of each nucleon is coupled together first t o  form the nucleon spin j , ,  

ji = ei + 8, 

then the nuclear spin 
A 

J = C j ,  
t= 1 

is obtained by summing over the spins j i  of individual nucleons. 
In a spherical basis, the Hamiltonian is invariant under a rotation of the coordinate 

system and J is a good quantum number. Furthermore, isospin T is also a constant 
of motion if we ignore symmetry-breaking effects due to electromagnetic interaction. 
For these reasons, Hamiltonian matrix elements between states of different J and T 
values vanish. If the many-body basis states are grouped together according to  their 
(5 ,T)  values, the Hamiltonian matrix in the complete shell-model space appears in a 
block-diagonal form; that is, only square blocks of matrix elements along the diagonal 
corresponding to a given set of (J, T )  values are different from zero. The calculation 
can therefore be carried out separately within the subspace of a specific ( J , T )  of the 
full shell-model space. In this way, angular momentum coupling greatly reduces the 
size of the Hilbert space in which a calculation has to be carried out. 

To truncate the Hilbert space, we can follow the same procedure as outlined in 
the previous section for a deformed basis. The nucleons are divided into two groups, 
core nucleons and valence nucleons. The single-particle states are separated into three 
categories, core states, active states, and empty states. 

In most nuclear structure investigations, we are primarily interested in a few low- 
lying states. As a result, only nucleons in single-particle states near the Fermi surface 
are directly involved. The rest of the nucleons are in low-lying single-particle states 
and they are seldom excited. For all practical purposes, they can be assumed t o  form 
an inert core. Their contributions to  the Hamiltonian may be separated into two parts. 
The first is a constant term in energy, made of single-particle energies and mutual 
interaction between nucleons in the core. Such a constant can usually be absorbed into 
the definition of the zero point of the energy scale for the A-nucleon system and may 
be ignored. The only exception occurs in calculations such as those involving the total 
binding energy of the nucleus. The second is the binding energies of the active nucleons 
provided by the core. The single-particle energy of an active nucleon consists of the 
kinetic energy as well as the average interaction energy with all the other nucleons, 
including those in the inert core. Contributions from the core nucleons cannot be 
ignored here but can be easily accounted for in the definition of single-particle energies 
for the active nucleons. The net result is that the effect of the core in a shell-model 
calculation may be included without explicitly considering the nucleons in it. In this 
way, the single-particle states occupied by the core nucleons may be left out of the 
active space. 

Similarly, there are single-particle states so high above the Fermi energy that any 
many-body basis states having nucleons occupying these states will be very high in 
energy. If our interest is confined to the low-lying region of a nucleus, it is unlikely 
that there can be any significant contributions from these basis states. Such a set of 
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single-particle states is therefore essentially always empty for our purposes and, as a 
result, may also be ignored. 

The only remaining single-particle states are the few near the Fermi energy and they 
form the active, or valence, space from which reasonable approximate wave functions 
of the nuclear states of interest can be constructed. The aim of the nuclear shell model 
is to solve the eigenvalue problem in the space constructed out of single-particle states 
in  the active space alone. 

Effective Hamiltonian. What is the appropriate Hamiltonian to be used in a shell- 
model space? We have implicitly assumed a Hartree-Fock single-particle basis for this 
section. As a result, we have already made a transformation of the nuclear Hamiltonian 
from its f u n d a m e i d  form given by Eq. (7-2), consisting of a single-particle kinetic 
energy term and a nucleon-nucleon interaction term, to that of Eq. (7-7), made of 
single-particle Hartree-Fock energies and residual interaction. Mathematically, we need 
to make another transformation here from the infinite-dimensional space, specified by 
all the Hartree-Fock single-particle states, to a finite, truncated shell-model space. 
Physically, we need to find an effective Hamiltonian such that when the active shell- 
model space is restricted to a manageable size, the effect of the states ignored in the 
calculation may be accounted for in an efficient manner. 

A formal definition of the effective Hamiltonian Hem may he made in the following 
way. Let, P be an operator that projects out a finite shell-model space of dimension 
d in which we wish to carry out the calculations. If the “true” Hamiltonian is H, the 
eigenvalue problem in the complete Hilbert space may be written as 

H Q i  = Ei9; 

where Ei is an eigenvalue and Ql is the corresponding eigenvector of H. An ideal 
effective Hamilt,onian is one that sat,isfies the condition 

H e ~ P 3 i  E,P@i (7-34) 

In other words, an effective Hamiltonian is one which produces the same eigenvalues 
and eigenfunctions as those obtained by solving the problem in the complete space 
using the t,riie Hamiltonian. In general, it  is impossible to satisfy this condition for all 
d eigenvalues in the truncated shell-model space. This is, however, not a problem, as 
we are interested only in a small number of low-lying states that is much less than d.  

The effective Hamiltonian may also be written as a sum of two terms, 

Hefi Ho + Vem (7-35) 

where the one-body part, H o ,  may be taken, in our case, t o  be a sum of Hartree-Fock 
single-particle Hamiltonians, 

Ho = C I t (? , )  = C ~ini  
I i 

Here el is the energy and nl the number operator for single-particle state i. 
It, is iinderstood that single-particle energy c i ,  defined in Eq. (7-28), also includes 

contributions from the core nucleons. In pract,ice, it  is common to replace e, by the 
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observed energy level positions of single-particle states in the region of interest. The 
empirical values of e, may be found, for example, in nuclei one nucleon away from 
closed shells where some of the low-lying states are made predominantly by the cou- 
pling of one nucleon or one hole to the ground states of the closed shell nuclei. Such 
states are, in principle, exactly the ones described by Hartree-Fock eigenvectors. If a 
realistic Hamiltonian is used in the Hartree-Fock calculation, one may expect to ob- 
tain essentially the same eigenvalues as the experimental energies. For nuclei away 
from closed shells, correlations other than lp lh  also play an important role, and the 
Hartree-Fock states may no longer be good approximations of the eigenstates of the 
complete Hamiltonian. The strength of each single-particle state, in this case, may 
be shared by several (observed) nuclear states, as can be seen, for example, from the 
spectroscopic factors of one-nucleon transfer reactions (see $8-2). In such cases, the 
choice of empirical single-particle energy may not be straightforward. 

We shall assume that the effective interaction &E remains two-body in character, 
although there is no reason to rule out three-body and higher order terms caused by 
excitations to basis states outside the shell-model space. Such terms are believed to be 
small in general and may be ignored. 

A formal solution of the effective interaction problem may be obtained in the fol- 
lowing way. In addition to the operator P ,  which projects out the active part of the 
space from the complete many-body space, we shall also define an operator Q which 
projects out the rest of the Hilbert space, such that 

P + Q = 1  (7-36) 

Being projection operators, they have the properties 

P2 = P Q2 = Q  
To economize on notation, let us write the eigenvalue equation in the complete space 
as 

H 3  = EQ (7-37) 

and 

On applying operator P from the left to both sides of Eq. (7-37), we obtain 

H = H o + V  

P H 3  = PErk (7-38) 

Using Eq. (7-36) and the fact that E is a number and therefore commutes with operator 
P ,  we can express Eq. (7-38) as 

P H ( P  + Q)Q = E P 3  

or 
PHPQ + PHQQ = EP3 (7-39) 

Similarly, instead of P, we can apply Q from the left to both sides of Eq. (7-37) and 
obtain an equation similar to Eq. (7-39), except with the roles of P and Q interchanged, 

QHPQ + Q H Q a  = E Q 3  (7-40) 
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Eqiiations (7-39) and (7-40) may be regarded as two coupled equations for P?! and 
Q S .  

We can now proceed to solve these equations by expressing Q?! in terms of PQ. 
Equation (7-40) may be put into the form 

EQ?! - QHQ?! = QHP?! 

This can be rewritten a? 
( E  - QH)QV = QHPQ 

or 
Q*=- QHP?! E - Q H  (7-41) 

We must, be careful with the order of operations in such a “formal” solution, as not all 
the operators commute with each other. Furthermore, the meaning of having operators 
in the denominator, ( E  - QH)-’, needs to be clarified and we shall do this later. 

Substituting the “solution” for Q?! given by Eq. (7-41) into (7-39), we obtain the 
result 

1 
E - Q H  PH P?! + PH- QH PQ = EP?! 

or 
1 

P ( H  + H ~ Q H } P *  - = EPQ (7-42) 

It is useful to recall that the Hamiltonian has t,he form H = Ho + V ,  where Ho is a 
one-body operator and V is a two-hody potential. In terms of Ho and V ,  Eq. (7-42) 
becomes 

1 
E - Q H  Q( Ho + V )  P [  HO + V + ( H o  + V)- P?! = EPQ (7-43) 1 

We are now in a position to simplify this equation and put it in a form that can be 
coInpared with Eq. (7-34). 

If all the single-particle states are chosen to be eigenfunctions of h ( r )  and our 
truncation of the many-body Hilbert space is carried out by restricting the number of 
active single-particle states, we have the comniutation relation 

PHo = HOP 

Since P and Q are mutually exclusive, i.e., PQ = QP = 0,  we can eliminate the last two 
HO’S on the left-hand side of Eq. (7-43). Among the three HO’S in the expression it is easy 
to see that the one furthest to the right does not make any contribution to the equation, 
as QH0JW = 0. The HO to its left occurs in the product P{Ho(E - QH)-’QV}PV. 
Since everything to the right of this HO acts on states in the space projected out by 
Q, the term is equivalent to PHoQ(E - QH)-’QVPS and vanishes because PHOQ = 
HoPQ = 0. Upon eliminating these two Ho’s, Eq. (7-42) may now be written in a form 
thilt. can be compared with Eqs. (7-34) and (7-35), 

1 
E - Q H  P{ Ho + V + V ~ Q V } P Q =  EP?! 
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From the comparison we identify that 

QV 
1 vefr = v + v- E - Q H  (7-44) 

This is still a formal solution and its usefulness lies mainly in the possibility of making 
an infinite series expansion for ( E  - QH)-'. This is an advantage, as i t  permits an 
order-by-order calculation of the effective potential. 

An equivalent way of writing the second term on the right-hand side of Eq. (7-44) 
is the following: 

QV 
1 1 

V- E - Q H  " =  " E -  f f o  - QV 
In a Hartree-Fock single-particle basis, it is likely that the expectation values of the 
residual interaction V are smaller than those for HO and perhaps smaller than those 
for E - Ho as well. As a result, the following condition may be true: 

Q V < 1  
1 

E - Ho 

Under such conditions, we can make use of an infinite series expansion of operator 
( E  - Ho + QV)-' in powers of ( E  - Ho)-'QV, 

QV QV = VQ- QV + VQ-QV- 
1 1 1 1 

'QE - H~ - QV E - Ho E-Ho  E - H o  

Q V t .  +VQ- E - H o ~ ~ E - N ~ & ~ ~  1 1 1 

The effective interaction of Eq. (7-44) can now be expressed as 

m 1  
Vefr = V f V Q  (-QV)" E - Ho 

n=l 
(7-45) 

If the series converges, we have a method to evaluate the effective interaction to any 
order of accuracy desired. Furthermore, since HO is diagonal in the basis states we have 
chosen, 

HoIQi) = (C er) 
r 

where are the single-particle energies and the summation is over all the occupied 
single-particle states in I Q )  and operator Ho in the denominator may be replaced by 
a sum of single-particle energies. 

There is, however, no known proof that the series is actually convergent. Further- 
more, it is not easy to carry out the calculation in practice beyond the third order or so 
in a nontrivial P-space. In spite of these difficulties, the effective interaction, obtained 
by using Eq. (7-45) to roughly second order, has been shown to give shell-model results 
that are in good agreement with a variety of experimental data, if we start with a 
realistic potential that fits the free nucleon-nucleon scattering data. 
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The procedure outlined above to find the effective interaction in a shell-model space 
is also known as a renormalization procedure, as it  “renormalizes” an interaction for 
the complete Hilbert space to one suitable for the truncated space. We have now 
a complete set of procedures that can generate a effective interaction in a truncated 
shell-model space starting from one between free nucleons. The steps involved are 
the following. Using free nucleon-nucleon interactions, we construct an interaction for 
bound nucleons. This allows us to carry out a Hartree-Fock type of calculation to 
obtain a physical single-particle basis and a residual interaction in the space. Finally, 
we use the renormalization procediire outlined above to find an effective interaction to 
be used in a manageable shell-model space. 

The complete process from nucleon-nucleon potential to an effective interaction is 
very involved and has been proved on many occasions to be useful in nuclear structure 
investigations. However, for certain practical applications, simplifications are needed 
and several semi-empirical approaches have been developed to obtain effective shell- 
model interactions. 

Two-body matrix elements. In a finite active space, a two-body operator is com- 
pletely specified if all the independent two-body matrix elements in the space are given. 
This may be seen in the following way. In the absence of antisymmetrization and an- 
gular momentum coupling, a many-body wave function I l , 2 , .  . , , A >, expressed as a 
product of A single-particle wave functions, can always be written &s a product of the 
wave function for A - 2 particles and that for two particles, 

11727. . . , k ,  * * * t ,  * A >not antisym. 

= 11727,. . ,  k - 1, k + 1,. . . , t  - 1, t  + 1,. . . , A  >not antiiyrn Jk,t >not antisyrn. 

As we can see from Eq. (7-6), antisymmetrization requires the many-body wave function 
written as a sum of different products of single-particle states. As a result, 

I I , 2 . .  . k : .  . * t . * A  >antlJym 

= C C(n-z)(z)lI, 2 * * k - 1, k + 1 * * * t - 1, t + 1 * . A >antasyrn lk,  t 7antisym. 

IA-2 )  
(1) 

The factor CcA+(2) is known as a two-particle fractional parentage coefficient and 
expresses the “fraction” of the antisymmetrized A-body wave function coming from 
the product of (A - 2)- and two-body wave functions. For our purpose here, we need 
not be concerned with the exact values of these expansion coefficients, SB we shall not 
be doing any actual calculations with them. In terms of C(A-~) (Z) ,  we can express the 
many-body matrix element of a two-body operator b(2) in the following way: 

< l’, 2’. * A’(O(2)11,2* * A  > 
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Since theoverlap of ( l ' . . . k ' - l , k ' + l . . . t ' - l , t ' + l . . . A '  > and Il.. .k:- 1 , k +  
1 . - . t - 1, t + 1 1 . A > vanishes unless all A - 2 single-particles states are the same 
on both sides, we find the result that the A-body matrix element is zero if more than 
two single-particle states are different from each other, a result we used earlier in going 
from Eq. (7-23) to Eq. (7-24). If, on the other hand, no more than two single-particle 
states are different from each other, the A-body matrix element can be expressed in 
terms of two-body matrix elements < k', t ' i 6 (2 ) lk ,  t >. Thus, if all the matrix elements 
in two-particle space are given, we can calculate any Hamiltonian matrix elements in 
the shell-model space. This is equivalent to saying that the effective interaction Ka is 
completely specified within the active space. We have already seen an example of this in 
Eq. (7-26), where we defined the two-body part of the Hamiltonian for a Hartree-Fock 
calculation in terms of Vap7a. 

The two-body matrix elements required here are, however, slightly different from 
Vapra, as we wish to work in a subspace with definite spin J and isospin T .  For 
this purpose, it is convenient to have the defining two-body matrix elements for the 
interaction given also in terms of two-particle states with definite J and T .  In this 
scheme, an antisymmetrized and normalized two-body matrix element may be written 

W:Tu f (rsJTJVJtuJT) 
where ItsJT) is an antisymmetrized and normalized wave function for two particles, 
one in single-particle state t and the other in state s, similar to that given in Eq. (7-25). 
The additional feature here is that the two single-particle wave functions are angular 
momentum coupled together to final spin J and isospin T.  The two-particle wave func- 
tion 1 tuJT)  is defined in the same way, except that the single-particle states involved 
are t and u, instead of t and s. In terms of two-body matrix elements, the effective 
interaction can be written in the form 

as 

.IT 

in analogy with Eq. (7-26). Since the nuclear Hamiltonian is a scalar in spin and isospin, 
only two-body matrix elements diagonal in J and T are nonvanishing. 

Other symmetries of the nuclear Hamiltonian can also help to reduce the number 
of independent two-body matrix elements required to define an effective interaction in 
a finite shell-mode space. Because of time-reversal invariance, the matrix elements may 
be taken to be real and symmetric, i.e., 

(7-46) 

Furthermore, since the wave functions are antisymmetrized, two functions differing only 
by a permutation of the two single-particle wave functions involved are related to each 
other by a phase factor, 

I T s  J T )  = ( -1 ) j r+J , -J -T  I s r J T )  

This is made of a combination of three separate factors: a minus sign due to the 
permutation of two ferrnion states, a factor (-1)'/2f1/2-T due to isospin recoupling of 
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the two single-particle states as given by Eq, (A-11), and a similar factor (-l)jr+J*-J 
for recoupling the spins. Because of these relations, we have the following symmetries 
among two-body matrix elements: 

JT - ( - ~ ) ~ , + J , - J - T  JT = (-i).?t-h-J-TWJT - (-1)3v!-J,-jt-j..WJT 
Wratu - Wsrtt, raut - arut 

(7-47) 

Because of Eqs. (7-46) and (7-47), the number of independent two-body matrix elements 
required to define an effective int#eraction in a finite shell-model space may be sufficiently 
sinall that one may be able to determine them empirically by fitting all the required 
matrix elements to the available data in the same space. 

Semi-empirical effective interaction. Let us use a simple example to illustrate 
the semi-empirical approach to effective interaction. Some of the low-lying levels in 
calcium isotopes, 41Ca to 48Ca, may be approximated by a shell-model space made of 
the lf,/z-orbit. alone. The inert core here is the 40Ca nucleus, and the 40 nucleons filling 
the Is-, lp-, Id-, and 2s-orbits are not to be excited. All the active nucleons in this 
case are neutrons. Since a f7p-orbit can take a maximum of 2 j  + 1 = 8 neutrons, the 
active space is completely filled when we come to 48Ca. 

The binding energy difference between 41Ca and 40Ca provides us with the single- 
particle energy for the lf7,2-orbit, 

E ~ J , / ~  = -8.36 MeV 

In a similar way, we can calculate the binding energy of the two neutrons in 42Ca 
with respect, to the 40Ca core. The result, -19.84 MeV, is different from twice the 
value of clfl12 = -8.36 MeV because of residual interaction between two neutrons. 
This provides us with one piece of experimental information required to determine the 
effective interaction. Since the ground state of 42Ca has J = 0 and T = 1, we obtain 
the two-body matrix element for ( J ,T )  = (0 , l )  from the binding energy of 42Ca with 
respect to 4"Ca after removing contribiitions due to the single-particle energies of the 
two neutrons, 

W~~l,zlf,lz,f,121f,l~ = -19.8433 - (2 x -8.3627) = -3.12 MeV 

Because of antisymmetrization requirements, two neutrons in f712-orbit can only be 
coupled to J = 0, 2, 4, 6. As a result, three additional two-body matrix elements are 
needed to complete the definition of the effective interaction in this simple shell-model 
space. These can be found from the energy level positions of the J = 2, 4, 6 excited 
stat.es in 42Ca known t,o be, respectively, at 1.5247, 2.7504, and 3.1893 MeV above 
the ground st,ate. The corresponding two-body matrix elements, therefore, have values 
-1.59, -0.366, and 0.0714 MeV. 

To simplify the notation, we shall drop the superscript for isospin, as we are dealing 
with neutrons only, and the subscripts l f 7 / 2 ,  as this is the only orbit with which we are 
concerned in this example. The complete effective Hamiltonian for the lf,,z-neutron 
shell model is given by five pieces of information, one single-particle energy and four 
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two-body matrix elements, 

E =  -8.36 MeV W 5 =  -3.12 MeV W2= -1.59 MeV 

W6= 0.0714 MeV W4= -0.366 MeV 

With these five pieces of input obtained from 4‘Ca and 42Ca, we are now in a position 
to calculate all the energy levels in the lf7/2 shell-model space from 43Ca to 48Ca. 

The calculated results for 43Ca to 46Ca are listed in Table 7-3. The binding energies 
with respect to the 4aCa core are given in the first row and the excitation energies in 
the remaining rows. In addition, the calculated binding energies for 47Ca and 48Ca are 
found to be, respectively, 68.58 and 80.29 MeV, compared with the measured values 
of 63.99 and 73.94 MeV. When we examine the six binding energies in more detail, 
we find the difference between the calculated and observed values gets progressively 
further apart as the number of active neutrons increases from three ( A  = 43) to eight 
( A  = 48). In fact, i t  is easy to show that the difference is roughly proportional to the 
factor n(n - 1)/2, the number of neutron pairs in the 1f7p-shell model space. This 
means that the effective interaction deduced from the difference between 42Ca and 
40Ca turns out to be a little too strong. If we reduce the contribution due to binding 
energy of 42Ca in the effective Hamiltonian by 0.21 MeV, i.e., increasing each one of the 
five two-body matrices by 0.21 MeV, the calculated binding energies change to 27.64, 
38.58, 46.26, 56.83, 64.20, and 74.44 MeV for 43Ca to 48Ca, in much better overall 
agreement with the observed values. (On the other hand, if the difference were linearly 
proportional to the number of active neutrons, the cause would have to be attributed to 

D 

43Ca 

J Experimental Calculated 

Ew =27.78 EB =28.27 
6 0.37 0.28 
5 
3 0.59 1.31 T 

1.68 1.77 
9 2.09 2.05 
5 
- 15 2.75 3.12 

11 - 

2 

4sCa 

Table 7-3: A shell-model calculation in the lf7/2-space for the energy levels 

J Experimental Calculated 

f E g  ~ 4 6 . 3 2  EB = 48.35 

6 0.17 0.28 5 
3 1.31 1.43 I 

- 1.77 
k! - 2.05 

- 3.12 

11 - 

16 - 

“Ca 

J Experimental Calculated 

0 EB ~ 3 8 . 9 1  EB =39.83 

2 1.16 1.52 

4 2.28 2.51 

4 3.05 2.75 
6 3.28 3.19 

8 5.09 5.30 

46Ca 

J Experimental Calculated 

0 EB =56.72 Ew =59.98 

2 1.35 1.52 

4 2.58 2.75 
6 2.97 3.19 
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1P$* 

1P3/211]1/2 

~ J T  

Total 

the single-particle energy instead.) Such overall shifts in the defining matrix elements, 
in general, do not affect the excitation energies. 

The calculated energy level positions of the excited states in 43Ca to 46Ca are also 
compared with experimental values in Table 7-3. There are obviously more excited 
states in these nuclei than the ones listed. Since our model space is restricted to the 
lf7I2-orbit alone, only observed levels belonging to this model space may be used in 
the comparison. In principle, one can identify a lf7/2-level by measuring the angular 
distribution of one-nucleon transfer strengths (see $8-2). In practice, the identification 
is not always simple, as substantial admixtures from other single-particle states, such as 
2pRlZ and 2p1/2, are expected. The comparison between calculated and observed values 
in the table must therefore he viewed with the simplicity of the model space used for 
this illustrative example in mind. In fact, the agreement is better than we could have 
expected. 

A second nontrivial but still relatively simple example is the lpshell, consisting 
of nuclei from 5He and 5Li to “0. The inert core here is the 4He nucleus, with two 
protons and two neutrons completely filling up the ls1p-orbit. All single-particle states 
above the lp-shell, starting from the ds-shell, are empty. In this space, there are 
two valence orbits, lp3p and 1y1/2, in the jj-coupling scheme. The one-body part 
of the effective Haniiltonian is therefore defined by two single-particle energies, clp3/1 

and t l P , / a .  Because of the symmetries given in Eqs. (7-46) and (7-47), the number 
of independent two-body matrix elements required to determine the two-body residual 
interaction for a given J and T is d J T  = n.(n+1)/2, where n is the number of two-particle 
states with spin-isospin ( J ,  T ) .  The total number of two-body matrix elements in this 
shell-model space, as can be seen from Table 7-4, is & ~ J T  = 15. The complete lp- 
shell effective interaction therefore comprises a total of 17 parameters, 2 single-particle 
energies and 15 two-body matrix elements. It is not possible to find 17 energy levels 
in mass 5 and 6 nuclei to specify the effective Hamiltonian, as we have done earlier for 
the simpler case of lf7/2 shell-model space. On the other hand, since all the lp-shell 
states in nuclei from A = 5 to A = 16 can be calculat,ed from these 17 parameters, we 
can use any lp-shell data among the available ones in any of these nuclei. In fact, more 
than 17 pieces of experimental information can be identified in this mass region and a 
least-squares procedure may be used to deduce the values of the parameters that best 
fit, the data. 

T=O T = l  

J = l  J = 2  5 = 3  J = O  J = 1  5 = 2  

1 - 1 1 1 
1 1 

1 1 1 

3 1 1 2 1 2 

6 1 1 3 1 3 

- 
- - - I 

- __ 
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This was done by Cohen and Kurath 145). The calculation serves two useful pur- 
poses. The first is to demonstrate that the idea behind a semi-empirical effective 
Hamiltonian is a sound one. Once the 17 parameters are determined from fitting a 
given number of pieces of data, the effective Hamiltonian obtained may be used to cal- 
culate the shell-model values corresponding to the data used. Since a fitting procedure 
was used, the calculated results are not necessarily identical to the observed ones used 
as input. The quality of the agreement serves as a measure for the validity of such an 
approach. Normally the success of a least-squares fit to some functional form is given 
by the value of the x2 for the overall fit and the standard deviation for each indepen- 
dent parameter obtained. A small x2, among other things, indicates that the functional 
form used to make the fit is reasonable. Here we are dealing with a highly nonlinear 
least-squares fitting procedure involving matrix calculations. It is therefore not easy 
to give a figure of merit, analogous to the role of X2-values, for the functional form 
used. The fact that the calculated results agree well with the original input is a good 
indication of the power of the effective Hamiltonian approach. A second use of the 17 
parameters obtained from the fit is that we now have an effective lpshell Hamiltonian 
that can be employed for investigating other nuclear properties in the same space. This 
has been used extensively with success. 

A similar project for the ds-shell composed of nuclei from 1 7 0  to 40Ca has also been 
carried out (1471. Here, the valence orbits are ld5/2, ld3pr and 2s1/2. The effective 
Hamiltonian is given by 3 single-particle energies and 63 two-body matrix elements 
(see Problem 7-6). The calculated results represent some of the best description of the 
low-lying states in nuclei from mass 18 to 40. 

Examples of shell-model results. It is useful here to give some other examples on 
what a microscopic shell-model calculation can produce. Instead of introducing new 
physical phenomena, we shall make use of observations that are already familiar. In 
$6-1 we have seen that some of the excited states in certain nuclei can be understood 
as collective vibrations of nucleons. There, the observed properties were described in 
terms of harmonic vibrations of the collective coordinates ( r ~ ~ ( t ) ,  the shape parameters. 
One of the nuclei exhibiting such properties is 62Ni. The ground state spin-parity of 
"Ni is O+, typical of an even-even nucleus, and the first excited state is 2+ at  1.17 MeV. 
A triplet of states, O+, 2+, and 4+, is observed at  slightly less than twice this energy at  
2.05 to 2.34 MeV. These three groups of states are interpreted as quadrupole vibrations 
built upon a spherical nucleus with the ground state as the zero-phonon state, the first 
excited state as the one-phonon state, and the triplet of O+,  2+, and 4+ states as 
the two-phonon states. The E2-transition rates, given earlier in Table 6-1, also confirm 
this interpretation. Here, we shall take a microscopic approach and treat 62Ni using the 
shell model. The valence nucleons are taken to be the six neutrons outside a 56Ni core 
and the shell-model space consists of single-particle orbits lf5/2, 2 ~ 3 / ~ ,  and 2p1/2. The 
three single-particle energies are taken from 57Ni. The low-lying energy level positions 
calculated with an effective interaction, Obtained using a renormalization procedure, are 
compared with the observed values in Fig, 7-6. It is seen that the energy level positions 
obtained indeed display the typical structure of a vibrational nucleus, in agreement 
with observation. 

Using the eigenvectors obtained, we can calculate the electromagnetic properties 
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Figure 7-6: Comparison of the ob- 
served energy levels of "Ni with the 
results of a shell-model calculation 
in the lfsp-, 2 p 3 p  and 2plp-space 
using A. renormalized effective inter- 
action. The observed qiiadrupole 
vibration features of the nucleus is 
well reproduced by the microscopic 
calculation. 

experiment Shell Modcl 

of the states involved. Here we encounter the question of an effective operator in 
a truncated shell-model space. For a quadrupole vibrational nucleus, the dominant 
electrornagnetic transitions are E2 induced by charged cnrrents. Since electric currents 
in a nucleus are usually associated with the motion of protons, our calculated results 
using the bare charge of active nucleons in the space, i.e., the free nucleon values used to 
define electromagnetic operators in 85-3, will be zero, as we have only active neutrons. 
This is clearly a problem caused by the t,runcation procedure. In other words, the 
transition operators must also be renormalized before we can expect to obtain any 
reasonable calculated values in a truncated space. For electromagnetic operators, the 
usual practice is to give an eflectizre charge to neutrons (as well as protons) and adjust 
its size to fit the observed E2-transition rates and quadrupole moments, as we shall see 
in the next example. 

A second example is the low-lying positive-parity states of 20Ne shown in Fig. 7-7. 
Here we see that the energy level posit!ions display a rotational structure with EJ 
essentially proportional to J (  J + 1) up to J = 8. For a shell-model calculation, we can 
t,ake l60 as the inert core and the four valence nucleons, two protons, and two neutrons 

Table 7-5: Values of A(E2; J -+ 5-2) between K = O+ band members in 20Ne. 

Rotatio;model, e2fm4 1 
Note: *An effective charge of e,, = 1.5e and en = 0.5e is used. 

1 W.U. (Weisskopf unit) = 3.2 e2fm4 for 20Ne. 
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Figure 7-7: Comparison of the observed energy levels for the two lowest observed 
K = O+ bands in 20Ne with the results of a shell-model calculation in the ld5/2-, 
ld312-, and 2s1/2-space using a renormalized effective interaction. 

are in single-particle orbits ld5/2, ld3/2, and 2s1/2. The results also give a reasonable 
description of the energy level positions, as can be seen in the figure. For the calculated 
EZtransition rates listed in Table 7-5, an effective charge of 0.5e is used; that is, the 
charge of an  active proton is 1.5e and that of an active neutron is 0.5e. Here we see 
again that a microscopic interpretation of a collective phenomenon can also be made 
in terms of a very small number of active nucleons in a highly truncated active space. 

Effective operator. The reasons behind the large effective charge for E2-transition 
operators may be traced to the relatively small number of active nucleons used in the 
calculations. Although the energy level positions are well accounted for, the small 
number is inadequate to produce the large enhancements seen in the E2-transition 
rates for collective states. Since the deformations here, whether in the equilibrium 
shape as in the case of ’ONe or in the form of shape vibration as in the case of 62Ni, 
are predominantly quadrupole in nature, it is not surprising that we find the difference 
between the effective and real charge for E2-transitions to be most pronounced. Since 
collective motion involves the action of a large number of nucleons, including some of 
those considered to be a part of the “inert” core in the shell-model calculations, a large 
effective charge is required. I t  is also interesting to note that such large enhancements 
due to core nucleons can be accounted for by essentially an overall factor in the form 
of an effective charge. The possibility of making the corrections in a simple way lends 
support to the idea behind renormalizing the operators. 

Another demonstration of effective operators can be found in the square of the 
charge form factor F 2 ( q ) ,  obtained, for example, from electron scattering off nuclei. As 
we have seen earlier in $4-1, the charge form factor is the Fourier transform of the charge 
distribution in a nucleus. The measured values for l2C and l6O are shown in Fig. 7-8. 
For 12C we see that there is only one minimum in F2(q)  a t  around q = 1.5 fm-’. This 



270 Chap. 7 Microscopic Models of Nuclear Structure 

is exactly what is expected from the Fourier transform of the density of a nucleon in 
the lp-shell (see Problem 7-7). On the other hand, two minima are observed in l60. 
A simple shell model puts the active nucleons for the ground state of l60 also in the 
lp-shell. The appearance of the second minimum implies that there is a substantial 
admixture of configurations having nucleons excited into the ds-shell. If we insist on 
carrying out the form fact*or calculation for l6O using only active nucleons in the lp-shell 
space, a correction factor, for example, in the form 

f ( T )  = 1 - p,-arl 

must be introduced. This gives the observed second minimum without having to invoke 
configurations involving the ds-shell into our shell-model space. Such a correction factor 
may be regarded as a renormalization of the operator for charge form factor. The 
effective operator produced as a result simulates the shape of the ds-shell form factor 
for valence nucleons in the Ip-shell. 
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Figure 7-8: The square of charge form factors for 12C and l60 obtained from 
elastic electron scattering. A single minimum in F2(q)  for is expected on the 
ground that the active nucleons are in the lp-shell. The second minimum in l60 
shows the presence of active particles in higher single-particle orbits. (Plotted 
iising data from Refs. [127, 1171.) 

Not every operator requires a large renormalization as we have used above for elec- 
tric quadrupole transitions. For example, Gamow-Teller transitions throughout the 
ds-shell have been found to be given by the bare operator without noticeable modifica- 
tions (39). This may be related to  the fact that &decay is not a collective phenomenon 
like, for instance, EZtransitions. 

Besides effects due to truncation of the shell-model space, renormalizat,ion of the 
excitation operators from thcir bare nucleon values may also be required because of 
rnrsonir and d i e r  degrees of freedom in nuclei. When a nucleon is embedded inside 
a nucleus, we expert snch processes as the exchange of virtual mesons to be different 
from the sitnation when the nucleon is a free, isolated particle. In recent years one 
of the interesting developments in the nuclear shell model has been in the direction of 
obtaining such renormalization effects from field-theoretical approaches. In this way, a 
better and more fundamental understanding of the behavior of nucleons inside a nucleus 
may be reached. 
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Because of its direct connection with the individual nucleon degrees of freedom 
in a finite nucleus, the shell model can also be used to “simulate’’ data for testing 
other models. This is similar to numerical simulations used in many other fields to 
supplement data and to help US to probe aspects of nature that are difficult to examine 
experimentally. Such numerical “experiments” do not substitute actual observations 
involving real nuclei. However, they provide a convenient avenue to test our models 
and our understanding of the physical situation and are useful as a tool to further our 
knowledge of nuclei. 

7-6 O t h e r  Models 

In the previous chapter we have seen that certain nuclear properties can be understood 
from a macroscopic point of view in terms of the collective degrees of freedom. Al- 
ternatively, one can start from the individual nucleon degrees of freedom and try to 
understand observed phenomena from a microscopic point of view, as we have been 
doing in this chapter. Calculations starting from the individual nucleon degrees of free- 
dom are attractive, as we can make connections with the interaction between nucleons. 
This, in turn, allows us to make contact with the fundamental strong interaction be- 
tween nucleons. Unfortunately, the nuclear many-body problem, similar to many-body 
problems in other branches of physics, is not simple to solve. For this reason, several 
techniques, in addition to the ones described above, have been developed so that we 
may be able to examine certain specific aspects of some problems in a more convenient 
way. I t  is perhaps useful to mention some of these very briefly here, even though both 
the scope of this book and the background knowledge required preclude any detailed 
discussions. 

If we are concerned only with a limited range of behavior in a few special states, it 
seems superfluous to invoke the nuclear shell model and solve the complete eigenvalue 
problem. As we have seen earlier in the discussion on Hartree-Fock techniques, lplh- 
(one-particle one-hole) excitations in a many-body system can be handled with relative 
ease. This is an advantage, as lplh-excitations constitute the dominant components 
in a variety of processes. For example, nuclear states that have large lplh-components 
are strongly excited by electromagnetic processes, such as inelastic electron scattering, 
and by strong interaction probes in the form of intermediate-energy nucleon scatter- 
ing, such as the ones described later in 58-4. One of the primary concerns in such 
studies is to establish the correct correlations between different lplh-components so 
as to be able to produce, for example, the observed strong enhancement in strengths. 
One of the difficulties here is to have the proper ground state wave function upon 
which we can build the excitations. A simple independent particle model is often inad- 
equate, as correlations resulting from residual two-body interaction are largely absent. 
The random-phase approximation (RPA) solves this problem by concentrating only 
on certain types of important correlations and is thus able to account for the strong 
lplh-excitations observed in many nuclei with a relatively simple calculation. A more 
detailed discussion of RPA can be found in Fetter and Walecka [62]. 

The idea behind independent particle approximation can also be generalized by 
including other types of correlation. Since one-body terms are so much easier to handle 
than two-body residual interactions, it is preferable to incorporate, as much as possible, 
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the effect of nucleon-nucleon interaction into the mean field experienced by individual 
nucleons. There is a large variet,y of mean-field theories. One of the attractive features 
here is that the approach can also be extended easily to a relativistic one (see, e.g., Ce- 
lenza and Shakin [43]). Although we have limited ourselves to nonrelativistic quantum 
mechanics here, many aspects of nuclear structure and nuclear scattering, especially 
those involving intermediate- and high-energy probeFi, require a relativistic treatment. 
For this reason, mean-field theories are becoming an increasingly more important tool 
in nuclear studies. 

Besides vibrations and rotations, nuclei also display clustering behavior. The sim- 
plest example is the decay of the ground state of ‘Be into two a-particles. One expla- 
nation of this phenomenon is that nucleons prefer to form a-particle clusters in nuclei. 
Since the binding energy per nucleon of an a-particle is approaching the maximum 
value that can be atkained inside a nucleus, t,liere is relatively little force of attraction 
left between different a-particle “clusters.” In the case of ABe, binding energy actually 
favors the forination of two separate a-particles. For this reason, the ground state of 
‘Be is unstable toward a-particle emission, even though it is stable against a-decay and 
nucleon emission. Another example is the observation of nuclear “molecular” states, 
such as in the separation of an excited 24Mg nucleus into two “C clusters 1381. For a 
shell model to split a group of nucleons into two or more separate clusters, a single- 
particle basis, far larger than anything one can contemplate in practice, is required. 
Special techniques such as the generator coordinate method [ 1481 and the two-centered 
shell niodel have been developed for studying such phenomena. 

We have seen from shell-model studies that the presence of energy gaps in a single- 
particle level spectrum is important in understanding nuclear structure. The most 
naivc collectivc? models, however, ignore this feat,ure, as only smooth variations with 
nucleon number and other macroscopic properties of nuclei are incorporated into the 
picture. Improvements to the collective models can be achieved if local variations 
due to shell closiires can be included. Such “shell” corrections are essential since, as 
deformat,ion grows, the energies of individual single-particle states are modified in such 
a way t,hat t,he energy gaps observed for spherical nuclei disappear and new ones at  
different neutron and proton numbers appear. For example, such shell corrections have 
been found to be important in improving the vibrational model description of some of 
the bulk properties in nuclei [108]. We shall see an example of such “sheI1” corrections 
in $9-2 for the case of superdeformed nuclei. 

For illustrative purposes, we have separated nuclear properties into collective and 
single-particle brhaviors. In practice, both types of phenomena are present in the same 
nucleiis. Furthermore, t,liey can couple with each other to form states with both types 
of behavior coexisting with each other. What we have mainly done so far is to examine 
the two extremes separately so as to illustrate the underlying physics. Specific states are 
identified as being either single particle or collective depending on which one of these 
two extjremes dominates the propert,y of the state. In fact, states that can be identified 
in  such a simple manner constitiite only a minorit,y among the multitude of known ones. 
For the bulk of st,at,es, all physical principles are at play. A thorough understariding 
of nuclear structure will require us to examine these states as well; however, we shall 
ignore them here. 
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Problems 

7-1. If t!Mg is a spherical nucleus, what are the most likely spin, parity, and isospin of 
its ground state? If, instead, it is a deformed nucleus with prolate deformation, 
what are the most likely spin and parity? 

7-2. The nuclei !He, ;Li, 'i0, 'iF, itCa, $Sc, "iPb, and ':;Bi may be considered to 
be made of a neutron or a proton outside a closed shell core. Use an independent 
particle model to deduce their ground state spin and parity. From this information 
calculate the ground state magnetic dipole moment of each nucleus. Do the same 
for the one-hole nuclei of iH,  ;He, ';N, 'i0, T:K, giCa, 2i:T1, and 2:iPb. 

7-3. The energies of "0 with respect to the l60 core are -4.15 MeV for the 5/2+ state, 
-3.28 MeV for the 1/2+ state, and +0.93 MeV for the 312' state. Assuming these 
values are the single-particle energies of the ds-orbits, use an independent particle 
model to find the relative energies of the lowest 1/2+, 3/2+, and 5/2+ states in 
39Ca with respect to the 40Ca core. 

7-4. The ds-shell single-particle energies with respect to l60 core are ~ld5/2 = -4.15 
MeV, ~ 2 ~ 1 1 2  = -3.28 MeV, and = 3-0.93 MeV. A particular effective inter- 
action has the following set of two-body matrix elements for ( J ,  T )  = ( 0 , l ) :  

(ld512, ld5/2;  J = 0, T = llVlld5/2,ld5/2; J = 0, T = 1) = -2.0094 MeV 
(fd5/2, ld5j2; J = 0, T = llV)ld3/2, J = 0, T = I} = -3.8935 MeV 
(ld5p, ldS/z;  J = 0,T = llV12~1/2,2~1/2; J = 0,T = 1) = -1.3225 MeV 
(ld3/2,ld3/2; J = 0,T = llVlld3/2,ld3/2; J = 0, T = 1) = -0.8119 MeV 
(ld3/2,1d3/2; J = 0, T = l ~ V ~ 2 ~ ~ / 2 , 2 s 1 / 2  ; J = 0, T = 1) = -0.8385 MeV 
(2.~112, 2~112; J = 0,T = l)V)2s1/2,2s1/2 ; J = 0, T = 1) = -2.3068 MeV 

(a) Calculate the ground state binding energy of l 8 0  with respect to l60 and 
compare the result obtained from a table of binding energies. What are the 
excitation energies of the two other O+ states in this space? 

(b) Obtain the ground state wave function of "0 and use it to calculate the 
relative probability for finding a neutron in the ld5/2, 2s1/2, and ld3/2 single- 
particle states in '*O. The results are essentially the spectroscopic factors 
for one-neutron pickup reactions. 

7-5. If the wave function of the lowest 1+ state in 180 is 

IJ" = 1+, T = 1) = l ld3/22~1/2; J" = 1+, T = I) 

find the magnetic dipole moment of this state. 

7-6. Use the same method as outlined in Problem 6-1 to show that when two nucleons 
are in an orbit with spin j ,  the allowed J-values for two-particle states are 0, 2, 
4, . . . , 2 j  - 1 for T = 1 and J = 1, 3, 5,. . . , 2 j  for T = 0. Construct a table 
similar to Table 7-4 to give the number of states of each J and T for two nucleons 
in the three ds-shell orbits, ld5/2, ld3/2, and 2.~112. Use this information to show 
that the total number of two-body matrix elements required to define a two-body 
potential in the &-she11 is 63. 
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7-7. The explicit forms of the radial wave function for a spherical harmonic oscillator 
potential well are given in Table 7-1. Use these to show that  the form factor, 
the Fourier transform of the radial density pnt(r) = IRnt(r)12, is positive for the 
Is-orbit in the region q = 0 to infinity [i.e., no node in F2(9)] and changes sign 
once at 9* = 6v for the lp-orbit [one node in F2(q) ] .  For the Id-orbit, the sign 
changes twice, i.e., there are two nodes in F2(q).  



Chapter 8 

Nuclear Reactions 

A large fraction of our knowledge on the properties of nuclei is derived from nuclear 
reactions. When an incoming particle is scattered off a target nucleus, the outcome 
depends on a combination of three factors: the reaction mechanism, interaction between 
the projectile and the target, and the internal structure of the nuclei involved. Different 
probes complement each other in what we can learn from an investigation. Furthermore, 
it is often possible to select the bombarding energy and the reaction in such a way that 
we can focus on particular aspects of the problem, as we shall see in a few examples in 
this chapter. 

Nuclear reaction is a large subject by itself. We can give here only an overview 
of some of the more important topics. In order to  highlight the basic points, it may 
be necessary to sacrifice some of the details in our discussion. For some of the more 
established topics, such as Coulomb scattering, excellent review articles are available. 
These will be referred to at the appropriate places. For some of the fast developing 
topics, only the current literature can provide us with the latest information. 

8-1 Coulomb Excitation 

When a projectile carrying a charge ze approaches a target consisting of Z protons, the 
strength of the Coulomb field between them may be characterized by the Sommerfeld 
number of Eq. (4-64), 

I r Z e 2  C 
8' [%]X = QZZ- V 

where v is the velocity at which one particle approaches the other when they are still 
separated by large distances and Q is the fine structure constant. Classically, the 
distance of closest approach R, is given by the condition 

where p is the reduced mass of the projectile. In terms of 17, we have the result 

a t i c z z  fi. 
- 17- f R  

* -  pv2 PV 
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Fro111 this expression, we see that the Sommerfeld number may be viewed im the ratio 
between $R, and the rednced de Broglie wavelength, 

X l h  h 
21r 2 l rp  pv 

A small 11 means that the Coulomb field is weak compared with the available kinetic 
energy in the scattering. Under such conditions, the wave function of the incident 
particle is not greatly modified by the Coulomb field and Born approximation applies. 
In Coulomb excitation we are, however, primarily interested in the opposite limit, with 
7 >> 1. In this case, the two particles are never close enough to each other for nuclear 
force to play a role, and excitation of the target or the projectile nucleus is accomplished 
through Coulomb interaction. Such a process is known as Coulomb ezcitntion. Because 
of its intrinsic interest, t,he subject is also treat,ed in a number of standard quantum 
mechanics texts, such as Merzbacher (1031 and Messiah [104]. 

There are scveral remons why Coulomb excitation is of interest in nuclear physics. 
First, the reaction mechanism is well known and may be regarded essentially as the 
inverse of electromagnetic decay discussed in 55-3. Second, experimentally, very strong 
Coulomb fields can be created by bombarding nuclei with a beam of heavy ions. Finally, 
when this advantage is conpled with the precision that can be achieved in charged 
particle experiments, we have a powerful tool for investtigating certain properties of 
nuclei. 

-= - -= -  

Mult ipole  expansion. We shall follow the approach used in $5-3 and treat electro- 
magnetic interaction between the projectile and the target as a perturbation to the 
nuclear Hamiltonian. The contribution of Coulomb excitation may be written as 

1 zZe2 
H’(t)  = [-] - monopole term 

4T€o IT‘,(f.) - T‘I 

where rp( t )  is the location of the projectile a t  time t and r that of the target nuclpJs. 
It is necessary to take away the contributions from the “monopole term” here, as it can 
only deflect the projcctilc without exciting any of the internal degrees of freedon;. F a  
simplicity, we shall not be concerned with this t,erm from now on. 

In the region r,, > T ,  the perturbation H‘(t) may be expanded in terms of spherical 
harmonics using the relation 

as we have done earlier in 54-6. In the above expression, quantities pertaining to the 
target state have the form T ’ Y A , , ( @ , ~ ) ,  the same as O,\,(EX), the operator for EX 
excit,ation given in Eq. (5-25). We can take advantage of this similarity to make a 
connection bet,wern Coulomb excitation and electromagnetic decay. 

Furthermore, the reaction is reminiscent of electron scattering off nuclei discussed 
in 54-1. There we found that, since the scattering is due primarily to electromagnetic 
interaction, t,he cross sec,tion is proportional to that, for point-particle scattering. Nu- 
clear effects enter as form factors modifying the purely point-particle results. In this 
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spirit, the Coulomb excitation cross section, from an initial state i to a final state f, 
may be expressed as 

where J; is the initial spin of the target nucleus and M, and M, are, respectively, the 
projections of the initial and final spins on the quantization axis. The square root of 
the constant of proportionality is given by the expression 

The integral may be written as a product of two parts, a nuclear transition matrix 
element and an integral independent of the nuclear states involved. 

On substituting the expansion of Eq. (8-2) into H‘( t ) ,  we reduce PM,M, to a sum 
over products in the following form: 

The matrix element (J,M,E~OA,(EX)IJ,M,~) gives the dependence of the cross section 
on nuclear wave functions and may be related to the reduced transition probability 
B(EX;J,( - for EX-transition given in Eq. (5-28). The integral over time is 
contained in the factor SA,(EX) and may be expressed as 

Because of the spherical harmonics in the integrand, the integral is a function of the 
scattering angles; however, it  is independent of the nuclear wave functions involved. 
The derivation of Sx,(EX) is basically quite simple, even though the actual steps are 
complicated by angular momentum couplings. The final form, given by Alder et  al. 
[6, 71 may be expressed in the following manner: 

where e, the “adiabaticity parameter,” is related to the energy required to excite the 
target nucleus from an initial state at energy E, to a final state at El, 

The quantity  FA,(^, Q) is an integral having the form 

+m e,e(6 r+z) (cosh x + e + id= sinh x)” dx ~ e ,  e) = J -m 
( E  cosh x + l )A+p 

where E = (sin f6)-’. 
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T h e  spherical harmonics in Eq. (8-4), with B = fn and 4 = 0, may be written 
explicitly in terms of X and p, 

l o  otherwise 

The  differential scattering cross section for Coulomb excitation in Eq. (8-3) now reduces 
to  

Here a = iR,, half the  distance of closest approach given in Eq. (8-1). T h e  angular 
dependence is contained in the differential 

The integral 

is the total excitation cross section in the classical limit. Explicit values for different 
multipole order X are shown in Fig. 8-1 for the  limiting case of 1) -+ 00. 

Figure 8-1: Classical Coulomb 
exckation function f ( A ,  e)  for dif- 
ferent electric (EX)  and magnetic 
(MA) multipole transitions. The 
function j ( A ,  e ) ,  with e defined by 
Eq. (8-5), gives the total excitat,ion 
cross section in the classical limit 
of 17 + 00, corresponding to the 
sitiiation of large 2 and very low- 
energy incident particles. (Plotted 
using values given in Ref. 161.) 

P 

So far we have discussed only electric multipole excitations. Magnetic multipole 
excitations are also present in a Coulomb excitation. T h e  form of the  differential 
cross section for the magnetic case is similar to tha t  for electric multipoles given by 
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Eq. (8-6), except that B(EX) is replaced by the corresponding B(MX),  the reduced 
transition probability for magnetic multipole A. Differences in the angular distribution 
between MX- and EX-transitions are contained in the differences between df (MA)/dfl 
and df(EA)/dQ. These are also given in Alder et al. [6, 71, and the values for low-order 
magnetic multipoles are plotted in Fig. 8-1. 

Multiple scattering. Coulomb excitation is useful in creating excited states in the 
target or projectile nucleus. Because of the intense electromagnetic fields accompany- 
ing heavy-ion scattering, states up to  very high spin can be excited, as shown later in 
Fig. 9-2. However, the probability drops rapidly with multipolarity order. An exami- 
nation of Fig. 8-1 shows that, for example, the probability of ECexcitation is reduced 
by about two orders of magnitude compared with E2-processes. Furthermore, the 
strengths for higher multipole transitions are weaker in general, as the nuclear ma- 
trix elements involved are smaller in size. This is evident also from, for example, the 
values of single-particle estimates given in $5-4. As a result, multiple low-order excita- 
tions may become competitive with a single higher multipolarity transition in exciting 
high-spin states. 

Consider a hypothetical even-even nucleus with low-lying level scheme shown in 
Fig. 8-2 as an example. On the left of the diagram, we have first-order processes 
promoting the nucleus from the O+ ground state to 2+ and 4+ excited states. Since 
E2 Coulomb excitations are so much stronger than E4-excitations, a succession of 
two E2-processes may be comparable or even stronger in strength than a single E4- 
transition to reach the 4+ excited state. In fact, because of large reductions in the 
sizes of the integral !(A, e)  with increasing A, multiple processes through successive 
low-multipolarity Coulomb excitations may become the preferred path for a nucleus to 
reach final states of relatively high spins. 

There is another class of second-order process shown on the right of Fig. 8-2. In 
this case, the first excitation brings the nucleus to, for example, a particular magnetic 

.+ 

Figure 8-2: Low-lying energy level spectrum of a hypothetical even-even nucleus 
showing first-order and second-order Coulomb excitation processes. 
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substate M of a J” = 2+ level Instead of proceeding to a higher state, the second 
“scattering” takes the nucleus to a state having a different M-value for the same 2’ 
level. This is known as reorzentatzoneffect. Such a process is sensitive to the expectation 
value of O(E2)  of the level involved, the 2+-state in the example here. The matrix 
element, in this case, is related to the quadrupole moment of the excited state. As 
a result, the quadrupole moment of an excited state may be deduced frotn the cross 
section of Coulomb excitation. The value obtained depends somewhat on the nuclear 
rnotlel used; however, this is not a serious problem in general, as reliability of the 
calculation may be checked against several other properties of the nucleus at the same 
time. Besides electric quadrupole momcnts, magnetic dipole and electric hexadecapole 
(24) moments can also be deduced through second-order Coulomb excitation processes. 
In this way, the stmatic moments of excited states are determined for a large number of 
nuclei. 

8-2 Compound Nucleus Format ion  

We have seen in the previous two chapters that single-particle and collective degrees of 
freedom form the two extreme points of view on nuclear structure. A parallel situation 
exists in nuclear reaction studies in terms of the two limiting situations of direct reaction 
arid compound nucleus format,ion. In the former case, one assumes that only one 
nucleon, or a clust,er of nucleons, in the projectile interacts with one of the nucleons, 
or a cluster, in the target without exciting the internal degrees of freedom in any of 
the clusters or the rest of the nucleus. The basis for taking such a direct reaction 
point of view is the short time, of the order of lo-’’ s, it takes for the projectile and 
the target to interact once with each other. Since this is comparable to the transit 
time for an incident particlr with kinetic energy greater than the order of 1 MeV per 
nucleon to t(rave1 over a distance on the order of the nuclear diameter, the probability 
for interacting more than once is small. On the other hand, if the incident energy 
is much lower, the projectile and the target may “fuse” t,ogether for a long time, for 
example, of the order of s. In this case, a compound nucleus is formed as the 
intermediate state. In this section we shall be mainly concerned with reactions involving 
compound nncleus formatmion. We shall return to a discussion of direct reactions in the 
next section. 

Reac t ion  channel. It is often possible to arrive a t  the same final state of a reaction, or 
exit channel, starting from different combinations of projectile and target. For example, 
consider the reaction 

p + * ‘ ~ a  + n + ‘%c 

The final state in this case consists of a neutron plus a “Sc nucleus. The same exit 
cliannel can also be reached by scattering neutrons from a *%c target. The n + 48Sc 
syst>erri here constitutes a different inwiden2 channel from p + 48Ca. 

Since we are dealing with microscopic objects, t,ime-reversal invariance holds. Thus 
the reaction p + 48Ca -+ n + “Sc may also take place with time order going in the 
opposite direction, n + 48Sc + p + “Ca, and the roles of incident and exit channels 
are reversed. On occasion it may be more convenient to speak of a reaction channel 
without specifying whether it is an incident channel or an exit channel. 
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For a reaction involving two particles, we need three sets of quantum numbers 
to label the channel in an unambiguous way. For instance, in the exit channel we 
need a set of labels t o  specify the wave function of the emerging particle, a second set 
to identify the wave function of the residual nucleus, and a third set to describe the 
relative motion between these two particles, as illustrated in 5B-4. Returning again 
to the 48Ca(p,n)48Sc example above, the reaction can also leave the 48Sc nucleus in 
an excited state. Since the wave function for an excited state of 48Sc is different from 
that for the ground state, we have a different exit channel, distinguishable from the 
ground state channel by the wave function of the residual nucleus. Furthermore, the 
wave function for the relative motion of the two particles may be decomposed in terms 
of partial waves, each with a definite orbital angular momentum P. In principle, each 
partial wave forms a different reaction channel. On the other hand, the orbital angular 
momentum between two particles is not usually observed in a reaction, and we may 
sometimes wish to refer to a reaction channel as the sum of all the partial waves instead. 

At low incident energies, where the kinetic energy is less than 1 MeV per nucleon, 
the de Broglie wavelength is longer than the dimension of a typical nucleus. Under 
such conditions, the scattering cannot be very sensitive to the details in the structure 
of nuclei involved. Once the two nuclei in the incident channel come into contact, their 
nucleons have the time to interact with each other by coming into contact many times. 
As a result, the identities of the two original nuclei are lost. For a short time, these 
two nuclei form a single entity, a compound nucleus. After formation, memory of the 
entrance channel is no longer retained because of the numerous intervening interactions. 
Subsequent evolution of the system is determined primarily by the amount of excitation 
energy available in the system. At low energies, the lifetimes for such systems are 
relatively long, as the number of open exit channels is small. As a result, the width f 
of a compound nuclear state is narrow. At the same time, the density of states a t  such 
low energies is small so that 13, the mean spacing between neighboring states, is large. 
With D >> r, we find that isolated resonances dominate the reaction cross section. 

Scattering cross section. One of the important features of a compound nucleus 
reaction is the absence of any dependence between formation and decay of the system. 
Let CT,, be the cross section for forming a compound nucleus N through an incident 
channel a. The decay of to a particular exit channel P with final state consisting 
of particles b and B is characterized by transition probability Wp or partial width 
f, = hWp. There may be several such channels open, for example, 

decay product exit channel 

N -  a + A  a 
* b + B  P - c + c  Y 

... . . .  w 

The total width of the decay is given by the sum of all the partial widths, 

f = f, + f p  + f, +.  . *  (8-7) 
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and rp/r is the probability for JV decaying through channel P. The reaction cross 
section from an entrance channel (Y to an exit channel /3 is given by the product of the 
probability to form the compound nucleus n/ and that for N to decay through p, 

To make further progress, we shall make use of some of the results given in $B-4. 
Let us assume that in each reaction channel there is a radius R,, the channel radius, 

outside which there is no interaction between the scattered particle and the residual 
nucleus (ignoring the long-range Coulomb interaction here for simplicity). Thus, in 
the outside region (T > R c ) ,  the particles may be considered to be free and the wave 
functions are given by plane waves (or Coulomb wave functions in the more general 
case). In the inside region (T < I&), the situation is complicated because of interaction 
between nucleons in the two components, and there is little hope of obtaining a rea- 
sonable solution. At the boundary T = R,, the logarithmic derivative of the modified 
radial wave function ?ic of each channel, 

must be continuous from the inside to the outside region. In general, pc is complex. 
In a scattering problem, we are primarily interested in the asymptotic behavior of 

the system. The only information of the wave function for T < R, we need is contained 
in the value of its logarithmic derivative at  the boundary. In other words, as far as the 
outside region is concerned, the information of the inside region is completely contained 
in a set of logarithmic derivatives, and the values of these derivatives may be used as the 
“boundary conditions” to fix the asymptotic wave function of interest to the scattering 
problem. In the absence of better knowledge, we can take the logarithmic derivatives 
as parameters characterizing the inside region. This method of treating scattering is 
akin to t,hat used in solving electrostatic problems, where we exclude regions containing 
sources arid replace them by appropriate boundary conditions. In this way, the problem 
is reduced to a more manageable one. 

To simplify the discussion further, we shall assume that only s-wave scattering 
is different from zero and, as a result, a single logarithmic derivative po is adequate 
to specify the problem completely. In this case, the reduced radial wave function of 
Eq. (B-10) has the asymptot,ic form 

ILO(T) N {edikr - VOetk‘} 

The quantity 7 0  = exp{2i60} is the inelasticity parameter and 60, the complex phase 
shift for f? = 0. By taking the logarithmic derivative of Q ( T )  and equating it to po at 
T = R,, we can relate qo to PO,  

Using Eq. (B-19), we obtain the elastic scattering cross section 

(8-10) 
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From Eq. (B-40), we arrive at  the expression for the reaction cross section 

(8-11) 

If po is real, corresponding to the case of scattering from a real potential, ore vanishes, 
as expected. Furthermore, since the reaction cross section cannot be negative, the 
absolute value of 70 must be less than or equal to unity. This, in turn, implies that the 
imaginary part of po must be negative. 

Breit-Wigner formula for isolated resonances. For a reaction of the type de- 
scribed above, the cross section has a resonance structure similar to that of an alter- 
nating current electric circuit. The maximum of ore occurs a t  %po = 0, where Rpo is 
the real part of pa .  Let E, represent the energy where this takes place. The real part 
of po may be expanded as a power series in E around E,, 

Rpo = n(E - E,) + * . *  

where a is a parameter characterizing the leading-order term of the real part of PO. 
Similarly, the leading order of the imaginary part of po may be expressed in terms of a 
(positive) parameter b, 

The two cross sections in Eqs. (8-10) and (8-11) near resonance energy E, may now be 
written as 

Spo = -b + * * . 

.lr 4kRcb are = - 
k2 {u(E - E,)}' + (6  + kRC)' 

in terms of parameters a and b. 
We now make the following identifications: 

b + kR, 
a r=2- 2kRc 

a r, = - 

where r is the total width and r, is the partial width for the entrance channel. The 
total reaction width is then 

rre = C 4 
I#, 

and the total width is r = I', + rre. This allows us, in turn, to rewrite Eqs. (8-10) and 
(8-11) in the following way: 

ge' = 

6" = 

(8-12) 

(8-13) 
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The cross sections are expressed here in terms of the relevant widths instead of param- 
et,ers o and 1) as we have done above. 

The elastic channel has two parts, a nonresonating part with amplitude proportional 
to 1 -exp{2zkR,} and a resonating part containing an energy-dependent factor (E-E,) 
in the denominator. The contribution of the nonresonating part corresponds to a 
smooth background in the cross section and is usually called shape-elastic or potential 
scattering. At E M E,, the elastic cross section is dominated by the resonating part, 

This is called compound elastzc scattering cross section, as it differs from shape-elastic 
scattering by the fact that a compound nucleus is formed before the system returns to 
the entrance channel. 

We can now go back to Eq. (8-8) and calculate ua, the cross section for forming the 
compound nucleus through entrance channel a. Since shape-elastic scattering does not 
involve the formation of a compound nucleus, we can ignore it here. The cross section 
for compound nncleus formation is, then, a sum of compound-elastic and reaction 
contributions, 

W ~ I P I P  we have made use of tlic fact that r = r,+yre. The cross section for the reaction 
from c.ntranrc channel Q to exit channel @ given in Eq. (8-7) may now be written as 

This is known as the Breit-Wigner one-level formula. 

Overlapping resonances. So far the discussion has been confined to the low-energy 
region where the density of states is small. The idea of compound nucleus formation 
applies also at higher energies where individual level width is comparable to or greater 
than the average level spacing ( r  2 D). Since resonances are now overlapping each 
othrr, it is more meaningful to examine the average values of the various cross sections 
that enter into the scattering. 

Assuming that the cross section to form a compound nucleus for a particular state 
is still given by tlhe Breit-Wigner form of Eq. (8-14), we can define an average in a small 
energy interval W in the following way: 

where P is the total width of t,he ith resonance and r ,  is the partial width for decaying 
into channel cr. The summation is over all the resonances in the energy interval W 
cwterctl at, E.  The interval must be small enough that the underlying conditions for 
the resonancxs are riot too different from each other and yet are large enough so that 
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W >> I“. Our discussion is still limited to s-wave scattering for simplicity. We shall 
not attempt a more general discussion here, as it will also involve angular momentum 
coupling factors. 

Using the fact that the number of levels in the intervaI is given by W / D ,  where D 
is the average level spacing, we can define a mean width, 

The quantity T,/D is known as the (s-wave) strength function and the average com- 
pound nucleus formation cross section may be expressed in terms of it, 

(8-15) 

This quantity may be related to P O ,  the logarithmic derivative of the wave function at 
T = R, given by Eq. (8-9). Since the density of states is now high, the probability for 
the compound nucleus to decay through the entrance channel is small. We can say that 
the nucleus appears to be “black” to the incident channel. 

In the limit of a completely absorptive nucleus, the wave function of the interior 
region may be approximated by an incoming term, u ~ ( T )  - exp{iKr), alone. As a 
result, po is purely imaginary and may be written it5 

po = -z)ER, 

where K is the wave number for T < R,. On substituting this value into Eqs. (8-10) and 
(8-11), we obtain the average value of the compound nucleus formation cross section 
for channel (Y in the energy region 

T 4 ~ k  4~ 
k2 ( K  + k ) 2  ~k 

M -  - 
ff, = -- (8-16) 

since k <( K for low-energy scattering from an attractive potential well. Comparing 
this expression with Eq. (8-15), we obtain the result, 

- r, 2k 
D T K  
_ - _  - 

Furthermore, no resonance can be expected from Eq. (8-16). 
In practice, resonances are observed at high energies. These are due primarily to 

coupling of a large number of small resonances, for example, to a state in the vicinity 
that is strongly excited due to some special features in the nuclear structure. Such 
a strongly excited state is often called a doorway state. The decay of a compound 
nucleus in the high-energy region depends on the number of accessible final states and 
is therefore dominated by the density of final states and other statistical considerations. 
This is the subject of Hauser-Feshbach theory, for which we shall refer the reader to 
the original literature [82]. 
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8-3 Direct Reac t ion  

S t r ipp ing  a n d  pickup reactions.  A good example of a direct reaction is a ( d , p )  
process in which a deuteron, with more than a few mega-electron-volts of kinetic energy, 
incidents on a target nucleus. In the exit channel, a proton is observed, Since the 
deuteron is a loosely bound system of a proton and a neutron, we can envisage that the 
neutron is captured into one of the single-particle orbits of the target nucleus without 
disturbing the rest of the nucleons, and the proton continues on to become the scattered 
particle. The process may also be viewed as one in which a neutron is “stripped” from 
the projectile. For this reason, the reaction is known as a one-neutron stripping reaction. 
States in the final nucleus that are strongly excited by such a reaction are those formed 
predominantly by a nucleon coupled to the ground state of the target nucleus. Other 
stripping reactions, siich as ( t ,  p ) ,  transfer two nucleons from the projectile t o  the target. 
Even more complicated reactions, such as those involving the transfer of a cluster of 
nucleons, are also possible. To qualify as a direct reaction, both the target nucleus and 
the internal structure of the cluster transferred must be undisturbed by the reaction. 
The residual nucleus is simply the coupled product of the cluster and the ground state 
of the target nucleus. This condition is generally difficult to meet for transfer reactions 
involving large numbers of nucleons. 

The complement of a stripping reaction is a pickup reaction. In this case, one or 
more nucleons are taken away from the tsarget nucleus without changing the structure 
among the rest of the nucleons. A good example is the reaction 40Ca(3He,4He) 39Ca. 
The states in the residual nucleus, 3gCa here, strongly excited by a pickup reaction 
are the one-hole states, i.e., those formed by removing one of the particles in 40Ca and 
leaving the remaining 39 nucleons unchanged in their relative motion. 

Born approximation. The scattering cross section in a direct reaction, stripping as 
well as pickup, may be obtained using first Born approximation. The reaction mech- 
anism is relatively straightforward here because of the simple relation between initial 
and final nuclear states underlying the direction reaction assumption. The Schrodinger 
equation for the process may be written in the form of a standard second-order differ- 
ential equation, 

(8-17) 2P (V2 + W4.) = p“(‘) $44 
where k2 = 21rE/li2, with E as the kinetic energy in the center-of-mass system. A 
formal solution of Eq. (8-17) for the outgoing wave function may be expressed in terms 
of a Green’s function G(T, T ’ ) ,  as done in 5B-6, 

(8-18) 

where we have chosen ki to be along the direction of the incident particle and the 
function exp{ilc, T }  is the solution of the homogeneous part of Eq. (8-17), i.e., for 
V ( T )  = 0. 
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We shall take the Green’s function here to have the explicit form 

1 e&lr-r‘l 
G(r,r ‘ )  = --- 

47r Jr - r’l 

It satisfies the equation 
(0’ + k2)G(r, r ‘ )  = S(r - r‘) 

(8-19) 

More generally, we can include in the defining equation for G(r ,  r’) a part of V ( r ) ,  for 
example, the part representing the average effect of the target nucleons on the incident 
particle. This is similar in spirit to the mean-field approach used in nuclear structure 
investigations to obtain the single-particle states for shell-model calculations in 57-3. 
To keep the discussion simple here, we shall take the Green’s function to have the 
elementary form given by Eq. (8-19). 

Using Eq. (8-19), the formal solution for the scattering wave function of Eq. (8-18) 
may be written as 

We shall take the range of potential V(T’)  to be short. The effect of a (long-range) 
Coulomb interaction may be included as a part of the Green’s function or the optical 
model potential to be discussed in the next section. In this limit, we may approximate 
the argument of the exponential function in the asymptotic region by the first two 
terms in the expansion 

i k ) r  - r’l = k4T2 - 2 r .  r‘ + r’‘ 
= kT - k, . r‘ + O(T”) 

M kr - k , .  r’ 

where le, = kr/r is taken along the direction of the emerging particle. The formal 
solution of the scattering equation now becomes 

(8-20) 

where we have taken Ir - r‘l N r ,  correct in the asymptotic region where the scattered 
particle is observed. 

Comparing Eq. (8-20) with the asymptotic form of the scattering wave function 
given in Eq. (B-5), we obtain the scattering amplitude 

(8-21) 

This is only a formal, or integral equation, solution for the scattering amplitude, as the 
expression involves an unknown function $(r’), the solution to the scattering equation. 
Equation (8-21) is useful in that it provides us with a starting point to expand scattering 
cross section in terms of a Born series. In the (first) Born approximation, the unknown 
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function $(r') in Eq. (8-21) is replaced by its first term in Eq. (8-18), and we obtain 
an approximate form of the scattering amplitude, 

(8-22) 

This result may be used to find the differential scattering cross section for stripping 
and pickup reactions. 

The expression in Eq. (8-22) can be simplified further by expressing the results in 
terms of the momentum transfer vector, 

q = k, - k f  

and by expanding the plane wave in terms of spherical harmonics as in Eq. (B-lo), 

eiqr '  = c i '&@Ti j j t (q r j )  ~L~(s') (8-23) 
e 

where j t (q r ' )  is the spherical Bessel function of order 1. The angle 8' is between vectors 
q and r' and is one of the variables of integration in Eq. (8-22). The scattering angle 
0, on the other hand, is between vectors k, and k,. 

Angular  distribution. The discussions in the previous paragraph ignore the internal 
structure of particles participating in the scattering. Since in stripping and pickup 
reactions we are dealing with a change in the nuclei involved, the wave functions of both 
the initial and final nuclei must enter into the expression for the scattering amplitude. 
Let us take the asymptotic forms of the initial and final wave functions of the scattering 
system to  be 

where CP, is the product of the internal wave functions of the incident particle and 
the target nucleus and 0, that of the wave functions of the scattered particle and the 
residual nucleus. To simplify later discussions, plane waves exp{ik; . r }  and exp(ik1 . T }  

are used to describe the motions of the particles in, respectively, the incident and exit 
channel. Physically, this means we are assuming that the particles do not interact with 
each other (except in the small region where the reaction takes place). As we shall 
see in the next section, it is inore reasonable to consider also effects, such 89 Coulomb 
interaction, by using an optical model. 

As a concrete example, let us take the case of 40Ca(d, ~ ) ~ l C a .  For this reaction, we 
h avo 

@; = {d (d )  x 4("Ca)} 

@, = {$(PI x 44°C.)) 

where $(d),  d ( p ) ,  and ~ ( ' O C R )  and d("Ca) are, respectively, the wave functions describ- 
ing the internal structiire of the deuteron, proton, and ground states of 40Ca and 41Ca. 
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The multiplication symbols here imply that the wave functions are coupled together to 
some definite values in angular momentum and isospin. 

In the spirit of direct reaction, the deuteron wave function may be taken as the 
(weakly) coupled state of a proton and a neutron, 

4 ( 4  = {4(P) x 4(.)) 

To simplify the argument and avoid complications due to angular momentum recou- 
pling, we shall treat the proton purely as a spectator in the entire scattering process. 
If the neutron is captured into a single-particle state of the target nucleus with orbital 
angular momentum t,, the wave function of the residual nucleus may be expressed as 

dtt ("Ca) N { 4(n)d('°Ca)Ktmt(@', d')} 

where spherical harmonics &,,,(@', 4') is the orbital angular momentum wave function 
of the single-particle state in which the neutron is captured. Using these wave functions, 
the scattering amplitude for 40Ca(d, p)41Ca may be written as 

x ~ ( ~ 9 l p ( 4 o ~ ~ )  ( 4 ~  x 4 ~ ) ) )  d3r1 (8-24) 

The role of the potential V(r') here is to strip the neutron from the deuteron and put it 
into the residual nucleus. For our purposes, it may be approximated by a delta function 
at the nuclear surface, 

to simplify the derivation. Here R is the radius of the residual nucleus. The meaning 
of this approximation is that the neutron is stripped off the incident deuteron and 
captured by the 40Ca on contact. The strength Vo represents the probability for such 
a process to take place and may be treated as a parameter related to the absolute 
magnitude of the scattering cross section. 

Once we integrate Eq. (8-24) over the coordinates of both nucleons and 40Ca, no nu- 
clear wave functions are left in the expression. The exponential factor may be expanded 
in terms of spherical harmonics using Eq. (8-23), and the first Born approximation scat- 
tering amplitude of Eq. (8-22) reduces to 

V(r') = VO S(r' - R )  (8-25) 

(8-26) 

In integrating over the angular variables, we have made use of the orthonormal condition 
of spherical harmonics given in Eq. (B-18). The only angular dependence remaining at 
the end in Eq. (8-24) is contained in the argument of the spherical Bessel function, as we 
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shall see in the next paragraph. Since we have used a plane wave here to approximate 
the solution to the scattering equation, it is known as the plane wave Born approxi- 
mation (PWBA). A more rigorous derivation can be found in standard references on 
direct reactions such as Tobocman [137] and Satchler [123]. 

From Eqs. (8-26) and (B-7), we find that the differential cross section for direct 
reaction is given by 

The momentum transfer depends on the scattering angle 0 as shown in Eq. (4-13), 

q = d k !  + k j  - 2k,k, cos 6 w 2k sin (8-27) (:I 
where we have taken k x ki x k,,  valid if the incident energy is sufficiently high. The 
angular distribution is characterized by the angular momentum transferred and given by 
the factor l j t , (2kR~in($8))1~, as shown in Fig. 8-3. For example, since j&) N sinplp, 
we see that, for an t, = 0 transfer, the angular distribution peaks at 0". For higher 
&-value transfers, there is no longer a maximum at O", as can be seen, for example, 
from j l ( p )  N sinp/p2 - cosp/p for PL = 1. As the value of k', is increased, the first 
maximum in the angular distribution shifts to  successively larger angles, as the first 
peak of l j t t ( p ) I 2  appears a t  successively larger values of p with increasing l , .  This is a 
feature observed in direct react,ions, as can be seen, for example, in the 2oNe(d, n)  21Ne 
reaction shown in Fig. 8-4. 

Figure 8-3: Spherical Bessel func- 
tions j&)  and characteristic angu- 
lar distribution of stripping reac- 
tion given by $ ( p ) .  The plots are 
made as functions of p = qR, with q 
being the momentum transfer. The 
relat,ion with scattering angle 0 is 
given by Eq. (8-27). 

P 
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2 Figure 8-4: Angular distribution \ $ of neutrons observed in the reac- 

tion 2oNe(d,n)21Ne leading to (a) 
the 0.338-MeV, J" = 5/2+ level in 
21Ne showing a typical 8 = 2 one- 
nucleon transfer and (b) the 2.41- 
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Although the PWBA method correctly gives the essential features in the angular 
distribution of direction reactions, it lacks predictive power. This is, in part, due to 
dzstortron of the incident and scattered waves as a result of the average, or "optical," 
potential experienced by the incoming and scattered particles, as we shall see in the next 
section. Furthermore, there does not seem to be an easy way to derive the interaction 
strength Vo of Eq. (8-25), and as a result, the magnitude of the angular distributions 
cannot be deduced from PWBA. A more accurate picture of the scattering is given by 
the distorted wave Born approximation (DWBA) where, instead of plane waves, more 
realistic wave functions are used for the relative motion between the projectile and the 
target nucleus and between the scattered particle and the residual nucleus. 

8-4 The Optical Model 

Besides compound nucleus formation and direct reaction, we may also be interested in 
the average result of a reaction at some fixed bombarding energy. For such purposes, it 
is possible to invoke the analogy of an optical wave passing through a "cloudy'' crystal 
ball. In a nuclear reaction, the scattered wave may be divided into two categories: 
elastic scattering, in which only the direction of the wave propagation is changed, and 
inelastic scattering, in which the particles are scattered into an exit channel different 
from the incident one. The former may be compared with refraction of optical waves 
and the latter with absorption due to the fact that the crystal ball is cloudy. 

The aim of the optical model is to find a potential that describes smooth variations 
of the scattering cross section as a function of incident energy E and target nucleon 
number A. The scattering itself may be quite complicated; however, if we are only 
interested in the averaged properties, away from resonances and states strongly excited 
by direct reactions, it is possible to simplify the situation by a large extent. The basic 
idea is very similar to the mean-field approach we have seen in the previous chapter for 
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nuc.lear structure studies. 
To simplify the discussion, we shall for the most part consider only elastic scat- 

tering. There are two main sources of contribution to  the cross section. The first is 
potential scattering, described earlier in Eq. (8-12). The second comes from multiple 
scattering with intermediate states involving the excited states of nuclei participating in 
the scattering. Not, all such sc.attering returns the system back to  the incident channel 
and, as a result, some of the incident flux is lost. Rather than trying to calculate the 
cross section for each one of the inelastic channels exactly, we shall attempt to  represent 
thcir average contributions by making the potential complex. The same idea can also 
be extended to scattering between hadrons in general, but we shall not do it here. Our 
primary concern will be with nucleon-nucleus scattering, and we shall return later for 
a brief discussion on applying the optical model for pion-nucleus scattering. 

There are t,hree aspeccts of an optical model potential we shall touch upon in this 
secf;ion. First,, we shall give a formal derivation so to make a connection between the 
optical model potential and averaging over contributions involving a large number of 
intermediate stat,es. Second, semi-empirical forms of the optical model potential have 
been used over the years with great success for low-energy (< 200-MeV) scattering. We 
shall give an example here to  provide some feeling of the form of the optical model 
potential used in practice and its dependence 011 incident energy and other variables. 
Third, we wish to make some contact to scattering at the nucleon-nucleon level by 
giving a “microscopic” foundation to the optical model potential. 

Formal derivation of the optical  model potential .  Consider the case of a free 
nucleon scattering off a nncleus made of A nucleons. Let TO represent the coordinate 
of the projectile and T ; ,  for i = 1,. . . , A, those of the A nucleons in the target. To keep 
the notation simple, we shall suppress any explicit reference to spin and other degrees 
of freedom. Our aim is to solve the Schrodinger equation, 

(8-28) 

with boundary conditions appropriat,e for scattering. As usual, it is impossible to solve 
exactly the many-body problem, and we shall seek an approximate solution adequate 
to understand the average results in a scat,tering. 

For the time being we shall ignore the necessary antisymmetrization between the 
projectile and the nucleons in the target. The Hamiltonian for the complete system, 
consisting of the projectile and the target nucleus, may be separated into three parts, 

where T O ,  = TO - ri, for a # 0, is the relative coordinate between the projectile and the 
ith nucleon in the t>arget. The operat,or To describes the kinetic energy of the projectile 
and H A ( T ~ ,  r 2 ,  . . . , rn) is the Hamiltonian operating only among the nucleons in the 
target,. The interaction between the projectile and the target nucleons is provided by 
the pot3ent.ial V ( T ~ ~ ) .  

We shall awlme that t,he A-hody eigenvalue problem for the target nucleus has 
already been solved and that a complete set of solutions { @ i }  is available for the 
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Schrodinger equation: 

H A ( ~ ~ , ~ . Z , . . . ~ T A ) @ : ( P ~ , ~ ~ , . . . , T A )  = ~ : @ ' i ( r i r ~ 2 , . . . , ~ A )  (8-30) 

Furthermore, we shall take that is normalized to unity and is a part of an orthogonal 
set of eigenfunctions. The general solution for the complete system, including both the 
projectile particle and the target nucleus, may be expressed as a linear combination of 
the products of x,(ro) and a J ( r l ,  rz,. . . , f A ) ,  

*(yo; r1, ~ z , .  . . , T A )  = C X ~ ( T ~ ) @ ~ ( T ~ ,  7.2, . . . , I ' A )  (8-31) 
:j 

where Xi(ro) is the wave function of the projectile. If our primary interest is in elastic 
scattering, the only part of \I, that is of interest to us here is xo@o, where both the target 
nucleus and the projectile are in their respective lowest energy states. Our problem 
here is to obtain xo (as I. is assumed to be already known). 

We shall first construct an equation for xo using the method of projection opera- 
tors. The approach is very similar to that used earlier in 57-5 to find a renormalized 
Hamiltonian in nuclear structure calculations when the active space is reduced to a 
small subset of the complete shell-model space. Let P be a projection operator for the 
ground state of the target. We may write P as 

p = l@o)(@ol (8-32) 

with the understanding that any integration to be carried out is over the coordinates 
of the target nucleons only. When P acts on the wave function of Eq. (8-31), we obtain 
the result 

We may also define an operator Q that projects out the rest of the states, 

P I  = xo@o 

It is easy to see that 

PZQ = PQ Q2@ = Q I  PQQ = QPQ = 0 (8-33) 

as P and Q are operators projecting out different parts of the complete space. 
Since P + Q = 1, the Schrodinger equation (8-28) may be written as 

( E  - H)(P  + Q)Q = 0 (8-34) 

On multiplying from the left by P and making use of the relations given in Eq. (8-33), 
we obtain PQ in terms of & I ,  

( E  - P H P )  PQ = (PHQ) Q@ (8-35) 

Similarly, on multiplying Eq. (8-34) from the left by Q, we obtain 

( E  - Q H Q )  Q@ = (QHP)  P I  
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This result may be used to express Q q  formally in terms of P O ,  

Q H P P 9  1 
Qq = 

E - QHQ 
When this “solution” for Q 9  is substituted into the right-hand side of Eq. (8-35), we 
obtain an expression for P O ,  

1 { E  - P H P  - P H Q  Q H P )  PO = 0 
E -  QHQ 

On multiplying this equation from the left by (a01 and integrating over the coordinates 
of the target nucleons with the help of the explicit form of P given in Eq. (8-32), we 
arrive at a relation for xo,  

This is the equation we must solve to obtain xo. 
The zero point of the energy scale is still arbitrary at this point, and we may set it 

a t  the ground state of the target nucleus. In other words, we can choose €0 in Eq. (8-30) 
to be 0 to simplify the form of Eq. (8-36). With this definition, we have the result 

HAQO = eo@o = 0 

Equation (8-36) can now be written as 

where V E EL, V(v0,) is the potential acting between the projectile and target nu- 
cleons. In arriving at the result, we have made use of Eq. (8-29) and the fact that To 
operates only on the projectile coordinates and therefore cannot act on a0. This gives 
us the relation 

QTolao) = ToQI@o) = 0 

The operator ( E  - QHQ)-’ in Eq. (8-37) is meaningful only in the sense of an infinite 
series expansion of the form 

1 = -{ 1 1 + EQHQ 1 + EQHQEQHQ 1 1 + * * - )  
E - Q H Q  E 

The physical meaning of each term in this expansion may be interpreted in the following 
way. Each time the Hamiltonian acts between a pair of nucleons, there is an interaction, 
or “scattering,” bet>ween these two particular nucleons. The product Q H Q  implies that 
the interaction takes place with the target nucleus in one of its excited states. Higher 
power terms, such as (E-’QHQ)”, represent multiple interactions of order n. The last 
term of Eq. (8-37), therefore, contains multiple scattering to all orders weighted by 
energy factor El’ to the appropriate powers. 

We can put Eq. (8-36) into the familiar form of an eigenvalue equation, 

( E  - To - V(ro))xo  = 0 (8-38) 
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where the equivalent potential is given by 

(8-39) 

Since we have not yet made any approximation in arriving at Eq. (8-38), we do not 
have any better chance of solving it than the original equation given by Eq. (8-28). 
The aim of an optical model is to replace the equivalent potential V(r0 )  by an optical 
model potential UOpt, such that the equation 

( E  - To - U0pt)Xg = 0 

can be solved. 
In general V(ro) is nonlocal; that is, the potential acting at  one point of space may 

depend on the value of the wave function a t  a different point. The actual eigenvalue 
equation takes on the form 

( E  - ~ o ) x ~ ( r o )  = ~ r o ) x ~ ( r o )  + J f(ro, rb)xo(rb)drb 

where f(ro, r ; )  is a function of both ro and rb. This greatly complicates the problem 
and, in practice, one often approximates the potential with a local one. Furthermore, 
the derivation here may have given the impression that all the scattering into the Q- 
space eventually returns the target to the ground state. This is certainly not true in 
general. To represent the loss of flux from the incident channel by scattering that ends 
up in other exit channels, the optical model potential is usually complex. 

Phenomenological optical model potential. The origin of the optical model po- 
tential is the average interaction between nucleons in the projectile with those in the 
target nucleus. It is, in principle, possible to derive the potential from nucleon-nucleon 
interaction. Before carrying out such a calculation, it is useful to take a more phe- 
nomenological approach to the problem, in part, to anticipate the type of results we 
can expect to obtain. 

Based on the fact that the range of nuclear force is short, we expect the radial de- 
pendence of an optical model potential Uopt(r) to follow closely the density distribution 
in a nucleus. For this reason, a two-parameter Fermi form given earlier in Eq. (8-21), 

1 
1 + exp{(r - T ~ A ' / ~ ) / U }  f (T ,  To, 4 = (8-40) 

is often used. In optical model studies this is known as the Woods-Saxon form. The 
potential is complex in general, 

Ilvol(T) = -{Vof(T, T",  a,) + iWOf(T,T,, a,)} (8-41) 

In a semi-empirical approach, V, and WO, the depths of the real and imaginary parts of 
the potential well, are taken as free parameters to be determined by fitting experimental 
data. If we assume the radial dependence of both parts, f ( r ,  T,, a,) and f(r, T,, aw), to 
follow the form given by Eq. (8-40), we may take the radii T, and T, and the  surface 
diffuseness a, and a, also as adjustable parameters. 
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The potential given by Eq. (8-41) is only the volume term, in the sense that it 
depends on the distribution of matter in the whole nucleus. In addition, optical model 
potentials are known to have a spin dependence. When a nucleon is scattered from a 
nucleus, the result is sensitive to the relative orientation of the nucleon spin before and 
after the scattering. One way to measure such a dependence is through the analyzing 
power parameter A,. 

Let, us define the transverse polarization of the incident and scattered nucleons t~ 

positive (or up) if they are oriented in the same direction as the unit vector 

k x k '  
I t=- 

lkl Ik'l 

given in Eq. (B-6) and negative if they are aligned opposite to  A. Here, k and k' are 
the wave vectors of, respectively, the incident and scattered particles. Writing the cross 
section for scattering from positive initial polarization to  both positive and negative 
final polarization a u+ and from initial negative polarization to  both positive and 
negative final polarization as [I-, the analyzing power is given by the ratio of their 
difference to their sum. 

u+ - 0- 
A,  = - 

(T+ +[I- 
(8-42) 

For elastic scattering, the same information can also be obtained by starting from an 
unpolarized incident beam and measuring the difference between the cross sections 
leading to positive and negative polarization for the scattered particle. The result, 
normalized in the same way as Eq. (8-42), is called polarbzatzon. 

The fact that A,  is nonzero in general in nucleon-nucleus scattering is strong evi- 
dence for the presence of spin dependence in the optical model potential. A spin-orbzt 
term may be used to represent such an effect, 

Again there are six parameters, V,, r,", a,,, W,, r,,, and a,,,,, to  be adjusted to  fit 
scattering data. Note that the square of the pion Compton wavelength, ( A / r n , ~ ~ ) ~ ,  is 
roughly 2 and the approximate numerical value is often used in its place. 

The reason for using derivatives of the volume density distributions as the radial 
dependence comes from analogy with the Thomas spin-orbit potential for the force felt 
by atomic electrons in the Coulomb field of a nucleus. For an electron, the spin-orbit 
term originntrs from the interaction of its intrinsic magnetic dipole moment p, with 
the magnetic field B(r)  it feels because of its own orbital motion around the nucleus. 
The value of B(r)  may be found by a Lorentz transformation of the electrostatic field 
E(r )  provided by the nucleus, stationary in the laboratory, into a frame of reference at 
rest with the orbiting electron. The result is 

where the factor inside the square brackets is needed to convert the expression from 
cgs to SI units. The orbital angular momentum of the electron is given by 

.t!h = r x p = me(?- x v )  
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To relate to  an electrostatic potential V ( P ) ,  we have made use of the relation 

dV r 
E(r)  = -- - 

dr T 

The spin-orbit interaction energy for an atomic electron is then given by 

eA2 dV 
W ( r )  = - f i e .  B(r) = -- 

mqc2T dr 

where we have made use of the fact that the dipole moment pe  is given by (eti[c]/m,c) v. 
Equation (8-43) has the same form. The use of pion mass m, instead of that of the 
electron may be regarded as a convention for the definition of the spin-obit potential 
well depths V, and W,. For the same reason, the electron charge is inappropriate and 
is absorbed into the definition of the well depths. 

For charged particle scattering, a Coulomb term may be included in the optical 
model potential. The form is usually obtained by approximating the target nucleus as 
a uniformly charged sphere, 

where R, is the Coulomb radius. The quantities z and 2 are, respectively, the charge 
numbers of the projectile and the target nucleus. It may be tempting to treat R, as a 
free parameter also. In practice, the scattering results are not sensitive to  the details 
of the Coulomb potential, and it is quite adequate to  use the value R, = 1.2A1I3 fm. 

The complete phenomenological optical model potential is the sum of volume, spin- 
orbit, and Coulomb terms: 

The total number of adjustable parameters is 12 if we do not include R,. In a typi- 
cal scattering experiment, the angular distribution of the differential scattering cross 
section, as well as analyzing power and other quantities, where possible, is observed. 
The number of independent pieces of data is usually greater than 12 and there is no 
difficulty to obtain a complete set of the parameter values by fitting calculated optical 
model results to the measured quantities. A large amount of information has been 
accumulated in this way, and we have now a fairly clear picture of the energy and mass 
dependence of these parameters for proton scattering off nuclei up to  a laboratory en- 
ergy of 200 MeV. One of the sets obtained by fitting proton scattering data on a variety 
of nuclei from A = 40 to A = 208, and laboratory proton energy from 80 to 180 MeV 
[126], is given in Table 8-1 as illustration. 

There are, however, several problems associated with the phenomenological ap- 
proach. The first is that, although we have a good picture for proton scattering, the 
knowledge does not extend to other projectiles. For example, even the neutron optical 
model potential is not as well known, as there are far less experimental data available for 
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Table 8-1: Proton-nucleus scattering optical model potential parameters 
for 40 <_ A <_ 208 and proton laboratory energy 80 5 Tp 5 180 MeV (1261. 

Note: Vo, WO, V.,  , W",,,, and Tp are in mega-electron-volts; T,, a,,  r W ,  

Vo = 105.5(1 - 0.16251nTp) t 16.5(N - Z)/A 

% = {  

1.125 + 0.0010T' 

1.255 

for Tp 5 130 MeV 
(except Tp 5 180 MeV for Ca) 

for Tp > 130 MeV (except Ca) 

a, = 0.675 + 3.1 x 10-4Tp 

Wo= 6.6 + 0.0273(Tp - 80) + 3.87 X 10-6(Tp - 
T, = 1.65 - 0.0024Tp 

a,,, = 0.32 + 0.0025Tp 

Vs.o, = 19.0(1 - 0.166 In Tp) - 3.75(N - Z)/A 

rbV = 0.920 + 0.0305A'/3 
0.768 - 0.0012Tp for Tp 5 140 MeV 

for Tp > 140 MeV = { 0.60 
W,, = 7.5(1 - 0.2481nTp) 

= 0.877 + 0.0360~1/3 

as,,, = 0.62 

a,,,, T,,, as,, T,, and aaW are in femtometers. 

neutron-nucleus scattering. Because of its phenomenological nature, the approach does 
not lend itself easily to extrapolation to regions where experimental data are scarce. 
The second is that the forms of radial dependence used in Eqs. (8-41) and (8-43) are 
found to be inadequate aa we move to higher bombarding energies. One remedy is 
to use more complicated expressions involving additional parameters; however, on aes- 
thetic grounds alone, this is not desirable. Finally, the parametrization is not unique. 
The 12 parameters are interdependent in a complicated way, and there are often other 
sets of values that can also provide an equally good description of the data. 

Microscopic optical model potential. An optical model potential for nucleon- 
nucleus scattering represents the average interaction between the incident nucleon and 
nucleons in the target nucleus. I t  is, therefore, a function of the nucleon-nucleon in- 
teraction. A microscopic model of the potential may be constructed by convoluting 
the fundamental nucleon-nucleon interaction with the nuclear density. Such a folding 
model has been known to  be quite successful in describing nucleon-nucleus scattering 
data if an appropriate nucleon-nucleon interaction is used as the starting point. For 
simplicity we shall restrict ourselves to the case that the incident particle is a nucleon 
and ignore any internal structure it may have. The first term of Eq. (8-39) suggests 
that we may be able to approximate the nucleon-nucleus optical model potential by 
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Figure 8-5: Radial shapes of the 
volume term of a proton-nucleus opti- 
cal model potential at different bom- 
barding energies. The upper curves 
are the real part and the lower one 
the imaginary part of the potential. 
The results are calculated using a 
folding procedure with a Paris poten- 
tial as the interaction between nucle- 
ons. (Adapted from Ref. [139].) 

-soo.-' 

Radius in Frn 

the integral 

A 

Uopt(r0) (@O(rlirZ , . . . , r  A)1CV(rOr)(~O(f~,f2, . . .  , r A ) )  (8-44) 
1=1 

where the integration is taken only over the target nucleons. 
One must be careful here with antisymmetrization between the incident nucleon and 

the one in the target nucleus with which it interacts. Let us consider the simplest case 
in which the incident nucleon undergoes only one interaction with one of the nucleons 
in the target. When a nucleon emerges from the scattering, there is no way to identify 
whether the observed particle is the same one as the incident nucleon or the one in the 
target nucleus with which it interacted. Both possibilities must be included. For this 
reason, the matrix element on the right-hand side of Eq. (8-44) should be a sum of two 
terms, / 

where t D  is the operator for the direct part of the reaction in which the scattered nucleon 
is the same one as the incident particle and t E  is the operator for the exchange part in 
which the incident nucleon is absorbed by the target nucleus and the scattered particle 
is one of the nucleons originally in the target. We shall see later that the difference 
between the contributions from these two terms is important in understanding the 
radial shape of the optical model potential at  high energies. 

For the nucleon-nucleon potential V(ro , ) ,  it is tempting to take a naive approach 
and replace it by a free nucleon-nucleon interaction obtained, for example, from nucleon- 

(@olvI@o) = ( @ o l t D l @ o )  + ( @ o l t E l @ o )  (8-45) 
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Figure 8-6: Radial shapes of the real and imaginary parts of the spin-orbit term 
of an optical model potential for proton-nucleus scattering at different bombarding 
energies. The calculnt<ion is based on a folding procedure rising a Paris potential 
for the interaction between nucleons. (Adapted from Ref. 1241.) 

nucleon ~catt~ering. This is known as impulse approzirnation (IA) and, in practice, is 
found to be too crude to fit experimental data on nucleon-nucleus scattering. Just 
as with nuclear shell-model calculations, an effective nucleon-nucleon interaction is re- 
qnired here, as one of the two interacting nucleons is embedded in the nucleus. The 
requirements on the effective interaction arc somewhat less stringent than in the cor- 
responding shell-model case. It is usually possible to  approximate the nuclear medium 
as an infinite nuclear matter to  simplify the calculations. To take care of the fact that 
a red nucleus has a large surface region, with density varying from very small to  sat- 
uration value in infinite nuclear matter, a denszty-dependent effective potential is often 
used. In other words, the operators t,, and t E  in Eq. (8-45) are made to be functions 
of the nuclear density p. The effective potential in different regions is calculated using 
nuclear matter of appropriate densities. F’urthermore, the free nucleon-nucleon inter- 
action itself is energy dependent and, as a result, both t ,  and t E  are functions of the 
bombarding energy RS well. 

In terms of single-particle wave functions &,(ri), the target nucleus density may be 
expressed as the following operator: 

(8-46) 

Using this, the optical model potential may be related to an integral over the function 

(8-47) 

constructed by convolut,ing, or “folding,” the nucleon-nucleon interaction between the 
incident and the target nucleons with nuclear density. 1x1 order to emphasize the de- 

A A 

i= 1 i=l  
f ( T 0 ,  T )  = C m . ) t D ( n r  T ;  P, E)&t(p) + c # f ( + E ( f ,  Po; Pt E)k(.o) 
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Figure 8-7: Real part of the volume 
term of a proton-nucleus optical model 
potential at different bombarding ener- 
gies. The upper curves are the direct 
part of a microscopic pot,ential given 
by Eq. (8-48) and the lower curves are 
the exchange part given by Eq. (8-49). 
The nucleon-nucleon interaction comes 
from a Paris potential. (Taken from 
Ref. 11401.) 

pendence on nuclear density and bombarding energy, we have put p and E explicitly 
into the arguments oft, and t E .  

The direct term of such an optical model potential is relatively easy to  evaluate, as 
the integral involving the first term of Eq. (8-47) may be expressed as 

(8-48) 

For p ( r )  we can use the approximate form given in Eq. (8-46). However, the same 
transformation cannot be carried out for the exchange term, as the two single-particle 
wave functions have different arguments, r and r0.  As a result, the contribution of the 
exchange term is nonlocal in general. A “local momentum” approximation is usually 
used t o  reduce the exchange term to the following simpler form: 

v;t(fo, E )  = J P ( Q ,  M?, rol p, ~ ) j ~ ( k ~ ~ ~  - r ~ ) d 3 r  (8-49) 

where 
A 

P(To, 4 = c 4 : ( ~ ) 4 z ( ~ o )  
:=I 

in analogy with Eq. (8-46). Here, j o ( < )  is the spherical Bessel function of order zero. 
At laboratory energy below 200 MeV, the folding potential produces results very 

similar to  those derived from phenomenological approaches. At higher energies, how- 
ever, the Woods-Saxon radial shape used in the semi-empirical approach is found to  
be inadequate. From folding potential calculations we find that,  as the bombarding 
energy is increased, the radial shape of the volume term in the optical model potential 
changes to  a “wine-bottle” shape, as shown in Fig. 8-5. The shape for the spin-orbit 
potential, shown in Fig. 8-6, however, retains essentially the same form as given by 
Eq. (8-43). The shape changes in the volume term come from the differences in the 
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energy dependence of the direct and exchange parts of the folding potential. As il- 
lustrated in Fig. 8-7, the direct part is repulsive and the exchange part is attractive. 
Since the exchange part has a slightly sharper energy dependence than the direct part, 
the cancellation between repulsive and attractive parts, when we sum the two terms to 
produce U,,, , produces an energy dependence that cannot be represented by a simple 
Woods-Saxon form. In Fig. 8-8 the results for the elastic scattering of 362-MeV protons 
off a 40Ca target are given as an illustrative example to show that a microscopic opti- 
cal model potential is quite capable of describing intermediate-energy proton-nucleus 
scattering to very large momentum transfers. 

I I I 1 I I 

200 40’ 60’ 

C.M. SCATTERING ANGLE 

Figure 8-8: Differential cross section for elastic scattering of 362-MeV protons off 
40Ca. The continuous curve is the calculated result using a microscopic optical 
model potential. The diffraction-like pattern is typical in scattering at small 
anglcs fonnd in many different types of processes \66]. 

Besides elastic scattering, an optical model potential is also useful in understanding 
the cross section for other types of reactions. For example, in cases where the scattering 
is dominated by direct reaction, cont*ributions from potential scattering and multipole 
scattering to the same final state are regarded as “background” and the effect may be 
represented by an optical model potential. The reduction in the incident flux because 
of other open reaction channels is taken care of by the imaginary part of the potential. 
From a slightly different prospective, we can view the optical model potential as an 
average potential that “distorts” both the incident and scattered waves from their 
plane wave states we saw in the previous section. The contributions of a direct reaction 
to specific states may be regarded as terms in addition to scattering due to  the optical 
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model potential and favors only specific final states. This is the essence of DWBA for 
direct reaction. The scattering is separated into two parts, a "background" given by the 
optical model potential and a direct reaction contribution because of special features 
in the final state involved. The calculated results obtained this way, as we shall see in 
the next section, have been found to give a fairly good description of the observed cross 
sections. 

8-5 Intermediate-Energy Nucleon Scattering 

In 58-3 we saw that direct reaction is a good way to investigate certain aspects of 
nuclear structure as well as interaction between free and bound nucleons. The main 
reason is that the reaction mechanism is relatively simple. This is especially true in 
nucleon-nucleus scattering when the incident energy is in the intermediate range. 

Intermediate-energy nucleons are usually taken to mean those with laboratory ki- 
netic energy in the range of 100 to 1000 MeV. At much lower energies] the transit 
time of a nucleon through a nucleus is sufficiently long that multiple scattering may 
take place frequently enough to complicate the reaction. At much higher energies, 
good resolution is difficult to achieve and the increased production rates of pions and 
other secondary particles make the condition unfavorable for studying nucleon-nucleus 
interaction. 

We shall again restrict ourselves to reactions involving two-body final states to 
simplify the analysis. Our main emphasis is on proton inelastic scattering, commonly 
referred to as ( p ,  p') reactions, and charge exchange reactions induced by nucleons, 
namely, ( p ,  n )  and (n,  p )  reactions. Furthermore, we shall ignore elastic proton scatter- 
ing here, as some of the primary interests are already covered in the previous section in 
the discussion of optical models. Besides scattering cross sections, observables related 
to changes in nucleon spin orientation can also be measured, as we have seen in $3-7; 
however, for simplicity, we shall not discuss them here. Very interesting data can also 
be obtained by scattering antiprotons from nuclear targets. The information helps us 
to understand the connection between nucleon-nucleus reaction and the internal de- 
grees of freedom of nucleons. An example of the differential cross section for scattering 
off 12C is shown in Fig. 8-9. Unfortunately, a meaningful discussion of the topic of 
antiproton-nucleus scattering requires additional preparations than what we wish to do 
here. 

Scattering amplitude.  We saw earlier in Eq. (8-21) that scattering amplitude in 
(first) Born approximation may be expressed in terms of the matrix elements of the 
nucleon-nucleon interaction potential between initial and final states of the nucleon- 
nucleus system, 

A 
P f(e) = - ~ ( X ~ , ( ~ O ) @ f ( ~ l ~ r 2 1 . .  . i r A ) I x  v(rOi)IXk,(rO)@*(rlrr21...,rA)) 

i=l 

(8-50) 

where p is the reduced mass of the scattering nucleon and xL,(r0)  and X k , ( r o )  are, 
respectively, the wave functions of the incident and scattered nucleons in the Born 



304 Chap. 8 Nuclear Reactions 

Figure 8-9: Differentid cross sec- 
tion for proton (triangles) and an- 
tiproton (circles) scattering off ‘’C 
at 46 MeV incident energy. Figure 
( a )  is for elastic scattering and ( b )  
is for inelastic scattering leading to 
the 2+ state at 4.44 MeV excitation. 
The solid curves are obtained from a 
coupled channel calciilation and the 
dotted curve is a theoretical one for 
elastic scattering. (Taken from Ref. 
1721.) 

approximation. The wave functions Q Z ( q ,  r2,. . . , T A )  and @,(Ti, r z , . .  . , T A )  describe 
the initrial and final nuclear st,ates. 

There are three distinctive parts that enter in a calculation of the scattering am- 
plitude f(0) here. First, we need an optical model potential with which we can solve 
for functions x ~ , ( T o )  and X L , ( F O ) .  In this way, the effect of anything other than those 
tliia to direct reaction may be accounted for on the average. This is the spirit of the 
distorted wave approach mentioned at  the end of the previous section. Second, we need 
a potential V(ro , )  that supplies the interaction between a free nucleon and a nucleon 
embedded in a nucleus. It, is this potential that induces the direct reaction over and 
above the “background” produced by the optical model potential. Third, we milst have 
both the initial and final nuclear wave functions @pi and @ f ,  in particular the relation- 
ship between them. All three parts are related to  the fundamental nucleon-nucleon 
interaction. 

Let, us start, wit,h the purely nuclear striicture problem of relating the initial and 
find states of the target nucleus. For simplicity, we shall restrict ourselves to targets 
inade of even-even niiclei where many of the studies have been carried out. For such 
targets, the spin and parity of the ground state of the initial nucleus are O+. The 
angular momentum transferred to  the nucleus as a result of the scattering, in this case, 
is givcn by the spin and parity of the final nuclear state. Our basic assumption in 
Eq. (8-50) for the scattcring amplitude is that the incident nucleon interacts with only 
one of the nucleons in the target nucleus. In the case of a ( p , p ’ )  reaction, the process 
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may be thought of as one in which the incident proton excites the target nucleus by 
promoting one of the nucleons to a higher single-particle state. For a (p, n) reaction, 
the incident proton is captured and one of the neutrons in the target is ejected in the 
process. In either case, we find that states strongly excited by the these reactions are 
those made predominantly of one-particle one-hole (lplh) excitations built upon the 
ground state of the target nucleus. 

The relation between initial and final nuclear wave functions may be expressed in 
terms of a "transition density." In the form of an operator, the lplh-transition density 
of interest here may be written as 

where &(r) is one of the occupied single-particle states in the target nucleus and &(r )  
one that is empty before the scattering. In principle, we should also couple l#,)(f$hl 
to some definite spin and isospin so that the operator ptr(lplh) is a spherical tensor 
of definite ranks. However, we shall dispense with this complication in the following 
discussion to simplify the argument. 

If a state I ( lp lh)  J" ) is made up entirely of a linear combination of lplh-excitations 
built upon the ground state, we can impose the normalization condition 

2 
( ( ( lplh)  J"lp,,(lplh)lground state)/ = 1 

on the transition density operator. In this way, the state I (lplh) J " )  may be expressed 
in terms of the transition density operator acting on the ground state wave function, 

I(lp1h) J") = p,,(lplh)lground state) = a p h ~ ~ p ) ( # ~ ~ g r o u n d  state) 
Ph 

As we have seen in 57-5, such a lplh-state is an eigenstate of the Hamiltonian in the 
limit that the two-body residual interaction can be ignored. 

In general, an eigenvector of the nuclear Hamiltonian contains other components 
as well. The wave function of the final nuclear state, in general, has the form 

A 

( @ f ( T l , r Z , - .  . r T A ) )  = CaphCI~~(.:))(~h(r:)I@r(rlrr2 , . . . , r A ) )  
ph r = l  

+ other components (8-51) 

are, respectively, the initial and final nuclear wave functions. From where @i and 
this, we obtain the expansion coefficients aph for the lplh-transition operator 

A 

aph = x(@f(rl, r z , .  . . , ~ A ) ( # p ( ~ ~ ) ) ( ~ h ( r : ) I @ , ( T 1 , ' p 2 , ~  * r rA) )  

The transition density is a quantity between two specific nuclear states, and as such, 
it is independent of the probe and the reaction mechanism. For this reason, the same 
transition density enters into all other lplh-excitation processes between the same pair 
of nuclear states. This gives us the opportunity to  check the quantity obtained in a 

1=1 
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( p ,  p‘)  reaction against, for example, electromagnetic transitions and inelmtic electron 
scattering. For ( p ,  n) and ( n , p )  reactions, the transition densities are related to &decay 
rates and cross sections of charge exchange reactions induced by other probes such as 
pions and light ions. 

So far we have considered the scattered nucleon in a ( p ,  p’)  reaction to be one and 
the same as the incident nucleon and distinguishable from those in the target. As we 
have already seen in the previous section, this is only the direct part of the scattering 
amplitude which, with the help of Eq, (8-51), may be expressed as 

(8-52) 

The result is obtained after integrating over the coordinates of all other nucleons in 
the target not involved in this particular scattering. Components other than those 
related to one-particle one-hole excitation of the target ground state disappear from 
the expression, as they do not contribute to the direct reaction amplitude in the limit 
that only lplh-excitations are allowed. Their importance comes mainly in terms of 
their total weight in ‘PI and, consequently, the fraction of lplh-components present in 
the state and the overall size of the scattering amplitude f,(O). 

To ensure proper antisymmetrization, we must also include an exchange part to 
the scattering amplitude. In analogy to  Eq. (8-52), this may be written as 

Both f,(@ and f E ( 6 )  are two-body matrix elements involving either the incident nu- 
cleon or the scattered nucleon and one of the nucleons in the nucleus. The reason we 
can reduce the amplitude to such a simple form comes from the direct reaction assump- 
tion that only a single interaction takes place between the incident nucleon and one of 
the nucleons in the target, with the rest of the nucleons acting merely as “spectators” 
in the reaction. 

Nucleon-nucleus interaction potential .  What is an appropriate interaction po- 
tential V(r0 , r )  to  use in Eqs. (8-52) and (8-53) for the scattering amplitudes? The 
simplest approach is to  apply an impulse approximation and equate the interaction 
with one occurring between free nucleons. As we have seen earlier in optical model 
potentials, this turns out to  be too crude an  assumption because of the influence of 
the nuclear medium on the target nucleons. For a semi-empirical approach, we can 
take a phenomenological one-boson exchange potential consisting of a sum of Yukawa 
forms, each with a different range. The strength of each term in such a potential may 
be taken as an adjustable parameter to reflect the fact that we do not have a complete 
knowledge of the interaction between free and bound nucleons. An example of such a 
potential is the Michigan three-Yukawa (M3Y) potential [29]. With a sum of only three 
Yukawa terms, fairly good descriptions have been provided for the observed differential 
cross sections in many ( p , p ’ )  reactions. 

A more realistic approach i8 to me nn effective interaction based on free nucleon- 
niieleori scattering with corrections for the influence of the nuclear medium. An example 
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is the one developed by F’raney and Love [65]. Alternatively one can take a nuclear 
matter approach and develop a density-dependent potential, as described earlier for 
optical model potential studies. In both cases, good descriptions of the observed results 
up to very large momentum transfers have been obtained for both differential scattering 
cross sections and spin observables. 

Let us recapture what is happening when an intermediate-energy nucleon is scat- 
tered off a nucleus. Before the incident nucleon is within the range to interact with 
one of the nucleons in the nucleus, i t  is in the field of the nuclear optical model poten- 
tial. The wave function of the incident nucleon is modified by the average potential. 
Once the projectile is in the range of the nuclear force of the target, the interaction 
promotes one of the target nucleons to a different single-particle state. When the scat- 
tered nucleon leaves the region, it travels again through the field of an optical model 
potential, The three steps of a calculation-optical model potential, nucleon-nucleon 
interaction, and nuclear wave functions-are distinct parts of the problem and may be 
treated quite independently of each other. On the other hand, all three are the results 
of interaction between nucleons and can be calculated from the same nucleon-nucleon 
interaction potential. I t  is therefore possible to solve the problem in a self-consistent 
manner and obtain all three parts from a given nucleon-nucleon potential. This is an 
interesting development, as there are only rare occasions in many-body problems that 
such an approach can be carried out in practice. Partly because of this possibility, 
a large amount of work, both experimental and theoretical, has been carried out in 
intermediate-energy nucleon-nucleus scattering. 

Relativistic and other effects. In addition to the above interests, intcrmediate- 
energy nucleon-nucleus scattering may also be used to understand the underlying re- 
action mechanism. For example, above we have implicitly assumed a nonrelativistic 
Schrodinger approach. However, the kinetic energy of the incident nucleon here is a 
large fraction of its rest mass energy, and as a result, relativistic effects may be im- 
portant. Besides simple kinematic effects that require Lorentz invariance in the place 
of Galilean invariance, we may also need to replace the Schrodinger equation with a 
Dirac equation. The main difference here may be viewed in the following way. In 
the Schrodinger approach, the nucleon, being a spin-; particle, is described by a two- 
component wave function to account for the fact that the intrinsic spin of a nucleon 
can either point up (projection along the quantization axis +f) or down (projection 
- f ). In a relativistic quantum-mechanical treatment, a four-component wave function 
is required to describe a spin-; particle, with the upper two components describing the 
two possible directions of the nucleon spin and the lower two components accounting 
for the two possible directions of the antinucleon spin. A fully relativistic treatment of 
the nucleon-nucleus scattering, therefore, differs from the Schrodinger approach by the 
presence of the two lower components. 

At low energies, the influence of the lower components on the behavior of the 
nucleon is very small and may be replaced by spin-dependent terms in the potential, 
as we have done earlier. At higher energies, such a simple substitution may not be 
adequate and the Dirac equation may have to be solved for the scattering. There 
are indications that, for certain observables in intermediate-energy nucleon-nucleus 
scattering, particularly those related to changes in the polarization direction between 
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incident and scattered nucleons, a relativistic treatment is needed (see, e.g., Celenza 
and Shakin 1431 and Danos, Gillet, and Cauvin (471 and references therein). 

One possible interest in charge exchange reactions is to relate strong and weak 
interaction processes, as mentioned earlier in $5-6. Intermediate-energy (p, n )  and 
(n., p )  reactions are ideal here, as the reaction mechanism is siifficiently simple and the 
nuclear matrix elements involved are the same as those in nuclear P-decay. Apart from 
kinematic factors, the only distinction between nuclear P-decay and charge exchange 
reactions induced by intermediate-energy nucleons is expected to be the difference in 
their “coiipling” constants. If this is true, the ratio between these two processes should 
be independent of t,he target, nucleus used, and this indeed is found to  be the case. As a 
result, sum rule and giant resonance studies have been extended into charge exchange 
processes, as we have seen earlier in $6-2. 

Alternatively, intermediate-energy nucleon-nucleus scattering can be viewed as a 
good way to obtain information on the interaction between free and bound nucleons. 
This is made possible by the fact that two of three ingredients in a reaction calculation 
may be checked by other means. For example, we have seen that the optical model 
potferitial is the same one as that entering into elastic scattering. From the SUCC~SS in 
describing elastic scattering, we can establish the validity of an optical model potential 
before using it in either (p ,p’ )  or charge exchange reactions. We have also seen that 
the nuclear striictrire question involved in the scattering process is identical to those 
occurring in other react,ions. By comparing the t#ransition density with, for example, 
intermcdiat,e-energy inelastic electron scattering, we have a fairly reliable way to find 
out whether the nuclear structure information is correct. The net result is that the 
interaction V ( r ,  rg) in Eqs. (8-52) and (8-53) becomes the least well known part of the 
three and niay therefore become the primary focus of a study. hrthermore,  different 
transitions are sensitive to different parts of the interaction potential. By carefully 
selecting the initial and final st,ates, it, is possible to emphasize a particular aspect of 
V ( r ,  ro) for examination. 

Finally, if we are confident of all three points above, we can start to ask the finer and 
more detailed question of whether there are ariy exotic effects related to, for example, 
the internal degrees of freedom of nucleons. The energy involved here is certainly high 
enough that, for example, intermediate states involving the excitation of a nucleon into 
a A-particle can take place, particularly in view of the strong P33-resonance in the 
pion-nucleon channel. Since a A is a distinguishable particle from a nucleon, it does 
not suffer from the effect of the Pauli exclusion principle due to the presence of other 
nucleons. Instead of particle-hole excitations, we can imagine A-hole excitations to 
take place. There is already some evidence that such nonniicleonic degrees of freedom 
may be present in the observed data. 

8-6 Meson-Nucleus Reac t ions  

Interaction of mesons with nucleons and nuclei provides 11s with one way to understand 
the exchange of virtual mesons between nucleons. We have seen earlier in 83-6 and 
33-9 that such exchanges are responsible for the long- and intermediate-range parts 
of the nuclear pot,ential. Meson scattering is also of interest from the point of view 
that they are hosons. Since bosom can be absorbed and created in the reaction, we 
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expect t o  learn something new about scattering that cannot be achieved with baryons 
and leptons. I t  is an integral part of hadron-nucleus scattering studies and forms an 
essential element of our understanding of hadrons. 

Experimentally, intense sources of pions are available from “meson” factories, such 
as LAMPF (Los Alamos Meson Physics Facility), SIN (Swiss Institute for Nuclear 
Research), and TRIUMF (Tri-University Meson Facility) (see, e.g., Ref. [log]). There 
are two features that are special to  pion scattering. The first is the strong P33-resonance 
that produces a A-particle from a pion and a nucleon. As we have seen in $2-6, the 
strength of this resonance at  pion laboratory energy of 195 MeV is so overwhelming 
that pion-nucleus reactions at energies below a few hundred mega-electron-volts are 
dominated by the formation of A-particles. The second is that pions have three charge 
states, s+, KO, and K - .  As a result, single-charge exchange as well as double-charge 
exchange reactions are possible. The study of pion-nucleus reactions can be carried out 
in a variety of ways, including pion absorption, elastic and inelastic scattering, as well 
as charge exchange reactions. 

Pion absorption. There are two different types of pion absorption studies that can 
be made, stopped pion and fast pion. In order to enhance the probability, the pion to 
be absorbed must be slowed down sufficiently such that it is essentially at rest with 
respect to  the nucleus. One way to “stop” a K- is to capture it first in an atomic orbit 
to form a s-mesic atom. It  may happen that the s- is initially occupying one of the 
higher “electronic” orbits of the atom. If this is true, the negative pion will eventually 
cascade down to a low-lying orbit through atomic electromagnetic decay. Since the 
pion mass is far larger than that of an electron (m, M 300m,), the Bohr radius is much 
smaller. As a result, the wave function of a low-lying K- in an atom has a significant 
overlap with that of the nucleus, as we have seen earlier in the analogous situation of 
muonic atoms in ’$4-5. However, being a hadron, a pion behaves quite differently from 
a muon, particularly in the nuciear medium. Because of strong interaction, a pion is 
readily absorbed by the nucleus once it is close enough for the short-range force to be 
effective. 

Whm a K- is absorbed, all its rest mass energy of -140 MeV is transferred to 
the nucleus in the form of excitation energy. Since this is about 16 times the average 
binding energy of a nucleon in a nucleus, it is difficult for a single nucleon t o  take 
up the full amount and conserve momentum at the same time. It is therefore likely 
that a cluster of nucleons, such as an a-particle cluster, is involved. Alternatively, the 
internal degrees of freedom within a nucleon may be excited. Even though the peak 
of the lowest energy resonance, the A-channel, is still far away, the small possibility 
remains an important consideration. 

In contrast to  stopped pions, the absorption of “fast” pions may be defined as a 
reaction involving an incident pion and no scattered pion, 

s + A - + A *  

Since the incident particle carries both energy and momentum, it is again impossible 
for a single nucleon in the nucleus to absorb the pion and conserve both energy and 
momentum at the same time. From the relatively large cross sections observed in the 
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reaction 
n++ d -+ p + p  

we can conclude that the two-nucleon process is important in the absorption of fast 
pions by nuclei. This idea is also corroborated by the relatively large cross sections 
observed for (n+ ,pp)  reactions on nuclei in general. Since it involves two nucleons, 
fast-pion absorption is sensitive to two-particle correlations in nuclei and, as a result, 
is one of the ways to make such studies. A concise review of the subject can be found, 
e.g., in Ashery and Schiffer (111. 

The inverse of pion absorption is pion production. When a nucleus is bombarded by 
electrons, protons, or other particles, pions are produced if sufficient energy is available. 
The reaction usually results in final states with three or more particles. Furthermore, 
many ot,her exit channels are also open at  these energies, and as a result, both the 
measurement and the analysis are complicated. For this reason, we shall not be con- 
cerned with such reactions here. An example of the pion production cross section in 
niicleon-niicleon scattering was shown earlier in Fig. 3-4. 

Pion  sca t te r ing .  Pion scattering studies may be divided into three categories: elas- 
tic and inelastic scattering, single-charge exchange (SCX) reactions, and double-charge 
exchange (DCX) reactions. Alternatively, because of the strong Psg-resonance, mea- 
surements are often divided into three groups, depending on whether the energy is 
below the resonance, 0 x 1  the resonance, or above the resonance. We have already seen 
in 54-5 that there are strong on-resonance enhancements of the n + + p  and n- +n cross 
sections over those for n- i- p and n+ + n scattering. This made it possible to use pion 
scatt,ering to distinguish between neutron and proton density distributions in a nucleus. 
We shall be mainly interested here in the other aspects of pion-nucleus scattering. 

At energies no higher than 50 MeV, far below the P33-resonance, the average inter- 
action of pions with nuclei may be represented by an optical model potential. There are 
several different possible ways to construct such an average potential for pion-nucleus 
scattering. An example is that given by Stricker, Carr, and McManus 11331. It makes 
use of the fact that, at such low energies, the scattering is dominated by 3- and p-partial 
waves. 

Let us examine first the amplitude for pion-nucleus scattering in the limit that only 
s- and p-waves are contributing. Since pions are isospin t = 1, pseudoscalar (J" = 0-) 
particles, pion-nucleon scattering amplitude may be expressed in terms of the isospin 
operator t €or the pion and 7 for the nucleon and approximated as 

. f n ~  = bo f b l t  T +  (CO + c l t .  +)k. k' (8-54) 

where k and k' are, respectively, the initial and final pion wave number vectors. The 
coefficients b" and /JI are relatled to s-wave scattering from a nucleon followed by ab- 
sorption on a neighboring nucleon, and the coefficients co and c1 are related to  the 
corresponding p-wave process. These coefficients are complex in general, as pions can 
be absorbed by nucleons. Their values may be found, for example, by fitting calculated 
results to experimental data on n-mcsic atoms. 

The pion-nucleus optical model potential that generates a scattering amplitude of 
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the form of Eq. (8-54) may be expressed as the operator 

2R 

(8-55) P 1 - 1  2 P 2 - 1  2 +-v C(.) + -v C ( r ) }  
2 2 

where p is the reduced mass of a pion. The kinematic factors 

tiw 
p 1 = 1 + -  M ,  c2 

f iW 
p 2 = 1 + -  

2 M ,  c2 

come from transformation between frames of reference attached to the center of mass of 
the pion-nucleon system and the pion-nucleus system. They are functions of the total 
pion energy fiw and nucleon mass MN. The other factors, 

b(r) = P l { $ P ( d  - 4 l W . ) )  

c(r) = P;'{CoP(.) - ewcl6P(r)l 

q.1 = P2BoP2( . )  

C(r )  = PZ'C0P2(T)  

M.1 = P d r )  - Pd.1 471 L(r)  = (1 + +(r) + C(r)]}- l  

may also depend on e,, the charge of the pion. The neutron, proton, and nucleon 
densities in the nucleus, p,,(r), pP(r) ,  and p ( ~ ) ,  are normalized, respectively, to N ,  2, 

Figure 8-10: Elastic scattering of 
low-energy pions from nuclei. The 
continuous curves are calculated re- 
sults using the values of bo, b l ,  %, CI, 

and X given in Eq. (8-56) (adapted 
from Ref. [133]). 
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and A ,  These fact,ors express various first-order correlations between nucleons in a 
nucleus. Second-order correlations in 8-waves are included in Eq. (8-55) through the 
factor 

where k ~ ,  the Fermi momentum of a nucleon in a nucleus, is taken to be 1.4 fm-’. A 
typical set of parameters for 50-MeV incident pions has the values 

X=1.4 

bo=-0.057+0.006i fm c0=0.75 +O.O3i  fm3 

bl=-0.134-0.002i fm q=0.428+0.0141 fm3 

Bo=-0.02 +0.25i fm4 co=0.36 +I.% fm‘ 

(8-56) 

As can be seen from examples shown in Fig. 8-10, such an optical model potential gives 
a good description of experimental data on elastic scattering of both 7r+ and .rr- off a 
variety of nuclei at low energies. 

At pion energies far above 200 MeV, the influence of P33-resona~ce diminishes and 
the nucleus becomes much less absorptive to pions, as can be seen from the exam- 
ples sliown in Fig. 8-11. In the energy range 300 to 800 MeV, pion-nucleon scattering 
is dominated by many overlapping resonances. In this case, we expect that  the cross 
section for pion-nucleus scattering at comparable energies may be understood by convo- 
luting these resonances, using nucleon Fermi motion inside the nucleus as a smoothing 
function. However, not enough data are available yet for a more detailed discussion. 

Figure 8-11: Tot,nl Rcattering cross section of pions off 4He, %i, and ‘*C show- 
ing the strong reaction near the &-resonance and smooth variations at higher 
incident pion energies. (Adapted from Ref. [23].) 

Measurements of pion scattering from rluclei are limited by the energy resolution 
that) can be achieved with pions. The problem is caused partly by the fact that the 
incident pions are produced by high-energy protons striking a thick target made of 
htvwy elements. Energy selection is accomplished by passing the broad spectrum of 
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particles produced through electromagnetic fields. Both the limited initial flux and 
the short lifetimes of pions put stringent limitations on what can be achieved. The 
same difficulties are also present in the detection equipment, as the pion energies we 
have here are still relatively low for some of the more efficient detection techniques to 
work well. As a result, measurements of pion-nucleus scattering are usually carried out 
on light nuclei where the low-lying nuclear levels are well separated in energy, Both 
elastic and inelastic data a e  available, and they have been useful in complementing 
the information obtained with other probes. 

Charge exchange reactions. Pion scattering involving the exchange of one unit 
of charge, ( B + ,  T O )  and (T- ,  ? y o ) ,  are among the most extensively studied n-nucleus 
reactions. Examples of (T+, ? y o )  scattering off 14C and 60Ni at  different angles are shown 
in Fig. 8-12 as examples. Except around the P33-resonance, the processes are similar 
to ( p ,  n) and (n, p )  reactions and their results are often compared. At  energies above 
the resonance, (a-, TO) reactions have some advantage over competing (n, p )  reactions, 
as intense intermediate-energy neutron beams with well-defined energies are difficult 
to obtain. On the other hand, the particle emerging from an SCX reaction is xo ,  a 
neutral particle that is usually detected by the y-rays produced in its decay through 
the reaction T O  -+ 7 + y. This puts some constraint on the types of SCX measurements 

2.0’ IAS 

PION KINETIC ENERGY (MeV) 

Figure 8-12: Energies of no observed in (d, no) single-charge exchange reactions 
induced by 500-MeV pions on 14C and “Ni at scattering angles indicated. The 
continuous curves are polynomial fits to the background (taken from Ref. [lS]). 
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that can be carried out. 
There are two different double-charge exchange reactions that can be studied with 

pions, (T+,  T - )  and ( T - ,  n+). They are interesting for two reasons. First, these pro- 
cesses must involve at least two nucleons and are therefore useful for investigating 
nucleon correlations inside a nucleus. Second, the nuclear matrix element that enters 
into the scattering cross section is related to double p-decay, a process important for un- 
derstanding the nature of weak interaction itself, as described in $5-6. For all practical 
purposes, DCX reactions are unique to pions. A nucleon, being an isospin-i particle, 
can only induce SCX reactions. The only way to  induce DCX with conventional nuclear 
probes is to use heavy ions. Here we have the complication that the probe itself can be 
excited by the reaction as well. 

Because of the small cross section, DCX studies tend to be concentrated on strong 
transitions leading to isobaric analogue states in light nuclei separated by a pair of 
iieutrons or protons. The main interest has been centered around effects involving 
the internal degrees of freedom of the nucleons. The results seem to  indicate that an 
important role may he played by processes involving intermediate states with nucleons 
excited to become A-particles. The prospects of using DCX to relate strong and weak 
interactions and to understand nucleon correlations are quite promising. As illustration, 
examples of inclusive pion double-charge exchange reaction cross sections are shown in 
Fig. 8-13. 

PION KINETIC ENERGY (MeV) 

Figure 8-13: Inclusive pion double-charge exchange reactions (&, T- ) and 
( T - , T + )  on 1n3Rb and 2n8Pb at incident pion energy 240 MeV. The emerging 
pions are detected at &,b, = 130". The smooth curves are classical estimates of 
Hufner and Thies [SS] based on Boltzmann equations (taken from Gram [77]). 
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Kaons and other mesons. In addition to pions, kaons have been available for scat- 
tering off nuclei. Kaons are “strange” mesons involving either an s-quark ( K -  and p, 
strangeness S = -1) or an 3-quark (K+  and KO, S = +I).  Conservation of strangeness 
requires that,  when a K--meson is absorbed by a nucleus, one of the nucleons changes 
into a “strange” baryon such as a A-particle (m~c’ = 1115.6 MeV) or a C-particle 
(mCoc2 = 1192 MeV). The nucleus A becomes a hypernucleus yA* in the process. Be- 
cause of the large kaon mass (~500 MeV/c2), the nucleus is left in a highly excited 
state, much more so than the case of pion absorption. On the other hand, since there 
is no light baryon with S = +1, a K+-meson cannot be absorbed by a nucleus. Many 
new and different avenues of study are opened up when we use a hadronic probe with 
nonzero strangeness. In terms of new insights into nuclear structure problems, this is 
similar to  what studies of nuclei far away from the valley of stability can provide us. 

Besides pions, interaction between nucleons is also mediated by other mesons such 
as p and w. For this reason, reactions of these mesons with nucleons and nuclei are 
of interest. The difficulty is an experimental one; there does not seem to be any easy 
way to produce intense beams of mesons other than pions and kaons. Some of the 
information on the interactions of p and w with nucleons, and baryons in general, must 
be obtained from their production rates in the decay of heavier particles. 

Problems 

8-1. Show that in the scattering of particle a, with mass Ma, off target nucleus b, with 
mass Mb, the momentum transfer q from a to b has the same form in both the 
laboratory and center-of-mass coordinates. 

8-2. Use a table of binding energies to  calculate the Q-value for the 1zoSn(d,p)’21Sn 

8-3. For a Yukawa potential V ( T )  = Voe-r/’o/r, with range r0 = h/mc given in terms 
of the mass m of the boson exchanged, find the angular distribution for elastic 
scattering in first Born approximation due to  the potential. Show tha t  in the 
limiting case of a zero-mass boson, the result is identical to Rutherford scattering. 

8-4. The angular distribution of an 1 = 2 transfer, zoNe(d,n)21Na reaction leading 
to  the J“ = 5/2+ state at 2.14 MeV in ’lNa peaks at 36’ for deuterons with 
center-of-mass energy 6.0 MeV. Use a plane wave Born approximation to  deduce 
the radius of ?-lNa. Compare the result with that given by R = l.2A1I3 fm. 

8-5. Show that, for direct reactions in a plane wave Born approximation, only 6 = 0 
transfers have maxima in the differential scattering cross section at scattering 
angle B = 0”. For t > 0 transfers, the forward direction is a minimum and the 
first maximum in the differential cross section occurs at increasingly larger angles 
with increasing &values of the transfer. 

reaction leading to  the ground state of lE$~i. 

8-6. Calculate the radius of the lowest orbit of a- in a a-mesic atom with Z protons in 
the nucleus. Assuming a two-parameter Fermi form Eq. (4-22) for the distribution 
of nucleons in the nucleus, find the overlap between the wave function of the a- 
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8-7. 

8-8. 

and the nucleus consisting of A nucleons. Take c = 5.0, z = 0.5 fm, 2 = 50, and 
A = 120. 

Find the angular distribution of neutrons emerging from a (n,n) reaction on 
2oRPb. If the incident energy is sufficiently low, multiple scattering may take 
place. Assume that each neiitron suffers two elastic collisions with the nucleons 
in the target nucleus before leaving and that the angular distribution of each 
scattering is given by \ j~(qR)I’ ,  where R is the radius of the target nucleus. Take 
the incident neutron energy to be 10 MeV in the center of mass and ignore any 
energy tlcpendence in the scattering cross section. 

Show that for low-energy, hard-sphere scattering, the cross section is equal to 
47rR2, where R is the radius of the potential well. 



Chapter 9 

Nuclei under Extreme Conditions 

For the most part, we have been looking at  stable nuclei and their low-lying excited 
states. This is, to a large extent, dictated by the availability of data. Until quite 
recently, most measurements have been confined to  nuclei that can be easily made into 
targets and, as a result, the studies are restricted essentially to those in the valley of 
stability. With heavy-ion accelerators and radioactive beams, a large number of new 
species can now be examined in the laboratory. When this is combined with improved 
detection techniques that allow many aspects of the reaction to be measured at  the 
same time, we enter into a new era of nuclear physics. 

9-1 Overview of Heavy-Ion Reactions 

The term heavy ion is generally used to mean nuclei heavier than l60. For nuclei with 
A > 16, the internal structure becomes sufficiently complex that, when two heavy ions 
scatter off each other, many reaction channels are open. If, in addition, one of the ions 
involved is an unstable one, as i t  is possible in radioactive beam experiments, a number 
of “exotic” studies can be made. In this section, we shall look a t  some of the general 
features of reactions involving complex nuclei before going on in the later sections to 
examine a few of the more exciting phenomena in detail. 

Nuclei far  away from the valley of stability. When two heavy ions are fused 
together into a single entity, the result is usually a neutron-deficient system. As we have 
seen in Chapter 1, nuclei must increase their neutron excess with increasing nucleon 
number to stay stable. For example, below Z = 20, the ratio of neutron to  proton 
numbers for stable nuclei is N/Z M 1. For medium heavy nuclei such as zirconium 
(2 = 40), N / Z  x 1.3, and for lead (2 = 82), N / Z  M 1.5. 

The composite system formed by fusing two heavy ions takes on the average N / Z  
ratio of the two. The only exception is that a few nucleons may be discarded during 
initial stages of the reaction. As a result, the neutron excess is much smaller than 
the value appropriate for the combined system. For example, when two :!Zr nuclei are 
joined together, the composite system is ‘,8!Hg. Since the lightest stable mercury isotope 
is ‘“Hg, i t  implies that the composite system is “deficient” by roughly 16 neutrons. 
The fact that lsoHg is unstable toward @+-decay with a half-life of 2.9 s for the ground 
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state is another indication that we have a neutron-deficient nucleus at the edge of the 
valley of stability. The possibility of making such proton-rich species gives iis a new 
window to  striidy nuclear physics. Furthermore, a number of different projectile-target 
combinations can be used to reach the same final nucleus, providing us with a chance 
here to examine such nuclei from different angles and to see if their properties can be 
understrood from what we have learned from stable nuclei. 

In practice, direct fusion of two heavy ions is not the normal way to  create neutron- 
deficient nuclei. The reason comes from the “extra” energy required to  penetrate the 
Coulomb barrier. As a result, the composite system is usually in a highly excited 
state, with a large amount of excess energy as well as angular momentum. Many decay 
channels are open under such circumstances, and the probability of decaying into other 
nuclei by particle emission or fission becomes high. To enhance the formation of the 
desired compound nucleus, it is preferable to  select a reaction that can carry away some 
of the energy and angular momentum by emitting a few nucleons and 7-rays. In this 
way, neutron-deficient nuclei are made up to the point where proton emission begins 
to dominate the decay mode. 

To make neutron-rich nuclei on the other side of the valley of stability, radioactive 
beams may he used. When a beam of high-energy particles strikes a thick target, a large 
variety of nuclei is produced. Since the environment is highly nonequilibrium, many of 
the species created are unstable and far away from the valley of stability. With suitable 
projectile and target combinations, it is possible to enhance the production of selected 
unstable particles. For example, nuclei such as 8He (TI /? = 122 ms), 220 ( ~ ~ 1 ~  = 2.3 
s), and ‘%n (7112 = 40 s) are produced in abundance in this way, and they have far 
more neutrons compared with their stable counterparts of 4He, l60, and lZ0Sn. As we 
shall see in the next chapter, neutron-rich nuclei are important also in the synthesis 
of elements beyond A - 56 in supernova explosions. Indeed, the condition to make 
radioactive beams is very similar to the environment under which certain heavy nuclei 
are created in an exploding star. For this reason, astrophysics interests have often been 
one of the motivations for constructing these facilities, such aa the Isotope Separator 
On Line Facility for Production of Radioactive Ion-Beams (ISOLDE) at the European 
Laboratory for Particle Physics (CERN); the Unstable Beam Facility at the Institute 
for Nuclear Study (INS), University of Tokyo; the Exotic Beam Facility at Argonne 
National Laboratory (ANL); the Isotope Separation Accelerator (ISAC) Facility at  
TRIUMF, Canada’s national meson research facility; and the Radioactive Ion Beams 
at Louvain-la-Neuve, Belgium.’ 

In addition to neutron- and proton-rich nuclei, heavy-ion beams can also be used to  
create superheavy nuclei. We have seen earlier that nuclei beyond *08Pb are unstable 
because of the Coulomb repillsion between the large numbers of protons. In fact, the 
only ones we find outside the laboratory are those with lifetimes comparable to or 
longer than the age of the solar system or decay products of such long-lived nuclei. 

In general, lifetimes of nuclei beyond 208Pb decrease with increasing nucleon num- 
ber. However, as we have seen in 57-2, it is quite possible that, because of shell struc- 
ture, a region of relative stable nuclei may be found beyond the heaviest one we are 

’ For more information on ISOLDE, see Irttp://www.cem.ch/ISOLDE; on INS,http://nprun!.in..u-tokya.ac.fp; on 
the Exotic Beam hcility, http://www.phy.anl.gov/div/origins/yellow-book; on ISAC, http://www.triumf.cs/iaac 
/lothar/isac.html, and on Louvaln-la-Neiiva, http://www.cyc.ucl.ac.be/CYC/rib/rib-sn.htm1. 
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aware of so far. Since i t  is unlikely that any such nuclei are stable (otherwise they 
would have been discovered), the only way we can detect their presence is through 
their decay scheme to  lighter ones. As a result, it is necessary to make first the lighter 
nuclei below the superheavy ones before we can make the identification. Furthermore, 
from a practical point of view, the only way to build up to the superheavy "island" 
of relative stability is go one step at time. A recent addition to such a list is the 
element ( A ,  2) = (277,112), created at  GSI (Gesellschaft fur Schwerionenforschung, 
Darmstadt, Germany) using a beam of i:Zn on a 2,0iPb target [84]. The identification 
of the element is through a sequence of a-particle decays, as shown in Fig. 9-1. With 
radioactive beam facilities, additional means to create such particles become available 
as well. 

Figure 9-1: Identification of element 
112 by its a-particle decay chain. Two 
such chains, each with a different set 
of a-particle energies, have been re- 
ported, one ending at !::No and the 
other at :!iFrn 184). 

Coulomb effects. Another interesting aspect of heavy-ion reactions is the strong 
Coulomb field created in the process. First, we saw in 58-1 that the strength of Coulomb 
excitation is proportional to the product of charges carried by the projectile and the 
target. With heavy ions, we are able to increase the charge of the projectile by a large 
factor over that of light ions. For example, if *$J is used, the Sommerfeld number 77 of 
Eq. (4-64) is increased by a factor of 92 over that for a proton. As a result, low-energy 
heavy ions are the projectiles of choice for Coulomb excitation reactions. An example 
is given in Fig. 9-2, where many high-spin states in 238U were first found by Coulomb 
excitation using a beam of 'O'Bi at 5 to 6 MeV per nucleon. 

Second is the interest at slightly higher energies. If the projectile has sufficient 
energy to tunnel through the Coulomb barrier of the target nucleus, acompound nucleus 
of charge 2 = 21 + 2, is formed. If the sum of the two proton numbers is greater than 
137, the inverse of the fine structure constant, a very interesting situation in quantum 
electrodynamics may develop as a result. To see this, let us return for the moment 
to the simple problem of hydrogen-like atoms with a single electron outside a nucleus 
having Z protons. Nonrelativistically, the energy levels are given by the solution to the 
Schrodinger equation as 

azm,cz Z2 
4aco 2hZ n2 2 n2 

En = - [(-!-)'I m,e'g - - --- 
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Figure 9-2: States in 23RU observed in Coulomb excitation using a beam of 209Bi 
ions at 1130 and 1330 MeV. (Adapted from Ref. [142].) 

where n is the principal quantum number that labels the atomic energy levels. The 
lowest state is 1s (n = 1, t = 0). For a hydrogen atom, we have Z = 1 and the ground 
state has energy 

d m , c 2  
2 

El, = -- = -13.6 eV 

The factor a2rn,c2/2 = Izy is known as the Rydberg energy, the ionization energy for 
a hydrogen atom in the ground state. 

More generally, we can solve the Dirac equation for a hydrogen-like atom assuming, 
for simplicity, a point nucleus of charge + Z e .  In this case, we obtain instead the total 
energy for the ground statme of the system, 

E ~ ,  = mec2J-, (9-1) 

where cy is the fine structure constant. For Z = 1, this also yields a value of 13.6 eV 
for the ionization energy of a hydrogen atom, as expected. For 2 > 1,  the expression is 
valid up to  some critical value Z,, = 1/a r+! 137. The limitation is usually not a problem, 
as all the known nuclei have 2 values much less than Zcr. Even among the man-made 
elements, the highest Z-value known so far is 112, as we saw earlier. However, in 
heavy-ion collisions, it is possible for the compound nucleus, formed by fusing two 
heavy nuclei, to have a 2-value far in excess of 137. In this case, a supercritical field is 
rreatcd as a result. 

137 are necessary, as nuclei are not point 
charges. The exact value depends somewhat on the charge distribution inside a nucleus, 

Some roirections to the result Z,, 
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For a uniform charged sphere of radius reasonable for nuclei, a result of Z,, < 200 is 
obtained. This higher value can also be exceeded in heavy-ion collisions. 

The  physical meaning of a supercritical field may be seen from the following ar- 
guments. As the charge number of a nucleus is increased, the eigenvalues of atomic 
levels decrease from those given roughly by Eq. (9-1) until the critical value is reached. 
When this happens, the 1s-level becomes degenerate with the negative-energy contin- 
uum filled with equal numbers of electrons and positrons. The charge-neutral vacuum 
is no longer the state of minimum energy. To lower the energy, positrons are released 
and the remaining vacuum becomes a charged one. This phenomenon is referred to 
as the “spontaneous” decay of the neutral vacuum. Experimentally, the presence of a 
supercritical field may be identified by the appearance of narrow positron peaks when 
two heavy nuclei collide with each other. However, in spite of initial hopeful signs, no 
positive identification is known to  date. 

High spin and large deformation. We have seen in $1-3 that ,  when two heavy 
ions approach each other, it is possible for the combined system to acquire angular 
momentum in excess of 1OOti .  The experimental arrangement of interest t o  us here 
is one that the relative kinetic energy between the two particles is still quite low but 
sufficient for one to  tunnel through the Coulomb barrier of the other. Since the impact 
parameter here is comparable to the sum of their radii, we have essentially a grazing 
collision, as shown schematically in Fig. 9-3. In such cases, only a small number 
of nucleons in the projectile and the target are in close proximity of each other for 
nuclear interaction t o  take place between them, and consequently, it takes some time 
to  transform the relative kinetic energy in the system into internal excitation. At the 
mean time, the energy appears in the form of rotational energy, as if the projectile 
and target nuclei are revolving around each other. The composite nucleus may be said 
to be still rather “cool” in the sense that most of the nucleons remain in their lowest 

‘0 Coulomb excitation 

Figure 9-3: Schematic diagram showing the different possibilities in a heavy- 
ion collision. At low energies, Coulomb excitation dominates. At slightly higher 
energies, the ions come into contact with each other and we have grazing collisions. 
At even higher energies, head-on collisions become possible. 
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single-particle states. 
The time available for two heavy ions to  overlap each other and coalesce in a heavy- 

ion scattering under such conditions is very short. To gain some perspective, we can 
make an order-of-magnitude estimate of the amount it takes for the two nuclei to go 
around each other once. For simplicity, let us assume that the relative speed between 
the two ions is 1/15 of the speed of light, corresponding to about 5 MeV/nucleon in 
energy. If the centers of two ions are 10 fm apart, the time to go around each other 
once at speed c/15 is on the order of loez1 to  s. Compared with the interaction 
time of the order of to  lo-'' s, we see that the two systems do not have enough 
opportunity to reach an equilibrium with respect to  each other. This is quite different 
from the case of of a normal compound nucleus formation and, consequently, the two 
ions maintain more or less their original shapes. The resulting intrinsic shape of the 
composite system is highly deformed, as shown schematically in Fig. 9-4. For this 
reason, it is not surprising that some of the largest deformations are found in heavy-ion 
collisions at relatively low energies. 

Figure 9-4: Schematic diagram show- 
ing a grazing collision between two heavy 
ions. Without adequate time to equili- 
brate, the two ions retain more or less 
their original shapes and revolve around 
each other to conserve the large amount 
of angular momentum in the cornpositme 
system. 

The most likely channel for the composite system to decay is fission. If for some 
reason that fission is inhibited, a part of the excess energy may be discarded by nucleon 
evaporation and y-ray emission. The angular momentum carried away by emitting a 
nucleon is, however, quite small on the average. The amount may be estimated using 
an approximation that the maximum angular momentum !, carried away by a nucleon 
is given by hkR, where k is the wave number of the nucleon and R is the radius of the 
composite system. For a neutron, the average kinetic energy is around 2 MeV, as it  is 
difficult for an individual nucleon to  acquire much more energy in the collision of two 
heavy ions, regardless of whether the composite system is fully equilibrated or not. For 
nucleon number A around 150, the value of t,,, obtained in this way is around 2ti (see 
Problem 9-2). The average angular momentum actually carried away by a nucleon is 
lower than this value and is more likely to be ~ l h .  The same is also true for yrays ,  as 
the probability decreases rapidly with increasing multipolarity. 

At the end of nucleon and y-ray emissions, there can still be a substantial amount 
of angular momentum left in t'he remnant nucleus, and this appears in the form of 
niirlesr spin. If the excitation energy is relatively low, such high-spin states are likely 
to be rnembers of a yrast band, a rotational band consisting of the lowest member in 
energy of each spin. Once the nucleus is in one of these states, all subsequent decays 
proceed predominantJy through y-ray emission from one yrast level to the next one just 
below, as we have seen earlier in §6-3. The process of populating a yrast band is shown 
scliematkally in Fig. 9-5. 



$9-1 Overview of Heavy-Ion Reactions 323 

Figure 9-5: Schematic diagram 
showing the formation of yrast lev- 
els. The composite system cre- 
ated in a heavy-ion collision con- 
tains large quantities of excess en- 
ergy and angular momentum. The 
amounts carried away by neutron, 
a-particle, and -pray emissions are 
very limited and the nucleus is 
likely to be left in a high-spin 
state, often a member of the yrast 
band. Thereafter, the nucleus de- 
cays through ?-ray cascade from 
one member of the band to the 
next. 
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The maximum angular momentum that can be attained by a nucleus depends on 
several different considerations. For light nuclei, the limiting factor is the highest spin 
to which the valence nucleons can be coupled together. For example, in the lp-shell, 
the maximum allowed J is 5 for six particles coupled together to T = 0. In the ds- 
shell, the maximum value is J = 14 for 12 active nucleons. In heavier nuclei, both the 
number of active orbits and the average spin of single-particle orbits are larger. For 
such nuclei, the maximum value is more likely to be limited by other considerations, 
such as stability against fission. 

High-spin nuclear states usually lie quite high in excitation energy, in part due to 
the amount of energy associated with rotation. Since the density of states in such 
regions is high, the lifetimes of most states are short because of the large number of 
open decay channels. As a result, it is usually impossible to resolve individual levels, 
The yrast levels are, however, the exception, as their decays are dominated by y-ray 
transitions within the band and, as a result, their lifetimes are long compared with 
other levels in the vicinity. The narrow widths of these y-rays stand out against the 
background made of the decays of short-lived levels in the same region. 

The highest J-values are observed in nuclei with “superdeformed” bands. These 
are formed when two heavy ions are fused together into a highly deformed shape, with 
the ratio between polar and equatorial axes as large as 2. Such a configuration is 
usually not the lowest one in energy and is therefore not commonly found in ground 
state bands. The high-spin members can be “followed” by observing the y-ray cascade 
from one member to the next until the lowest energy members of the band merge into 
those made predominantly of ground state configurations. 

When a nucleus is in a state with very high J-values, it is almost classical in the 
sense of the correspondence principle. Further progress in experimental techniques may 
lead to identifications of even higher spins and thus allows us to trace the development 
of a nucleus from a purely quantum-mechanical state to  a classical one. This may 
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also be of interest to the study of the transition from quantum-mechanical to classical 
description of physical phenomena in general. 

Deep  inelastic scattering. If the collision energy is slightly above the Coulomb 
barrier between a pair of heavy ions, many reaction channels are open and compete 
with each other. In such cases, it  is usually imposihle to investigate each type of final 
state individually and the inclusive cross sections are studied instead. The reaction 
is often referred to as deep-inelnslic collision, similar to the situation of high-energy 
electron scattering discussed earlier in $4-4. The cross section is large here, especially 
for the heavier nuclei (u N 10 to 20 fin2). The reaction is often accompanied by the 
transfer of as many as 20 nucleons from one nucleus to the other. At the same time, up 
to 100 MeV of kinetic energy and 50h of angular momentum are shifted from relative 
motion to excitation energies in the final nuclei. 

Since many nucleons are involved here, it is possible to adopt a statistical mechanics 
approach to study the collective degrees of freedom associated with the process. A good 
starting point for such a macroscopic view is the master equation 

where P,(t) is the probability that, at, time t ,  the system is in a group of closely 
related states n and W,, is the transition probability per unit time from the group 
of states m to the group n. The meaning of Eq. (9-2) is simply that the probability 
of finding a group of states is given by the difference between the sum of those for 
transferring into the group and those for leaving the group. This is the usual approach 
used in studying transport phenomena. For the transport description to be valid for 
the collective degrees of freedom of interest here, the time scales involved in the system 
must satisfy the condition 

where tequ is t,he time it takes for the noncollective degrees of freedom to reach equi- 
librium with respect to each other, tcoll is the time required for the collective degrees 
of freedom to reach eqnilibrium, and tpDincsre is the Poincard recurrence time, the time 
for the system to return to its original point in phase space. The condition imposed on 
the relation between different time s d e s  is necessary here, as we are using the master 
equat,ion t,o deal only with the collective degrees of freedom for a system of two heavy 
ions. This requires that the noncollective degrees of freedom of the system, such as 
single-particle excitations, have reached an equilibrium already and do not participate 
in the transport process. The extent to which these conditions are met and the degree 
of RIICCCSS for a transport, theory description of deep-inelastic collisions can be seen 
in the agreement between the calculated results and experimental observation of the 
collision of '3GXe on 209Bi at 1130 MeV laboratory energy shown in Fig. 9-6. 

As an alternative to statistical mechanics methods, we can take a microscopic view 
and treat individual nucleons as the basic components. The entire deep-inelastic colli- 
sion process is, in this case, governed by the time-dependent Schrodinger equation (B-I) 
and described by a wave function Q(P, t ) .  As the two heavy ions approach each other, 
they collide and evolve into the final state. A general solution to  Eq. (B-1) is, however, 

tequ <( t c o ~  tpoincare 
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Figure 9-6: Double-differential cross 
section for the reaction 13"e on 'OgBi 
at El,b=1130 MeV. Each curve is the 
sum over a final energy bin of 50 MeV 
wide centered around the value indi- 
cated. Solid lines are the measured 
values of d2aldE dZ integrated over 
center-of-mass angles 25' 5 0 5 75" 
and dashed lines are the calculated re- 
sults using a transport theory. (Taken 
from Ref. (921.) 
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impossible for the complicated case of two heavy ions scattering off each other. One 
way to simplify the calculations somewhat is to use a time-dependent Hartree-Fock ap- 
proach and take the time-dependent differential equation (B-1) as a difference equation 
that gives the changes in the wave function, A @ ( r ,  t ) ,  in the time interval At, 

1 
A@(r, t )  = -H e(r, t)At 

ZFl 

At a given time t ,  we have a system of A1 -t A2 nucleons whose motions are given by 
the Hamiltonian H .  The difference between the wave function at time t and t + At, 

A @ ( r ,  t )  = Q(r,  t + At) - @(r ,  t )  

is the result of the action of the Hamiltonian on the system in the small time interval 
At. By solving the difference equation, we obtain the changes in the wave function 
AQ(r, t )  and, thus, the wave function Q(r,t+At) describing the system at time t+At. 
In this way, the time evolution of the system may be traced out in small steps. The 
Hamiltonian equation is, however, still a very complicated one to solve in view of the 
large number of nucleons involved. A further simplification is to invoke the Hartree- 
Fock approximation, which gives a fairly realistic description of the nuclear physics, as 
we have seen for the time-independent case in 37-3. 

Ultra-relativistic collisions. At the other end of the energy scale we have heavy-ion 
collisions at ultra-relativistic energies. This is a topic of interest to both nuclear and 
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particle physics. Let us examine the reasons for putting the enormous investment into 
this particular effort by looking into the energy densities involved. 

In a nucleus of radius R = l .2A’f3,  the energy density is given by 

!z 130 MeV/fm3 
PA (47r 13) R3 

For three quarks confined in a nucleon of radius T x 1 fm, the value is even higher, 
roughly 250 MeV/fm3. If heavy ions are made to collide with each other at center-of- 
~nass kinetic energy far larger than their total rest mass energy, for example, in excess 
of several hundred giga-electron-volts per nucleon, the energy density is even higher. 

We can get a sense of the implications of such large energy densities from the fol- 
lowing considerations. In nuclear scattering, we seldom have to  be concerned with the 
chemical compound from which the target is made (except for, of course, practical 
considerations of making and supporting the target in an actual experimental setup). 
This is because, in typical nuclear scattering experiments, the energy involved is on 
the order of mega-electron-volts. Chemical binding energies are, on the other hand, 
measured in electron-volts. For this reason, we do not need to include any chemical 
considerations in nuclear physics, except in special cases such as neutrino mass mea- 
surements using tritium /?-decay. The same is true in the analogous situation of particle 
physics experiments i n  which the typical energy involved is GeV or higher. In these 
cases, nuclear binding energies are irrelevant for all practical considerations. (The only 
possible exception is in high-energy lepton scattering discussed in 54-4.) 

At ultra-relativistic energies, we expect the “bags” that confine quarks inside 
hadrons to  become irrelevant, in the same way as chemical binding in nuclear experi- 
ments and nuclear binding in particle physics experiments. When two heavy ions are 
in a situation that the quarks inside their nucleons are essentially “free,” we have a 
chance of creating a state of matter in a finite volume that is quite different from nu- 
clear matter. I t  is expected that the region is dominated by quarks, antiquarks, and 
gluons. For this reason, it is generally referred to aa a quark-glum plasma, or QGP 
for short. In addition to interests in quantum chromodynamics, this state of matter is 
likely to be similar to that which existed at the beginning of the “big bang,” postulated 
in cosmology as the event that gave birth to our universe. The study is, therefore, a 
qiiestion of central importance in cosmology as well. Since we are now entering into a 
region with little or no observational data, many new and unexpected things can hap- 
pen and they, in turn, will lead us into new areas of physics we have not yet thought 
about. 

9-2 High-Spin States in Nuclei 

One of the modern interests in nuclear physics is high-spin states and the associated 
large deformation found in medium and heavy nuclei. We have seen earlier tha t  pairing 
force is a dominate feature in nuclear interaction. As a result, two identical nucleons 
have a strong tendency to couple to angular momentum zero. Because of this, all 
even-even nuclei have J“ = O+ for the ground state. To build up any large spin values 
requires many nucleons to break away from this trend and align their spins more or 
less in the same direction. Such an alignment, in turn, implies large deformation, in 
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contrast to nearly spherical shapes found by putting particles pairwise in +m and -m 
magnetic substates. 

We saw earlier in $6-3 that collective states, under appropriate conditions, form 
rotational bands. In fact, it is usually through such band structures that rotational 
features are identified. In general, the spin of a state cannot be measured directly. 
Instead, it is deduced from such observations as the multipolarities of transitions to 
states of known spin. A simple example is one that decays by electromagnetic radiation 
to a state with J“ = O+. If the transition is known to be E2 from, for example, the 
angular distribution of the 7-rays emitted, we can identify the spin-parity of the state 
to be 2+ using angular momentum conservation. (For decays to final states other than 
O+, the procedure is more complicated and usually requires transitions to more than 
one state of known spin and parity.) The high-spin values we are interested in here 
are usually deduced from a sequence of strong decays from one member of a band to 
the next one lower in energy. In the simple case of an even-even nucleus with the last 
member of the band known to be O+ and all the decays being E2, the sequence of 
decays identifies the members of the band to be O+, 2+, 4+, . , . , as we have seen earlier 
in $6-3 for K = 0 bands. If n such (correlated) E2-decays are observed in a nucleus, the 
highest member of the band must have J = 2n. Many examples have been observed in 
the laboratory and the largest spin value known now exceeds 60h. 

Because of pairing, spherical shape and small deformation dominate low-lying 
states. The kind of large deformation we are interested in here is usually found slightly 
above ground state configurations. However, the excitation energies involved, other 
than rotational, cannot be too large, or else the system is unstable toward fission and 
it will not be possible to observe the high-spin states. The question why large defor- 
mation occurs at  such low excitation energies is an interesting one. However, before we 
can address this problem, let us examine first some of the evidence for assuming that 
alignment is an important feature underlying large deformation. 

Band crossing and backbending. One of the interesting observations made on 
high-spin states is the presence of small but sudden changes in the moment of inertia 
of certain nuclei. On a plot of EJ as a function of J(J + l), the changes are usually 
too insignificant to be noticed. However, if the moment of inertia Z is plotted against 
the square of the frequency of rotation, local variations are amplified. A group of these 
may appear in the form of a Z-shaped curve, as shown in Fig. 9-7, and hence the 
name “backbending.” To make such a plot, we need the local values of the rotational 
frequency w and moment of inertia. The former is not a quantity that can be measured 
directly but may be inferred by making an analogy with classical rotational frequency 
through, for example, the relation 

dE 
d d m  

liw = 

for a K = 0 band. The value may be approximated by the difference between the 
energies of two adjacent members, EJ and E J - ~ ,  

(9-3) 
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Figure 9-7: Backbending in 154Dy. When the energy of each level in the band 
is plotted against J ( J  + l), a typical rotational spectrum is found, with a slow 
variation of the momentum of inertia due to centrifugal stretching. However, 
when the relation is examined in more detail in the insert by plotting 2Z/h2 
against ( h . ~ ) ~ ,  a sudden change is observed around J = 20, indicating a shift in 
the intrinsic structure of the nucleus. (Plotted using data from Ref. (141.) 

Similarly, the locd value of the moment of inertia may be found from the relation 

2 2  4 5 - 2  
R2 - EJ - EJ-2 
_ -  

and calculated from the energy difference between two adjacent members. 
A simple explanation of the phenomenon may be made using the idea of band 

crossing. Consider a nucleus having two rotational bands, A and B,  each with a slightly 
different moment of inertia and band head position. I t  may happen that, below some 
energy E,, members of band A lie below the corresponding ones of band B ,  and the 
other way around above E,. On a plot of EJ versus J( J + l) ,  the two curves cross each 
other, a relatively common occurrence in medium and heavy nuclei. If the structure 
of tjhe two bands are quite different from each other, there will not be any coupling 
between them and each one appears as a separate entity. This is also true even when 
the structure of the two bands are similar if members of t,he two bands with the same 
J-value are well separated in energy, as the coupling between them is expected to 
be weak. The exception occurs around E,, where the “unperturbed” positions of the 
states in the two bands with the same .J’ are almost, degenerate in energy. In this 
case, even a very small interaction can cause mixing between them, as we saw earlier 
in the analogoils sitiiatiori of isospin mixing in ’$4-8. The result is strong mixing in a 
few adjacent states and appears as a local variation of 2. Since the moments of inertia 
are very similar between the two bands, there will not be any strong indications of the 
change, for example, in a plot of EJ versus J ( J  + l), as one moves across E,. One way 
to amplify the sudden variation is to use a more sensitive plot, such as 2Z/ti2 versus 
(fiw)’, shown as an exaniple in the insert of Fig. 9-7. 
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From the point of view of rotational alignment, it may be more instructive to 
view the same explanation from the following perspective. Consider again a low-lying 
rotational band in an even-even nucleus for simplicity. The intrinsic state is formed 
mostly by zero-coupled pairs of particles filling up the lowest available (deformed) single- 
particle states. As we move up in angular momentum, the rotational energy increases. 
At some point, it may be more advantageous instead to increase the spin value by 
breaking a zero-coupled pair and aligning the angular momenta of the two (identical) 
particles to the maximum possible value of (2j  - 1) (as the value 2 j  is forbidden by the 
Pauli principle). This is more likely to take place in medium and heavy nuclei where 
the particles are occupying single-particle states with large j-values. In such cases, the 
energy required to break a pair may be less than the increase in the rotational energy at 
large J-values. This picture is confirmed by other observations, such as changes in the 
single-particle occupancy in the region of backbending. Since the structure is modified 
by breaking a zero-coupled pair, we may view the situation as one that the rotational 
band is now taking on a different intrinsic shape. From a band-crossing point of view, 
this new intrinsic state is one that actually belongs to another rotational band that 
crosses the present one. We shall see soon that alignment of single-particle angular 
momenta is an important ingredient in forming high-spin states. 

Superdeformation. In $6-3 we saw that rotational bands are associated with nuclei 
having nonspherical intrinsic shapes. To reach the kind of high spin values of interest 
here, deformation much larger than the usual ones found in ground state rotational 
bands is needed. In recent years, highly deformed shapes with the ratio of semi-major 
to semi-minor axes around 2: l  have been observed in a number of nuclei, starting from 
:pCe I1111 and AizGd [113] in the 1980s. These are the superdeformed bands where spin 
values beyond 60h have been identified. From the measured lifetimes of and transition 
rates between members of the bands, one can infer that the value of p, the deformation 
parameter defined in Eq. (6-11), reaches values around 0.6. If we take a first-order 
approximation that 6,, of Eq. (7-32) is roughly equal to p, we find that the frequency 
ratio of w l  to w3 is 2: l .  Since the ratio of the root-mean-square radius in each direction 
is proportional to that for the inverse of the oscillator frequencies, 

we obtain the ratio < T: >'I2:< T: >lI2= 2 : 1 for an axially symmetric nucleus. 
Even larger deformations with axis ratio of 3 : 1 ,  the case of hyperdeformation, have 
been speculated to exist. However, at the time of writing, there is no known definitive 
experimental confirmation for such exotic states. 

In the ground state region, the deformations are much smaller, typically with p < 
0.3. The presence of large deformation at relatively low excitation energies raises two 
questions. The first is that, since they are so different, how can such large deformations 
be excited, or populated, in an experiment. The second question is concerned why such 
"unusual" states can be observed a t  all in a region with high level-densities. In other 
words, why are they not admixed with other configurations nearby and buried as small 
components among the multitude of others a t  roughly the same excitation energies? 
Instead, members of the superdeformed bands have relatively long half-lives and the 
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?-rays emitted in transitions from one member to  another stand out as sharp lines over 
and above the background from a large variety of sources. 

Heavy-ion reaction has been the method of choice to  excite superdeformed bands 
and high-spin states. The bombarding energy is usually kept as low as possible so that 
only a minimum amount of excess energy is put into the system. At the same time, 
the incident energy must be high enough for the ions to penetrate the Coulomb barrier 
with sufficient probability for the results to be observed. Except for small amounts 
carried away by nucleons and 7-rays emitted in the reaction, the bulk of the angular 
momentum in the collision remains with the compound nucleus formed. For example, 
13%e is produced by the reaction *ooMo(36S,4n)'32Ce using a 155-MeV 36S beam (1221. 
Similarly, 152Dy is populated by the reaction 120Sn(36S,4n)152Dy with a 170-MeV 36S 
beam (1241. The known superdeformed bands in these nuclei are shown schematically 
in Fig. 9-8 using data from the Evaluated Nuclear Structure Data File (ENSDF) 179) 
and Ref. [Sl]. 

T 2 l l Y r n  

SD-1 SD-2 SD-3 SD-I SD-2 SU-3 SD-4 SD-S 

w e  152Dy 

Figure 9-8: Schematic diagram showing the superdeformed bands in 13%e and 
152Dy. The spin values of bands SD-2 and SD-3 are only observed relative to 
an unknown band head marked iL4 J in each case. (Plotted using data from 
Refs. 179, 911.) 

The deformation of a rotational band is not a quantity that can be observed directly. 
The usual way to deduce its value is to make use of the intrinsic quadrupole moment 
QO and moment of inertia Z. For a constant-density ellipsoidal nucleus, these two 
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quantities are related to the deformation parameter p of Eq. (6-11) by the relations 

Z M ~ A M N R : ( ~  + 0.31p) + O(p2) 
3 

Qo M -ZR;P(l+ 0.36p) + O(p3) 

(See Problem 9-5.) If the spins of the states are known, the (transition) quadrupole 
moment may be deduced by measuring the lifetimes of the members. For example, 
Eqs. (6-21) and (6-22)  can be used for the case of a K = 0 band to find the reduced 
transition rates B(E2; J -+ 5 - 2 )  and their values are related to the intrinsic quadrupole 
moment Qo through Eq. (6-21). Alternatively, we can use Table 6-1 and Eq. (6-21) to 
give the result 

fi 

- 
J (  J - 1) 

( 2 J  + 1)(2J - 1) 
W = 1.83 x 1O8E:e2Q; 

where E, is the transition energy in mega-electron-volts. This gives us the quadrupole 
moment Qo in units of femtometer squared directly in terms of the observed transition 
rate W measured in units of inverse seconds. 

Dynamic and kinematic moments of inertia. The more likely situation in su- 
perdeformation studies is that only the transition energy E, is known. In this case, the 
nature of the band may be deduced using the dynamic moment of inertia 

where J, is the projection of total angular momentum on the rotation axisz in units of 
h and is given by 

J, = Jm 
Similar to what we did earlier in Eq. (9-3), we can find the value of using the 
observed y-ray energies emitted in the decay from one member of the band to the one 
just below. For a J to J - 2 transition, we can approximate dJ, as 

A J ,  = d m  - J ( J  - 2 ) ( J  - 1) - Kz 2 

For dw in Eq. (9-4), we can use the approximation 

1 
ti 

AU = - A ( h w )  
1 1 

J-oo ' ~ ( E J  - EJ-z) - ~ ( E J - z  - EJ-~)  
1 1 

2h. 2ti 
= -{E,(J -+ J - 2) - E,(J - 2 4 J - 4)) -LIE, 

The net result is that 

2Since deformation parameter 7 = 0" here, the rotation is around the smallest axis, taken to be 
the z-axis here. 
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independent of the actual value of the spins involved. 
A related qiiant,it.y, the kinematical moment of inertia, 

is also used on occasion to characterize rotational bands. At high spin values, we have 
J, x J ,  and Z(') reduces to he the same as the classical expression for the moment of 
inert,ia (the static moment of inertia) given in Eq. (6-13). By differentiating Eq. (9-6) 
with respect t,o w ,  we arrive a t  a relation between and I('), 

For a rigid rotor, all t,hree moments of inertia, 2, T('), and 2('), are independent of the 
rotation frequency w and the second term on the right-hand side vanishes. This leads 
us to the conclusion that, for a rigid rotor, 

(9-7) Z(2) = I(') = z = - ; M n ; ( l +  $5) 

where we have made use of the value of the moment of inertia for a rigid body given 
by Eq. (6-26). 

The combination of Eqs. (9-5) and (9-7) provides us with a way to  estimate the 
deformation of a band and to see if it is superdeformed without knowing the spin values. 
Let 11s use 84Zr as an example. In the reactions 58Ni(29Si,2plt)84Zr at bombarding 
energy of 128 MeV and 58Ni(32S,(r2p)R4Zr at 135 MeV, a group of nine transitions, with 
E7 = 2716, 2599, 2435, 2272, 2114, 1959, 1808, 1663, 1526 keV, was found (891. From 
the int,cnsities of and coincidences among the y-rayfi, one can identify that they come 
from E2-decays, cascading down from one member of a rotational band to the next 
one just below. However, without transitions observed going to  states with known spin 
and parity, the absolute values of the spin and parity of the band members cannot 
be established. Tlsing Eq. (9-5) to calculate the values of and Eq. (9-3) for hw, 
the values of are plotted as a function of hw in Fig. 9-9. We see that the results 
are fairly constant, around 25 R2/MeV or slightly above. In contrast, the values for 
a normal band (band 3) in the same niicleiis, shown as crosses, decrease rapidly with 
increasing value of hw. To have a feeling of the size of deformation, the value for a 
rigid rotor with ti N 0.6 is also shown in the plot for comparison. A value of p = 0.53 
for the superdeformed band is established subsequently by measuring the lifetimes of 
the states. The /3-value is also consistent with a cranked Woods-Saxon calculation to 
be discussed below. 

Shape coexistence in  nuclei. One of the unique feat,ures of superdeformed bands 
is that the dec.ays are going mainly to states within the band. In contrast, normal 
deformed bands have much more "side feedings," or interband decays. The obvious 
explanation is that superdeformcd bands have very different structure from nearby 
states, especially i n  view of the fact that they exist in a region of high level densities. 

At the same time, we saw above that the spin values involved are high and the 
moments of inertia are large for the superdeformed bands. The combination of these 
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Figure 9-9: Comparison of the values of deduced for a superdeformed hand 
(circles) and those of a normal band (asterisks) in 84Zr. The value for a rigid 
rotor with 6 - 0.6 is shown as a straight line for comparison. (Plotted using data 
from Ref. [SS].) 

two factors means that most of the excitations are in the form of rotational energy. 
The intrinsic state underlying the band must be fairly low in energy relative to the 
ground state configuration. The interesting question here is how can such very different 
structures coexist in the low-lying regions of nuclei. In other words, what are the reasons 
for quite different intrinsic shapes to have very similar energies. Earlier, we saw that, 
primarily because of pairing, the lowest configurations in nuclei tend to be spherical 
in shape or nearly so. Here, in superdeformed bands, we find that highly elongated 
shapes can also be quite low in energy. 

In principle, one can perform a microscopic calculation similarly to what was de- 
scribed in 57-5 and see if there is a group of states at relatively low excitation energies 
with large quadrupole moments and strong E2-transition rates among themselves. I t  
is obvious that many active particles are needed to build up the high spin values of 
interest here. Furthermore, to reproduce the large deformation, an enormously large 
number of (spherical) single-particle basis states is required. Such a calculation is out 
of the question in practice, and a significant part of the theoretical effort in superde- 
formation studies is devoted to finding suitable alternatives in understanding the new 
phenomena. 

I t  is actually fairly simple to demonstrate why we can have highly deformed con- 
figurations that are relatively stable. We have seen that one of the important reasons 
for the existence of closed shell nuclei 4He, l60, 'OZr, and *OSPb is the large energy 
gaps in the spherical single-particle spectrum shown in Fig. 7-3. In fact, nuclei with 
either neutrons or protons filling up all the single-particle orbits up to one of these 
large energy gaps are also relatively stable. Based on this observation, we find that one 
of the necessary conditions for stable deformed nuclei is large energy gaps in deformed 
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single-particle spectra. 
For this purpose, we shall consider only axially symmetric nuclei and, to  further 

simplify the calculation, make use of the harmonic oscillator single-particle Hamiltonian 
in Cartesian coordinates we saw earlier in Eq. (7-31), 

The eigenvalues are given by Eq. (7-33). For our purpose here, it is more instructive 
to express the result in terms of the deformation parameter bosc of Eq. (7-32) 

fpJn3f) = hJ ( N  4- ; - $60,&3 - nd} 

where N = 113 + 711, with 113 the number of oscillator quanta along the symmetric axis 
and 111 the number along the two other axes. The results are shown in Fig. 9-10. Since 
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Figure 9-10? Single-particle energies of an axially symmetric harmonic oscillator 
Hainiltonian in units of RWO, showing the existence of shell structure at large 
deformations that are different from the spherical cnse. The starting point of 
superdeforination, witch frequency ratio W L  : w3 = 2 : 1, is marked as “SD.” 
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we have not included terms depending on L2 and 1 * a, the orbits are degenerate with 
respect to R as well as orbital angular momentum. We see that, a t  large deformations, 
beyond those shown in the Nilsson diagram of Fig. 7-5, there are new shell structures 
in the form of large energy gaps in the single-particle spectrum. This happens for both 
prolate and oblate deformation. The degeneracies, corresponding to magic numbers in 
the case of the spherical shell model, are marked for the special cases of So,, = -1-0.6, 
corresponding to w l  : w3 = 2 : 1,  and 6,, = -0.75, for w l  : w3 = 1 : 2. The fact that 
shell structure in this simple case happens to match with those for superdeformation 
is purely coincidental. In any actual applications, a far more realistic single-particle 
Hamiltonian must be used and several correction factors applied before one can make 
comparisons with observations. 

Nilsson-Strutinsky approach. Since a complete microscopic understanding of su- 
perdeformation is impossible, some practical and reliable alternatives must be found to 
analyze the physics behind the experimental observations. Most of the work is based 
on the method of Strutinsky [134] and Myers and Swiatecki [lo81 (referred to hereafter 
simply as the Strutinsky method, following general practice in the literature). We are 
interested here, among others, in the question of why large deformation can exist at  
low excitation energies in certain nuclei. For this purpose, we shall calculate the equi- 
librium shapes of nuclei for different deformations and see if there are minima in the 
energy surface far away from the spherical limit. Our main concern here shall primarily 
be with the basic approach, leaving the detailed methods to the literature (see, e.g., 
Refs. [l, 146, 561). 

From a computational point of view, the simplest way to solve a nuclear many- 
body problem is to take a macroscopic approach as, for example, we have done for 
binding energies using semi-empirical mass formulas in 54-9. The major shortcoming 
in following such a line of investigation is the failure to account for local departures 
from smooth trends. In the case of binding energies, the Weizacker mass formula, for 
example, is able to provide a good description of the general trend but failed to account 
for the sharp increases near closed shells. For superdeformation studies, it is essential 
to make the “shell corrections,” as we are involved with phenomena that depends on 
the detailed nuclear structure in deformed single-particle orbits. 

Among the methods in use, the Strutinsky approach is perhaps best developed 
among several similar ones. In broad outline, the calculation is divided into two parts, 
a macroscopic part, involving the bulk parameters of the system, to account for the 
smooth variations, and a microscopic part, involving individual nucleon degrees of 
freedom, to make corrections for local variations, such as those coming from shell 
closure. In terms of energy, such a division may be expressed as 

E = Emacro + SEmicro (9-8) 

The macroscopic part, Em,,,, may be obtained from, for example, a liquid drop model. 
Let us use Emicro to represent the contributions from the microscopic part. If we 
average Emicro over local variations, the result is a part of the smooth trend and must 
have already been accounted for by Em,,,. For this reason, the second term on the 
right-hand side of Eq. (9-8) is 

bEmcr0 = Emicro - (Gnicro) 
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By t,aking out, the smoothed value (Emirro) in the microscopic result, we avoid any 
double counting. 

Macroscopic calculation. In 54-9, we saw that a crude liquid drop model in the 
form of a Weizacker semi-empirical calculation can achieve an overall accuracy of a few 
percent using a set of parameters obtained from fitting known binding energies. For the 
special case of the variation in energy as a function of deformation we are interested in 
here, the model can be further simplified in the following ways. Since nuclear matter 
is fairly stiff, we expect the volume term in Eq. (4-56) to  be unchanged by deformation 
and it may he ignored. It,s contribiitions may be incorporated into the definition of the 
zero point of our energy scale. Similarly, symmetry and pairing contributions may be 
left out of the calculatioris if we are not interested in the variations with neutron and 
proton numbers. Analogous to what we did in 54-11 for fission, the major contributions 
to deformation come from surface and Coulomb terms. On the one hand, deformation 
increases the surface area compared with a sphere of the same volume. On the other 
hand, the Coulomb energy is decreased when the protons are pushed further away from 
each other as a result of the shape change. The macroscopic energy for a deformed 
niicleus with N neutrons and 2 protons is then 

Em,cro(N, Z, def.) = Esurroce(N, 2, def.) + ~Coulornb(N ,  2, def.) 

The shape of the nucleus can still be parametrized using Eq. (G-1), 

where, for simplicity, we have taken out dependences on time t .  For all practical 
purposes, only the lowest few multipoles, X = 2, 4, are necessary and this is used in 
most of the known calculations. 

We have seen on many earlier occasions that the nuclear density does not drop 
off sharply at the nuclear surface, as implicitly implied in Eq. (6-1). To account for 
a diffused surface region, Dudek [54] iises the following formula for the surface energy 
term: 

where a characterizes the diffiiseriess range. When a -+ 0, we recover the sharp-drop-off, 
constant-densit#y form. The quantity 

N - Z  
C, = a ,  { 1 - ( m ) z }  

is the effectjive surface energy parameter with a, and IG, FLS adjustable parameters. As 
before, the volume remains to be 
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with average radius Ro = T , A * / ~ .  Similarly, the Coulomb energy may be written as 

where aden has the value 0.99/& 

Microscopic contributions. The contributions from the microscopic part is taken 
to be a sum of proton and neutron single-particle energies. We have seen earlier in 
$6-1 that, for example, the energy of a state can be reasonably represented by single- 
particle contributions alone by considering each nucleon to be moving in the average 
field generated by the interaction with all the other particles. If the potential v in the 
single-particle Hamiltonian 

is well chosen, any residual interaction remaining between particles is expected to be 
small and may be ignored. Such a mean-field approach has been shown to be quite 
adequate for a variety of nuclear phenomena and the calculations involved are far 
simpler than a fully microscopic one. 

In the case of deformed nuclei, the potential must also reflect the fact that the 
mean field is deformed. One way to do this is to use a Woods-Saxon potential together 
with a Coulomb term for protons, 

1 + 7 3  - 
V=Vws+V%+- VCOUl 2 

Here, T~ is the projection of the isospin operator on the symmetry axis. To account for 
deformation, the Woods-Saxon potential differs slightly in form from that of Eq. (8-40) 
for optical model potentials. The radial dependences used for the volume and spin-orbit 
terms are, respectively, 

Vws(r, def.) 

V .  ( r ,  def .) 

where &(r, def.) represents 
nuclear surface given by Eq. 

1 + n{(N - Z ) / ( N  + Z ) )  
= v, 

1 + exp{dc(r, def.)/a} 

the perpendicular distance of a point located at  r to the 
(6-l), p = ihV is the linear momentum operator, and s is . -  

the spin operator. The other four quantities Vo, ~c, a ,  and X are adjustable parameters. 
For 58 5 2 5 74, Werner and Dudek 11451 adopt the values 

Vo = -49.6 MeV a = 0.7 fm 
A = {  36 for protons +0.86 for protons 

-0.86 for neutrons 35 for neutrons 
I c =  { 
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The form of the Coulomb term is taken as 

V ~ ~ ~ l ( r , d e f . )  = Z e  

where the subscript C reminds us that the integral is over the (deformed) nuclear 
volume (for protons) I 

Shell corrections. The single-particle energy ei found by solving the eigenvalue equa- 
tion 

(9-9) 

contains some of the contributions already included in the macroscopic term Em,,,,. 
We must find a way to remove the parts already accounted for before we can calculate 
the value of 6Emicro needed in Eq. (9-8). 

Since the contributions are single particle in nature, it  is convenient to separate 
them into proton and neutron components. Traditionally, they are indicated, respec- 
tively, by using symbols R and v, 

According to the prescription of Strutinsky, 

The parts already included in Em,,, are obtained by integrating over the locally aver- 
aged, or smoothed, level density j ( e )  for the single-particle spectrum 

(c e i )  = 1" e o ( e )  de 
shell --oo 

i=l 

One way to smooth the single-particle spectrum { E ; } ,  obtained from a realistic mean- 
field calculation, is to expand the level density in terms of Hermite polynomials H m ( s ) ,  

where m is the order of the polynomial, and 

e - el 
Y 

I1.i = - 
1 

(- l)m/2 for m even 

0 for m odd 
cm = { 2"(m/2)! 
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The smoothed Fermi energy is given by 

The values of parameters p and 7 are adjusted until the final results are essentially 
independent of small changes in them. In Ref. [145], they are taken to be p = 6 and 
y = 1.2hw0, with hwo given by Eq. (7-18). 

Rotation and Routhian. So far in all the discussions, we have stayed in the body- 
fixed frame of reference and ignored any effect rotation has on the nucleus. At the high 
spin values we are interested in here, the nucleus is spinning at angular velocities at  
which the Coriolis force plays an even more important role than what we have seen in 
86-3 for K = f bands. 

Formally, we can take care of rotation by applying a transformation to change bot,h 
the Hamiltonian and the wave function from the body-fixed intrinsic frame of reference 
to one that is stationary in the laboratory. Let us write the time-dependent Schrodinger 
equation in the laboratory system as 

A rotation by angle wt around axis w can be accomplished by the operator 

T ( w t )  = , *w i t  

In the new system, the time-dependent Schrodinger equation takes on the form 

d*! ih- = ( h  - FLW - j)$' 
dt 

For a transformation from a laboratory to a body-fixed intrinsic frame of reference that 
is rotating around the xi-axis of the intrinsic frame, the result is 

In other words, to account for rotation, the Hamiltonian in the intrinsic frame of refer- 
ence becomes 

h" = h - hwj,, 

It can be shown that h" has the properties of a Hamiltonian and satisfies the following 
eigenvalue equation: 

The procedure in arriving at  h" is very similar to that wed by Routh in classical 
mechanics to handle cyclic variables, such as angular variable 176). For this reason, ey 
is often referred to as the Routhaan. 

The eigenvalue equation in the body-fixed frame of reference, Eq. (9-9), is relatively 
simple to solve. In the laboratory frame of reference, the nucleus is rotating at  some 
frequency w and the rotation can, in principle, be quite complicated to deal with. 

( h  - h~j,r)+? = c:+: (9-10) 
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Instead, we can solve Eq. (9-10) using a suitable value for w.  In this case, nucleons 
appear as independent particles moving in an average field that is rotating with the 
frame of reference. The approach belongs to the general one of a cranking model and, 
for this reason, h" is also called a cranked Harniltonaan. 

The contribution of rotation to the macroscopic term E,,,,,,,(N, 2,def.) is quite 
simple, as the calculation is purely classical. This gives us the result 

E:acro(N, 2, def.) = Egi:ro(N, 2, def.) + !jZ(N, 2, def.) w2 

where E;;:, is the macroscopic energy we had earlier in the absence of any rotation. 
Equation (9-8) now reads as 

E = EEwro( N ,  2, def .) -t 6EKicr0(N, 2, def .) (9-11) 

with hEEicr0(N, 2, def .) calrulated using the single-particle Routhian ct;', obtained by 
solving Eq. (9-10). In fact, instead of energy, it is more convenient in many cases 
to convert all the energies into the corresponding Routhians and consider the total 
Routhian instead of E in Eq. (9-11). 

If we calculate E ,  or the equivalent Routhian, for different sets of values of the 
deformation parameters, we obtain the variation of energy for the rotating nucleus &s 

a function of tlie parameters. The minimum of such a potential energy surface gives us 
the deformation the nucleus prefers to settle in at  a given rotation frequency. In this 
way, superdeformation may be understood by a relatively straightforward calculation. 

9-3 

At ultra-relat,ivistic energies, our interest in heavy-ion collisions turns to the properties 
of matter under extremely high energy densities. The only occasion that such conditions 
have existed in nature is during the short time interval of a fraction of a second after 
the big bang that gave birth to the universe. For this reason, the topic is of interest to 
cosmology as well. The same condition is also important to quantum chromodynamics, 
because of the possibility of freeing quarks from their confined state inside hadrons and 
transform them into a new phase in which many quarks and gluons are present in a 
plasma-like state, the quark-glum plasma. 

To create such a state of matter, it is necessary to involve energies much higher than 
anything we have encotint,ered so far in the laboratory. For the R.elativistic Heavy-Ion 
Collider (RHIC) at  Brookhaven National Laboratory (BNL), collisions of gold nucleus 
oil gold niicleiis can reach an energy of almost 40 TeV in the center of mass. In the 
case of the Large Hadron Collitlcr (LHC) at CERN, energies of 3 TeV per nucleon are 
possible. This gives a center-of-inass energy in excess of lo3 TeV for collisions of lead 
on lead. 

Most of the other high-energy accelerators are designed for electrons and protons. 
Tho few that can accelerate more complicated particles are limited to lighter ions and, 
often, lower energy than what we are interested in here. Even when tlie energy is 
sufficient, light-ion reactions are not, expected to create a sufficiently large region of 
quark-&:on plasma that can be observed. Far these reasons, most of the experimental 

Phase Transition and Quark-Gluon Plasma 



69-3 Phase Transition and Quark-Gluon Plasma 341 

data available so far can only give us some rough guidance on what we can expect from 
RHIC and LHC. We shall briefly review what we have learned from these observations 
and extrapolate from them what are the initial set of experiments t o  be carried out at 
RHIC and LHC once they are in operation. We shall also describe some of the results 
from lattice gauge calculations to see what are the predications we can make based on 
our theoretical understanding of the physics of strong interaction. 

Transformation of nucleons to quark-gluon plasma. A complete understanding 
of the strong interaction should include also a knowledge of the conditions under which 
nucleons are transformed into a state in which quarks are no longer confined. Currently, 
our knowledge of QCD is not yet quite adequate to carry out this task. To get some 
idea of the possible conditions for the transition to  take place, we can make use of the 
bag model. There are many versions of the model, and together they have been quite 
successful in explaining a large number of phenomena in particle and nuclear physics. 
For our purpose here, we are not concerned with the details that distinguish one bag 
model from another. I t  is adequate for us to regard the “bag” as a phenomenological 
entity that provides an inward pressure of magnitude B to keep, for example, the three 
quarks confined inside a nucleon. 

If the pressure of “quark matter” inside the bag is increased t o  such an extent that 
it exceeds B,  confinement will no longer be possible and we have a new phase of matter, 
made of quarks and gluons. This can happen if, somehow, the temperature becomes 
very high, or the baryon number density becomes very large, or a combination of both. 
To get some qualitative estimates, let us consider each one of these two possibilities 
separately using the bag pressure B as the parameter. 

If we treat quarks and gluons as massless, noninteracting gas molecules, there are 
two extreme situations that allow simple estimates to be made on the conditions for a 
phase transition. The first is the case of zero temperature, and our interest here is to find 
the critical baryon density required for a transition to take place at  this temperature. 
The pressure in this case comes solely from the effect of the Pauli exclusion principle 
between the quarks. For a relativistic Fermi gas in volume V ,  the density of states, the 
number of states in an interval of momentum d p ,  is given by 

dN = 9- 47rp’dp 
( 2 4 3 f i 3  

where g is the degeneracy. For simplicity, let us ignore the contributions from anti- 
quarks and gluons. To simplify the discussion further, we shall restrict the number of 
quark flavors to the lightest two, on the ground that d-  and u-quarks dominate a t  zero 
temperature. In this limit, the degeneracy for quarks is 

gq = Ncolor x Nspln x Nfiavor == 3 x 2 x 2 = 12 

The number of quarks filling up all the states up to the quark Fermi energy CF is given 
by the integral 

-4a V lrF’cp%p 
Nq = gq(2a)3fi3 
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For massless quarks, the energy carried by each one is pc .  From this, we obtain the 
tottal energy 

The pressure in a relativistic noninteracthg gas is given by 

1E  p = - -  
3 v  

If we equate the pressure from degenerate quarks Pq with the bag pressure B ,  

as the condition for phase transition, we obtain the critical Fermi energy 

2 4 7 ~ ~ ( A c ) ~  'j4 
€F,c = ( s, .) 

The critical baryon density estimated in this way is 

where we have made list? of the fact that the baryon number of quarks is i. By adopting 
a reasonable value for the bag pressure, (h3c3B)'I4 = 200 MeV, we obtain a result of just 
over 400 MeV for the critical Fermi energy of quarks, e ~ , ~ .  In terms of baryon density, 
nn,c cz 0.7 fm-3, about, five times higher than the value of 0.14 fm-3 for nucleons under 
normal conditions. Other calculations put the zero-temperature critical baryon density 
for the quark-plasma phase to be up to 10 times the normal nuclear matter density. 

The second extreme condition is high temperature. For simplicity, we shall consider 
here the situation where quark and antiquark are equal in number, and 89 a result, the 
baryon density vanishes. Our noninteracting quarks and antiquarks can be treated 
as two separate Fermi gases, and the gluons as a Bose gas. The number density, or 
occupancy probability, for each quantum state is given by the expression 

nk = 
1 

e ( c k - P ) / k T  f 1 

where the plus sign i n  the denominator is for fermions itrid the minus sign is for bosons. 
The chemical pot,ent,ials 11 vanishes for the gluons, ars well as for quarks, since we are 
taking the baryon dcnsity to be zero. The total number of particles (quarks, antiquarks, 
or gluons) and the t.otal energy for each type in volume V are obtained by summing 
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over the contributions from each state k. On replacing the summations by integrations, 
we obtain the results 

V 

where we have made use of the assumption that all the particles are massless and, 
hence, c = pc.  The integrals over z can be found in, for example, Landau and Lifshitz 
[94]. For quarks, we have the values 

x -1.202 

where the factor 1.202 comes from the Riemann zeta function C(3) = 1.202.. . , obtained 
when we integrate over z .  The same results apply to antiquarks as well. For gluons, 
we have 

kT 
x 2 x 1.202 

714 
Eg = 9 -  ‘Z2(E))” - ~ T x -  15 

with gs = 16 for gluon degeneracy. The total energy is a sum of the contributions from 
quarks, antiquarks, and gluons: 

If we again equate the pressure 
1E p=-- 
3v 

with the bag pressure (fi3c33)’/* = 200 MeV, we obtain a temperature kT N 140 MeV. 
Other calculations put the value to  be aa high as 250 MeV. 

The region for both T # 0 and ng # 0 is more complicated to estimate than 
either one of the two extremes we studied above. A reasonable conjecture is that  the 
changes from one to the other should be smooth. Schematically, the phase diagram is 
represented by that shown in Fig. 9-11. 

Lattice gauge calculations. In principle, quantum chromodynamics can provide 
us with some better guidance on the question of transition to QGP than the simple 
arguments presented above. The major difficulty here is a practical one in carrying out 
the calculations. First, the equations generated from QCD considerations are nonlinear, 
and as a result, cannot be put into a form that can be quantized easily. Second, the 
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Figure 9-11: Schematic diagram showing the different phases of matter. 

interaction involved is strong and we cannot make use of perturbative techniques to find 
approximate solutions that are reliable. One possible alternative is to take a Feynman 
path integral approach [63] and formulate the problem numerically on a lattice. Since 
QCD is a gauge theory, a theory that is invariant under a local gauge transformation, 
we have a lattice gauge calciilation. Numerical solution of (continuous) problems by 
formulating them on discrete lattices is a powerful technique and has been applied 
successfully to a large variety of problems in, for example, condensed matter physics, 
fluid mechanics, and engineering. Here, we want to adopt a similar approach, except 
that the computations are complicated by the fact that gauged fields are involved. In 
fact,, even the power of most modern computers remains to be the main limitation on 
the types of results one can obtain so far. 

In quantiim mechanics, the usual way to find the evolution of a state from an initial 
point in space and time (T i ,  t E )  to some final point ( r f ,  t , )  is to solve the time-dependent 
Srhriidinger equation. The solution may be represented formally as 

I?./ 1 f ,/ >= p ' ' ( ~ r W I r , , &  > (9-12) 

where H is the Hamiltonian operator. In the Feynman path integral approach, we take 
a different route by evaluating, instead, the classical action 

S = l f L d T  

Here L is the Lagrangian of the: system and the integral is over space and time, as well 
as over any other independent variables in the system. The value of S usually depends 
011 tht: path over which the integral is taken from point i to point f .  It can be shown 
that the matrix element of the operator on the right-hand side of Eq. (9-12) is given 
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by the relation 

where the factor 1/Z represents all the necessary constants and normalization factors. 
The physical meaning of the equation is that time evolution is equivalent to averaging 
over all possible paths, each one weighted by the action. This is very similar to ensemble 
averaging in statistical mechanics, and for this reason, the whole approach is sometimes 
referred to as statistical field theory. 

In general, the integral for S is not easy to evaluate, especially for the nonlinear 
QCD Lagrangian we are interested in here. However, if we take a similar approach as 
used in numerical integration, great simplifications may be achieved. In this scheme, 
each path is divided into a large number of small “segments.” Within each segment, it 
is possible to replace the integrand by some reasonable average value of L within the 
small interval, such as that evaluated at two ends of the interval. In this way, the whole 
space is “transformed“ into a lattice of points, and the contribution of each segment 
to the integral is the product of the average value of the integrand and the size of the 
segment. The complete integral becomes a sum of the products in all the segments. 

Next, we must evaluate the integral once over each one of the infinite number of 
possible paths. In the case of ensemble averaging in statistical mechanics, the infinite 
sum is usually carried out analytically by changing it into a derivative of, for example, 
the partition function. This is not possible here, as the integrand is a complicated 
nonlinear function. The alternative is to make use of the idea of statistical sampling. 
In other words, we shall choose the paths randomly and evaluate the action only over 
the chosen ones. If a sufficiently large sample is taken, our average value should be an 
accurate representation of the true one. Our task is now turned into a Monte Carlo 
one on a lattice, and powerful techniques of Monte Carlo calculations may be applied. 

Every possible simplification is important here, as the problem is greatly compli- 
cated by the fact that we are involved with gauge fields and that quarks are fermions. 
To maintain gauge invariance, the values of the fields at  one lattice point become de- 
pendent on those at other points. Even with the most powerful computers in the world 
at  the moment, several further approximations must be made before we can obtain any 
results. For example, in QCD we have both quarks and gluons, each one described by a 
field that is a continuous function in space and time. However, in a lattice calculation, 
only the values of the functions a t  the lattice points are evaluated. Let us use a to 
represent the lattice spacing, the distance between two adjacent points on the lattice, 
and for simplicity, we shall assume that a is the same in all spatial directions and along 
the time axis by some suitable choice of units. The accuracy of any calculated results 
clearly depends on the size of a and this, in turn, is given by the number of lattice 
points taken in the (3tl)-dimension space. Many of the results obtained so far have 
been limited to fairly modest lattice sizes, such as 12 points in each direction. Even 
with such limited lattices, a full QCD calculation involving all eight gluons and six 
flavors of quarks is not possible. Many results are obtained with the gluon fields alone, 
without the quarks playing any “dynamical” roles. 

In spite of the limitations imposed by the available computing power, lattice gauge 
calculations have provided us with valuable insight into what we can expect from the 
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relation between hadronic matter and QGP. For example, calculations carried out with- 
out dynamical quarks show a first-order phase transition at critical temperature around 
IcT = 260 MeV. The results with dynaniic quarks are less clear, in part, because of the 
uncertainties due to finite lattice size. Depending on the fermion masses adopted in 
the calculation, the phase transition can be either first- or second-order. There is also 
the possibility of hadronic matter crossing over smoothly to QGP without undergoing 
a phase change. 

The interest in lattice gauge calculations is not limited to transition from hadronic 
matter to quark-gluon plasma. Since it, is possibly the only way to carry out the 
calculations "exactly," it is often quoted as the only fundamental formulation of QCD 
1931. Many achievements have been recorded in understanding the low-energy regime, 
such as hadron spcctroscopy, and in determining some of the parameters in the standard 
model of particle physics, such as the possible determination of the strong coupling 
constant and certain Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In many 
ways, it can also tell us what may lie ahead of the standard model. The strong demand 
of computational power for such calculations has stimulated novel developments in both 
hardware and software and has, in many ways, led advances in computing technology. 

High-energy nucleon-nucleon scattering. In ultra-relativistic collisions, the re- 
action is mostly inelastic and there is adequate energy to create a large variety of 
secondary particles. In the absence of any new physics, the cross section for nucleus- 
nucleus scattering is expected to be multiples of that for nucleon-nucleon scattering at 
equivalent energies. To recognize that a region of quark-gluon plasma is created in the 
process, the signal must appear over and above the complex background coming from 
ordinary nucleon-nucleon scattering. For this reason, we need to review briefly what is 
known of nuclcon-nucleon scattering at high energies. The subject is a vast one, touch- 
ing upon many parts of nuclear as well as particle physics. Our interest is limited to 
the effect it has on the cross section for nucleus-nucleus scattering at ultra-relativistic 
energies. 

In high-energy proton-proton scattering, from which we obtain most of the infor- 
mation on nucleon-nucleon scattering, it is known that the total reaction cross section 
rises slowly with momentum p .  In terms of the Mandelstam variable3 3, the empirical 
results for total and elastic cross sections in the range of center-of-mass energy 3 GeV 
< fi < 100 GeV may be expressed as 1831 

utotal = (48.0 f 0.1) + (0.522 f 0.005)(lnp)' + (-4.51 f 0.05)lnp 

uelasttc = (11.9 f 0.8) -t- (26.9 f 1.7)p-'.'' + (0.169 f O.OZl)(lnp)' 
+(-1.85 f 0.26)lnp 

with p in units of GeV/c. The numerical value is around 40 mb (4.0 fm') for atatai 
in the energy range. The observed result for inelastic cross section at 100 GeV/c is 
31.3 f 1.2 mb. The measured values are shown in Fig. 9-12. 

3Mandelstam variable 8 = ( E / c ) ' ,  where & is the total energy of the two colliding particles in the 
center of mms. In natural units, c = 1 and, as a result, fi is often used to represent E and we shall 
follow this convention. 
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Figure 9-12: Cross sections in high-energy proton-proton scattering in mb (= 
lo-' fm2) plotted using data from Ref. 122). Inelastic scattering, the difference 
between total and elastic, dominates the reaction and the secondary particles 
produced are made mainly of mesons, baryons, and antibaryons. 

Most of the inelastic cross section goes into production of mesons and baryon- 
antibaryon pairs. The number of secondary particles produced is given the name mul- 
tiplicity. At high energies, the multiplicity also increases roughly logarithmically with 
s. Since only charged particles can be measured most readily in an experiment, the best 
known value is the charge multiplicity Nch, the average number of secondary charged 
particles produced in a pp-collision. The variation of Nch with energy may be repre- 
sented as [135] 

Nch = (0.88 f 0.10) 4- (0.44 f 0.05) In 9 -t (0.118 & 0.006)(ln 3)' (9-13) 

Around fi - 20 GeV (plab N 100 GeV/c), the value of Nch is around 6. The measured 
results are shown in Fig. 9-13. Most of the secondary particles are (charged) pions. If 
we assume equal numbers of T+, no, and A- are produced on the average, we obtain 
the total multiplicity to be around 9. 

Another quantity of interest in high-energy collisions is the momentum distribution 
of the  secondary particles. This is usually discussed in terms of the rapidity variable 

(9-14) 

where E is the (relativistic) energy and p ,  the longitudinal momentum. In the center 
of mass, y = 0 when p ,  = 0. The range of y is therefore bound by 

ymM = -ymin = -In 
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Figure 9-13: Average charge multiplicity aa a function of energy. Asterisks 
represent data from Refs. 1135, 107, 251 and the smooth curve is calculated using 
Eq. (9-13). 

where pT = 4- is the transverse momentum and ( E / c ) ~  = p$ + p i  + (mc)’, At 
high energies, da/dy  is essentially constant except at both extreme values of y. 

Since y requires measurements of two quantities, E and p , ,  it is often more conve- 
nient to make use of the pseudorapidzty 

that depends only on the scattering angle 8. If the particle energy is high, y and 77 have 
approximately the same value. 

Nuclear stopping power and transparency. For the past 10 years or so, experi- 
ment,s have been carried out with heavy ions at relativistic energies. The two principal 
facilities are the Alternating Gradient Synchrotron (AGS) at  BNL and Super Proton 
Synchrotron (SPS) at CER.N. Beams from proton to gold are avdable at AGS up to 
29(Z/A) GeV/c in energy per nucleon and from proton to lead at SPS up to 400(Z/A) 
GeV/c. The corresponding center-of-mass energy for gold on gold at AGS is fi 5 5 
CeV, and for lead on lead at SPS it is fi 5 17 GeV. 

We can separate high-energy nucleus-nucleus collisions into two energy regions. 
The first, is the “pure QGP” region where all the nucleons are converted into quarks 
and gluons. It is estimated that the energy required is fi 2 100 GeV/nucleon. At 
the AGS and SPS energies, we are still in the second region, the “baryon-rich QGP” 
region. Here, a substantial fraction of the initial energy in the collision is converted into 
producing hadronic mattcr. The process may he discussed in terms of the “stopping 
power.” The opposite way of looking at the same question is “nuclear transparency,” 
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the lack of interference when one nucleus passes through another during a collision. 
One way to have some idea of the stopping power is to consider Ezd, the energy in 
a small cone around the beam axis. The angle is chosen such that particles within 
the cone are essentially those from the initial projectile without having undergone any 
energy loss. In the case of complete stopping, the reaction cross section should peak at  
E z d  = 0. Observations at SPS energies show that the maxima occur at  small values of 
E z d ,  consistent with stopping power of around 90% [131]. 

A large nuclear stopping power implies a baryon-rich environment, as there is not 
enough energy for nucleons left over from the collision to move away from the central 
region. This is the situation with experiments at AGS and SPS energies. There are 
indications for increasing nuclear transparency with higher energies and larger mass 
numbers of the ions. Thus at  RHIC and LHC energies, we expect the remnant nucleons 
to have adequate energy to move away fast enough for the central region to last for 
relatively long time scales (w s) as a baryon-free region of quark-gluon plasma. 

Signatures of quark-gluon plasma. If a quark-gluon plasma is formed, how can we 
recognize it? The major difficulty here is that our probe cannot be placed anywhere 
inside the region. In part, this is because we can a t  best create a very small volume 
of this new form of matter with radius measured in femtometers. At the same time, 
we cannot expect any experimental apparatus to survive the extreme temperature and 
energy density inside the region where the QGP is present. All “signatures” of QGP 
must therefore be inferred from the consequences in terms of the particles-baryons, 
mesons, photons, etc.-we normally encounter in subatomic physics. Based on existing 
observations, experimental as well as theoretical, the following measurements seem to 
offer the best possibilities (150, 81, 1311. 
Strangeness production Since nucleons are made of u- and d-quarks, the strangeness of 
the initial state in a heavy-ion collision is zero. Heavier quarks, such as strange (s) and 
charm (c), can also be produced in a reaction if there is sufficient energy. (We shall 
ignore the even heavier b- and t-quarks, and their antiquarks, in this discussion.) To 
conserve flavor quantum number, these quarks must be created in the form of quark- 
antiquark pairs of the same flavor. 

Consider first the production of strange quarks. The results are usually discussed 
in terms of A, the ratio of sS to uii and dd, 

uii: d d :  sB= 1 : 1 : x 
In pp-collisions, the value of A is found to be around 0.1 at  center-of-mass energy 
fi N 5 GeV and rising slowly to about 0.2 at  fi = 50 GeV. The value obtained 
from proton-nucleus collision is, within experimental uncertainties, consistent with this 
trend of values. For silicon on silicon and sulfur on sulfur, the values are almost a 
factor of 2 larger, around 0.3 at 5 GeV and almost 0.4 at 20 GeV [131]. We have seen 
earlier in Eq. (9-13) that the average multiplicity in ppcollisions increases with energy. 
In nucleus-nucleus collision, the increase is even faster, as more energy is available in 
the center of mass. However, strange particle production is observed to grow faster 
than nonstrange particles. For example, the ratio of (K+ + K-) / (n+  + T-) a t  200 
GeV/nucleon is found to be a factor 2 larger in nucleus-nucleus collisions than in pp- 
collisions. As for mesons with two strange quarks, such as 4 consisting predominantly 
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of sg, the production in sulfur+uranium is found to be a factor of 2 to 3 higher relative 
to that in proton+tungsten (and proton-proton) collisions [3]. 

If strange quarks are in thermal equilibrium with their lighter counterparts, as 
expected in a qnark-gluon plasma, thc ratio of strange to nonstrange mesons is given 
essentially by that of their respective Boltzmann factors exp{-m,c2/kT}. Here mq is 
the mass of the quark involved. Since the temperature of the plasma is comparable 
to the mass difference between strange and nonstrange quarks, an enhancement of 
strange meson production is expected compared with nonequilibrium situations, such 
as in proton-proton and proton-nucleus collisions. However, this is not the only possible 
explanation for strangeness enhancement. As we shall see soon, we do not yet know of 
any unique signature for QGP, one for which we can rule out any possible alternative 
explanations. For this reason, strangeness enhancement remains only one possible way 
to identify QGP. 
Suppression of J/$-  and +'-production In the case of charm meson, J / $  has the unique 
advantage that it decays into a pair of leptons, e"e- or p+p-, with very narrow width, 
as we have seen in $2-6. This makes it relatively easy to identify the meson, especially in 
terms of its decay into a muon pair. The background comes mainly from the Drell-Yan 
process, conversion of a quark-antiquark pair into a lepton pair through the intermediate 
stage of a virtual photon (see Fig. 9-14 ahead). Since the production of a lepton pair by 
this mechanism is known to be given by the product of the projectile and target atomic 
numbers, the ratio of muon pair production from J/$-decay to that of the background 
becomes a measure of the relative production rate of J / @ .  The results show that the 
cross section for J/$-production is lower in nucleus+nucleus collisions than in proton- 
nucleus collisions [17]. This is opposite to the case of a strange meson where the 
production is enhanced. F'urthermore, the effect is more pronounced for collisions that 
are more central (i.e., head-on), as measured by the increase in the transverse energy 
ET . 

The explanation in terms of QGP is that  the cross section of J/$-production is 
lowered because of color screening. That is, when charm quarks are created in a 
collision, they must be made as cE pairs to conserve color and charm quantum numbers. 
However, if the production takes place in a QGP medium, the interaction between c and 
? is diminished by the presence of the other quarks, similar to the Debye screening of 
electric charge in quantum electrodynamics. This makes it more likely for the pair to be 
split into two separate entities. In addition, there is also a chance for the charm quarks 
to thermalize with the medium and, thus, decrease further the likelihood of c and E to 
emerge as a single meson. The relation with ET comes from the inverse temperature 
dependence of Debye screening length. As temperature rises, the attraction between c 
and t! decreases and the chance. of dissociation for the cz pair increases. Since larger ET 
implies a more central collision and more energy (higher temperature) in the collision 
region, it is not surprising that the observed J/$-production rate is decreased. 

Again, the above explanation based on the presence of QGP is not the only one. 
In fact, a cE pair can also be separated through interaction with ordinary nucleons as 
well. Since a J/$-particle produced in heavy-ion collisions has to travel through, on 
the average, a larger region filled with nucleons than in pp-collisions, the observed rate 
is expected to he lower also for this reason. F'urthermore, the ratio of $' to J / $  has 
been observed as well, and its variation with ET does not seem to follow that expected 
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of a QGP scenario [MI. 
Two-particle interferometry When two identical particles are located close to each other, 
there is an interference between them, similar to that for optical waves in a double-slit 
experiment. This phenomenon may be used to deduce the extent of a source of particles. 
The principle was first applied in 1956 by Hanbury-Brown and Twiss to measure the 
angular diameter of a star using the correlation between two photons originating from 
the source. For this reason, it is known as the Hanbury-Brown-Twiss effect. The 
correlation exists only for a chaotic source and is absent for a coherent one [150]. 

The correlation of interest in our case is in the intensity of two identical particles 
measured in coincidence. By taking two particles a t  different energy-momentum values, 
the correlation becomes a Fourier transform of the phase space of the source. As a 
result, a correlation function of the following form may be constructed [131]: 

where X measures how chaotic the source is, with X = 1 for a complete chaotic one 
and A = 0 for a coherent one. The longitudinal, transverse, and time components of 
the momentum difference between the two particles, Qp = ~ 1 , ~  - pz,,,, are represented 
respectively by subscripts L ,  T ,  and 0. When such a function is fitted to the experi- 
mental data, we obtain measures of the longitudinal (RL) and transverse (RT) extent 
as well as the temporal duration ( T )  of the source for the two particles. 

In the case of heavy-ion reactions, two-particle correlations have been measured 
for pions and kaons. When two heavy ions collide, a small region of high energy and 
particle density is created. The particles interact strongly with each other as they 
are squeezed together. When the compression ceases, the region expands and the 
interaction intensity decreases. Eventually, the interaction will stop, or freeze out. It  
is likely that most pions and kaons are produced near this stage of development in 
a heavy-ion reaction. As a result, two-particle correlation “measures” the size of the 
volume and the time when freeze-out occurs and, thus, provides information on the size 
and energy achieved in the interaction zone. For example, if there is a phase transition, 
the latent heat will lead to larger expansion in size. 

The results to date from fixed-target measurements indicate that the source size is 
larger than the radius of the projectile, indicating that the system expands before freeze- 
out. The time between the onset of expansion and freeze-out is about 5 fm/c along the 
longitudinal direction and less than 2 fm/c along the transverse direction. However, no 
long-lived intermediate state can yet be identified from two-particle correlation studies 

Thermal radiation In a QGP, large numbers of photons, both real and virtual, are 
produced through quark-antiquark annihilation, 

Pll. 

Q + Q + r  + 9 
and quark-gluon scattering, 

S + Q - + Y + Q  g + Q - + r + Q  

Reactions such as g + Q -+ 7 + 7 are also possible but the probability is much smaller, 
as they are purely electromagnetic processes. Unlike hadrons, photons interact only 
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weakly with quarks, gluons, and hadrons through electromagnetic interaction. As a 
result, there is a high probability for photons to emerge from the interaction zone 
without suffering any collisions. In contrast, hadrons have much shorter mean free 
path and undergo many interactions before leaving the region. For this reason, they 
reflect mainly the condition near freeze-out. Photons measured in heavy-ion collisions 
are therefore expected to he related inore directly to the thermodynamic state of the 
QGP created than hadrons. 

Photons are also produced in high-energy collisions from a variety of reasons other 
than reactions within a QGP. These include processes such it9 the decay of neutral 
mesons R' and 7. For our purpose here, we are interested only in the signal over 
and above such "background" events. Analyses have indicated that the QGP photons 
may have B cubic dependence on the temperature and a quadratic dependence on the 
variation of multiplicity M a function of rapidity. However, experiments so far have 
not seen anything above the expected background photons. Theoretical investigations 
suggest that none is to be expected until we reach the conditions in experiments to be 
carried out at RHIC and LHC. 
Dilepton production Similar to photons, leptons also do not interact strongly with the 
constituents in a QGP. As a result, one can infer the conditions of the plasma by 
observing the leptons emitted as well. 

Lepton pairs e+e- are produced by quark-antiquark annihilation through a virtual 
photon, 

q + Q -+ virtual photon + l+ f t- 

For all practical purposes here, we can limit the leptons to electrons and muons. The 
process is very similar to that of Drell-Yan. The main difference is that, in a Drell- 
Yan process, both the quark and antiquark come from the nucleons participating in 
the collision process. In contrast, our interest here is in the leptons produced by the 
collision of a free quark and a free antiquark in QGP. The difference is illustrated by 
the two diagrams shown in Fig. 9-14. 

In a nucleus-nucleus collision, the Drell-Yan cross section scales with the number 

Figure 9-14: Dilepton production from the Drell-Yan process in nucleon-nucleon 
collision (left) and quark-antiquark annihilation between free quarka (right). In 
the Drell-Yan process, the quark and antiquark come from the colliding nucleons, 
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of nucleons involved and forms a dominant part of the lepton pairs produced. There 
are also other sources of lepton pairs, such as R + K  annihilation and decay of neutral 
mesons. Our concern is with the lepton pairs produced in a QGP. The cross section 
depends on the temperature of the plasma and, hence, the initial condition that cre- 
ates it.  Theoretical investigations have shown that the production rate increases with 
temperature. At temperatures below 300 MeV, the cross section is too small to be 
seen above those coming from the dominant part by the Drell-Yan process. Once the 
temperature is above 300 MeV, there is a chance that one can isolate the leptons from 
QGP. However, one must again wait for experiments to  be conducted at RHIC and 
LHC to reach such high temperatures. 

Problems 

9-1. Show that 
El, = m , c 2 \ / 1 - 0 2  

gives the ionization energy of 13.6 eV for a hydrogen atom. 

9-2. If a neutron with 2 MeV of kinetic energy is evaporated from a composite system 
made of two heavy ions consisting of a total of 150 nucleons, find the maximum 
angular momentum carried away using the relation t,,, = hkR. 

9-3. Two gOZr nuclei approach each other with kinetic energy 200 MeV in the center 
of mass. Calculate the total angular momentum in the system assuming that, 
in the absence of any interaction between them, they will pass each other a t  a 
distance of 10 fm between their centers. 

9-4. The following ?-ray transitions, with energies given in kilo-electron-volts, were 
once identified in 15*Er: 2+ -+ O+ 192,4+ ---t 2+ 335, 6+ -+ 4+ 443,8+ + 6+ 523, 
10+ -+ 8+ 579,12+ + 10+ 608, 14+ + 12+ 510,16+ -+ 14+ 473, 18+ -+ 16+ 566, 
20+ 18+ 658, 22+ -+ 20’ 738, 24+ -+ 22’ 803, 26’ -+ 24’ 843, 28+ --+ 26+ 
855,30+ + 28+ 871, and 32+ + 30+ 902. Plot the excitation energy as a function 
of J ( J  + 1) and calculate the moment of inertia for each state. Use this result 
to  plot 22/h2 as a function of h2w2 and see if there is any sudden change in the 
moment of inertia, generally known as “backbending.” 

9-5. For an axially symmetric nucleus with density given by 

show that the intrinsic (charge) quadrupole moment up to  second order in defor- 
mation parameter is given by 

3 
Q - -ZR$f3(1 i 0.36p) 

O - f i  

and the moment of inertia about the z-axis is given by 

I = iMRi(1 + 0.31P) 
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to first order in p. Here M is the mass of the nucleus and I& is the radius of a 
sphere having the same volume, and PO may be found from normalization. 

9-6. Use Eqs. (6-18) and (6-12) to show that 

6 = 0.95p + 0.15p2 + O(ps) 

where 6 is the deformation parameter defined by Eq. (6-18). 



Chapter 1 O 

Nuclear Astrophysics 

On a bright sunny day, one cannot help but be amazed at  the enormous amount of 
energy outpouring from the sun. At a distance of 1.5 x 10" m, the amount of electro- 
magnetic radiation received by the earth is 1.4 kW/m*, corresponding to a total output 
of loz6 J/s. The primary source of this energy is fusion of hydrogen into helium. The 
sun is only one of the billions of stars in our galaxy and our galaxy is, in turn, one of the 
billions in the universe. Besides burning hydrogen, some stars are converting helium 
into "C ,  and thence to even heavier elements. We shall see that the evolution of a 
star is intimately related to the thermonuclear reactions taking place inside. Except 
for hydrogen, some of the helium, and small amounts of deuteron and a few other light 
nuclei, all other nuclei are made in stars. Understanding stellar evolution, therefore, 
requires a good knowledge of nuclear physics. At the same time, nuclear physics is 
incomplete without a clear idea of how all the nuclei are created. We shall begin with 
an overall picture of nucleosynthesis and the connection between nuclear physics and 
stellar evolution. Details on some of the topics are given in the remaining sections. 
The subject of nucleosynthesis is the central theme of several books as well as a large 
number of review papers.' Our aim here is only to examine some of the problems of 
particular interest to nuclear physics. 

10-1 Brief Overview of Stellar Evolution 

Most modern views of cosmology are in agreement with the idea that the universe began 
with an explosion, or "big bang," some 10 to 20 billions years ago. The uncertainties 
in the models are connected mostly with the very beginning of time, within the first 
fraction of a second or so. For nuclear astrophysics, there is hardly any need to be 
concerned with such early times. At the end of approximately the first 3 min [144], 
about three-fourths of the baryon mass in the universe is in the form of protons and 
the rest in the form of 4He. Traces of deuteron, 3He, and 7Li are also present but their 
abundances are down by several orders of magnitude compared with protons (4 to 5 
orders for deuteron and 3He and 10 orders for 7Li). The exact amounts of the three less 
abundant primordial elements are important if we wish to understand the conditions 
that existed in the first few minutes. However, for stellar evolution and nucleosynthesis 
we can, for most practical purposes, ignore their presence. 

'For a recent review, see Ref. 11411. 

355 
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Big-bang nucleosynthesis. The variety of niiclei we observe today in the interstellar 
space comes from a cornbination of two different sources. The first is the primordial 
proton and helium toget,her wit,h minute amounts of other light nuclei. The second is 
made up of material blown off stars that have ended their lives. We shall start with 
the first one, as it supplies the biilk of the raw material to form stars. 

For proton and helium, the relative abundance is observed to be roughly 3 to 1 in 
Inass. This is psseiitially determined by the neutron-proton mass difference of 1.29 MeV 
and the deut,c.ron binding enrrgy of 2.23 MeV. When the universe was at temperatures 
far above that equivalent in energy to the rest mass of an electron, kT = m,c2 or 
T N 6 x lo9 I<, electrons and neutrinos were in thermal equilibrium. In such an 
environment, neutron P--decrzy to prot,on, 

is balanced by electron capture of protons, 

e- + p ---t n + v, 
The abundance of leptons keeps neutrons and protons in thermal equilibrium. Since 
the chemical potentials of the two species of nncleon are nearly the same, the ratio of 
neutron to proton numbers is essentially given by 

Here, Q is the neutron-proton mass difference in terms of rest-mass energy. As the 
universe expands, the t8emperatiire drops and the electron capture rate decreases. When 
t,he value falls below -1O’O K, it becomes impossible to maintain a balance between the 
two weak interaction processes and we no longer have a thermal equilibrium between 
neutrons and protons. The weak interaction is said to  be “frozen.” At the weak 
rnteractron freeze-out temperatiire of T, - 10’” K,  the ratio between the number of 
neutrons and protons is given by cxp{-C)/kT,} - 0.22, with 18% of the baryons 
appearing 51s neutrons a.nd 82% as protons. 

Below the weak interaction freeze-out temperature, free neutrons decay into protons 
with a half-live of about 10 min. For a neutron to survive much longer time periods, 
it  must be captured by other nucleons t,o form a bound nucleus. Since most of the 
nucleons in the universe are in the form of free protons and neutrons at this stage, 
the most likely candidate to be formed is the deuteron, a bound nucleus made of a 
proton and a neutron. Unfort,unately, the binding energy of a deuteron is very small 
and this constitutes the major bottleneck in preserving primordial neutrons from P-- 
decay. Because of the short range of nuclear force, bound nuclei can be made from free 
neutrons and protons only through random collisions that bring some of them into close 
coiit,act with each other. The probability of such encounters drops drastically for three 
or more particles. This leaves 11s with the deuteron as the only likely bound system 
that can be made in any significant amount. On the other hand, the small binding 
energy means that deuterons can also be destroyed e a d y  in random collisions with 
other particles. The most likely event is with photons, as there is something like lo8 
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for each nucleon. For this reason, photodisintegration constitutes an important sink 
for any deuterons created when the temperature is still sufficiently high. 

On further cooling, some deuterons can exist long enough to  capture a proton to 
form 3He. In turn, 3He can capture a neutron and transform it into 4He. We see that 
once the temperature is sufficiently low for deuterons to last long enough to undergo 
proton and neutron captures, free neutrons are transformed into bound ones and the 
total number of neutrons in the universe stays more or less constant until the start of 
stellar nucleosynthesis a t  much later stages in the evolution of our universe. 

s. As a result, 
further nucleosynthesis beyond 4He by single-nucleon capture is blocked. Together with 
the fact that 4He has the largest binding energy per particle among all the nuclei in- 
volved in this discussion, we find that a-particles become the main reservoir of neutrons 
at the end of big-bang nucleosynthesis. The exact amount of 4He and, hence, the num- 
ber of neutrons, available for later nucleosynthesis in stars depends on the condition 
existing in the short time between weak interaction freeze-out and when deuterons can 
exist for a sufficiently long time to capture another nucleon. The observed helium in 
the interstellar medium is between 22% and 28% by weight (with the remainder taken 
up by protons). This must be close to the amount that existed before stars began to 
process the primordial material and blow some of the resulting heavier elements into 
the interstellar medium at  the end of their lives. Furthermore, since the universe is 
observed to be electrically neutral, we can also safely assume that the total number of 
electrons is the same as the combined number of free and bound protons. 

Both 5He and 5B are unstable with half-lives on the order of 

Stellar nucleosynthesis. With all the neutrons locked inside nuclei, the only way for 
stars to make new species of nuclei is through charged particle reactions. The most 
likely process is to combine two protons into a deuteron, together with a positron and 
an electron neutrino, as protons are the most abundant nuclei by far and have the 
lowest Coulomb barrier. However, the average temperature of the universe now is far 
too low for two protons to overcome the Coulomb barrier between them and come close 
enough together for nuclear reactions to take place. 

We can make an order-of-magnitude estimate for the kinetic energy required to 
bring two protons to be close enough for nuclear force to act between them. For 
simplicity, let us take the range of nuclear interaction to be TO N 1 fm. The Coulomb 
energy of two protons separated by this distance is 

ffhc - 1.4 MeV 

This is equivalent t o  the thermal energy of a particle at temperature 

k 

where Ic = 8.62 x lo-" MeV/K is the Boltzmann constant. This is three to four orders 
of magnitude higher in value than the condition existing in the interior of the sun where 
we know that proton burning is taking place. 

There are two reasons why nuclear reaction between protons can start a t  much 
lower temperatures. The first is that the fraction of particles with thermal energy E at 
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temperature T is given by a Maxwell-Boltamann distribution 

The long exponential tail ensures that there is a small fraction of the particles with 
kinetic energies much higher than kT. The second reason is that, since the collision 
is a quantum-mechanical process, the probability of tunneling is important for any 
exothermic process, such as proton burning. 

In addition to kinetic energy, a high concentration of particles is also essential to en- 
sure reasonable probability for nuclear reactions to take place. If uniformly distributed, 
the proton density in the universe is far too low for fusion to take place in any significant 
way. (Even inside an interstellar “gas,” the average density is only about one particle 
per cubic centimeter, lower than that in a good vacuum chamber on earth.) Both the 
high temperature and high density reqiiired to initiate nuclear reaction actually come 
as a result of gravitational collapse of primordial matter. However, this cannot happen 
if the material thrown out from the big bang is distributed uniformly in space. On 
clear nights, and away from brightly lit cities, we find that stars are concentrated only 
in certain parts of the sky, the Milky Way. This is only because we are located toward 
the edge of our galaxy. In fact, ours is a member of a local concentration of galaxies. 
If we look beyond the local group, the distribution of galaxies actually turns out to be 
fairly uniform. The uniformity is also supported by the isotropic distribution of the 3 K 
microwave background radiation of photons. If the density is uniform everywhere, the 
gravitational force felt by a particle will be the same in every direction and there will 
not be any tendency to coalesce into clusters. In the recent mapping by the Cosmic 
Background Explorer (COBE),2 an intrinsic anisotropy of the order of 1 part in lo5 is 
observed, and this is found to be adequate for local concentrations of gravity to  pull 
matter together to form planets, stars, and galaxies. 

From hydrogen to finite nuclei. Gravitational contraction of matter, dispersed in 
the universe by the big bang, provides both the concentration of particles and initial 
energy to start hydrogen burning, the process of converting protons into “He (and small 
amounts of heavier nuclei). The reaction produces also two positrons to conserve charge 
and two neutrinos to conserve lepton number. We shall see in $10-3 that the conversion 
takes place in several separate steps, as the probability is essentially nil for four protons 
to  be converted directly into an cr-particle. 

Once hydrogen burning starts, there is a supply of nuclear energy to heat up the 
star and raise the temperature. Part of the energy produced is radiated into space. We 
shall not be concerned with the rate of radiation, as it depends on the radial distribution 
of temperature in a star. One point to note is that, with the higher temperature, there 
is now a thermal pressure to stop further gravitational contraction. A second point 
is that, because of higher Coulomb barriers, nucleosynthesis does not proceed beyond 
“He until later stages in the evolution of the star. In other words, the star is now in a 
hydrostatic equilibrium and the condition persists until the hydrogen fuel is exhausted. 
The amount of time it takes to consume all the available protons depends on the stellar 

‘For more details, see http://www.gsfc.gov/astr/cobe/cobehome.html. 
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Fuel Temperature 

proton 2 x lo7 0.002 

2 x 108 0.02 4He 
12C 8 x lo* 0.07 

'60 2 x 109 0.2 

T(K) kT(MeV) 

20Ne 1.5 x lo9 0.13 

28Si 3.5 x 109 0.3 

A 5 56 supernova 

mass. For our sun, the present status has been going on already for roughly 5 billion 
years and is expected to remain in more or less the same state for another 5 billion 
years or so. In more massive stars, the temperature is higher. This leads to  much 
faster rates of nuclear reaction, and the life span of the hydrogen burning stage can be 
as short as millions of years. 

When the hydrogen fuel is used up in a star, production of nuclear energy from 
fusing protons into 4He stops and the temperature drops. Without adequate thermal 
pressure to offset gravity, contraction starts again. However, since the outer layer of the 
star is cooler and less dense, nuclear reactions are slower and some hydrogen remains 
when the inner core begins to shrink. As a result, the interior of the star goes to a higher 
temperature beyond that required for hydrogen burning while the outer layer remains 
essentially unchanged. When the temperature in the stellar core reaches the value to 
initiate helium burning, nuclear fusion starts again, with helium replacing hydrogen as 
the fuel. Since the energy released from the interior region is at a higher temperature, 
it causes the outer layer to expand. As the radius of the star increases, the surface 
temperature drops, shifting the peak of radiated energy to the longer wavelengths. 
The result is a red giant. 

Helium burning requires a temperature on the order of lo8 K. Since 'Be is unstable 
and lives only for rlt2 = 6.7 x lo-" s, the conversion takes place mainly through the 
triple-cr reaction 

4He + 4He + 4He -3 "C + y 

The 12C produced can capture another a-particle to make l60, 

4He + "C + l6O + 7 

Main product 

4He, 14N 

12c 1 6 0  
I 

160,20Ne,24Mg 
zoNe~8Si,32S 
1 6 0 ~ 2 4 ~ ~  

A x 56 nuclei 

A > 56 

Further @-particle capture produces even heavier nuclei. However, as we move to 
heavier and heavier nuclei, the Coulomb barrier increases in height. This calls for higher 
temperatures that can come only from further gravitational contraction, as shown in 
Table 10-1. Since this is more likely to take place first at  the center, the inner parts 
of the star go to higher temperatures and densities, and evolve faster through different 
stages, than those outside. The net result is that the star develops into an onion-like 

Table 10-1: Different stages of stellar nucleosynthesis 
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structure, with each successive inner layer undergoing a later stage of evolution, a~ 
shown later in Fig. 10-6. 

Niicleosynthesis by a-particle capture produces mainly 4n nuclei. Through colli- 
sions, decays, and the presence of small amounts of protons, neutrons, deuterons, and 
%e, other nuclear reactions participate also in the process and these produce nuclei 
outside the 4n sequence. Partly for this reason, the relative abundances are lower for 
species other than the 4n nuclei. 

The release of fusion energy stops at A = 56 where the binding energy per nucleon 
peaks in value, a4 we saw earlier in Fig. 1-2. This takes place first in the stellar core 
and most of the nuclei are in the form of 56Fe and 56Ni, the two most stable A = 56 
isobars. Further evolution of the star depends even more critically on its total mass 
than any of its early stages. If the value is more than 8 times solar mass, there is 
enough gravitational energy left in the core at the end of fusion to turn the star into a 
supernova. The explosion sends shock waves through the outer layers, which are still in 
the earlier stages of nucleosynthesis. The condition created in this way by a supernova 
explosion is highly noneqiiilibrium, making it possible for nuclear reactions to take 
place that require energy input instead of the purely exothermic ones we have seen so 
far. The environment reminds one of heavy-ion collisions in which a large number of 
reaction prodiicts are created, including those with A > 56, 

For smaller stars, the collapse will not be as catastrophic. One possibility is that 
the star ends its life as a white dwarf, a small star with fairly high temperature but 
very little energy output. Alternatively, it can turn into a brown dwarf, slowly radiating 
away the small amount of energy still remaining in the star. 

For the purpose of nucleosynthesis, we are interested in the material ejected in a 
supernova explosion. In addition to protons and helium nuclei left in the surface regions, 
heavier elements created in the evolntion of the star are also sent into the interstellar 
space. These are mixed with the primordial protons and helium nuclei t o  form the 
raw material for future generations of stars. The relative abundance of elements in the 
solar system, shown in Fig. 10-1, gives clear evidence that the material has already 
gone through several generations of stellar formation and explosion. 

d q 
-5  M 

. .  
I ... . . . . 

ass number -5 I Proton number 

Figure 10-1: Relative abundances of elements in the solar system normalized 
with respect to that for silicon as lo6 (421. 
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10-2 Rate for Nonresonant Reactions 

In a region where there are no resonances, the cross section for nuclear reactions is 
expected to vary smoothly with energy. This is the most likely situation in nucleosyn- 
thesis where the kinetic energy involved is very low compared with those encountered 
in nuclear excitations. Except for the few cases where there happen to be states near 
the threshold with the same quantum numbers as the reaction channel of interest, the 
reaction is nonresonant. In this case, the cross section a ( E )  as a function of energy E 
may be written as a product of three factors, 

(10-1) 

where u is the relative velocity between the two nuclei, c is the speed of light, and 
Q the fine structure constant. The inverse energy dependence comes from geometric 
considerations. As we have seen in the case of nucleon-nucIeon scattering in $3-8, t,he 
low-energy cross section is given by the square of scattering length a. Similar to the de 
Broglie wavelength X = h / p ,  the scattering length is inversely proportional to velocity v 
and, hence, the cross section a t  low energies is, to a first-order approximation, inversely 
proportional to E. The exponential factor gives the probability, or penetration factor, 
for a nucleus with proton number 2, to tunnel through the Coulomb barrier of a nucleus 
with proton number Z,. The factor 7 E Z1Zzcrc/v is the Sommerfeld number given in 

To simplify the notation and to display the energy dependence explicitly, we shall 
Eq. (4-64). 

define a quantity b by the relation 
e-2nZ1Zaaclv = - e - b / f i  ( 10-2) 

Since we have assumed that there are no resonances involved in the reaction, the nuclear 
structure cannot have any large variations as a function of energy in the region. Let us 
represent any effect nuclear structure has on the reaction cross section by S ( E ) .  From 
Eq. (lo-l), we can write 

S(E) = Ee*/fio(E) 

It. is known as the S-factor and we shall see later that it is a convenient quantity in 
discussing nonresonant reaction rates in nuclear astrophysics. 

Unlike laboratory experiments in which the velocities of the projectile and target 
particles are fixed both in magnitude and in direction, the stellar environment resembles 
that of a hot gas. Nuclear reactions are initiated through random collisions of the 
particles involved. Since the rate of a particular reaction depends also on the frequency 
( ~ f  collisions between two types of particle, we can define a reaction rate A as the product 
( t f  relative velocity v and cross section cr. In a hot gas, the particles have a Maxwellian 
distribution p(v) in velocity. On averaging over the possible values, we obtain the result 

X 3 ~ m o ( E ) v p ( u ) d u  
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where the reduced mass p may be approximated as 

with A1 and A2 as the nucleon numbers of the two nuclei involved. For p(v) ,  we have 
made use of the Maxwell-Boltzmann distribution 

for a gaa at temperature T and with molecular mass p. 

integrand in Eq. (10-3) is given by the exponential of 
Since S ( E )  is assumed to be essentially independent of energy, the variation of the 

The maximum of this function occurs at 

The value 
(10-4) 

213 Em,, = ( ibkT)  

is therefore the place where the nonresonant reaction rate for charged particles reaches a 
maximum. Since the energy dependence in the integrand is a product of two exponential 
terms-exp - { E / k T } ,  which decreases with energy, and exp{ - b / a } ,  which increases 
with energy-the only effective part of the integral is a small region around Emax, In 
fact, the integrand may be approximated by a normal curve [44] centered around Em, 
with a width A = 44- (see also Problem 10-4). Schematically, the dependence 
is shown in Fig. 10-2. 

Temperature 

Figure 10-2: Rate of nonresonant nuclear reaction for charKed particles in stellar 
environment. The probability for nuclear reaction is represented by the shaded 
area (multiplied by a large number to make it visible) resulting from a product 
of the Maxwell-Boltzmann distribution in the kinetic energy of the particles and 
the exp{ - b / a }  dependence of the Coulomb penetration factor. 
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10-3 Conversion of Proton into Hel ium 

The sun is classified as a young star with an age somewhere around the middle of its 
hydrogen burning phase. The radiant energy comes from fusing four protons into a 
helium nucleus. The actual process, however, takes place in several distinct steps, as 
direct conversion of four protons into 4He, being a four-body reaction, is extremely 
unlikely. 

The first step is to  make a deuteron through the reaction, 

p + p  -+ d + e+ + v, (10-5) 

As we have seen earlier in Table 10-1, the reaction starts around stellar temperature 
2 x lo7 K. In energy units, it is only 2 keV, far lower than the binding energy of a 
deuteron. As a result, we do not have to be concerned with photodisintegration as a 
sink for the deuterons created as, for example, in the case of big-bang nucleosynthesis 
described in $10-1. Once the density of deuterons is sufficiently high, conversion to  3He 
through a (p,y) reaction, 

becomes important. From this point onward, there are several competing routes to  
change the product into 4He. 

p + d 3He -I- 7 

PP-chains. One possibility is that two 3He nuclei may collide with each other, initi- 
ating the reaction 

3He+3He -, 4 H e + p + p  

This is know as the PPI-chain. Since it takes three protons to make each one of the 
two 3He nuclei required for the production, a total of six protons are involved on the 
left-hand side of the reaction. On the right-hand side, there are two free protons. The 
net result is that four protons are converted into a 4He nucleus. In the process two 
positrons, two neutrinos, and two y-rays are emitted. 

A second possibility is for the 3He to react with one of the 4He nuclei left over from 
the big bang or produced in the star. This leads to  the reaction 

3He + 4He + 7Be + y (10-6) 

Through electron capture, the 7Be is converted into a 7Li, 

e- + 'Be -+ 7Li + u, 

By capturing a proton, 
p + 'Li + 4He + 4He 

two 4He nuclei are produced. This is known as the PPII-chain. Again, the net result is 
the conversion of four protons into a 4He, as the starting point is a 3He, made originally 
from three protons, a 4He, and a proton (as well as an electron). 

Instead of electron capture, the 7Be produced in Eq. (10-6) can be changed into a 
'B through a ( p ,  y) reaction, 

p + 'Be + 'B + y 
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Being unstable, 'B decays by @+-emission into a 'Be with a half-life of 770 ms, 

'B -+ 'Be+ E' + v, 

Since 'Be is unstable with respect to a-decay, 

'Be -, 4He + 4He 

we end up again with two 4He nuclei. This is the PPIII-chain, and it converts four 
protons into a 'He through one proton capture, one /3+-decay, and one a-decay. The 
rcnctions involved in all three PP-chains are summarized in Tahle 10-2. 

Table 10-2: Proton-proton chains to convert protons into helium 

Reaction Q-valiie(MeV) 

Common to all chains 

p + p  -+ d + e+,+ v, 1.442 
5.493 d + p 4 'He + y 

PPI-chain 

'He + 'He -+ 4He + p  + p 12.859 

PPII-chain 
SHe + 4He --+ 7Be + 7 1.586 
'Be + e- + 7Li +7 0.861 
7 L i + p - +  'He t 'He 17.347 

PPIII-chain 

'Be+p - t 8 B  + y  0.135 
'J3 -t 4€Ie + 4He + e+ + v, 18.074 

CNO cycle. In addition t)o the three PP-chains, protons are also converted into 4He 
through the more elaborate CNO (carbon-nitrogen-oxygen) cycle shown schematically 
in Fig. 10-3. Even for a young star, there are always some heavier elements present 
alongside with the dominant components of protons and 4He nuclei. In addition to 
primordial sources, the interstellar medium is also filled with heavy elements blown off 
from massive stars that have already gone through their life cycles. Because of the 
presence of ' *C, it  is possible to have a different but fairly efficient process for proton 
burning. 

Let us concentrate first on the main part of the CNO cycle represented by the circle 
in the middle of Fig. 10-3. If we start at the top, from "C, the cycle may be viewed as 
a chain of four (ply) reactions to capture four protons one after another and convert 
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I2C 

Figure 10-3: Carbon-nitrogen-oxygen (CNO) cycle of nucleosynthesis showing 
the different reactions involved in converting protons into 4He. 

two of them into neutrons by P+-decays. The six reactions involved are 

p + " C  --$ 1 3 N + y  

p + I 3 C  -+ 1 4 N + y  
p+14N -+ 1 5 0 + y  

p+15N -+ " C + a  

13N -+ I 3 C + P + + v e  

1 5 0  -+ I5N+/3++ve 

The net result is again four protons converted into a 4He together with two positrons 
and two electron neutrinos, the same final result as the PP-chains. The only exception 
is that lZC is used as the catalyst here. 

There are several side chains to  the main CNO cycle that are also of interest. The 
13N produced in the ( p ,  y) reaction on "C may be converted through another ( p ,  y) 
reaction into 140, which then P+-decays to 14N, 

p+13N -+ 1 4 0 + y  

'*O -+ I 4 N + p + + v ,  

The final product returns the process to the main CNO cycle in the form of I4N. 
Similarly, some of the I5N near the end of the main cycle may be converted back to 
14N by the following chain of reactions: 

p+15N -t l 6 0 + y  
p + I 6 0  -+ 17F+y 

p + I 7 O  -+ 1 4 N + a  

"F -+ "O+P++v ,  

Again a 4He nucleus is made from four protons by this procedure. 
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The I7O in the intermediate step above may return some I5N to the main cycle and 
produce a 4He nucleus through the chain of reaction 

p + 1 7 0  -+ I ~ F + ?  

'*F 3 1 8 0 + p t + v e  
p+"O 3 1 5 N + a  

The I8O produced in the intermediate stage here may also undergo further proton 
capture and produce 19F through the process 

p + %  + IgF+7 

p+ '9F  --+ l60+a! 

Some of the 19F, in turn, may be converted into 20Ne by a further ( p ,  7) reaction, 

p + "F + "Ne -t y 

In terms of the amount of energy produced, the PP-chains still constitute the dominant 
source. However, the CNO cycle is able to generate some of the heavier elements that 
are of interest from a nucleosynthesis point of view. 

10-4 Solar Neutrino Problem 

We saw in the previous sections that most of the radiant energy of stjars derives from 
nuclear reactions (and the rest from gravitational contraction). In addition to y-rays, 
a comparable number of neutrinos is also emitted in the process. Since most of the 
reactions take place in the interior of the star, the 7-rays are seldom observed directly. 
Interactions with the thick outer layers of stellar matter transform the electromagnetic 
energy into black-body radiation, characterized only by the surface temperature of the 
star. This is not, triie for the neutrinos. The small interaction cross section means 
that most of the neutrinos can emerge from the star without suffering a collision on 
the way. Their spectrum is therefore a more direct reflection of the conditions existing 
in the interior of the star. For this reason, there are high hopes for new discoveries 
to be made through neutrino astronomy: observation of astronomical objects by the 
neutrinos they emit rather than the traditional means of visible light and other parts 
of the electromagnetic spectrum. 

The major advantage of neutrino astronomy is also its main difficulty. The typical 
int,eraction cross section is around lo-'* fm2 m2), As a result, most neutrinos 
can, for example, go through the earth wit,hoiit suffering an interaction (see Problem 
10-7). Since t,he only way we can observe a neutrino is through its rare interactions 
with matter, huge detectors and highly sensitive apparatus are essential. Fortunately, 
the earth atmosphere is not a problem here as in optical astronomy, and large setups 
can be constructed on the surface of the earth rather than high up in mountains and 
in space stations. In fact, neutrino observatories are usually built deep underground to 
reduce backgroiind from cosmic rays. 

Solar neutrino. For an earth-based observatory, the most intense source of stellar 
neutrinos is the sun, as it is the closest "star." Before examining the expected spectrum, 
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let us summarize first the different types of neutrinos produced in the sun from proton 
burning. In the previous section, we have seen that neutrinos are produced in the 
following three reactions in PP-chains: 

(10-7) 

(10-8) 

(10-9) 

The neutrino from the p ( p , y ) d  reaction in Eq. (10-7) is the most important one to 
measure, as one such neutrino must be emitted for each 4He nucleus made, regardless 
of in which one of the three different chains the actual conversion takes place. Unfor- 
tunately, the end-point energy of this reaction is only 0.42 MeV, the lowest one among 
all the neutrino emission processes involved. The dominant mode of decay for 8B in 
Eq. (10-8) is to go to the 2+ first excited state at 3.040 MeV. Since it is broad state, 
having a width of 1.50 MeV, it complicates slightly the calculation of end-point energy 
for the neutrino involved. 

For electron capture, the energy distribution of the neutrino emitted is in the form 
of a sharp line, as the final state is two body. However, two discrete lines are produced 
in the case of 7Be given in Eq. (10-9), one to the ground state of 7Li with -90% 
probability and the other to the 0.477-MeV excited state with 10% probability. The 
end-point energy for the ground state capture is 0.863 MeV, given by the difference 
between the 7Li binding energy of 39.245 MeV and the 'Be binding energy of 37.600 
MeV, less the neutron-proton mass difference of 0.782 MeV. For the excited state, the 
value is 0.863 - 0.477 = 0.386 MeV. 

In addition to these dominant modes, we must include the following two reactions 
that are important for the neutrino emitted rather than the fraction of the total energy 
produced: 

p + p + e -  -+ d + v ,  

p + 3 H e  -+ 4 H e + e + + v e  

(10-10) 

( 10- 11) 

The first is the pep process. It is basically the same as the pp process of Eq. (10-7) 
except that electron capture replaces @+-decay. Although the rate is greatly diminished 
because the initial state is three body, the neutrino produced is mono-energetic a t  1.442 
MeV. The width of the energy distribution is less than 1 keV, arising mainly from the 
thermal energy distribution of the particles involved in the reaction. 

The second addition is the hep process of Eq. (10-11). Its importance comes from 
the fact that it produces the highest energy neutrinos, with an end-point energy of 
18.773 MeV. The flux is, however, down by seven orders of magnitude compared with 
p p  neutrinos. Another source of high-energy neutrinos comes from 8B decay, given in 
Eq. (10-8), and it has an end-point energy of 14.9 MeV. As we shall see later, these 
high-energy neutrinos are the only ones "seen" by the 3'Cl detector that has been in 
operation for more than 30 years. 

Neutrinos are also produced from the b+-decays in the CNO cycle. The dominant 
ones are 

13N -t ' 3 C + p + + ~ e  
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150 + 1 5 N + p + + v e  

"F ' 7 0 + f l + + u e  

The end-point energies are given in Table 10-3 together with those for the other reac- 
tions. 

Table 10-3: Maximum energy in MeV of neutrino produced in proton burning. 

Label I Reaction 

PP 
8B 

h ep  
13N 

' 5 0  

17F 

p + p 3 d + e+ + ve 

8B + 8Be* + e+ + u, 

p + 3He -+ 4He + e+ + v, 

I3N -+ 13C + p+ + v, 

"0 ---* 15N + Bt + u, 

I7F --$ 170 + @+ + v, 

EB(right) 

2.224 

56.500 

28.296 

97.108 

115.491 

131.763 

EB(left) 

0 

37.738 

7.718 

94.105 

11 1.956 

128.220 

0.420 

14.9 

18.773 

1.199 

1.731 

1.739 

Energy spectrum. In addition to the maximum value, the energy distribution of the 
neutrinos emittcd is also important in what we can expect to detect at an observatory. 
We have seen earlier that, in a @+-decay, the probability W(pe) for emitting a positron 
with momentum p ,  in an interval dp, is given by Eq. (5-68), 

W ( p e )  dpe = CF(Zt Ec) P ~ ( E o  - Ee)2 d ~ e  

where, for simplicity, we have assumed the rest mass of neutrinos to be zero and all 
the energy-independent factors, including the sum over nuclear matrix elements, are 
represented by the factor C .  To convert to the probability P(E.) for a relativistic 
positron with kinetic energy E,, we can make use of the relation 

This gives us 

P(Ep) dE, = $F(Zl Ee) (Ee + m,,cZ)d- (Eo - Ee)' dEe 

Using E, = EO - E,, we obtain the energy fipectruni of the neutrinos emitted as 

xd (&  - E,)' + ~ ( E o  - Eu)7npc2 E; dE, (10-12) 

Let 11s ignore the Fcrrni function F ( Z ,  Eo - E,,) for the time being and concentrate 
on the energy depenrlence given by the statistical part. If the end-point energy Eo is 
much larger than the rest, mass energy of the positron, as, for example, in the case 
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of 8B decay, the energy dependence of P(E,) is symmetric around the peak value at 
E, = E;0/2, as shown in (a) of Fig. 10-4. On the other hand, if E,, is comparable to 
mec2, as, for example, in converting two protons to a deuteron, the function P(E,) is 
forward peaked, as shown in (b) of Fig. 10-4. In a log-log plot, the forward peaking 
appears even more pronounced, as we shall see later in Fig. 10-5. 

Neutrino energy in MeV 

Figure 10-4: Energy spectra of neutrinos. In (a), the end-point energy is much 
larger than m,c2 and the shape is almost symmetric. In (b), the end-point energy 
is comparable to m,c2 and the spectrum is forward peaked. The vertical scales 
are normalized arbitrarily to unity at the peak. 

Several corrections must be applied before P(E,), shown in Fig. 10-4, can be used 
as the neutrino spectrum for a specific P+-decay in proton burning. The first is the 
Coulomb effect, given by the Fermi function F(2, ED- E,). For P+-decay, the positrons 
are given a boost in energy by the nuclear Coulomb field and the spectrum is pushed 
in a direction such that it appears to be more forward peaked than without the correc- 
tions. To conserve energy, the corresponding neutrino spectrum becomes less forward 
peaked than that given by statistical considerations alone. A second correction arises 
because the decay takes place in a stellar environment and distribution in the thermal 
energy of the particles must be taken into account. The main effect here is to smear 
out the distribution somewhat. In the special case of 'B decay, the dominant final state 
is a broad one. In this case, the neutrino spectrum is further modified by a convolution 
of the distribution of the final state with the shape given by Eq. (10-12), as well as 
the corrections described above. In fact, because of the importance of the high-energy 
neutrinos emitted, very elaborated calculations have been carried out for the 'B neu- 
trino spectrum (211. This, as well as spectra from other reactions given above, are 
summarized in Fig. 10-5. 

Neutrino detectors. There are basically two ways to detect neutrinos. The first is by 
scattering from charged particles. If the energy transfer is sufficiently large, the charged 
particle recoils with a speed faster than that for light in the same medium. This results 
in Cerenkov radiation that can be detected using, for example, a scintillation counter. 
For the low-energy neutrinos coming from hydrogen burning, only scattering from elec- 
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G '"t 13N ' 

Loglo energy in MeV 

Figure 10-5: Log-log plot of the expected neutrino fluxes from various proton 
burning reactions in tthe snn [19]. Solid curves are those from PP-chains and 
dotted curves from the CNO cycle. Discrete lines come from a pep reaction and 
'Be from electron capture. 

trons has  any finite chance of producing such radiations. Furthermore, the medium 
must be transparent for the radiation to reach the detector. For these reasons, water is 
used in the Cerenkov detectors at  Kamioka. The largest one, the Super Kamiokande, 
contains 50,000 t m s  of high-purity water.' In principle, any neutrino with energy com- 
parable to the electron rest-mass energy of 0.5 MeV can scatter electrons to  produced 
Cerenkov light. However, the practical limit of the Kamioka detectors is higher, around 
7 MeV at the time of writing. As a result, only 'B neutrinos from the sun are seen by 
the detectors [ S S ] .  

Instlead of ordinary water, the Sudbury Neutrino Observatory (SNO) employs 1000 
tons of heavy water.4 The advantage of using this far more expensive form of water 
is that, in addition to neutrino-electron scattering, the deuteron in the water is also 
sensitive to the neutral current reaction, 

v e  + d + p s  n + v, 
The neutron liberated in the reaction may be captured by another nucleus through 
an (n, 7) reaction and a scintillation counter can be used to detect the y-ray emitted. 
The minimum neutrino energy required to trigger this reaction is determined by the 
deuteron binding energy of 2.22 MeV. The advantage of the neutral current reaction is 
that it is equally sensitive to all three types of neutrinos, v,, up, and u,. In contrast, 
electron-neutrino scattering favors v, (by a factor of 6). Similarly, the charged current 
reaction 

v, + d  -, p + p +  e- 

3See http://oitkanl.hep.sci.os~~-u.ac.jp/kRmiobEng/kamioka.html. 
4For more up-to-date information, see http://modaq.phy.queensu.ca/SNO/sno.html. 
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Detector Reaction 

Homestake uc + 37Cl -+ 37Ar + e- 

the inverse of that  given by Eq. (10-5), is sensitive only to electron neutrinos. The 
reason that the type of neutrino is of interest here comes from the possibility of neutrino 
oscillation. We saw earlier in 35-5 that, under weak interaction, the decay products of 
quarks do not have definite flavor. If this happens also to neutrinos, the neutral lepton 
emitted in a nuclear 0-decay will not be in an eigenstate either, and the observed 
neutrino flavor may change under suitable conditions, such as those encountered in 
passing through the outer layers of a star. If this does happen, some of the ve emitted 
from nuclear reactions in the interior of the sun may be transformed into v,, or vT and 
would be missed by detectors sensitive only to ve. The neutral current reaction does 
not have this problem and may therefore be an important source of information on the 
question of whether there is oscillation in the solar neutrinos. 

The second way to detect neutrinos is to use radiochemical methods. Nuclear reac- 
tions induced by solar neutrinos are extremely rare because of the small weak interaction 
cross section. Large detector size alone is insufficient as the signal produced may be 
lost in the volume. One way to get around the problem is to use reactions that produce 
radioactive nuclei with half-lives suitable for applying radiochemical techniques. The 
best known one in this category is the detector at Homestake Gold Mine that has been 
operating since 1968. It makes use of the reaction 

ve + 37Cl + 37Ar + e- 

E g  (left) 

317.100 

The chlorine comes in the chemical form C C 4 ,  an ordinary cleaning fluid. The product, 
37Ar, is unstable and decays back to 37Cl by electron capture with a half-live of 35 days. 
Being a noble gas, the argon can be "flushed" out periodically from the cleaning fluid 
and counted. The radioactivity of the sample collected in this way gives a measure 
of the number of 37Ar produced during the period of time and, hence, the number of 
neutrino reactions that have taken place in the detector. From the known cross section 
of the reaction, the flux of neutrinos going through the detector may be deduced. 
As shown in Table 10-4, the minimum energy a neutrino must have before i t  can be 
detected in this way is 0.813 MeV. As a result, it is sensitive to neutrinos from *B, 
hep, the two discrete lines from pep, and the higher energy one from the 7Be electron 
capture reaction. A summary of the parameters for the neutrino-chlorine reactions is 
given in Table 10-4 together with those for the other reactions described below. 

315.505 

617.934 

843.776 

- 

0.0 

Table 10-4: Threshold energy Q in MeV for various neutrino detectors. 

0.813 

0.232 

1.685 

25 
2.224 

SAGE 
GALLEX 
Molybdenum 

Kamiokande 

Ve + "Ga -+ "Ge + e- 

Ve + g8M0 -+ 9 8 T ~  + e- 

u + e- --+ v + e- 

618.948 

846.243 

- 

SNO V, + d -+ p + n + ve 2.224 

71 12 

35 days 

11.43 days 

4.2 x lo6 yr 

0 

0 
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Two other experiments, Gallium Neutrino Observatory (GNO, more commonly 
known M GALLEX) and Russian-American Gallium Experiment (SAGE), make use of 
the reaction 

ve + "Ga -+ 71Ge + e- 

The threshold energy here is only 0.232 MeV, below the end-point energy of the pp 
reaction common to all three PP-chains. Since each 4He produced in the PP-chains 
involves one ppreaction, the pp-neutrinos bear almost a direct connection with the 
energy produced. Such a simple relation has the advantage of making the comparison 
with measured values much more meaningful. The GALLEXlGNO detector consists 
of, at the time of writing, 30.3 tons of galliiim (12 tons "Ga) in the form of gallium 
chloride solution and has been taking data since 1991. A plan is underway to upgrade 
the detector to 100 tons of gallium. The SAGE detector is made of 57 tons of metallic 
gallium and has been in operation since 1990. Since gallium is a relatively rare metal, 
the amounts used in the two detectors represent a significant fraction of the annual 
production of the metal in the whole world. 

Another class of radiochemical "detmtors" is represented by the one at Henderson 
Malybdennm Mine in Colorado. The reaction 

v, + "Mo 4 9 8 T ~  + e- 

has a neutrino threshold rnergy of 1.685 MeV and produces "Tc with a half-live of 
4.2 x lo6 years. The threshold energy is relatively high. On the other hand, the half- 
life is so long that extremely lengthy periods of time can be used to accumulate the 
radioactive product, produced in the reaction. In fact, one can take the age of the earth 
as the period. In this approach, the experiment involves counting the amount of 9 8 T ~  
in molybdenum ore and comparing t,he result with expectation. This is very similar in 
spirit with the chlorine and gallium experiments except that the period is the age of 
the earth. 

The solar neu t r ino  problem. After running the Homestake Mine experiment for 
more than two solar cycles, it is found that the measured neutrino flux is only about a 
t,hird of the expected value. Both the gallium and Kamiokande results also support the 
conclusion that the measured flux is lower than the values expected. The deficiency 
in the measured solar neutrino flux is therefore "real" in terms of the best available 
knowledge of the physics involved. For this reason, it has been generally referred to as 
the solar n e u t h o  problem [ZO]. 

Because of the extremely small cross section, it is convenient to adopt a new unit, 
the solar neutrino unit (SNU for short), for any quantitative discussions of the solar 
neutrino question. One SNU is defined as the flux of neutrinos that produces one 
reaction a secaiid for every lo3' target atoms. The measured value at Homestake Mine 
is 2.1 f 0.3 SNU. Some variations wit,h solar cycle are visible in the data, but they are 
not large enoiigh to be of concern to us if oiir interest is in the deficiency compared 
with the expected value. 

Since t,lie v, + 37Cl reaction is only sensitive to the high-energy neut,rinos from 
*B decay and the h e p  process, it is more subject to uncertainties in our knowledge of 
the physics involved. One of the major difficiilties is that we do not have a method, 
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independent of neutrinos, to make observations on the conditions existing in the inte- 
rior of the sun, where the nuclear reactions take place. As a result, models must be 
constructed on the neutrino spectra we can expect using the best known physical prin- 
ciples and available values for the input parameters. The expected value for the “Cl 
measurement, obtained from the “standard solar model,” is 7 . 9 f 2 . 4  SNU [19]. The un- 
certainty represents very conservative estimates of the input parameters that went into 
the model. The discrepancy of the calculated values from the measured ones is, there- 
fore, statistically significant and may well imply new physics. Partly for this reason, it 
has stimulated interest in carrying out the newer solar neutrino measurements. 

The average measured value of GALLEX at the time of writing is 77 f 10 SNU. 
This is only about half of the expected value of 127 SNU from the standard solar model. 
The measured value of SAGE, 69 f 13 SNU, is comparable to the GALLEX results. 
Thus, the gallium measurements also show a deficiency in the flux of solar neutrinos, 
confirming the existence of the solar neutrino problem. 

The original Kamiokande Cerenkov detector was designed to  detect proton decay 
and other high-energy events. It was converted in 1986 to observe low-energy neutrinos 
by reducing the background. Being a “real-time” detector, it is able to show that the 
observed neutrinos are coming from the direction of the sun. On the other hand, the 
present threshold of -7 MeV makes it sensitive only to the ‘B neutrinos. The measured 
result is about half of that expected from the standard solar model [69]. However, no 
correlation with solar spot activity was evident from the data. 

If we take all the measured results together, it is quite clear that the observed solar 
neutrino flux is less than the value expected based on the best knowledge we have on the 
physics involved. This is a very interesting situation, as advances in physics are often 
made when observations become precise enough to challenge the existing views. In this 
way, the solar neutrino problem has a chance to become the doorway to new physics 
we have not yet thought about. No doubt the new detectors of Super Kamiokande and 
SNO will shed some additional light on the question. 

10-5 Helium Burning and Beyond 

When the central part of a star runs out of hydrogen fuel, there is a shortage of thermal 
pressure to maintain the hydrostatic equilibrium and gravitational contraction begins 
once again. This raises the central temperature of the star until it is high enough for 
helium burning to  start. Since the outer layers of the star are cooler and less dense, 
nuclear reactions take place at slower rates. As a result, the central part of the star 
evolves into helium burning while the outer layer continues with the process of hydrogen 
burning. 

Different layers of stellar evolution. The total amount of fusion energy available in 
helium burning is much less than hydrogen burning, as the binding energy per nucleon 
of 4He is 7.1 MeV, less than 1.5 MeV away from the peak value around A M 56. We 
shall see in a more detailed discussion later that the first step in helium burning is 
to fuse three 4He into a lzC nucleus. Through an (a,?) reaction, absorbs an a- 
particle to form l60. At the end of this stage, the Coulomb barrier becomes too high 
for further a-particle capture to take place. The star again repeats the sequence of 
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first exhausting the available fuel and then contracting to even smaller size and higher 
temperature (and density) until the next group of nuclear fusion reactions can take 
place. Since the reactions are going on atJ higher rates in the central part of the star, 
the evolution takes place on shorter time scales than the outer layers. The net result is 
that an onion-like structure develops, with successive inner layers of the star undergoing 
later and later stages of evolution. This is schematically shown in Fig. 10-6. 

I 106 1 0.02 

Density in kg/m3 Temperature in loe K 

Figure 10-6: Schematic diagram showing the dominant nuclear components, 
temperature, and density in different layers of a massive star prior to supernova 
explosion [ 1201. 

When the temperature of a layer reaches kT N 1 MeV, particles as heavy as silicon 
occupy a significant fraction of the nuclei present. At the same time, +prays in thermal 
equilibrium with the particles are energetic enough to cause photodisintegration of the 
nuclei present. One consequence of such an environment is that a number of protons 
and neutrons are knocked out of the nuclei and become the source of other nuclear 
reactions. In this way, some of the nuclei outside the 4n chain are created. 

The combination of higher temperature in the stellar interior and smaller binding 
energy differences in the nuclei involved shortens the duration for each successive stage 
of nucleosynthesis. In a massive star, 25 solar masses, for example, the hydrogen 
burning stage takes several million years (compared with the order of 10’’ years for 
the sun). The helium burning stage is about an order of magnitude shorter in time. 
In the next stage, when ’% becomes the dominant fuel, the lifetime is only a few 
hundred years. Oxygen and silicon combustions at even later stages are estimated to 
take, respectively, only 6 months and 1 day. At the mean time, the density of the star 
goes up. At the hydrogen burning stage, a 25-solar-mass star has only five times the 
density of water. At each successively later stage, the density goes up by more than 
two orders of magnitude, ending up to be about 30 million times the density of water at 
the silicon burning stage. This value is, however, still far less than the nuclear matter 
density of 3 x 1014 that of water (see, e.g., Ref. (641.) 
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Triple-a process. Let us return first to the end of hydrogen burning. Gravitational 
contraction starts again, and both stellar temperature and density begin to rise. Con- 
version of 4He to heavier nuclei becomes possible when the interior of a star reaches 
temperature kT N 10 to 20 keV and density p N lo5 to 10" kg/m3. This is the 
hydrostatic helium burning stage of a star. 

From a nuclear physics perspective, there are several interesting points that merit 
special attention. The first is the absence of stable A = 5 nuclei, as we saw earlier in 
510-1. Neither sHe (~112 = 0.7 x lo-" s) nor 'Li (TI /*  = 3.0 x s) nuclei live long 
enough for a sufficient number to be built up in a star. As a result, it is impossible 
to continue the process of proton capture beyond 4He to make the heavier nuclei, as 
in the hydrogen burning stage. Instead, a-particle capture becomes the important 
mechanism. 

The second is that 8Be is unstable. The ground state decays into two a-particles 
with r112 = 6.7 x lo-" s. As soon as 8Be is made through the reaction 

4He + 4He -+ 'Be 

it decays spontaneously back to two a-particles. However, the half-life is five orders 
of magnitude higher than those, for example, for the two mass 5 nuclei given in the 
previous paragraph. As a result, there is always some small amounts of 8Be present 
at any time. The equilibrium density depends on the rate of creation. At T - 1 to 
2 x lo8 K, the value is about one "Be among lo9 a-particles. Such a low abundance 
will not normally be sufficient for further a-particle absorption to form heavier nuclei 
except for a very fortuitous "accident" in the structure of "C. 

This leads us to the third interesting point, the "triple-a process." The binding 
energy of 12C is 92.162 MeV and those of 8Be and 4He are, respectively, 56.500 and 
28.296 MeV. The reaction 

4He +8Be -+ I2C + y 

leading to the ground state of "C ,  therefore, has a &-value of 7.366 MeV. Furthermore, 
detailed nuclear structure calculations show that the ground state wave function of I2C 
has a relatively small overlap with the product of those for 8Be and 4He. As a result, 
the reaction cannot be a resonant one and the production rate for this way to create 
12C is too small to explain the observed abundance. 

Fortunately, there is a O+ excited state at  7.66 MeV in 12C. Since the spin and 
parity of both "Be and 4He are O+, the capture can go through the excited O+ state by 
the strong s-wave channel. The energy difference from the threshold is now Iess than 
300 keV, and the capture can take place almost at  the most favorable circumstance 
for a resonance reaction. Furthermore, the wave function of the 7.66-MeV O+ state 
resembles that of three a-particles arranged in a straight line, rather than in a triangle, 
it9 in the case of the ground state. This is shown schematically in Fig. 10-7. The large 
overlap in the wave functions provides the additional advantage required to make it 
possible to convert the small concentration of "Be efficiently into "C. Since "Be lasts 
only for such a short time, the process is essentially one that convert three a-particles 
to a 12C, 

4He + 4He + *He -+ ''C + 7 
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@@ 
Figure 10-7: Low-lying en- 
ergy level structure of 12C and 
the triple-a process. (Plotted 

'Be + a 

5 9.64 

and hence the name triple-ru process. In the absence of this special 7.66-MeV state, it 
would have been almost impossible for nucleosynthesis to proceed to heavier elements 
beyond *Be in helium burning stars. 

From carbon to oxygen. By capturing an a-particle, ' *C is converted into l60. The 
reaction 

4He + 12C -+ "0  + 7 
is, by far, the most important one that consumes "C. Competitive processes such a.q 

l2C + "C '*Mg + 7 
are far less effective because of the higher Coulomb barriers and unfavorable &-values 
(14 MeV in the 12C(12C,y)24Mg example] (381. 

In fact, the triple-ru process and I2C(a, 7)I6O are the two most important reactions 
that control the subsequent production rates and, hence, the relative abundances of 
heavier elements. Calculations have shown that, in massive stars, the ratio l60 to 

affects the amount of heavier elements produced in their lifetimes, as well as the 
properties of the remnant after a supernova explosion 11431. Large values, for example, 
favor the production of heavier elements, leading to a more massive iron core during 
the pre-supernova stage, and increase the probability of leaving a black-hole remnant 
instead of a neutron stjar. Small values, on the other hand, produce relatively much 
less heavier elements. The calculated values are plotted in Fig. 10-8 for a few of the 
more representative elements as illustration. 

Although the triple-a reaction cannot be reproduced easily in the laboratory, the 
cross section may be deduced from other measurements with an uncertainty of about 
15%. The primary reason for this is the simple level structure of "C at  the energies 
involved, as can be seen from looking at Fig. 10-7. This is not true for I6O, and the 
cross section for the low-energy "%(a, 7)I6O reaction becomes one of the important 
rneasiirernents in nuclaar astrophysics. 

relevant for the reaction is shown in 
Fig. 10-9. In the region of excitation energy near the reaction Q-value of 7.162 MeV 

The low-lying energy level structure of 
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Figure 10-8: Calculated production factors of a few representative elements 
as a function of the S-factor for the ' 2C(~ ,7)  l60 reaction. (Values taken from 
Ref. (1431.) 

for the '*C(a, 7)l6O reaction, there are no Of states. Consequently, the capture must 
proceed through channels with orbital angular momentum C > 0. Since the angular 
momentum barrier increases almost quadratically with Z [proportional to C(l + I)/?], 
the next most likely reaction channels are C = 1 leading to 1- states and C = 2 to 
2+ states. In each of these two channels, there are two states near the threshold, the 
2+ states at 9.85 and 6.92 MeV and the 1- states a t  9.60 and 7.12 MeV. Both the 
6.92- and 7.12-MeV states are subthreshold. However, being states with finite widths, 
the distributions of their reaction strengths extend into regions with positive &-value. 
As a result, they make significant contributions to  reactions that are extremely low in 
energy, such as those taking place in the stellar environment of interest to  us here. 

We can find out the reaction energies involved in helium burning stars from the 
following consideration. A typical stellar temperature here is kT N 0.015 MeV (7' M 
2 x lo* K). From Eq. (10-4), the peak of the reaction rate is found to occur at 

Em,, = ($bkT)'13 

Using Eq. (10-2), we obtain the result 

b = aaZlZ2@ = 0.99O&Z26 

in MeVi12. Here A = A1A2/(A1 +A2) is the reduced mass in atomic mass units (amu), 
with A1 and A2 89 the masses of the two nuclei involved. For the 12C(a, 7) l60  reaction, 
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Figure 10-9: Low-lying energy level structure of ''0 and the 12C(a,-y)160 re- 
action. (Plotted using data from Ref. (1361.) 

we have A1 M 4, A2 z 12, Z1 = 2, and Z2 = 6. This gives us 

Emax = 0.3 MeV 

or 300 keV. in  the laboratory, it  is impossible to carry out a-particle measurements 
down to such low energies. First, it is not easy to produce an intense beam when the 
energy is so low. Second, the Coulomb barrier for the reaction is around 6 MeV and the 
probability for a 300-keV a-particle to penetrate into a "C nucleus is so small that one 
can expect only a few counts a year with the best available accelerator and reasonable 
target thickness. For this reason, the reaction rate for '2C(( r ,~)1e0  at energies of 
astrophysical interest is far less well known than that, for example, for the triple-a 
process. 

Most measurements are carried out at energies on the order of mega-electron-volts, 
a region where experiments can be reasonably carried out. In these cases, the dominant 
contributions come from states above the "C(a ,  r)l6O reaction threshold. It is not easy 
to extrapolate from these measurements the value for the cross section at 300 keV, as the 
contributions from the subtt~rediold states, important for astrophysical interests, are 
insignificant a t  such high energies. For this reason, the uncertainty was, until recently, 
almost a factor of 2 for S(300 keV), the value of the S-factor at Em, of 300 keV. As we 
can see from Fig. 10-8, a more precise value is required to deduce the relative abundances 
of I2C to l60 in helium burning stars and thence to make predictions of the rate of 
nucleosynthesis for heavier elements. In fact, the measurement of S(300 keV) for the 
12C(cr, y)l6O has been, on occasion, referred to as one of most important experiments 
to be carried out in nuclear astrophysics. 



510-5 Helium Burning and Beyond 379 

Recently, the uncertainty in the C = 1 part, i.e., contributions from 1- states, has 
been reduced greatly using the a-decay rates from low-lying excited states of l60 [15], 

160* 4He + 12C 

This is the inverse of the 12C(a, y)l60 reaction. The excited states of l60 are obtained 
from the jY-decay of 16N, a radioactive nucleus ( ~ ~ 1 ~  = 7.13 s) that can be produced 
in large quantities from a radioactive beam setup. The equivalent 12C(a,y)160 cross 
section is obtained in this way down to 4 0 0  keV in energy, far below the values that 
can be accessed in direct measurements. As a result, the extrapolation to 300 keV 
is made more reliable and a value of St=1(300 keV) = 80 keV-barn is obtained. The 
uncertainty is reduced to about 30% (from a factor of 2 before). Unfortunately, at  
Emax = 300 keV, the 2+ states are expected to be make comparable contributions. 
Until the uncertainties in the C = 2 part of the S-factor are also reduced, the error bar 
for the complete S-factor remains far too large. 

Carbon burning and beyond. When all the available 4He in the central part of a 
star is used up, the core goes through another stage of gravitational contraction and 
rise in temperature. When T N lo9 K, corresponding to kT N 100 keV, reactions 
involving the conversion of any 12C remaining after helium burning become possible, 
such as 

12C+'2C + 24Mg+y 

-+ 23Na+p 

-+ 23Mg+n 

+ 2 o N e f a  

--* l 60+a+a  

The time span for the carbon burning phase is several orders of magnitude shorter than 
that for helium. Furthermore, only the core can reach the temperature and density 
required for the reactions to take place. The layer just outside the core still has enough 
fuel left to continue in the helium burning stage and the layer outside enough to continue 
hydrogen burning. 

Another interesting case in nuclear structure is the absence of significant contribu- 
tions from the 160(a, y)20Ne reaction in stellar nucleosynthesis. The binding energy 
difference between 20Ne and the sum of those for 4He and l60 is 4.73 MeV. However, 
the excited states jn 2oNe around this energy cannot be formed easily by l60 absorbing 
an a-particle. This is, to a large extent, because of the unfavorable angular momentum 
barriers, as can be seen from Fig. 10-10. As a result, the reaction 

does not become important at the end of a-particle capture by I2C to form l6O. On 
the other hand, because of the relatively low binding energy for a-particles, photodis- 
integration of 2oNe can be significant when the temperature rises to new heights at the 
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Figure 10-10: Low-lying energy level 
spectrum of "Ne and IGO(rw, 7)"Ne 
reaction. (Plotted using data from 
R.ef. (951.) 
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end of carbon burning. This produces a short-lived neon burning stage in which the 
reaction 

"Ne + 7 -+ 4He + "0 

produces a-particles that can be used in the reacction 

4He + "Ne + y + 24Mg 

to produce 24Mg. 

heavier elements, for example, 
At even higher temperatures, 2 to 3 x lo9 K,  it is possible to convert l6O into 

lf iO+lfiO -+ % + y  

4 3 1 P + p  
+ 3 1 s + n  
-+ "Si +a! 

4 " M g + a + a  

On the other hand, the reaction "C + I6O is not considered to be important in nucle- 
osynthesis, as nearly all the '*C is exhausted before the temperature is high enough for 
the reaction to become significant. (See, e.g., Ref. [44].) 

When the tcmperat,ure is bctwecn 3 and 4 x lo9 K ,  conversion of two %i to one 
5fiNi becomes possible. At this stage, y-rays at  the high-energy tail of the Maxwellian 
distribution are sufficiently energetic for photodisintegration to compete with nuclear 
fiision. As a resiilt,, direct. conversion of silicon to nickel is relatively rare. At thermal 
quilihrium, the radiant energy is proportional to T4 according to the Stefan-Boltzmann 
law. In this sea of y-rays, large numbers of a-particles, protons and neutrons are 
liberated by photodisintegration, allowing a variety of nuclear reactions to make heavier 
niiclci up to and just beyond A - 56. However, temperature and density decrease &s 

we move away from the stellar core. While silicon burning is taking place in the core, 
the oiiter layers are still in the various earlier stages of nucleosynthesis. 
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10-6 Supernova and Synthesis of Heavy Nuclei 

Supernovas hold a special place in nucleosynthesis because of the heavy elements they 
produce. Since binding energy per nucleon decreases beyond A N 56, it takes energy 
to create elements that are heavier. The processes we saw in previous sections are 
ineffective for the present purpose. Through random chance, some heavy elements 
are produced in the various hydrostatic processes; however, the total amounts are 
inconsequential. In a supernova explosion, on the other hand, a shock wave is generated 
when the collapsing core rebounds. On its way through the outer layers of the star, 
the shock wave provides the ideal condition for endothermic reactions to synthesize 
elements beyond A N 56. 

Only massive stars end their lives as supernovas. For the core of a star to undergo 
sudden collapse, there must be sufficient gravitational energy in the system t o  start 
with. The remnant of a supernova is often a neutron star or a black hole. This 
requirement puts the core to be more massive than the Chandrasekhar limit of 1.4 solar 
mass, as a part of the material is ejected in the ensuing explosion. Furthermore, for the 
collapse to take place, there cannot be any thermal pressure to act against gravitational 
force. The core must therefore be totally exhausted of nuclear energy. The combination 
of these two factors puts the likely candidates to be stars with total mass exceeding 10 
times that of our sun. In fact, most model calculations of supernovas treat 20 to 30 
solar masses as the typical case. For such massive stars, the core constitutes only about 
10% of the total. For smaller stars, such as our sun, the total gravitational energy is 
inadequate and the more likely end is a white dwarf, a small-size high-temperature 
object that slowly radiates away any remaining thermal energy. 

When all the nucleons in the central part of a massive star are converted into A N 56 
nuclei, principally 6sFe, the temperature reaches around 4 x  lo9 K. Since all the available 
nuclear fuel is exhausted, there is no longer the thermal pressure to counterbalance 
further gravitational contraction and the temperature rises to even higher values. Once 
the star arrives at this stage of its evolution, the dominant nuclear interactions change 
into those that consume thermal energy rather than supplement it, as in the earlier 
stages. The cooling can take place rapidly, on the order of a fraction of a second, 
depending on the stellar mass. Without the thermal pressure, the inner core of the 
star implodes with the speed of a free fall. The material is compressed in the process 
to several times nuclear matter density. Like a stiff spring, the gravitational energy 
released from the collapse is stored momentarily as potential energy in the compressed 
nuclear matter, To shed this “extra” energy, the core rebounds and pushes part of 
the material in the core to the outer layers of the star a t  supersonic speeds while the 
remaining material goes into either a neutron star or a black hole. Our main concern 
here is the explosive nucleosynthesis caused by the ejected material interacting with the 
nuclei in the outer layers that are still in various earlier stages of hydrostatic burning. 

Neutrino cooling. In the previous sections we have been concerned with the produc- 
tion of energy in stars without paying any attention to the mechanism by which energy 
is radiated into the surrounding. In addition to kinetic energies of the products, y-rays, 
positrons, and (electron) neutrinos are produced in copious amounts from various nu- 
clear reactions. Furthermore, since the star as a whole is electrostatically neutral, there 
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are a large number of electrons around, the same number as protons. The positrons 
that result from conversion of protons into neutrons are quickly annihilated by the 
surrounding electrons through the reactions 

e + + e -  + y + y  e+ + e- - v + ii 
The former is electromagnetic and, therefore, much more likely to occur than the latter 
weak interaction process by a factor as high as 10”. However, except at the outer layer, 
the 7-ray pairs produced must penetrate through a thick blank of matter before they 
can leave the star. Furthermore, the mean free path of 7-rays is relatively short, and as 
a result, it  takes a long time for them to reach the surface. In contrast, the neutrinos 
suffer at  most one interaction on the average before they are outside the star. For this 
reason, the fraction of energy carried away by neutrinos during the short-lived later 
stages of the stellar evolution is actually larger than that by -prays. 

Neutrino cooling is even more important during the final collapse of the core of a 
massive star. For simplicity, consider a case where the core has 1.5 solar mass (3 x 
1030 kg) and it collapses into a neutron star. In addition, we shall assume, again for 
simplicity, that  all the matrerial before the collapse is in the form of 6sNi, with equal 
number of neutrons and protons. The number of nucleons in the core is then 

To turn into a neutron star, all the protons must be converted into neutrons and the 
number is half of that for nucleons, or lo5’. Most of the conversion is through electron 
capture, each accompanied by a neutrino. This puts the number of neutrinos emitted 
to be A reasonable estimate of the average amount of energy carried away by 
each neutrino is 15 MeV. This value may be obtained by considering the neutrinos to 
he a degenerate Fermi gas occupying the same volume as the nucleons. In this limit, 
the average energy is related to the Fermi energy, in the same way as we have done 
earlier in arriving at  Eq. (4-72) from t,he Fermi energy of nucleons. The only difference 
here is that we do not have the isospiri degree of freedom as in the case of infinite 
nilclear matter. Consequently, our density is only half of that of Eq. (4-69) and our 
Fermi momentum (1/2)1/3 is as large as that of Eq. (4-70). The average energy is then 
(1/Z)*I3 of F (=23 McV), or -15 MeV. For 10’’ neutrinos, the total amount of energy 
carried away is 

E,(total) ry 1.5 x MeV N 2 x J 

that is, about 10% of the gravitation binding energy of the neutron star. 

Core collapse. In addition to neutrino cooling, part of the thermal energy can also 
be taken away by photodisintegration of nuclei into a-particles and nucleons. At the 
end of silicon burning, the temperature is over 4 x lo9 K, about f MeV in energy units. 
Conscquently, photons at the higher end of the Maxwell-Boltzmann distribution have 
more than adeqirat*e energy to  dissociate the nuclei present. As example, consider a 
‘6Fe nucleus, the most. tight bound member of the A = 56 isobar. The energy required 
t,o remove an cr-particle is only ’7.6 MeV. The corresponding amounts for a proton and 
a neiit>ron m?, rcgpcctively, 10 and 11 MeV. There is, therefore, fairly high probability 
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for photodisintegration to generate substantial numbers of &-particles and nucleons. 
The particles produced are important, as we shall see soon, in making some of the 
nuclei beyond A N 56 during the rebound after the core collapse. At the same time, 
the energy consumed in the reactions depletes the thermal energy further. 

Without counteraction by thermal pressure, the core contracts further. Since the 
density is already quite high at the end of silicon burning, in excess of 1O‘O kg/m3, any 
further collapse results in electron capture to convert the protons, bound as well as free 
ones, to neutrons. The neutrinos released in the neutronization process carry energy 
away from the core, as we have seen earlier. The whole sequence of events from the 
end of silicon burning to complete collapse takes less than a second, perhaps as short 
as only milliseconds. 

At the end of the collapse, the kinetic energy must have been converted into some 
form of potential energy. The most likely candidate is in compressing nuclear mat- 
ter. However, we should not ignore the contributions of the internal energy of matter, 
through such means as creating mesons and baryons other than nucleons. Unfortu- 
nately, we do not have much experimental guidance to make a good estimate of the 
situation. For a proper treatment, we need an equation of state that can take us be- 
yond ordinary nuclear matter to the high temperatures and densities we are dealing with 
here. As we have seen in Chapter 9, lattice gauge investigations and ultra-relativistic 
heavy-ion collision studies may give us some hints on how to do this in the near future. 

The observational evidence strongly suggests that the core rebounds after the col- 
lapse, with material ejected at supersonic speeds. As far as nucleosynthesis is concerned, 
we are more interested in the shock waves and ejected material sent through the mantle 
of the star. Both are fundamental in creating nuclei beyond A - 56. Furthermore, the 
rebound is sufficiently energetic that a large fraction of nuclei in the outer layers of the 
star are blown off into the interstellar space and become a part of the raw material for 
future star formation and nucleosynthesis. Without these “explosions,” nuclei made in 
one star remain with the star and very little heavy elements become available to make 
the planets and young stars such as those forming the solar system. 

Explosive nucleosynthesis. According to Fowler and Hoyle [64], the mass of a star 
just before a supernova explosion is 57% in the 160-rich mantle and 33% in an outer 
shell consisting of H and 4He. The remaining 10% is in the collapsing core. When the 
shock wave travels through the different regions, a variety of heavy-ion reactions can 
take place, such as 

l60 + l6O -+ ‘*Si + 4He *‘Si + 28Si -+ 56Ni + y 

In the outer layers, the shock wave causes conversion of hydrogen into helium and 
helium into oxygen. Some elements heavier than A = 56 are also produced, but the 
expected abundances are far less than the observed values shown in Fig. 10-1. 

Because of the drastically different environment, nuclear reactions taking place 
during explosive nucleosynthesis can be quite different from those in hydrostatic burning 
stages described earlier. Here, we are dealing with higher temperatures and shorter time 
scales. For example, in explosive hydrogen burning, the (hot) CNO cycle operating at  
T N 10’ to lo9 K becomes more important than the PP-chains. To appreciate some 
of the differences, let us again start with the 12C(p,y)’3N reaction at  the top of the 
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main circle in Fig. 10-3. Since the time scale is much shorter, it is possible for the 13N 

created to capture another proton to form I4O before Pt-decay to 14N. Here, it rejoins 
the main CNO cycle again through one further proton capture to form "0. The product 
then @+-decays to 15N. The cycle is completed through a 15N(p, Cr)'?C reaction to go 
back to lZC. Although the nuclei involved are very similar to the corresponding CNO 
cycle in hydrostatic hydrogen burning, the reaction rates are quite different because 
of the higher temperature. As a result, the production rates and, hence, the resulting 
relative abiindances of isotopes produced are also different. For example, the observed 
abiindances of lZC, 15N, and 1 7 0  are believed to be enhanced by the hot CNO cycle. 
Similarly, in explosive oxygen burning, 32934S, 35Cl, 36,3AAr, 40Ca, and 46Ti are produced, 
and in silicon burning, '%a, 54Cr, 56,58Fe, "Nil and "Mn are created relatively more 
abundantly than otherwise [13]. 

Creation of heavy elements. For elements beyond iron and nickel, the Coulomb 
barriers are high because of the large numbers of protons. For proton and a-particle 
captures, the temperature must rise above 5 to 6 x lo9 K to make them sufficiently 
probable. On the other hand, the average thermal energy is now around 0.5 MeV 
and photodisintegration is even more important than at the hydrostatic silicon burning 
stage. The competition between forrnat#ion of heavy elements by charged particle cap- 
ture and destruction by photodisintegration produces an equilibrium density too small 
to be of any importance as far as the final abundances of these elements are concerned. 

The bulk of the observed heavy elements are made by capturing neutrons one 
at a time. The process creates increasingly more neutron-rich nuclei and must be 
interdispersed with /3--rlecay to keep the products staying more or less in the valley 
of stabilit*y. Under such circumstances, the observed abundance of an element with 
mass A is the result of a balance between the production rate to make the element 
from element A - 1 and the destruction rate to form the next element A + 1. The 
relation between the abundanccs for different elements may by expressed in terms of 
the variation in the density of element A ,  

-- d " 4  - NA-IN, < U A - ~ ' U , , - ~  > - ~ ' A N , ,  < U A V A  > 
d t  

where N A  and NA-I are, respectively, the number density of elements A and A -  1, and 
N,, is the neutron density. The neutron absorption cross sections are given by U A  and 
f fA-1 .  The relative velocities IJA and V A - ~  control the probabilities for collision between 
a neutron and the two types of nuclei involved. Both the cross sections and relative 
velocities are functions of the energy. For our purpose, we are more interested in the 
results averaged over energy distribution. This is indicated by the angle brackets. The 
equilibrium density is given by the condition 

However, since we are dealing here with a chain of reactions involving neutron captures 
as well as @--decays, the relations for different elements are coupled together by the fact 
that, for example, N A  occurs on the right-hand sides for both d N A / d t  and dN,+,/dt. 
As a result, the solution must be obtained by solving a set of such equations. 
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Since neutrons do not carry a net charge, we have the advantage over charged 
particle reactions in that we do not have the large hindrance factor a t  low energies 
due t o  Coulomb barrier penetration, exp{-b/O} in Eq. (10-2). The distribution 
of neutron reaction rates is controlled essentially by the Maxwellian distribution for 
neutron thermal energy, rather than that shown in Fig. 10-2 for protons and a-particles. 
At the same time, the density of excited states for heavy nuclei is high, more than lo5 
MeV-'. As a result, we can expect that a neutron can always be captured under the 
most favorable condition, such as t = 0, unlike the situation we saw earlier for 4He 
capture by l60 and 2oNe. 

By nuclear physics standards, the neutrons we are interested in here are quite low 
in energy, from tens of kilo-electron-volts at T N 0.5 x lo9 K to 0.5 MeV at  6 x lo9 K. At 
these energies, the neutron capture cross section is inversely proportional to the velocity. 
This factor favors reactions at the lower end of the neutron energy distribution. Since 
the number of reactions per unit time is the product of the cross section o and the 
frequency of collision, given by the relative velocity IJ between the two particles, the 
rate for 

( A ,  Z)  + n + ( A  + 1, Z) + y 

is more or less constant in the energy region. Under such conditions, the half-life for 
nucleus [ A ,  2) due to  the (n, 7) reaction is inversely proportional to the neutron density . .  

N,, and is given by 
In 2 

7(n,7) = N,, < ~ I J  > 

If we take 0.1 barn 
(corresponding to kT N 50 keV), we have 

m2) as a reasonable average value for o and IJ = 10-2c 

For neutron density N,, N 10" me3, we obtain a value of T( , , ,~ )  N lo5 yr. Since this 
is much longer than typical &decay half-lives, a reaction under such circumstances is 
known in nucleosynthesis as a slow process, or s-process for short. If the neutron density 
is much higher, N,, - loz8 m-3, the half-life for a nucleus in a chain of (n,?) reactions 
is around T( , , ,~ )  N s, much shorter than typical P-decay times in the mass region of 
interest. Neutron capture in such cases is called a rapid process, or r-process for short. 

Source of neutron. During the hydrostatic burning stages of a star, free neutrons 
are not produced in any of the dominant processes. This raises the question of whether 
there are enough neutrons to provide the density required for the r-process and to 
supply the large numbers needed to build heavy elements all the way from A = 56 to 
beyond A = 200. 

The first thing t o  realize here is that the observed abundances of heavy nuclei 
are down by at  least lo6 compared with that of silicon (and by lo1' with respect to 
hydrogen). Consequently, the total number of free neutrons required is quite modest 
compared with the total number of nucleons present in the star. Second, neutron 
density N,, N 10'" m-3, used earlier as example, is not a large value, a t  least at the 
stage immediately after a supernova explosion. The matter density in the oxygen 
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burning shell is 10'' kg m-3. This is equivalent to a baryon density on the order 
of 10'0/(1.67 x - lo3' m-3. If we have one free neutron for every log bound 
nucleons, equivalent to about 1 for every lo7 nuclei, we reach the required density for 
t,he r-process to take place. 

There are several sources for free neutrons. One of these is photodisintegration at 
the silicon burning stage. The bulk, however, comes (indirectly) from a-capture by 
carbon, nitrogen and oxygen in the CNO cycle, aa shown in Fig. 10-3. For example, 
a-capture by I4N followetl by p+-decay through the reactions 

14N + 4He --+ "F + y I*F -+ l80 + e+ + vc 
produces an AnioIig other possibilities, we have 

'*O + 4He -+ 21Ne + n 

that produces a free neutron. Instead of releasing a neutron, we can have a (4He,r) 
reaction to create a ZZNe using the '*O produced. A free neutron is released by a 
(IIIe,n) reaction on 22Ne, 

22Ne + 4He -+ 25Mg + n 
Again, we can have, instead, the reaction z2Ne(4He,y)26Mg. Both 25Mg and "Mg can 
undergo further (4He,n) reactions, 

25Mg -+ 'He -+ "Si + n "Mg + 4He -+ 29Si + n 

to free neutrons iiito the stellar environment. In addition, neutrons are also produced 
in carbon burning and othcr processes. 

Pro ton- r ich  nuclei. Nuclei created by neutron capture tend to be on the neutron- 
rich side of the valley of stability. Since p--decay following neutron capture stops at 
the bot,toin of the valley, neutron capture cannot be expected to make nuclei on the 
proton-rich side. For this reason, other reactions must be responsible for their creation. 
Observed evidence shows that the abundance of proton-rich nuclei are down by two to 
three orders of magnitude compared with their neutron-rich cousins, suggesting that 
processes that produce them are less likely than the T- and s-processes. 

The possihle reactions to form proton-rich nuclei are the (p,y) reaction we have 
seen earlier and positron capture 

( A ,  2) + e+ -t (A,  2 + 1) + De 
Since the latter is a weak interaction process, the rate is much lower compared with 
nciitron capture. Another even less probable process is spallation of heavier nuclei by 
a proton or an a-particle. Finally (y, n.) reactions of the type 

( A ,  2)  + 7 -+ ( A  - 1 , Z )  + n 

produces nuclei with a higher Z I N  ratio than that for the target. 
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Problems 

10-1. What is the gravitational energy released when noninteracting particles with a 
total mass 1.99 x lo3' kg collapse from an infinite distance of separation to a 
spherical ball of radius 6.96 x 10' m? Assuming an ideal gas equation of state, 
what is the temperature of this sphere? Compare the result with the value of 
15 x lo6 K for the interior of our sun. 

10-2. Show that the maximum amount of energy released in the form of electromagnetic 
radiation from converting four protons to  a 4He is given by the binding energy 
of 4He less twice the sum of the neutron-proton mass difference and the mass of 
positrons. Ignore any rest mass the neutrino may have. 

10-3. Using the fact that three-fourths of the solar mass of 1.99 x 1030 kg consists of 
protons, calculate the length of time that fusion energy can be generated a t  the 
present rate of 1.4 kW/m2 at a distance of 1.50 x 10" m in converting four protons 
to a 4He nucleus. 

10-4. Show that the reaction rate near the most effective temperature Emax, given by 
Eq. (10-4), may be approximated by a normal distribution centered around Em,, 
with a width u = d m .  
PP-chains. 

10-5. Calculate the energy released in each one of the nuclear reactions in all three 

10-6. The inverse @-decay reaction 

v, + 37Cl 4 e- + 37Ar 

is used to detect neutrinos from the sun. The number of solar neutrinos produced 
may be estimated from the solar constant (1350 W/m2). Assume that 10% of the 
thermonuclear energy is carried away by neutrinos with a mean energy of 1 MeV 
each and that only about 1% of the neutrino is energetic enough to convert 37Cl to 
37Ar. For a detector containing 400 m3 of tetrachloroethylene (C2C14), estimate 
the average number of 37Ar produced in a day if the density of C2C14 is 1.5 g/cm3 
and about a quarter of the chlorine is 37Cl. The cross section for the reaction 
may be taken to be 

10-7. Assuming a cross section of 

m2. 

m2 for a neutrino to interact with each nucleon, 
find the difference in the night and daytime detection rate of solar neutrinos for 
the Super Kamiokande water Cerenkov detector consisting of 50,000 tons of water. 

10-8. A neutron star is a compact, dense object made of degenerate neutrons having a 
density similar to that in the central part of a heavy nucleus. 

(a) If the density of nuclear matter is 0.17 nucIeons/fm3 or 2.8 x 1017 kg/m3, 
what is the radius of a neutron star having a mass one and a half times that 
of the sun? (One solar mass = 2.0 x lo3' kg.) 
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(b) A neutron star is one of the possible remanents of a supernova explosion 
such as SN 1987a, the one which took place in the Large Magellanic Cloud 
160,000 light years away and was first observed on earth on February 24, 
1987. When the core of a large star exhausts its nuclear fuel, there is no 
longer the thermal pressure to counterbalance the gravitational force, and 
the core of the star collapses. For simplicity, we can consider that all the 
material in the core of the collapsing star is in the form of 5sNi made of 28 
neutrons and 28 protons. Because of the tremendous gravitational force, the 
protons in 56Ni change into neutrons by capturing atomic electrons through 
the reaction 

p + e- --$ n + v, 
Calculate the number of neutrinos released in converting 1.5 solar mass of 
56Ni atoms into neutrons during the gravitational collapse. 

(c) If the total cross section for a neutrino to interact with each nucleon is 
m2, how many reactions due to the neutrinos from such a gravitational 

collapse can one expect in a detector on earth made of 3000 tons of water? 
Compare this with the nnrnber of events (12) observed with such a detector 
at Kamioka due to supernova SN 1987a. 

(d) Assuming that the average energy of each neutrino is 10 MeV in such an 
event, calculate the total amount of energy carried away by the neutrinos 
from the gravitational collapse. Compare this value with the rest-mass en- 
ergy of the sun. 



Chapter 11 

Nuclear Physics: Present 

and Future 

We have attempted to give in the previous chapters a highly condensed description 
of the achievements of nuclear physics in its 100 years of history. Our emphases have 
been on its contributions to the foundation of physics, the properties of nuclei, and the 
highlights of some of the present research interest. The subject is a rich one and holds 
tremendous potential for the future. As with any scientific endeavor, we can rely on 
improvements in our ability to make observations to provide us with new information 
and further insight. The explosion of technological advances is having the effect of 
pushing pure science to new heights and nuclear physics is among the chief beneficiaries. 
In this short chapter, we shall take a somewhat speculative attitude and see if we can 
foresee some of the possible directions the subject may take in the near future. 

Developments in pure science are often controlled by the three-way symbiotic rela- 
tion of technology, observation, and theoretical understanding. This is especially true 
in the case of subatomic physics, where experiments often require large accelerators and 
sophisticated detectors. To make sense of these complicated observations, we construct 
models that lead us to a better understanding of the part of nature invisible to the 
naked eye. This knowledge in turn helps us to make progress in our technology both to 
improve the quality of life itself and to enhance our ability to make better observations. 
Large facilities, such as the Relativistic Heavy-Ion Collider and neutrino observatories, 
are expensive to construct and take many years to reach the production phase. From 
the careful planning that must go into their designs, it is perhaps not hard to fore- 
see what will be the physics to come out initially from these laboratories. We shall 
describe what are some of these possibilities. There is a second group of interesting 
problems that technology is ripe for making progress. Examples in this category include 
computational-based problems, such as lattice QCD, and space-based explorations in 
astrophysics that are intimately connected with nuclear physics. A third group consists 
of long-standing fundamental problems that are crying out for solutions. We shall name 
some of these as well, in part, for their importance to the subject of physics as a whole. 

389 
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Radioactive beam. Many laboratories around the world are starting to have facilities 
for producing beams of radioactive nuclei. We have seen that a large part of our 
knowledge on nuclear physics, and subatomic physics in general, comes from collisions 
between two particles. With radioactive beams, our horizon is extended to include 
projectiles made of nuclei that are unstable. Many of these reactions are important 
by their own right. For example, interactions with unstable nuclei form an integral 
part of the events going on in stars, such as that we saw in the case of the triple-a 
process in $10-5. Better knowledge of their reaction rates are essential to improve our 
understanding of nucleosynthesis and the evolution of stars. For this reason, some 
of the first experiments planned with radioactive beam facilities often involve nuclear 
astrophysics interest. 

Radiative beams are also sources of unstable nuclei that are of interest. We have 
already seen an example in the inverse of the I2C(a ,y ) l60  reaction in 510-5, using 
radioactive I6N as the source of excited states of 160. By  observing the a-particle decay, 
the equivalent reaction cross section was measured to much lower energies, solving one 
of the long-standing issues in helium burning stars. Similar opportunity exists in a 
variety of other cases. 

Most of our knowledge on nuclear structure is based on observations made on low- 
lying states of stable nuclei. This may well represent a fairly specialized set of data, 
those satisfying the conditions for stable nuclei. The true picture of nuclear physics 
may be obscured by our limited vision, like trying to infer the behavior of all cats, 
including lions and leopards, from observing the household variety. By checking our 
existing understanding on unstable nuclei, we can reaffirm the parts that are correct 
and modify the reminder. In particular, radioactive beams may be possible to extend 
the number of isotopes observed for a given Z, the number of isotones for a given N, 
or the number of isobars for a given A.  Systematic variations in the structure are 
particularly simple in these cases, especially if either the neutrons or the protons form 
a closed shell. The simplicity offered by this new information will certainly lead into 
expanded interest and improved knowledge in nuclear structure. 

Relativistic heavy-ion collision. The central focus of RHIC and LHC is to study 
the physics of QGP. As we have seen in 59-3, we still do not know of a unique signature 
for QGP. Many phenomena are possible candidates but all of them have also possible 
alternative explanations that are based on liadronic matter alone. For this reason, one 
of the main goals of the first group of experiments at RHIC and LHC are designed 
specifically to study these events. In the process, we shall also be able to improve our 
quantitative understanding of QCD, and this by itself is already quite exciting. 

For example, we saw in 59-3 that changes in strangeness and charm production may 
signal the presence of QGP. To establish this, systematic studies must be made using 
a variety of colliding ions, including cases in which we do not expect anything other 
than purely hadronic matter at any intermediate steps of the reactions. In relativistic 
heavy-ion collisions, the amount of energy involved is high, with large numbers and 
varieties of secondary particles produced. Distribritions of these particles BS functions 
of transverse momentum and rapidity (see Eq. 9-14) are indicative of the conditions 
of the interaction region. Different theoretical models are predicating quite different 
results. Experimental guidance in this area will definitely help us to understand the 
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physics under such extreme conditions. 
The construction of detectors and data acquisition systems for the complicated 

events expected from these experiments present new challenges to our ingenuity. To 
leave room for discovering the unexpected, one must record as much information of 
the collision as possible so that one can analyze the results for phenomena not nec- 
essarily expected in the original design. For this reason, detectors are also built to 
make comprehensive studies of all the particles produced in each collision. Once these 
facilities are in operation, we can expect a new burst of information that will keep both 
experimentalists and theorists busy for a long time. 

391 

Electron scattering. As we move to phenomena taking place a t  shorter distances and 
higher energies, electron scattering stands out in terms of the precision we can achieve. 
By going to high-momentum transfers, we can probe the nucleus at the fine scales where 
most of our ignorance lies. For example, it was found that, in the electro-disintegration 
of deuterons, the idea of one-pion exchange seems to work to far larger momentum 
transfers than we expect (118). This implies that something more fundamental than 
the masses of different mesons being exchanged must be working here. One of the 
possibilities is the role of chard invariance in nuclei. 

The origin of chiral invariance may be traced to QCD. We have seen that u- and 
d-quarks are far lighter than the others. The corresponding situation at  the hadron 
level, where most of nuclear physics operates, is that pions are much less massive 
than any of the other particles. In the limit that u.- and d-quarks may be treated as 
massless, helicity (see Eq. 5-51) is conserved and the QCD lagrangian has a special 
symmetry, generally referred to as s U ~ ( 2 )  x s U ~ ( 2 )  symmetry. In other words, under 
a rotation in “chiral” space, left-handed and right-handed particles are not mixed with 
each other (see, e.g., Ref. [58]). At the nuclear physics regime, we can gain a sense of 
the importance of this approximate symmetry by looking at  Eq. (5-53). If pions can 
be treated as massless, we find that axial-vector current is also conserved. This puts 
axial-vector current more or less on the same footing as vector currents, as we can see 
by comparing with Eq. (5-52). 

It is often said that chiral symmetry is the connection between strong interaction 
inside “bags” of quarks with that outside hadrons. It is not appropriate for us here 
to go into the numerous examples justifying this statement. On the other hand, it is 
perhaps not difficult to see that nuclear physics can be much simpler if pions can be 
treated as massless. The importance of exploring the advantage of such a “soft pion” 
limit cannot be overemphasized if we wish to understand low-energy phenomenology of 
QCD in nuclei. High-precision electron scattering is certainly one of the most fruitful 
avenues in this respect. 

Another question of interest, where high precision is necessary and can be reached 
with present-day electron scattering technology, is the difference in charge distribution 
for a pair of mirror nuclei, in particular, 3H and 3He. Although 3H (tritium) is ra- 
dioactive, its half-life is sufficiently long (12.33 yr) for a target to be made. Since the 
A = 3 pair constitutes the lightest mirror nuclei, a detailed comparison of their charge 
distributions can be extremely illuminating. At the same time, it may also give us some 
information on such fundamental questions as three-body force. 

Similar opportunities exist for high-precision studies of the electromagnetic proper- 
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t,ies for heavier nuclei. We have seen earlier in 54-7 thiit the question of mesonic current 
is essential to iinderstand how the electromagnetic operators are modified when nucle- 
ons are embedded in nnclci. More generally, the question of “medium” effect-how 
certain operators are modified when nucleons are bound-is important in understand- 
ing nuclear properties. Many aspects of such studies are ideally suited for the high 
precision that, can be reached using electron scattering. 

Improvement in the precision of experiments involving particles other than elec- 
trons, such as protons and neutrons, are also expected to come with technological 
progress. This will give us a much better handle on such questions as charge symmetry 
in nuclear force, parity violation in nuclear interaction, and three-body forces. With the 
accuracy available to date, many of these fundamental questions cannot be answered 
in a definitive way. 

Kaons and antiparticles. Nuclear physics operates, for the most part, at the level 
of nucleons and pions. For this reason, strange mesons and antinucleons have not been 
of any direct concern to us. However, as we saw in 58-4, antiproton scattering off 
nuclei can help us to understand the force acting between nucleons. Since nucleon- 
nucleon interaction is only an extension of the Rtrong interaction between quarks, the 
symmetries of QCD have profound effect on nuclear force and antinucleon scattering 
is an important source of such information. Antiprotons have been available from the 
Low-Energy Antiproton Ring (LEAR) of CERN and are produced in many other high- 
energy accelerator laboratories. Far more antiproton scattering off nuclei can be carried 
out and the data will be of great interest. 

By the same token, interaction of strange mesons, such as kaons, can supplement 
studies of pions on nuclei. We saw in 52-2 that nucleons and pions are made of u- and 
d-quarks. Partly for this reason, most of nuclear physics can be understood with these 
two lightest flavors alone. However, in addition to these “active” quarks, there is also 
a Dirac “sea” of other quarks together with their antiquarks. These sea quarks are 
invisible under normal circumstances, in the same way as the electron-positron pairs in 
the quantum electrodynamics vacuum we saw in $9-1. However, certain observations 
cannot be understood by the valence quarks alone, such as the relation between nucleon 
and quark spins. Strange mesons can probe the quark distribution in nucleons from 
a different angle than those we can observe using mesons, and this will help us to 
understand the role of strange and perhaps other heavier quarks in nuclei. Kaons are 
also available from a number of high-energy accelerators. For many years, there have 
been proposals to build dedicated kaon sources, or “factories,” from several laboratories. 
Once available, it will be a bonus to nuclear as well as particle physics. 

Cosmic rays and space observations. A major technological impact on our ability 
to do science in recent years is the construction of “observatories” outside the earth 
atmosphere and large arrays of detectors on the surface of earth. Many new phenomena, 
such as y-ray bursts and extremely high energy cosmic ray showers, have been recorded 
and, no doubt, more will be forthcoming in the future, These events complement 
laboratory studies as well as help us to reach, for example, the high energies that cannot 
be achieved using available accelerators. A historical example is the first identification 
of  pions in cosmic rays as the “Yukawa” particle. Prior to the discovery, the only 
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particle known in the early part of the 1930s with a mass of ~ 2 0 0 m ,  was the muon. As 
we know now, the muon cannot be the candidate, as it is not a hadron. Furthermore, 
it is a fermion and therefore cannot be absorbed and emitted freely as bosons can. 

Even though the energies we have achieved in the laboratory are quite impressive, 
they do not compare with those associated with some of the highest energy particles 
observed from extra-terrestrial sources. Cosmic rays and y-bursts have been recorded 
to reach energies many orders of magnitude higher than what we can hope to  achieve 
in the laboratory in the foreseeable future. Both the production mechanism of these 
high-energy events and the propagation of these particles in the intergalactic space are 
of interest. 

Most of the observed “new” events are likely to  be of interest mainly to cosmology 
and elementary particle physics. However, the intimate relation of nuclear physics with 
these subjects makes it imperative for nuclear physicists to take a closer look. This is 
especially true when these observations are coupled with the possibility offered by neu- 
trino observatories, such as the Sudbury Neutrino Observatory and Super Kamiokande 
Cerenkov Detector, to study neutrinos coming out of the core of stars without being 
masked by the thick outer layers of materials. 

Computa t iona l  physics. Advances in computer technology and numerical methods 
have fundamentally changed the way certain investigations are carried out in physics. 
Instead of restricting to models with analytical solutions, we can now easily explore 
new ideas that require extensive calculations and large-scale simulations. We have 
already seen an example in lattice gauge studies for transition from hadronic matter 
to quark-gluon plasma in $9-3. In fact, numerical solution using the Feynman path 
integral approach is likely to be the only way that answers can be obtained for some of 
the strong interaction problems. 

Theoretical investigations in nuclear physics are often computing intensive. This 
comes in part because of the highly nonlinear nature of the problem, associated with 
the fact that we are dealing with, for example, eigenvalue problems. In part, it is 
also because of the nonperturbative nature of the phenomena, involving interactions 
that are strong. Here, computing is actually an advantage in that the tedium to  carry 
out large calculations can be delegated to machines that are many orders of magni- 
tude faster and more reliable than human being. This applies to numerical work as 
well algebraic manipulations. In fact, many of the algebraic calculations involved in 
analytical solutions are often carried on computers as well. Furthermore, if we take 
good advantage of the visualization tools available on computers, many complicated 
solutions, both analytical and numerical, can be more readily comprehended than with 
algebraic symbols alone. In many cases, far more advantage of the visualization ca- 
pabilities can be used in understanding the results from complicated calculations than 
what have been done in practice. For example, t o  be able to “see” a multi-dimensional 
result is certainly not something that can be achieved easily without computers. 

In addition to  lattice gauge calculations, several problems in nuclear theory can also 
benefit from intensive computation. The relativistic shell model is one such example. 
For the most part in nuclear structure, we are dealing with velocities that are much less 
than the speed of light. The relativistic effect can nevertheless be important in such 
cases from the following considerations. In the Schrodinger picture, each spin-$ fermion 
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lias two components, one with spin pointing up and the other with spin down. In the 
inore general Dirac picture, the corresponding wave function has four components, two 
for the particle and two for the antiparticle. The four-component Dirac equation may 
be expressed as a set of two coupled equations, each one having only two components. 
At nonrelativistic energies, the coupling between the “upper” two components and the 
“lower” two components may be replaced by a spin-orbit term and the two equations 
decouple from each other in this approximation. 

Traditionally, nuclear structure problems are solved by following the time-honored 
methods used in atomic structure with the Schrodinger approach. However, by going 
back to the more fundamental Dirac equation, many conceptual difficulties are found 
to be much easier to handle and better solutions are obtained. We saw one such ex- 
ample in nuclear matter calculations in 54-12 and another one in intermediate-energy 
nucleon-nucleus scattering in 58-5. Similar successes are found also in a variety of 
other problems in both nuclear structure and nuclear reaction. The calculations in- 
volved in solving four-component equations are more complicated than those in the 
two-component Schrodinger approach. In addition, we need more experience in han- 
dling certain aspects of the Dirac equation in a many-body setting. The results are, 
however, extremely encouraging and may lead to better understanding of some of the 
puzzles in nuclear physics. 

Another example is the use of sampling, or Monte Carlo, techniques in microscopic 
calculations. We saw in $7-5 that the Hilbert space in a microscopic calculation can be 
fxtremely large. To male progress, drastic truncation of the space as well as renormal- 
izatiori of the interaction has to be carried out. If a larger active space can be used, it 
can certainly reduce some of the uncertainties introduced by truncation and renormal- 
ization. Similar to many other types of problems, one can apply sampling techniques 
for certain investigations i n  large spaces and obtain meaningful results by carrying out 
only a small part of the actual work. The computcr is well suited for doing this type 
of calculation, especially in view of the general trend toward parallel computing by 
making use of several central processing units at the same time. Furthermore, Monte 
Carlo techniques are used in a variety of other many-body problems, such as those 
in condensed matter physics, The advances made there can also be a great help in 
applying the method to nuclear physics problems. 

In 57-5 we saw also that it is possible to start with a realistic nucleon-nucleon 
scattering pot,ential and modify it so that it is appropriate for bound nucleons. The 
nuclear wave function obtained may be used to describe the nuclear state involved in 
an interm~diatP-energy nucleon-nricleus scattering, as we saw in 58-5. Furthermore, 
the nncleon-nucleus interaction can also be derived from the same free nucleon-nucleon 
interaction potential iisctl as the starting point for thc nuclear wave function calculation. 
In each one of the steps, rigorous many-body problem techniques are available and 
can be applied. The calculation is a rather involved one. On the other hand, both 
the input nucleon-nucleon potential and the output nucleon-nucleus scattering can be 
checked directly with independent observations. The comparisons form the tests for 
many interesting questions, includiug many-body techniques and our understanding 
of how nucleons are modified inside the nuclear medium. Far more such large-scale 
calculations can be performed, especially in view of the higher precision experimental 
data that can he obtained these days. 
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Fundamental problems in physics. There are several fundamental questions in 
physics that involve atomic nuclei. The solar neutrino problem described in 310-4 is a 
good example. It cuts across several disciplines, particle physics, cosmology, hydrody- 
namics, just to name a few. In addition to the intrinsic interest in the problem itself, 
it has the potential of pointing the way to new physics, such as neutrino oscillation. 
Nuclear physics enters in understanding the processes that produce the particles and 
in interpreting the measured results. The importance of the problem cannot be un- 
derstated. This is especially true in view of the great expectation we have in neutrino 
astronomy. Unless we can understand neutrinos from the sun, the nearest star by many 
orders of magnitude, we have no hope of extending the observations to any of the other 
stars. 

A second example concerns some of the properties of neutrinos. As we saw in 55-6, 
doubte-p-decay is one way to find out whether it is a Majorana or a Dirac particle. The 
neutrino mass is also an important question in deciding some of the basic properties 
of the particle. Furthermore, it enters also into the question of “missing’l mass in 
the universe. Answers to  these and other questions are interesting by themselves and 
may also lead to new knowledge of the microscopic world that subatomic physics has 
adopted as its subject of interest. 

A third example is why the QCD effect seems to be totally absent in nuclear 
phenomena. There are two possible answers. The first is that there is some fundamental 
symmetry in operation. If this is the case, it will be of interest to find out what this 
symmetry is and how it functions. Alternatively, and more likely, it is possible that 
we are not asking the right questions. What are the phenomena in nuclear physics 
that QCD must be invoked directly? Perhaps, this is one of the questions that will be 
revealed in relativistic heavy-ion collisions. 

Several other basic problems in physics also fit into the category where nuclear 
physics can be of help in solving them. However, we shall not make the attempt here 
because of the preparations required to describe them. 

Over the century-long history of nuclear physics, we have seen the central emphasis 
of the subject changing as we improve our knowledge of the subatomic world and our 
ability to make observations. For example, instead of radioactivity at the beginning of 
the twentieth century, a large fraction of the present-day effort is in high-energy nuclear 
physics. Instead of topics that are now in quantum mechanics textbook, we are talking 
more and more in terms of QCD and cosmology. Such changes form a natural path 
in the development of our interest in the microscopic regime. AS we know more about 
nuclei, we want t o  find out more by going into shorter length scales and carrying out 
more precise measurements. These observations, in turn, are guiding us to  new heights 
in our understanding. Nuclear physics has been, is, and will remain a vibrant part of 
modern science. It is extremely rich in physics and is of interest to those trying to 
unravel the mystery of the physical universe. 
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Appendix A 

Parity and Angular Momentum 

A-l Parity Transformation 

Parity, or space reflection, transformation is the operation whereby all three coordinate 
axes in the Cartesian system change sign. That is, if the location of a point in space is 
given by coordinates (z, y, z )  in a particular system, the coordinates of the same point 
in a system related to the original one by a parity transformation P are (-z, -y, - z ) ,  

(2, Y, 2) p .+ (-1 -Y,-Z)  ('4-1) 

Such a reflection of the axes changes a right-handed coordinate system to a left-handed 
one, as illustrated by Fig. 5-3. 

In quantum mechanics, the probability of finding a particle at  location r is given 
by the absolute square of its wave function 1@(v)I2 at the point. Since the probability is 
an observable, it cannot change its value simply because we have switched from using a 
right-handed coordinate system to a left-handed one, or vice versa. The wave function 
itself, however, may change under a parity transformation, subject to the following 
two conditions. The first is that I!?'(r)12 must remain invariant, as we saw above. 
The second is that two successive parity operations must bring the system back to its 
original state, i.e., P2 = 1. As a result, the wave function @(r)  can change at most by 
a sign. States whose wave functions do not change sign under a parity transformation, 

P@(r )  = @(-r )  = +@(r )  

are called positive-parity states, and those whose wave functions change sign, 

P ~ ( T )  = $(-v) = -@(r) 

are negative-parity states. A wave function that does not fall into either one of these 
two categories does not have a definite parity. 

397 
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In terms of spherical polar coordinates, the radial distance T is not affected by a 
parity transformation. The only changes are in the angular variables, 

(I.,S,4) p ' ( T , T  - 6,T + c p )  (A-2) 

This relation can be shown to be identical as that in Eq. (A-l), for example, by trans- 
forming both sides to Cartesian coordinate systems. Because of Eq. (A-2), radial wave 
functions are not changed by a parity transformation. As a result, the parity of a wave 
fiurct,ion of a state is given by the angular part alone. For a state q(r)  with definite 
orbital angular momentum (e, m), we can decompose the wave function into a product 
of radial and angular parts, 

Q ( v )  = &(r)Ytm(6, 4) 

The angular dependence is described by spherical harmonics Yt,(S, 4), the eigenfunc- 
tions of orbital angular niomeiitnm operators t2 and 1,. The parity of spherical har- 
monics of order t? is (-l)!. This can be seen from its explicit form 

where 7 = cos8. Since COS(T - 6) = - cos(6) we have, under a parity transformation, 

7 P '  -17 

The transformation of polar angle 6 gives a phase factor (-l)e+m to Ytm(6,#). The az- 
imuth angle 4 enters Eq. (A-3) only in the exponential factor elrn4. The transformation 
from 4 to T + $ produces a factor elrnn = (-l)m. The combination of the two gives us 
the net result, 

Yttn(@,d) p ' yem(a - 6, a + 4) = (-1)%m(6, 4) 

For this reason, spherical harmonics of even order have even parity and spherical har- 
monics of odd order have odd parity. 

In additional to parity associated with spatial wave functions, the intrinsic wave 
function of a particle can also have a definite parity, related to the internal structure of 
the particle. If the structure is known, such as that for a nucleon from a quark model, 
the intrinsic parity may be deduced from the wave function. In cases where the internal 
structure is not known, the intrinsic parity must be determined experimentally using 
reactions i n  which the parities of all other particles as well  at^ all the relative angular 
momenta involved are known. 

As an example, we shall see how the intrinsic parity of a pion is determined to be 
negative. The measurement involves the absorption of a- by a deuteron. The pion is 
first captured in the s-state of a deuterium atom, forming a a-mesic atom as a result 
(see also $8-6). Since the pion is a meson, it can be absorbed by the proton in the 
deuterium nucleus through the reaction 

T - + d - t n + n  (A-4) 
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Before the reaction, the total angular momentum J of the r-mesic atom is 1, as the 
intrinsic spin of the pion is 0 (see also §2-7), the spin of the deuteron is 1 (see §3-1), and 
the orbital angular momentum of the rd-system is 0 (the r- is h the atomic s-state). 
Total angular momentum is conserved in the reaction of Eq. (A-4) and, as a result, the 
final state produced by the reaction must also have J =' 1. 

The two neutrons in the final state, being identical fermions, must be in an anti- 
symmetric state to satisfy the Pauli principle. The symmetry of the wave function of 
the two-neutron system is determined by L, the relative orbital angular momentum, 
and S, the sum of the intrinsic spin of the two particles. If the spatial part of the 
system of two identical fermions is symmetrical (L = even), the total intrinsic spin 
wave function must be antisymmetrical (S = 0) .  Alternatively, if the spatial part is 
antisymmetrical (L = odd), the total intrinsic spin wave function must be symmetrical 

From the fact that J = L + S = 1, we find that the possible pairs of (I,, S)-values 
to form J = 1 are (O,l), ( l , O ) ,  (l,l), and (2 , l ) .  The combinations (0 , l )  and (2 , l )  
can be ruled out on the ground that both intrinsic spin and spatial wave functions are 
symmetric and, therefore, violate the Pauli principle. Similarly, the combination (1 ,O)  
is not allowed, as both orbital and intrinsic spin parts are antisymmetric. The only 
possible combination remaining is (L, S) = (1, l), which is antisymmetric in the spatial 
part but symmetric in the intrinsic spin part of the wave function. 

The parity of the right-hand side of the reaction given by Eq. (A-4) is therefore 
= -1, independent of the intrinsic parity of neutrons, as there are two involved. 

Since parity is conserved in the reaction, the left-hand side must also have negative 
parity. There are three components contributing to the parity of the initial state of the 
reaction. The parity of the ground state of the deuteron is known to be even (L = 0, 2, 
and both neutron and proton have the same intrinsic parity). The parity of the orbital 
wave function of the ?r-mesic atom is positive, as we have seen earlier. As a result, we 
conclude that the intrinsic parity of T - ,  the third component in the initial state, must 
be negative in order for the parity of the total system to be negative. 

For fermions, the intrinsic parity of an antiparticle is opposite to that of its cor- 
responding particle. This can be seen from the structure of the Dirac equation where 
a particle and an antiparticle are described by a single four-component wave function. 
Alternatively, it can be determined using such measurements as the polarization of the 
two photons emitted in the decay of a positronium (e+e- system) in the singlet state 
( J  = 0) .  On the other hand, for bosons the parity of both particle and antiparticle 
must be the same. For more details, see standard particle physics textbooks, such as 
Perkins [115], and Halzen and Martin [80]. 

(S = 1). 

A-2 

A quantity $,M(r) is said to be a sphencal tensor of angular momentum rank J if i t  
belongs to a group consisting of 25 + 1 members, each having the same J-value but 
differing in the M-value, projections along the quantization axis. The possible values 
of M are - J ,  -J + 1, . . . , J .  Under a rotation of the coordinate axes through Euler 
angles (a,p,-y) shown in Fig. A-1, the 25 + 1 members transform among themselves 

Spherical Tensor and Rotation Matrix 
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Figure A-1: Rotation of the coordinate 
axes from ( X ,  Y ,  Z )  t o  ( X ’ ,  Y’, Z’) by Eu- 
ler angles (a ,B ,y )  in three steps. First, 
a rotation around the Z-axis through 
angle (Y brings ( X , Y , Z )  to ( X l , Y 1 , 2 ) .  
Second, a rotation around the new Y1- 
axis through angle p brings ( X I ,  Yl, 2) to 
( X 2 , Y l , Z 2 ) .  Inthelaststep, ( X z , Y l , Z z )  
is brought to ( X ‘ ,  Y’ ,  Z’) by a rotation 
around Zz (same as 2’) through angle y. 

according to the relation 

(A-5) 

where coefficients DhM,(a,  @, y) are the rotation matrices, or D-functions for short. The 
25+1  components of a spherical tensor @,,, for all possible values of M, therefore form 
an irreducible group under rotation. The set of 21 + 1 spherical harmonics Y,,(B, d), 
with m = -1, -1 + 1, , .  , e ,  is an example of a spherical tensor of integer rank e .  
However, spherical tensors are more general quantities and can have half-integer ranks 
a,, well. Bot,h wave functions and operators can be spherical tensors, as the requirements 
call be satisfied by both types of quantit,ies. 

There are several possible ways to define the 73-function. We shall adopt the con- 
vention given by Brink and Satchler [37]. A rotation of the coordinate axes in the way 
defined in Fig. A-1 can be achieved as three successive infinitesimal rotations repre- 
sented by the operator 

( A 4  qN, p, ?) = e-ilJl’e-+PJY1 e-iaJ. 

The same transformation is equivalent to a rotation first around the Z-axis by angle 
y, followed by a rotation through angle ,O around the Y-axis, and finally a rotation 
bhrough angle a around the Z-axis again. That is, 

(A-7) 

D h M ’ ( N l  7) = (@J ,WIR(@7 P! y)ldJJM,) ( A 4  

ZQ J .  e-ap 3, e-ayJ. R(n, P ,  Y) = e-  

The D-function in Eq. (A-5) may be written a9 the matrix element of R(cr, /3, y), 
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between components M and M' of a spherical tensor of rank J .  The orthogonality 
relation among the D-functions is given by 

~ ( % . f ~ , ~ ( f y z  p, r ) )*pj t f?M(fy,  P, 7 )  = x B j t f M * ( a !  p, ' Y ) ( D L M J ( f y ,  PI ?>>' = &&fN 
M' MI 

and 

where a,, is the Kronecker delta with value unity if x = y and zero otherwise. 

V-function, 
Since $ J M  is an eigenfunction of J, ,  we can make use of Eq. (A-7) to simplify the 

D$&, 8, Y) = (q J M  (e-i+,-iPJ,e-,YJz l $ J N )  

- - e - l ( o c M + . I N ) ( ~ J M ( e - r p J , ( ~ J , )  

where, in the final form, the matrix element remaining, 

dk,(a) ( $ J M l e - i ) c 3 J ' I $ J N )  

is called the reduced rotation matrix element. Explicitly, i t  may written as 

( J +  M ) ! ( J  - M ) ! ( J  + N ) ! ( J  - N ) !  
d'N(P) = C(-l)Q(J Q f M  - Q ) ! ( J  - N - &)!&!(& + N - M)! 

The summation i s  over all possible values of Q that do not lead to negative arguments 
in the factorials. The phase convention used here is that of Condon and Shortley 137). 

Let Tkq represent component q of a spherical tensor operator of rank k. The con- 
jugate (Tkq)' of Tkq is defined by the relation between the Hermitian conjugate of their 
matrix elements, 

( J M J  (Tkq) 1 JIM') = (J'M'JTk,J J M )  * 
It  is easy to  see that (Tkq)+ is not a proper tensor. If Tkq transforms under a rotation 
according to Eq, (A-5), the transformation of its conjugate is given by 

(Tkq')' = ( ~ T ~ ~ ~ $ ( ~ , ~ I ' Y ) ) '  = ~(Tkq)t(~~qf(~i@, Y))* 
9 P 

To have the proper transformation, we can make use of the property that 

( q q ( a ,  PI 7))* = (-l)p-qD$q((% P1 Y) 

and define an adjoint tensor 

(A-9) 
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that transforms under a rotation of the coordinate axes in the same way as given 
by Eq. (A-6) and is, therefore, a proper tensor. It should be pointed out that the 
phase factor ( -1)q in Eq. (A-9) is unique but the factor (-l)k is somewhat arbitrary. 
There are also other conventions found in the literature. The one adopted here has the 
advantage that it is convenient for tensors of half-integer rank, for example, like those 
used in Eqs. (2-26) and (2-27). 

In problems where spherical symmetry is important, such as those commonly en- 
countered in subatomic physics, spherical tensors are useful for a variety of reasons. 
Some technical advantages of using spherical tensors are related to the algebra of an- 
gular momentum coupling given in the next four sections. 

A-3 Angular  Moment t im Recoupling Coefficients 

In general, the product of two spherical tensors is not a spherical tensor. For example, 
the product of T J M ,  a spherical tensor of rank J ,  and UJ~MI,  a spherical tensor of rank 
J’, is a mixture of t,ensors with ranks IJ - 3’1 to J + J‘. We can use the product 
between two ordinary vectors as an illustration. A vector r is a spherical tensor of 
rank unity and is specified, for example, by giving its projections ( T I ,  T Z ,  ~ 3 )  on the 
three axes of a Cartesian coordinate system. The product of r with another vector r’, 
having projections ( T : ,  T ; , T ; ) ,  contains, in general, a total of nine components. We can 
separate these nine products into three groups. The linear combination 

S I T ~ T ~  + T ~ T :  + = r .  r’ 

is a scalar, as it  is invariant under a rotation of the coordinate axes. Three of the 
quantities transform among themselves like a vector, 

V r  ( T z T ~  - T 3 4 ,  T37.i - T I T ; ,  T I T ;  - T2T) I )  = F X T’ 

as can be seen from the fact it has the standard form of an ordinary vector product 
between r and r’. The remaining five components may he written as 

3 

and they form a second-rank spherical tensor. 

using angular momentum coupling coefficients, 
In general, a tensor of definite rank can be projected out of a product of two tensors 

(A-10) 

where the Clehsch-Gordan coefficient (jlmljzm2lj3m3) vanishes unless m3 = ml + m2 
and Ijl - j,l 5 j ,  5 j1 + j,. Several different symbols are commonly used in the 
literature to represent Clebsch-Gordan coefficients, 

(jlmlj2m2lj3m3) 5 (~1jzml~zljlj2j3m3) c ~ ~ ~ m s  
We shall use the first form in the above expression, as it gives the picture of the overlap 
of 1 j m )  with t,he product of I j l m l )  and Ijzmz) .  
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It is often more convenient to express the coupling coefficients between two spherical 
tensors in terms of Wigner 3j-symbols, related to the Clebsch-Gordan coefficients by a 

In terms of 3j-symbols, the symmetry in the arguments of the coupling coefficient may 
be expressed as 

m3 ml mz 

n + J z + j s  ( j 1  j2 j3 ) (A-11) 

In other words, 3j-symbols are invariant under an even permutation of the three pairs 
of arguments, and a phase factor (-1)J1+J2tJJ is needed for an odd permutation as well 
as for the case when all the m-values change sign. 

-ml -mz -m3 
= (-1) 

The orthogonality relations between the coefficients are 

where 

In terms of Clebsch-Gordan coefficients, the same relations may be expressed as 

C (jlmljzmz Ij3m3>(jlmljzmzIfm’3) = A(jlj233) f i ~ 3 j ~ L r n ~  

mlma 

C ( j i m l j ~ m ~ ~ ~ ~ m 3 ) ( j ~ m l j ~ r n ~ I j ~ r n ~ )  = (2j3 + l)A(jljzj,) 
mimma 

C (jlmljzm2 Ijm) (j174hmk h m 3 )  = A(j1j2j3)bm1 m\ bmzmi 

i s m  

The Condon and Shortley phase convention, commonly adopted nowadays, states that 
in coupling j 1  and jz to the maximum possible angular momentum jl + j z  and all 
the projections on the z-axis take on the maximum allowed values, i.e., ml = jl and 
m2 = j,, the Clebsch-Gordan coefficient 

( ~ * ~ l ~ z ~ z l j l + h  j l + j Z )  = +I 

C ml(jlm&mz m3) > 0 
and 

mimi 

All Clebsch-Gordan coefficients are real in this convention, and the explicit values of a 
few involving low angular momentum ranks are listed in Table A-1. 
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Table A-1: Some useful Clebsch-Gordan coefficients. 

m, = 0 tn, = -1 

2e(e t 1) 
( e  + m)(e - 713 + I )  -m 

2 q e  + 1 )  

\ IJ "7 
where 29 = j l  + j ,  + j ,  

if 2g = even 

if 29 = odd 
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A-4 Racah Coefficient and 9j-Symbol 

When three spherical tensors RJ1,  S,,, and T,, are coupled together, the final rank J 
alone is not adequate to specify the product uniquely. In order t o  distinguish between 
the different possibilities, an intermediate rank specifying the coupling between two of 
the three tensors is used. There are two equivalent ways to construct this intermediate 
coupling. One is to couple the first two tensors Rj, and Sj, together to rank J12 and then 
couple the product to T,, to obtain the final rank J .  The angular momentum structure 
of the product may be expressed in the form ((Rj, x S,,)J~, x TJ3)5. Alternatively, we 
can couple the last two tensors S,, and TJ3 together first to rank 5 2 3  and then couple 
R3, to the product. This way of coupling may be represented as (RJl x (Sj, x Tj3)JZ3)~. 

The two forms are not independent of each other and the relation between them is 
given by 

( ( R J l  sJ2)Jll TJ3)J = d(2512 + 1)(2J23 + 1) W(.i1j!2Jj3; 512323)  
523 

x(RJ1 ('Jz TJ3)J23)J 

where W ( j l j 2 J j J ;  512523)  is the Racah coefficient. It may be expressed as the sum over 
the products of four Clebsch-Gordan coefficients, 

x ( b P d ( 7 - w N f ( 7 - 4 )  (a%f(r-o)lcr) 

However, this is not the way to evaluate a Racah coefficient numerically. It is more 
convenient t o  use explicit formulas in terms of its six arguments and these can be found, 
for example, in Brink and Satchler 1371. 

A more convenient form of Racah coefficients is the 6j-symbol defined by the rela- 
tion 

For example, the symmetry relations of Racah coefficients may be expressed in terms 
of 6j-symbols in the following manner: 

{ :  31 j~ . j 3  . } = { .  j z  j 3  . j 1  , } = { :  33 j 1  . j 2  . } = { :  32 j 1  . j 3  . } = { .  j 4  j 5  j 3  . }  
34 35 96 35  36 3 4  36 3 4  35 35 34 36 3 1  j 2  36 

The orthogonality relation between two 6j-symbols is given by 

There are also identities involving products of 3j- and 6j-symbols that can be found in 
most advanced texts on nuclear structure. 

In coupling four spherical tensors together, two intermediate coupling ranks are 
needed to specify the product uniquely. The different ways of making the intermediate 
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The value of a Sj-symbol may be expressed as the sum over the products of three 
6j-symbols, 

A collection of symmetry and orthogonality relations, well as relations between 3j- ,  
Sj-, and 9j-symbols, can be found, e.g., in the appendices of Brink and Satchler 1371, 
and Wong 11511. 

A-5 Wigner-Eckart  Theorem 

One of the advantages in using tensors of definite spherical ranks is offered by the 
Wigner-Eckart theorem. The matrix element of an operator of rank t between states 
with angular momenta J and J’ may be separated into two parts, one invariant under 
a rotation of the coordinate system used and the other expressing the dependence of 
the matrix element on the coordinate system. Since only projections of tensors on 
the quantization axis are changed by it rotation of the axes, the invariant part of the 
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matrix element is independent of the projections and, as a result, is only a function of 
the nature of the operator and the states involved. That is, 

(A-15) 

where the double-bar matrix element (JllTkll J’) represents the invariant part and is 
generally known as the reduced matrix element. The angular momentum dependence 
of the matrix element is contained in the 3j-coefficients and is independent of the 
operator and the states involved, other than their angular momentum ranks. All the 
physical content of a matrix element is contained in the reduced matrix element. As a 
result, it may be compared with those of other quantities without being encumbered 
by dependence on the coordinate system used. 

In terms of CIebsch-Gordan coefficients, Eq. (A-15) appears as 

Slightly different ways are used by some authors to define the reduced matrix element. 
In some books, the phase factor and/or the square root in the denominator is absorbed 
into the definition of the reduced matrix element. Note that the phase factor (-1)2k is 
essential here, as we deal with operators of half-integer ranks as well. 

A-6 Land6 Formula 

Consider a vector operator V: Since it is an operator with spherical tensor rank unity, 
its matrix element behaves, under a rotation of the coordinate system, in the same 
way as any other spherical tensor of the same rank, including the angular momentum 
operator J .  Using the Wigner-Eckart theorem, the matrix element of component q of 
Vmay be expressed in terms of its reduced matrix element as 

(A-16) 

where q has possible values f l  and 0. Similarly, the matrix element of J has the form 

(A-17) 

Since both reduced matrix elements ( J l l V ( l J )  and (JI( JIIJ) are quantities independent 
of the coordinate system, they must be multiples of each other, with the ratio 

( J  II Vll J) 
R =  (JIIJIIJ) 

(A-18) 

independent of M .  
Consider, now, the matrix element of the scalar product J - V Since it is a scalar 

operator, it has nonvanishing matrix elements only along the diagonal, i,e., for J = J’ 
and M = M’. In a spherical basis, the scalar product may be expressed as 

J .  V= E(- l )4JiqVi , -q  (A-19) 
4 
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We can check that this is the same as scalar products defined in terms of Cartesian 
components of the vectors by noting that 

Ja = J ,  

vo = v, 

1 
J*1 = F---(J,fiJ,) Jz 
v,, = +-(V,fiV,) Jz 

1 

This is slightly different from the definition of angular momentum raising and lowering 
operators L* = L, f iL, as the usual convention does not attempt to make them 
spherical tensor operators. 

We can now make an intermediate state expansion of the matrix element of J .  V ;  

( J M  I ( J  . V) I J M )  = C C( - l )q  ( J M  IJ, I JM‘) ( JM’ I V-, I J M )  
M’ Q 

Since the operator J can change at  most the M-value, but not the J-value, of a function 
on which it acts, a sum over intermediate states of different J-values is not needed. 
Using the ratio R defined in Eq. (A-18) and the relations given by Eq. (A-16) and 
Eq. (A-17), we have the relation 

With this, we obtain the result 

( J M I ( J .  V ) I J M )  = R C C ( - l ) q ( J M I J , I J M ’ ) ( J M f ~ ~ - q ~ J ~ )  
M’ 

= a( ~ ~ 1 5 2 1 ~ ~ )  
= R J ( J - i - 1 )  

In other words, R = ( J M J ( J -  V ) I J M ) / J ( J  + 1) and 

( J M  I ( J  * V) I J M )  ( J M  I J ,  1 JM‘)  (A-20) 
1 

J ( J  -k 1) 
(.JMIV,IJM’) = ___ 

generally known as the Land6 formula. 
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Scattering by a Central Potential 

B-1 

The scattering of one particle off another at  nonrelativistic energies is described by a 
time-dependent Schrodinger equation 

Scattering Ampli tude and Cross Section 

a 
at 

zh-@(r, t )  = H\lr(r, t )  

under appropriate boundary conditions. In the center of mass of the two particles, the 
Hamiltonian has the form 

h2 

2P H = - -Vz+V (B-2) 

where p is the reduced mass and V is the potential representing the interaction between 
the two particles. If H is independent of time t ,  the time dependence in the wave 
function may be separated from the rest, 

Here $(r)  is the eigenfunction of the time-independent Schrodinger equation 

03-31 
h2 
2P 

--VZ$(T) + (V - E ) $ ( r )  = 0 

For simplicity we shall consider $(r) to be a function of spatial coordinates only and 
ignore any dependence on other variables, such as spin and isospin. 

Incident flux. The usual scattering arrangement involves a collimated beam of projec- 
tile particles traveling along the positive z-direction and incident on a target placed at  
the origin. Except for Coulomb force, interactions between nuclei have short range. For 
this reason, we shall consider first finite-range potentials and return later to Coulomb 
interaction in $B-5. Outside the range of the interaction, we can take V = 0; both 
particles are free and their wave functions may be represented by plane waves e i k r ,  
where k = -/h. is the wave number. (For a Coulomb interaction, Coulomb wave 
functions must be used instead of plane waves.) 

409 
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The relation between wave function and intensity of the incident beam is given by 
the quantum-mechanical probability current density 

ti ti 
2ip 2CL 

S(T, t )  = - {$*V$ - $V?)'} = %{v-vq} 

where W stands for the real part. For an incident plane wave traveling along the positive 
r-direction, the number of particles pasFting through a unit area perpendicular to the 
z-axis is then 

(B-4) 
hk 

t p  dz CL 
s, = g21e-ib.&de'l') = - = 21 

where v is the velocity of the projectile when it is still outside the interaction region. 
The value of incident flux Si depends on the way the plane wave is normalized. Here 
we have taken it in such a way that Si = o. 

Scattered wave. The scattered particle outside the interaction region is described 
by a spherical wave elkr/r radiating outward from the center of the interaction region. 
The particle density in the incident beam is usually sufficiently low that we may ignore 
any interference between the incident and scattering particles. As a result, the wave 
function at large r is a linear cornbination of a plane wave, made of the incident beam 
and particles not scattered by the potential, and a spherical wave, made of scattered 
particles. The result may be expressed as 

Here, f(O,4) is the scattering amplitude which measures the fraction of incident wave 
scattered in the direction with polar angle d and azimuthal angle 41. In general, both 
$(r)  and f (B,d)  are also functions of the incident wave vector k and scattered wave 
vector k'. However, to simplify the notation, we shall not indicate them unless required 
in the discussion. Furthermore, the probability for scattering is sufficiently small that 
the normalization of the incident wave is not affected by particles removed from the 
incident beam dne to scattering. 

It is convenient to take the origin of the coordinate system to be at the center of 
the region where the two particles come into contact with each other. Since the z-axis 
is chosen to be along the direction the two particles approaching each other outside 
the interaction zone, the zy-plane is fixed by requiring it to be perpendicular to the 
z-axis. However, we do not have a natural way to define the orientation of the x- 
or y-axis in the plane, if all the particles involved have spin J = 0, or if the spins of 
neither the incident nor the target particles are polarized in any given direction and the 
orientations of the spin of the particles in the final state are not detected. In such cases, 
the system is invariant under a rotation around the z-axis and the azimuthal angle Q 
cannot be determined uniquely. The wave function of the system must be independent 
of 4 and the scattering amplitude becomes a function of the polar angle 0 only. 

The scattering angle 0 is the angle between the incident wave vector k and the 
scattered wave vector k', as shown in Fig. B-1. For O # 0, k and k' forms a plane, the 
scattering plane. We may define a unit vector n perpendicular to the scattering plane 
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Figure B-1: The scattering plane defined by k and k', respectively, the wave 
vectors of the projectile and the scattered particle. The scattering angle 6 is that 
between k and k'. The scattering is independent of the azimuthal angle 4 unless 
the polarization direction of the spin of at least one of the particles is known. 

in the following way: 

The orientation of n depends on the vector k', which, in turn, depends on where the 
detector is placed. Unless polarization is involved, the choice of the direction of n 
is arbitrary, usually determined by the convenience of the experimental arrangement. 
However, if one or both particles involved in the initial stmate are polarized, or if the 
spin orientations of one or both of the particles in the final state are detected, spin 
dependence in the interaction between the two particles may cause a difference in the 
scattering results that  depends on the direction of n relative to  that of polarization. 
Under such conditions, the scattering amplitude is a function of d as well as 4. 

Differential cross section. The differential scattering cross section may be expressed 
in terms of the scattering amplitude f(0). The probability current density for the 
scattered spherical wave is given by the expression 

If the scattered particle is observed by a detector with effective area da placed at 
distance T from the scattering center, the solid angle subtended by the detector at the 
origin is 

and the number of particles recorded per unit time is 

N, = S, da = S,r2 dR 
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The differential scattering cross section, d u / d f l ,  sometimes represented also as u(B), is 
defined as 6he number of particles scattered into a solid angle dR at angle B divided by 
the incident, fliix, 

As we have seen in $1-3, it has the dimension of an area and gives a measure of the 
probability of scattering into a particular direction. 

The scattering cross section is the integral of the differential cross section over all 
solid angles, 

= 1 du = /IJ(@)IZ27rsinBd0 

It conveys an idea how much of the incident beam is intercepted by each particle in the 
target. Since the typical unit of length for nuclei is the femtometer (fm), a convenient 
unit for scattering cross section is femtometer squared (= mZ) and that for da/dR 
is the femtometer squared per steradian. A derived unit, the barn (1 barn = m'), 
is often used in quoting measured values. Hadronic processes are iisually of the order 
of iriillibarns (1 mb= m2 or 0.1 fin2), whereas electromagnetic processes are of 
the order of rianobarns (1 nb= InZ) and weak interaction processes of the order 
of femtobarns (1 fb = m2), as mentioned in Chapter 1. 

B-2 Partial Waves and Phase Shifts 

Partial wave expansion. If the interaction potential is a central one, V = V ( T ) ,  that 
depends only on the relative distance T ,  angular momentum is a constant of motion. In 
this case, it is convenient to decompose the wave function $(r) into a product of radial 
and angular parts and write it as a sum over components with definite orbital angular 
momentum P, or partial iuaves, 

where the coefficients at are the amplitudes of each partial wave. Only spherical har- 
monics Yt,(0, 4) with m = 0 are involved here, as we are considering systems indepen- 
dent of the azimuthal angle 4. 

Since Yt0(8) is an eigenfunction of the angular part of Eq. (B-3) with eigenvalue 
P ( 4  + I), the radial wave function for partial wave 4 satisfies the equation 

In terms of the modified radial wave function 

the equation may he simplified to 

03-91 
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For short-range potentials, V ( T )  goes to zero as T 4 00. The same is also true for the 
t( t  i- l ) / r2  term. In the asymptotic regions, we are left with a simple second-order 
differential equation of the form 

The solution for this equation is the familiar linear combination of sin(kr) and cos(kr). 
That is, a t  large T ,  the function ucfr) must take on the form 

uC(r) r-m + Atsin(kr - $?T) + Btcos(kr - !$r) 
= Ctsin(kr - $ e m  + &) 

- - c;{e-t(kr-$tn) - e2r6, e i(kr-ijtrr) 1 (B-10) 

where At and Be, or Cc (Cj) and &, are two constants that must be determined from 
boundary conditions. The phase factor ihr is included here so that it is more convenient 
to compare with the asymptotic form of spherical Bessel functions we need to carry out 
later. 

Phase shift. The angle 61 is known as the phase shijt. Its physical meaning can be 
seen by comparing Eq. (B-10) with the partial wave expansion of a plane wave, 

t=0 

Asymptotically, the spherical Bessel function jl(kr) has the form 

and may be compared with that of Eq. (B-10). 
In the asymptotic region, a plane wave may be written as 

(B-11) 

(B-12) 

where we have used the relation eicn12 = i' to put the expression into a form convenient 
for later needs. The difference between Eqs. (B-10) and (B-12) is the phase shift, 
for example, in the argument of the sine function. Because of interaction induced by 
potential V(T), the phase of partial wave e in Eq. (B-10) is shifted by a factor 61 with 
respect to that of a free particle represented by the plane wave of Eq. (B-12). This 
is a result we could have anticipated from the beginning. For a real potential, which 
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we have implicitly assumed here, only elastic scattering can take place. Furthermore, 
if the potential is also a central one, orbital angular momentum P is a good quantum 
number and the probability current density in each Gpartial wave channel is conserved. 
The only thing in the wave function that can change as a result of scattering is the 
phase angle, and this is represented by the phase shift 61. We shall return at the end 
of this section with an example using a square-well potential as illustration. 

In general, elastic as well as inelastic scattering can take place. Such a situation 
is represented by a complex scattering potential, with the imaginary part representing 
loss of probability from the incident channel due to such inelastic events excitation 
of the target nucleus and projectile particle, absorption of the incident particle by the 
target, and creation of new particles. In these cases, the phase shifts are also complex 
in general. We shall return to the case of scattering by a complex potential in $B-4. 

Elastic sca t te r ing  cross section. Using the result of Eq. (B-lo), the scattering wave 
function of Eq. (B-8) in the asymptotic region may be written as 

(B-13) C a’,%o(O)-sin(kr - !en + dt) 

where the unknown coefficients in Eq. (B-8) and Ce in Eq. (B-12) are combined 
into a single quantity u’(. Since this is just another asymptotic form of the same wave 
function as given earlier in Eq. (B-5), we arrive at  the equality 

1 ca 

T 
$(rl’) r-w ’ 

I=O 

Using the results of Eqs. (B-12) and (B-13), we can rewrite (B-14) in the following way: 

(B-15) 

The equation is arranged in such a way that terms related to elkr are on the first line 
and t,erms related to e-ikr are on the second line of both sides. 

Since the functions eikr and e-lkr are linearly independent of each other, their 
coefficients on the two sides of Eq. (B-15) must separately equal each other. From the 
coefficients for e-i(kr-eslz), we obtain the result 

a; = \/-iw 
Substituting this relation back into the coefficients of elkr in Eq. (B-15), the scattering 
amplitude may be put in terms of phase shifts as 
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(B-16) 

In terms of the phase shifts, the differential scattering cross section may be written as 

(B-17) 

by substituting the results of Eq. (B-16) into (B-7). 
Fkom the orthogonal condition on spherical harmonics 

we see that the scattering cross section may be reduced to a particularly simple form 

(B-19) 

Since we have taken the scattering potential V ( T )  to be real in this section, only elastic 
scattering can take place. Later on, when we come to the more general case of a 
complex scattering potential, inelastic scattering can also take place. The superscript 
is to remind us that the cross section calculated here is for elastic scattering only. 

Relation to scattering potential. A more direct connection between phase shift and 
scattering potential is provided by the following analysis. By making the substitution 
p = kr, Eq. (B-9) may be further simplified to 

(B-20) 

For a free particle, we have V ( p )  = 0 and the corresponding modified radial wave 
function ft(p) for partial wave t! satisfies the equation 

(B-21) 

where ft(p) = p j t ( p ) ,  with j&) a spherical Bessel function of order t .  
The Ldependent term 89 well as the constant term in Eqs. (B-20) and (B-21) may 

be eliminated by multiplying Eq. (B-20) with f&) and subtracting from it Eq. (B-21) 
multiplied by u((p) .  The result is 

(B-22) 
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When T -+ 00, the spherical Bessel function jl(p) + p-' sin(p - fez), as we have seen 
earlier, and we obtain the results 

ft(p) + sin@ - +h) 

and 
.&I) -+ sin(p - $Px + 61) 

The quantity within the curly brackets 

dff 
dP 
- -+ cos(p - it.) 

in Eq. (B-22) becomes 

dfe d v  
-ut - j t -  --+ cos(p - je.) sin(p - $ t x  + at) - sin(p - $3~) cos(p - ;er -t &) 
dP dP 

= sinbe 

where the last equality is obtained using standard trigonometric identities, Equation 
(B-22) now reduces to 

d 
-sin& = -- 
dP 

or 

sin 61 = - Lrn fc(p)ur(p) dp (B-23) 

This relation determines the phase shift 61 from a potential V(p) up to a multiple of 27r. 
The general convention to fix this uncertainty is to take St = 0 as E -+ 0. Although 
Eq. (B-23) expresses 6f in terms of V ( r ) ,  the relation is not as direct aa i t  appears on 
the surface, since ut(p) in the integrand depends also on the potential, as can be seen 
from Eq. (B-20). 

Partial wave and bombarding energy. One useful result of partial wave analysis 
is that, for low bombarding energies, only the phase shifts for I FZ 0 are substantially 
different from zero. This can be seen from the following argument. The classical turning 
radius T~ is defined as the point where the (repulsive) potential is equal to the incident 
energy. For partial wave channel 4, the effective potential in Eq. (B-9) is 

I h2 e(e + 1) 
V(T) = V(T)  + -- 

211 T 2  

As a result, we may use the relation 

(B-24) 

(B-25) 

to determine the classical turning point T ~ .  

For ashort-range potential, the effective potential P(r) of Eq. (B-24) for large values 
of T and e is dominated by the repulsive centrifugal barrier term e(t i- 1) /~ ' .  (At very 
small T ,  the centrifugal term also dominates by virtue of its inverse r2-dependence; 
consequently, only in the intermediate range is the nuclear potential important.) As a 
result, Eqs. (B-20) and (B-21) become the same for large [-values and we obtain 

lim u ( ( T )  = f t ( ~ )  
I-+m 
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Consequently, 

We shall now establish a criterion by which P may be considered as large enough such 
that phase shifts may be ignored for partial waves of order greater than this value. 

Let the range of the potential V ( T )  be represented by T O .  At low energies, the 
classical turning radius TI  is large and we have TO < rl. We may therefore ignore the 
contribution of V ( T ~ )  in the definition of the turning radius. Equation (B-25) can now 
be approximated by the expression 

6t L-m ’ 0 

or 
( k ~ $  = e(e + 1) 

This gives us an approximate value of the turning radius that is independent of V(T) .  
It also implies that the scattering takes place mainly in channels with l 5 k~,. In 
other words, for e >> k T l ,  the phase shifts bt -+ 0. 

On the other hand, T~ is a quantity that depends both on E and e. It is therefore 
more convenient to use T O ,  the range of the potential, instead of T ,  as the condition to 
determine the highest partial wave that can contribute to the scattering. Since these 
two quantities are of the same order of magnitude, we obtain the condition 

6( -+ 0 for e >> kro (B-26) 

Classically, no scattering occurs if a point particle approaches a hard sphere with impact 
parameter b greater than the radius of the sphere TO. Since e = IT x pl = hkr, we arrive 
at the conclusion that partial waves with t/h > kro are not scattered. Equation (B-26) 
is essentially a quantum-mechanical statement of the same criterion. 

The range of nuclear potentials is of the order of a femtometer. For nucleon-nucleon 
collisions at  E = 1 MeV in the center of mass, kro N 0.2. Hence only t = 0, or s- 
wave, phase shift can be significantly different from zero. This is observed to be true 
as can be seen, for example, in the values extracted from experimental nucleon-nucleon 
scattering shown in Fig. 3-3. From the figure, we find that only the s-wave phase shifts 
are different from zero at  low energies and that the sizes of the phase shifts for the higher 
partial waves, for example pwaves, do not become significant until E > 10 MeV. For 
this reason, nucleon-nucleon collision is often approximated by s-wave scattering for 
E < 10 MeV. 

Example  of a square-well potential .  It is instructive to see the actual relation 
between phase shifts and scattering potential for a simple case. We shall limit ourselves 
to .+wave scattering and calculate & for a square well of radius r0 and bombarding 
energy E = 1 MeV. For an attractive potential of depth V, ,  we have 

-Vo for T < TO 
v(T) = 

The radial equation, obtained by solving Eq. (B-9) inside the well, is 

U O ( T )  = d s i n m  for T < T O  
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The amplitude A will be determined later. For a repulsive well, Vo is a negative quantity. 
In this case K becomes purely imaginary for E < IVol, and instead of a sine function, 
the radial wave function inside the well is a hyperbolic sine function. 

Outside the well, V ( r )  = 0, and the radial wave function is sinusoidal for both 
attractive and repulsive wells, 

7LO(T) = sin(kr + 60) for r > TO 

For convenience, we have normalized the wave funct.ion to have an amplitude of unity 
oiit,side the well. The requirement that the logarithmic derivative of the wave function 
be continuous across the boundary at T = TO gives us the condition 

sin r;r0 sin( kro + bo) -- - 
K cos ICTO k COS( k ~ o  + 60) 

Fkom this result, the s-wave phase shift is found to be 

60 = nr - kro + tan-’ - tan KTO (: 1 
where n is to be determined by the condition that b0 = 0 at E = 0, as we have done 
for Eq. (B-23). The amplitude of the wave function inside the well is determined by 
the requirement that ~ O ( T )  itself is continuous across the boundary, 

sin(kro + So)  
sin(KT0) 

A =  

The results are plotted in Fig. B-2. 
For an infinite repulsive potential, the radial wave function cannot penetrate into 

the well, as shown in Fig. B-2(a), and U ( T )  = 0 for T 5 TO as a result. Instead of 
starting at T = 0, the nonvanishing part of the wave function is now shifted outward 
by a distance TO.  The phase shift is t,hen 60 = -kro. The scattering cross section from 
Eq. (B-19) becomes 

47r 4ll 
k2 k2 

u = - sin’ 60 = - sin2 kro M 4 1 4  

a result we expect from comparisons with the scattering of two hard spheres of radius 
ro each. For a finite repulsive well, the radial wave function does not vanish completely 
inside the well. The amplitude rises exponentially at small T instead of sinusoidally 
for a free particle, as shown in Fig. B-2(b). The phase shift is still negative, but the 
magnitude of b0 is less than that for an infinite repulsive well. 

For an at,tractive well, the phase shift is positive. If lVol is small, the wave function 
inside the well rises faster near the origin than that of a free particle. As a result, the 
nodes of the wave function outside the well are shifted closer to the origin, 89 shown in 
Fig. B-2(c). As the attractive well becomes deeper, the phase shift grows in magnitude. 
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i- 

Figure 5 2 :  Radial wave functions for low-energy, 3-wave scattering by a square 
well. For comparison, the corresponding form for a free particle is shown as a 
dotted curve in each case. The result of an infinite repulsive well is shown in (a)  
and a finite one in ( 6 ) .  The results for attractive potentials of different depths are 
shown in (c) to (f). The wave functions inside the well in these cases grow faster 
near the origin than that for a free particle and the phase shift is positive. 

At well depth corresponding to 60 = ~ / 2 ,  shown in Fig. B-2(d), the scattering cross 
section becomes 4s/k2.  For E = 0, we have the result 

4s 
k2 

The meaning of an infinite scattering cross section a t  zero energy is that the incident 
particle never emerges from the potential well; i.e., a bound state is formed at E = 0. 
In fact, a bound state appears whenever the phase shift is an odd integer multiple of 
a/2. On the other hand, when 6, is a multiple of n, the cross section drops to zero and 
nodes in the wave function appear also inside the well, as can be seen in Fig. B-2(f). 
In realistic situations, the potential has a more complicated form than a square well; 
however, the qualitative features discussed above remain true. 

0 = - - 4 w  

B-3 Effective Range Analysis 

Scattering length. For low bombarding energies, it  is customary to express the 
scattering results in terms of two parameters: scattering length a and effective range 
T,. Since, in general, the cross section must be finite at E = 0, we can define a length 
parameter a by the relation 

(B-27) 

Except for a sign, the scattenng length is given in terms of the s-wave phase shift by 
comparing Eq. (B-27) with (B-19), 

(B-28) 

The sign convention adopted here is such that the scattering length is positive if there 
is a bound state, as for example in the case of isoscalar (T = 0) nucleon-nucleon 
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interaction, and a < 0 if there is no bound state, as for example in the case of isovector 
(T = 1) nucleon-nucleon interaction. 

Effective range. The energy dependence of scattering at low energies is given by the 
eflective range 7,. The origin of this parameter comes from the following rationale. For 
I = 0, Eq. (B-9) may be written as 

(B-29) 

where we have included the wave number rE explicitly in the arguments of the modified 
radial wave function uo(k, T )  so as to emphasize the energy dependence in the solution. 
For two different energies, El = 2A2k: /2p  and E2 = fi2kt/2/&, we have two different 
solutions of Eq. (B-29), uo(k1, T )  and u(k2, T ) ,  respectively. These functions satisfy the 
following equations: 

(B-30) 

By multiplying the first one of Eq. (B-30) with uo(k2,r)  and the second one with 
u0(k l ,  r )  and integrating the difference over variable r ,  we obtain the result 

+(kT - ki) lrn U o ( k 1 ,  T ) U o ( k 2 ,  T )  dT = 0 
0 

The first integral may be carried out by parts, and we obtain the result 

= (k22 - k:) Jrn uo(h, T ) u o ( h ,  T )  dT (B-31) 
0 

This is true for an arbitrary potential, including V ( r )  = 0. 

with V ( T )  = 0, 
Consider another function vo(k, T )  satisfying the same equation as Eq. (B-29) except 

d2vofk,T) + kZvo(k ,T)  = 0 (B-32) 
dT2 

Analogoiis to Eq. (B-31), we have 
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If the potential has a short range, Eqs. (B-29) and (B-32) are identical t o  each other in 
the asymptotic region. As a result, we may require that their solutions have the same 
form a t  T = 00, 

vo(k, r )  r+bo = uo(k, r )  r, ds in (k r  + 60) (B-34) 

where the amplitude A will be determined later. Since the radial wave function &(r)  
itself must be finite at the origin, 

uo(k,r) 0 

The left-hand side of Eq. (B-31) may be expressed in terms of vo(k, T) using Eq. (B-34), 

Using this, we can subtract Eq. (B-31) from (B-33). The contributions from r = 00 on 
the left-hand side of the two equations cancel each other and we are left with the result 

d d 
v0(k10) -p0(k2 ,0 )  - ~ 0 ( ~ 2 ! O ) ~ ~ O ( k l , O )  

= (ki - k:) iw{-vo(kl,  r)-vo(kz,r) - uo(h, r)uo(kz, r ) }  dr (B-35) 

However, vo(k, r )  does not vanish at the origin, as can be seen from Eq. (B-34). This 
may be used to fix the amplitude A such that vo(k, 0) = 1. AS a result, 

(B-36) 

and Eq. (B-35) simplifies to the form 

d m d 
dr 

A1 ter natively, we obtain 

using Eq. (B-36). 

be written as 
If both El and Ez are close to some value E = 2pk2/ii2, the above expression may 

m 
-kccot60 = 1 { v i ( k , r )  -u : (k , r )}dr  

d 

d ( k 2 )  
The effective range is defined as twice the integral in the expression at  k = 0, 
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The energy dependence of the s-wave phase shift can now be expressed in the form 

k cot &(k) = (k cot 60)k=0 + !jrek2 -I- 9 * (B-37) 

Using the definition of scattering length a in Eq. (B-28), the first term on the right-hand 
side of Eq. (B-37) can be shown to be equal to -l/a Up to order k', we find 

1 1  
a 2  

kcot&(k) = -- + -T&* 

The s-wave scattering cross section is then 

4r 4a 
k' 

u = -sin260(k) = 
k2 + { ir,k2 - l/a}' 

which reduces to Eq. (B-27) when k + 0. 

B-4 Scattering from a Complex  Potent ia l  

When a particle is scat,tered from a target, part of the kinetic energy may be trans- 
formed into excitation energy of the projectile, the target nucleus, or both. At the 
same time, some of the nucleons from one may be transferred to the other. If enough 
energy is available in the collision, secondary particles may also be created. All such 
processes are inelastic in the sense that the exit channel of the reaction is different 
from the entrance channel. In general, a reaction consists of both elastic and inelastic 
scattering and the interaction potential is complex. The solution of the Schrodinger 
equation in such a case may still be represented by Eq. (B-8); however, the phase shifts 
can now be complex quantities as well. 

In order to treat a broader class of scattering problems, we shall write the aqymp- 
tot,ic form of the modified radial equation uC(r )  for partial wave l! in terms of an incoming 
wave I((.) and an outgoing wave U ~ ( T ) ,  

udr)  ,+m &(r)  - veoc(T) (B-38) 

in the place of Eq. (B-10). Here 171, the inelasticity parameter, is a way to measure the 
contribution of inelastic scattering, as we shall see later. [The definition of Q here is 
a more general one than that in  Eq. (3-79), where 11c is a real number, equivalent to 
the absolute value of Q here.] Each of the factors in Eq. (B-38) has a counterpart in 
( B - W ,  

N e2i61 e-i(kr-&) ot(r) &r-fCT) (B-39) 

The elastic scattering cross section given in Eq. (B-19) may now be expressed as 

In addition, there are new terms contributing to the reaction that are not present in 
scattering by a real potential. 
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One way to see the difference between scattering by a real and a complex potential 
is to examine the intensities of the incoming and outgoing waves for partial wave e.  
Using the last form of Eq. (B-lo), we obtain the difference as 

1 - lvc12 = 1 - lezt6t 2 I 
If the phase shift 61 is real, the difference vanishes and only elastic scattering can take 
place. For a complex phase shift, the difference does not vanish in general, as some of 
the incident flux is transferred to channels other than the incident one. This part of 
the scattering is represented by the “reaction” cross section 

(B-40) 

The total cross section is then the sum of those due to elastic scattering as well as the 
reaction, 

211 
= - C ( 2 e +  i)(i - 8 ~ )  

k Z  c 
(B-4 1) 

We may compare this result with the scattering amplitude f(8) at  0 = 0. 
Eq. (B-16), we have 

From 

where we have made use of the value 

Comparing this result with the final form of Eq. (B-41), we obtain the relation 

4lr dot = p f ( 0 )  (B-42) 

known as the optical theorem. 

Reaction channel. To discuss inelastic scattering involving nuclear particles in more 
detail, we need to define the concept of a reaction channel. It  is used to describe a 
particular quantum-mechanical state of the system either before or after the scattering 
event. We shall examine here only two-body scattering, although the formalism itself 
can be generalized to include reactions involving three or more particles in the final 
state. The labels required to specify a reaction channel consist of three distinctive 
parts: those describing the internal degrees of freedom of the projectile or the scattered 
particle, those describing the corresponding quantities for the target or the residual 
nucleus, and those describing the relative motion between the two. For simplicity we 
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shall use a single letter, c ,  the channel quantum number, to represent the complete set 
of labels, 

where e is the relative angular momentum and m is its projection on the quantization 
axis. The wave function of the projectile (or scattered particle) is represented by (P3pap ,  
where j p  is the spin and a,, represents all the other quantum numbers required to specify 
the state for the projectile (or the scattered particle). The wave function of the target 
(or the residual) nucleus is given by $jlnl, where jt is the spin and at represents all the 
ot,her labels. 

Since there are three different angular momenta involved here, it is useful to couple 
two of them together first. For this purpose, we shall define a function, 

c {jp'Yp,jt'Yt; r p  : em) 

@w = ( h p u p  x A t w ) 7 p  

the product of the wave functions of the projectile (or the scattered particle) and the 
target (or the residual) nucleus with their angular momenta coupled together to (7, p) .  
It is convenient to treat the relative orbital angular momentum .! separately from the 
spins of t,he particles, as it is not usually observed directly in a measurement. The 
identification of one of the two particles involved in the scattering as the projectile 
and the other one as the target nucleus before the event, and one of the particles as 
the scattered particle and the other one as the residual nucleus after the event, is an 
artificial one without much significance in the center-of-mass system we are using here. 
To simplify the notation, we have omitted references to isospin. 

Sca t te r ing  solution. Instead of Eq. (B-39), we shall define the incoming and outgoing 
waves iri the following way: 

where v, is the center-of-mass velocity in channel c and is used to normalize the wave 
function in terms of probability current density, as we saw in Eq. (B-4). Consider first 
the simple case of a definite incorning channel c .  The scattering wave function for this 
incident channel and all possible outgoing channels may be written as 

(B-44) 

where S c ~ e  is the matrix element relating the scattering amplitude from incident channel 
c to exit, channel c'. 

In general, the scatt#ering process is described by the s-matrix (also referred to, on 
occasion, as the reaction matrix or the collision matrix). The matrix element 

is taken between wave functions in the incident channel c and outgoing channel I?. The 
superscripts on the wave functions are to remind us that the solution in channel c' must 
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be obtained using the appropriate boundary condition for the outgoing wave and that 
in channel c for the incoming wave. We shall return to the topic of the s-matrix in the 
final section of this Appendix. 

The general solution of the Schrodinger equation (B-3) outside the range of scat- 
tering potential V is a linear combination of those given in Eq. (B-44), 

(B-45) 

where the coefficients Cc depend on the initial conditions given by the particular ar- 
rangement of the incident beam and the target. 

The asymptotic form of the incident wave function, with the projectile described 
by +,pa,, the target nucleus described by $j tO1,  and the two particles approaching each 
other along the z-axis with relative wave function described by a plane wave (or a 
Coulomb wave if both particles carry charge), is given by 

(B-46) 

in analogy with Eq. (B-12). For clarity, in addition to channel quantum number c, 
we have also given some of the implied labels explicitly in parentheses as part of the 
subscripts. The complete scattering wave function of Eq. (B-45) must contain a term 
describing an incident beam identical to that given in Eq. (B-46). Hence Eq. (B-45) 
may be written in the form 

We shall now work out the differential scattering cross section from this expression. 

Cross section. Since the incident probability current density is normalized to unity 
because of Eq. (B-43), the differential scattering cross section is given by 

where we have integrated over all the internal variables in the initial state, described by 
the product wave function @Tp(jpap;j tat) ,  and in the final state, described by the prod- 
uct wave function @,~,,t(j~&;j,&). The expression is basically the same as Eq. (€3-17) 
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except that elements of the s-matrix between incident and final scattering states are 
used to replace the phase shifts. The summation over t', the orbital angular momentum 
in the outgoing channel, is required since in a scattering experiment only the states of 
the scattered particle and the residual nucleus are observed and their relative angular 
momentum el is not usually identified. On integrating over the angles, we obtain the 
scattering cross section as 

(0-47) 
71 

o7jm;ygplp = 2 C(2e + 1)\Scl((r'p'p)c((,m=D,ypa)12 
I 

in the same way as was done to arrive at Eq. (B-19). The reaction cross section is 
represented by terms with exit channels with # a. 

For elastic scattering, the amplitude is given by the expression 

~ c ~ ( ~ v n ~ y l p ~ ~ )  c(e,m=O,ypa) = 6 ~ 6 r n ' 0 & y ~ 6 p p ' 6 a p  - Sc(t~rn~- ,~p1,9)  c(t,rn=O,ypa) 

We can recover from this the relation given by Eq. (B-41) for total scattering cross sec- 
tion by adding to Eq. (B-48) the contribution from the reaction cross section contained 
in Eq. (B-47) and summing over all possible exit channels, 

Because of the unitary property of the s-matrix, 

C ISc'(lly',i'P)c((7/ia)I2 = 1 
W P ' P  

where the summation is taken over all the possible channels, we have the result 

oloL 2a 
7pa;Ylia = - C(2' + I)(  1 - % s c ( t r p a ) c ( t y p a ) }  

k2 I 

From this we obtain again the optical theorem in the same way as was done in deriving 
Eq. (B-42) from (B-41). 

B-5 Coulomb Scat te r ing  

The disciissions in 5B-2 and 5B-3 apply only to short-range potentials. For nuclear 
scattering this is quite adequate except for the electric charge carried by the partici- 
pants. The Coulomb potential between two nuclei with charges 21e and Z2e is given 
bV 



§B-5 Coulomb Scattering 427 

where the factor inside the square brackets converts the expression from cgs to SI units. 
Since the range of this potential is infinite, the techniques employed in §B-2 to find the 
scattering solution no longer apply. This is not a problem, as exact solutions are 
available (see, e.g., Messiah [104], Morse and Feshbach (1061, and Blatt and Weisskopf 
(321). A short summary of the results is given here. 

For scattering involving only Coulomb potential, the Schrodinger equation can be 
written as 

T 
(B-49) 

where 
2 W E  ZlZZWC 

'= tik 
k =- 

Ti2 

The regular solution of Eq. (B-49) has the form 

+(r )  = e i k z f ( r  - z )  

where 
kz = krcose = k . T  

The function f ( C )  satisfies the differential equation, 

with 

It is a type of Laplace equation, 

C = ik(r - Z )  

with solution involving the confluent hypergeometric series 

Q U  a(a+l)u2 
01. p(p+ 1) 2! 

F(a~p~u)=l+-~+--+-' 

The normalized Coulomb wave function is then 

$C(r)  = e - f ' ~ ~ ( l +  iy)e'kzF(-iylllik(r - 2)) 

The definition of the gamma function r(l + iy) and its properties may be found in 
Abramowitz and Stegun [2]. 

At the origin, F(aIpIu) = 1 and only the normalization factor remains, 

$JO) = e - t n T r ( i  + ir) 
Using the identity that 

(r(i + iy)12 = - 
sinh ay 
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we obtain the result 
(B-50) 

This gives the Fermi function F(2, E,) of Eq. (5-67) for nuclear 13-decay in the limit that 
the charge distribution in the daughter nucleus can be considered to be concentrated 
at a point located at  the origin. 

For scattering, we are more concerned with the asymptotic behavior of the wave 
function. As in Eq. (B-5), we need the values at large distances away from the origin 
and expressed as a sum of incident wave $i(r) and scattered wave $#(r) ,  

$of.) = $i(r) + $.(.I 
For Ir - 21 .--) 03, we have the result 

--3 f e i { k r - r ~ n z k r )  c f (0) + w-2> r dJs(r)  

The Coulomb scattering amplitude f"(0) is given by 

where 

is the Coulomb phase shift for e = 0. Using this result, we obtain the Rutherford 
scattering formula 

6; = arg r(l + iy) 

($1 Ruth. = { 4 2 $ &  Y 
This is the same expression as Eq. (4-7) except, here, the kinetic energy is represented by 
the symbol E t o  conform with the general practice in nonrelativistic scattering, rather 
than T in Eq. (4-7), where we necd to make a distinction from the total relativistic 
energy. 

We can also make a partial wave expansion for the solution to Eq. (B-49) in a way 
similar to that given in Eq. (B-8). Let 

GJ.) = c d-j 2 u:(r)YpO(o) 
t kr 

The modified Cotilomh radial wave function uE(r) satisfies the radial equation 

where p = kr. The soliit,ion of this equat,ion may also he expressed as a sum of Ft(7,  p )  
and Gc(-y, p ) ,  the regular and irregular Coulomb wave functions (see, e.g., Abramowitz 
and Stegun [2]), 

.;(PI = ClFL(Y, P) + C2Gr(Y, P )  
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However, for scattering problems, i t  is more convenient to use 

uf(~) = ei6tFt(y,p)  (B-51) 

where 

is the Coulomb phase shift for partial wave t. 

6f = a r g r ( t  + 1 -I- iy) 

Asymptotically, the Coulomb wave function has the properties 

F47 ,  P )  7-00 ' sin t f  G ( y ,  P )  r-00 ' cost( 

where 
tf = p - 7 In 2p - $en + 6; 

Applying this result to the right-hand side of Eq. (B-51), we can write the asymptotic 
form of the modified radial wave function in a manner similar to the final form of 
Eq. (B-lo) ,  

From this, we obtain the Coulomb scattering amplitude in terms of the phase shifts 

similar t o  that given in Eq. (B-16). 

B-6 

There are two reasons to have a short discussion here on the formal solution to the 
scattering equation. The first is t o  define some of the terminology commonly used in 
scattering and related problems. The second is to make a connection with methods 
used in standard references on nuclear scattering. 

Formal Solution to t h e  Scat ter ing Equa t ion  

We shall write the time-independent Hamiltonian as 

H = H o + V  (B-52) 

Normally Ho consists of the kinetic energy operator only, 

as in Eq. (B-2). However, we may also choose to include in HO a part of the interaction, 
such as that due to Coulomb force or the optical model potential, as we did in 58-4. 
The potential V in Eq. (B-52), then, represents the residual interactton, the remainder 
of V that  is not already included in Ho. For our purpose here, we shall further assume 
that any long-range part of the potential is included in Ho. 
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The eigenfunction of the scattering equation is the solution of the equation 

where the superscript + on & ( T )  indicates that the solution satisfies outgoing boundary 
conditions and the superscript - refers to incoming boundary conditions. Our concern 
will be mainly with the former. The subscript k, with magnitude k = m/R, displays 
the explicit dependence of the solution on energy. 

The solution of the homogeneous equation 

(KJ - E)&(r)  = 0 (B-55) 

forms a complete set satisfying the orthogonality condition 

and having the closure property 

1 &(~ ' )qh( r )  dk = 6 ( ~  - P' )  

For the simple case of Eq. (B-53) for Ho, we have plane waves, &(T)  - exp(ik 8 T ) ,  a8 

the solution for Eq. (B-55). On the other hand if, for example, the Coulomb potential is 
included as a part of Ho, we have the Coulomb wave functions as the solution instead. 

Green's function. Using the method of Green's function, the solution of the scattering 
equation may be expressed in terms of an integral equation 

(B-56) 

The first term is the solution to the homogeneous equation of Eq, (B-55). The Green's 
function G + ( r ,  T ' )  in the second term satisfies the equation 

(B-57) 
ha 

2 P  
(Ho - E)Gt(r,  T ' )  = - - 6 ( ~  - T' )  

with outgoing boundary conditions. In the simple case that HO involves only the kinetic 
energy, as given in Eq. (B-53), 

(B-58) 

We shall use this simple form of the Green's function exclusively for the examples below. 
It  is easy to check that +;(T) given in Eq. (B-56) is a solution to (B-54). On 

applying Ho - E to both sides of Eq. (B-56), we obtain the result 

(H" - E)$Z(T) = (Ho - E ) $ k ( T )  4- $ ( H o  - E )  /C+(T ,  r')v(T')$;(T') dr' 

The first term on the right-hand side vanishes because of Eq. (B-55). For the second 
term, since HO - E operates only on variable T and not on r' ,  we may bring the operator 
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inside the integral without changing the final result. Furthermore, since r appears only 
in G(r, r‘ ) ,  we obtain, using Eq. (B-57), the result 

(HO - E)$,+(r> = - J ~ ( r  - r’)v(r’)$k+(r‘) dr‘ = - ~ ( v ) + i ( r )  

the same equality given in Eq. (B-54). 

Scattering amplitude. It is easy to see how the scattering amplitude may be obtained 
from Eq. (B-56) using the explicit form of the Green’s function given in Eq. (B-58). 
Let i. = r / l r l  be a unit vector along direction T .  In the asymptotic region, 

Ir - r‘I x T - i a r‘ 

since the integral over r‘ is effective only in the region of small T‘ where the short-range 
potential V(r‘ )  is nonvanishing. As a result, we may approximate the Green’s function 
of Eq. (B-58) 

where we have taken k’ to be along the direction of i. Equation (B-56) is now reduced 
to  

(B-59) 

Comparing this result with Eq. (B-5), the scattering amplitude is identified as 

f(0) = -& /d;f(r‘)v(r‘)$z(r’) dp‘ = --(+k’/vl$$) c1 (B-60) 
21rfi2 

The result here is an exact one (in the asymptotic region) and is different from that of 
the first Born approximation given in Eq. (8-22), as ‘$,,’, the solution of the scattering 
equation Eq. (B-54), appears in f(0) in the place of 4 k .  The differential scattering cross 
section is then 

The usefulness of this expression is limited, as it requires a knowledge of $;(r’ ) ,  the 
complete solution to the scattering problem. 

The result given by Eq. (B-59) is an integral equation, or “formal,” solution of 
the scattering equation, as $,’ itself appears on the right-hand side as well. Its value 
lies mainly in analytical works, such as a Born series expansion of the scattering wave 
function and scattering amplitude. To simplify the notation, we shall write Eq. (B-56) 
in the following way: 

where, instead of G+(r,r ‘ ) ,  we have used G+, an operator for the Green’s function 
defined by the relation 

G+(r,  r’) = (rlG+lr’) 

$2 = 4 k  -I- G+V’$g (B-61) 
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In terms of HO and E ,  the Green's function operator G+ may be expressed as 

1 
G+ = lim 

E-+O E - Ho + i~ (B-62) 

where the factor +if, with c as some small positive quantity, is required to ensure 
that the operator corresponds to the outgoing boundary condition. The derivation 
of Eq. (B-62) may be found in qiiantiim mechanics texts such as Merzbacher [103], 
Messiah 11041, and Scliiff [125]. 

Lippmann-Schwinger equation. It is easy to see that Eq. (B-62) is correct by 
substituting it into Eq. (B-61). The result 

is one way to write the LippInann-Scliwinger equation. The equation may be reduced 
to a more familiar form by operating from the left with E - Ho + it and taking the 
limit 6 -+ 0, 

The first term on the right-hand side vanishes because of Eq. (B-55) and the rest of 
the equation is identical to Eq. (B-54). 

If we replace $$ on the right-hand side of Eq. (B-61) by its value in the same 
eqiiation and repeat the process, we obtain an infinite series expansion of +k+ in terms 

( E  - = ( E  - HOMk + v?h; 

of d'kv 

dj: = & + G+V(& + G+V$k+) 

= #k + G + V ~ L  + G+VG+V(#k + GtV$:) 

= (1 + E(G+v)")q!~k (B-63) 
n=l 

This gives us a Born series expansion of the scattering amplitude if we substitute the 
expansion for ?& into Eq. (B-GO). 

t-matrix.  We have seen earlier that the scattering amplitude ( -p/2nh2)(&,  IVl$:) 
given by Eq. (B-60) is not useful directly for calculating cross sections because of its 
tlependence on @:. For many purposes it is more convenient to define a transition 
matrix, or t-matrix, satisfying the relation 

( # & ~ ~ t l # ~ )  = ( ~ k ~ l ~ l ~ ~ ~ )  (B-64) 

In teriiis of t,he t-niat,rix, t8he scatterinE amplitude is a function of matrix elements 
involving only dkl the solution of the homogeneous equation given in Eq. (B-55). Again, 
this is useful mainly for formal work, as the t-matrix itself cannot be written down unless 
we solve the scat#tering problem first. For the simple case of Ho consisting of the kinetic 
energy operator only, the element,s of t,he t-matrix involve only plane wave states. 
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Using the series expansion of @$ given in Eq. (B-63), we can write the elements of 
the t-matrix as 

( 4 b j I t l W  = (htIv(l+ F ( G ' V n ) 1 4 d  

Since the equality holds for arbitrary & and & I ,  we obtain a relation between the 
operators involved, 

t = V(1+ C(G+V)") 

This can be put in a more compact form. Since the summation is taken up to infinity, 
we can take one product of G+ with V out of the summation and rewrite the equation 
in the form 

t = V + VG+V + VG+V x ( G + V ) "  = V + VGt( V + V f?'(G+V).} 

The quantity inside the curly brackets is nothing but the transition operator t itself, 
and we obtain the result 

t = V + VG+t 
a form that i s  convenient as the starting point of many other derivations. 

n=l 

m 

n=l 

00 

n=l  n=l 

+matrix. The s-matrix may be expressed in terms of the t-matrix using the relation 

( 4 P I W J  = 6P, - 2XiS(EP - Eq) ( 4 P l t I 4 A  
The definition of the s-matrix is usually introduced through the time development 
operator V ( t ,  to) in the interaction representation of quantum mechanics (see, e.g., 
Sakurai 11211 and Schiff 1125)). 

For most elementary applications, the time dependence of a quantum-mechanical 
state is expressed in the Schrodinger representation. Here, the operators are time 
independent; all the time dependence resides with the wave functions Qs(t) .  Using 
Eq. (B-1), we obtain the result 

(B-65) 

where the subscript s emphasizes that the wave function is in the Schrodinger repre- 
sentation. TO simplify the notation, we have suppressed all arguments other than time. 
Alternatively, one can work in the Heisenberg representation where, in contrast, the 
wave function is time independent and all time dependence is built into the operators. 

In the interaction representation, the time dependence of a system is partly in the 
operator and partly in the wave function. The Hamiltonian is divided into two parts 

H = Ho + H ,  

Wave functions \k(t) and operators O(t )  in this representation are related to those in 
the Schrodinger representation through the transformations 

a ih-Q,(t) = H Q s ( t )  
at 

Q(t) = fF /%#( t )  (B-66) 

O(t)  = e t H o t / f i O  e - t H o t / R  
S (B-67) 
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As a result, the time development of a state in the interaction representation is given 
l)y t8he equation 

a 
at 

iA--lk(t) = H,( t )@( t )  

as can be seen by substituting the inverse of Eq. (B-66) into (B-65). For many pur- 
poses, such an approach can be simpler than working in the Schrodinger representation, 
especially if HI is only a m a l l  part of the complete Hamiltonian. 

We can now define the time development operator V(t0, t )  that takes a state from 
time t o  to time t in the interaction representation 

Q ( t )  = U(4 to )Q( to )  

On substituting this definition in to Eqs. (B-66) and (B-G7), we obtain an equation for 
U(to,t), a 

at 
ifi--u(t, t o )  = H,(t)U(t, t o )  

The solution of this equation may be given as an integral equation, 

V(t, t o )  = 1 - ifi Jr H,(t)U(t,  t o )  dt  
to 

The s-matrix operator is defined by the following relation: 

S = lim V(t ,  t ' )  
I-+- 
t'*-m 

It is easy to see that the matrix elements of operator S between specific initial and 
final states are proportional to the scattering amplitude, as both quantities are related 
to the probability of finding a system in the final state at t = +oo if it started out from 
an initial state a t  t = -w. 

In terms of phase shifts, the element of the s-matrix for partial wave l! is given by 

(elsle) - e2i6t 

The analogous relation for the t-matrix element is 

(e l t ie)  N ei6t sin 6t 

The advantage of using the s-matrix for scattering problems is its unitarity and other 
symmetry properties that are convenient in more advanced treatments. 
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algebraic model, 233 
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distribution, 290 
momentum, 256 
momentum selection rule, 165, 175 

electromagnetic moments, 126 
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antinucleon scattering, 99, 303 
antiparticle, 30, 31 
antiquark, 26 
antisymmetrized wave function, 44, 248 
approximation 
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interacting boson, 229-233 
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random-phase, 271 

Argand diagram, 89 
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asymptotic freedom, 55 
atomic mass unit, 18 
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average cross section, 284 
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vector, 185 
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back-shifted Fermi gas model formula, 
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bag model, 55, 341 
band 

crossing, 327 
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allowed, 198 
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superallowed, 199 
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big-bang nucleosynthesis, 356-357 
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binding energy, 9 

black hole, 381 
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Bonn potential, 98 
Born approximation, 286-291, 303 
Bose-Einstein statistics, 27 
boson, 27 

bound 

per nucleon, 10, 155 

operator, 229 

nucleon, 99 
state problem, 5 

boundary conditions, 282 
branching ratio, 163, 164 
breathing mode, 157, 205 
breeder reactor, 152 
Breit-Wigner formula, 284 
broken symmetry, 4, 41 
bulk modulus, 157 
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angle, 42, 183 
-Kobayashi-Maskawa (CKM) matrix, 
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carbon 

burning, 379 
-nitrogen-oxygen (CNO) cycle, 364- 

366 
central 

collision, 350 
force, 77 
potential, 83 

barrier, 89 
stretching, 227 

Cerenkov radiation, 369 
Chandrasekhar limit, 381 
channel 

quantum number, 424 
radius, 282 

conjugation, 23, 31, 34 
density, 11 1-1 12 

centrifugal 

charge 

exchange reaction, 215,303,306,313- 

form factor, 105, 269 
independence, 72, 81 
number, 29 
radius, 109-111 
symmetry breaking, 72 

charged particle capture, 384 
charm, 35, 36 

meson, 350 
chemical name, 8 
chiral invariance, 391 
classical turning radius, 148, 416 
Clebsch-Gordan coefficient, 402 
closed shell nucleus, 240 
clustering, 272 
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coefficient 

314 

366 

Clebsch-Gordan, 402 
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behavior, 17 
model, 205-229 

colliding beam, 80 
collision, see scattering 

matrix, 424 
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screening, 350 
complex 

potential, 88 
scattering 

collective 
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potential, 422 

compound 
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compression modulus, 157 
computational physics, 393 
Condon and Shortley phase convention, 

configuration mixing, 256 
confinement, 55, 100 
conserved vector current (CVC), 188 
constant-density sphere, 110 
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core 
collapse, 382 
state, 254 

Coriolis force, 228 
correlation, two-particle, 351 
correspondence principle, 323 
Coulomb 

barrier, 361 
effect, 7, 319 
energy, 139, 153, 208 

parameter, 140 
excitation, 275-280, 319 
penetration factor, 361 
phase shift, 428, 429 
potential, 79, 426 
repulsion, 144 
scattering, 93, 427 
wave function, 428 

coupling constant, 2, 308 
Fermi, 182 
Gamow-Teller, 188 
pion-nucleon, 96, 188 
vector, 188 

cranked Hamiltonian, 340 
cross section, 281 

average, 284 
differential, 15 

elastic scattering, 282 
point-particle, 276 
reaction, 15, 283, 423 
scattering, 81, 286, 412 
total, 15 

current density, 169 
cutoff radius, 111 
CVC, 188 

de Broglie wavelength, 14, 15, 
Debye screening, 350 
decay 

allowed, 198 
a-particle, 143-150, 364 
f i ,  see &decay 
constant, 161 
double 0, 202 

scattering, 411, 415 

electromagnetic, see electromagnetic 

Fermi, 192, 215 
forbidden, 192, 200 
Gamow-Teller, 192 
neutron p-, 23, 181-183, 356 
quark, weak, 183 
superallowed, 199 

transition 

decoupling parameter, 227, 228 
deep-inelastic 

collision, 324 
scattering, 117 

deformation, 12, 125, 154, 218 
deformed 

nucleus, 126 
single-particle state, 250-256 

delayed neutron, 151 
A (delta) 

-hole excitations, 308 
-particle, 25, 30, 38-39, 43-45, 84, 

98, 309 
density 

charged-lepton states, 193 
-dependent effective potential, 300 
final states, 192, 285 
infinite nuclear matter, 155 
neutrino states, 193 
of states, 13, 341 
vibration, 205 

D-state, 68-71 
isospin, 60 
orbital angular momentum, 59 
total intrinsic spin, 60 

deuteron, 58-71, 288, 357, 363 

2)-function, 222, 400 
difference equation, 141 
differential scattering cross section, 15, 

411, 415 
diffuseness, 112, 295 
dimensional analysis, 174 
dipole form, 114 
Dirac 

276 

equation, 307, 320, 394 
form factor, 113 
formula, 109 
particle, 24, 107, 202 
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direct transition, 168-181, 306 
reaction, 286-291, 303 
scattering amplitude, 306 

quadrupole, 210, 225, 269 
rotational model, 225 
selection rule, 175-177 distorted wave Born approximation (DWBA), 

291, 303 
( d ,  n) reaction, 290, 315 
doorway state, 285 
d O U b 1 ~  

P-decay, 202 
-charge exchange reactions, 314 
-hump potential, 154 

( d , p )  reaction, 286, 288, 315 
Drell-Yan process, 350 
ds-shell, 218, 267 
dynamic moment of inertia, 331 

e (unit of charge), 19 
effective 

charge, 268 
Hamiltonian, 258-261 
interaction, 259, 263, 264, 300 
nucleon-nucleon interaction, 143 
one-body potential, 72 
operator, 268-270 
potential, 416 

barrier, 148 
range, 90, 95, 419, 420 

analysis, 419 
eigenvalue problem, 5, 236 
eigenvector, 236 
elastic scattering, 16, 115 

cross section, 282 
electric 

hexadecapole moment, 127 
multipole 

moment, 126 
operator, 125 
transition, 172 

rnornent, 65-67, 126-127 
operator, 65 

qiiadrupole 

term, 109 
transition, 168 

field, 168-172 
moments, 124-132 

elect romngnetic 

vibrational model, 210 

capture, 189, 356, 363, 367 
scattering, 105-120, 391 

electron, 22 

elementary particle, 21 
EMC (European Muon Collaboration) 

empty state, 254 
end-point energy, 4, 193, 367 
ensemble averaging, 345 
equilibrium shape, 335-340 
v-meson, 34, 41 
qo-meson, 41 
E2-transitionI see quadrupole transition 
Euler angle, 41, 221, 399 
even 

-even nucleus, 133 
-mass nucleus, 133 

interaction, 94 
scattering amplitude, 306 

exit channel, 16 
explosive nucleosynthesis, 383 

f71z-orbit, 264 
fast-pion absorption, 309 
femtometer, 18 
Fermi 

effect, 118 

exchange 

P-decay, 215 
coupling constant, 182 
decay, 192 
-Dirac statistics, 3, 26 
function, 193, 369, 428 
f P ,  13 

model, 13, 155, 341 
integral, 196 
level, 13 
momentum, 115, 155 

fermion, 3, 13, 26 
creation operator, 31 

Fermi’s golden rule, 167, 190 
Feynman 
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final state interaction, 93 
fission, 10, 150-154, 211 

asymmetric, 151 
barrier, 152 
binary, 151 
induced, 151 
isomer, 154 
spontaneous, 150 
ternary, 151 

flavors, 22 
folding model, 298 
forbidden decay, 192, 200 
force, see also potential 

nuclear, 57, 72 
tensor, 68 
three-body, 72 

formal solution, 259-261, 287, 429 
form factor, 105-109, 113-119 

charge, 105 
Dirac, 113 
longitudinal, 105 
nucleon, 113-119 
Pauli, 113 
Sachs, 113 
transverse, 107 

four-component wave function, 394 
Fourier 

-Bessel coefficients, 111 
transform, 105, 163 

freeze out, 351 
full width at  half maximum, 163 

Galilean invariance, 76 
Y (gamma) 

-ray, 1 
-vibrations, 211 

gamma function, 427 
Gamow-Teller 

coupling constant, 188 
decay, 192 
strength, 215 

gauge theory, 344 
Geiger-Nuttall law, 146, 149 
generator coordinate method, 272 

giant 
dipole resonances, 213 
Garnow-Teller resonance, 215 
resonance, 212-218 

Goldberger-Trieman relation, 188 
Goldhaber-Teller model, 213 
gravitational contraction, 381 
grazing collision, 321 
Green’s function, 286, 430 
ground state 

isospin, 134 
magnetic moment, 129 
properties, 132 
spin, 132-134 

group structure, 231 
gyromagnetic ratio, 49, 61 

hadron, 26 
mass, 53 

half-life, 145, 161 
Hamiltonian, 409 

cranked, 340 
effective, 258-261 
Hartree-Fock, 246-250 
one-body, 240 
rotational, 221 
single-particle, 250 
time-dependent, 165 
time-independent, 429 

Hanbury-Brown-Twiss effect, 351 
hard core, 95 
harmonic oscillator, 239 

frequency, 241 
model form, 112 
potential, 102, 240 

Hamiltonian, 246-250 
time-dependent, 325 

Hauser-Feshbach theory, 285 
heavy 

Hartree-Fock 

ion, 17, 212, 317 

water, 370 
Heisenberg uncertainty principle, 162 
helicity, 113, 186 
helium, see a-particle 

reaction, 317-353 
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burning, 359, 373-376 
(‘He$)-reaction, 201 
hep process, 367 
Hermitian conjugate, 401 
hexadecapole moment, 127 
high-energy nuclear physics, 38, 119 
high-spin state, 17, 323, 326-340 
Hilbert space, 236, 258 
Hill-Wheeler variable, 220 
homogeneous equation, 430 
homonuclear molecule, 90 
hydrogen 

atom, 120 
burning, 358 
-like atom, 120, 319 

hydrostatic equilibrium, 358 
hypernucleus, 315 

IBA, 229-233 
impact parameter, 417 
impulse approximation, 132, 300, 306 
incident 

channel, 280 
flux, 409 

cross sections, 324 
scattering, 117 

inclusive 

i~icornpressible fluid, 110, 139 
independent particle 

approximation, 254 
model, 238-240 

induced fission, 151 
inelastic 

electron scattering, 306 
scattering, 17, 84, 422 

nucleon-nucleon, 88 
inelasticity parameter, 89, 282, 422 
inert core, 232 
infinite nuclear matter, 155-158 
integral equation, 430 
interacting boson approximation (IBA), 

interaction, 308, see also potential 
229-233 

final stat,e, 93 
representation, 433 

interband transition, 226 

intermediate-energy 
nucleon-nucleus scattering, 303-308 
proton scattering, 123 

internal 
conversion, 168, 177 
pair 

creation, 168 
production, 177 

intraband transition, 225, 226 
intrinsic 

coordinate system, 220 
magnetic dipole moment, 61 
parity, 39% 
quadrupole moment, 224 
spin, 26, 185, 187, 241, 257 
wave function, 222 

invariance, see symmetry 
irreducible 

group, 400 
representations, 233 

isobar, 137 
isobaric analogue state (IAS), 73, 136- 

139 
isolated resonance, 283 
isoscalar, 30 

dipole vibration, 207 
operator, 75 

isospin, 28, 59-61 
dependence, 140 
invariance, 73 
mixing, 134-137 
operator, 29 
purity, 136 
quarks, 32 
symmetry breaking, 28, 54 
two-nucleon, 61 

isotope, 7 
isotopic shift, 119-120 

jj-coupling, 232 
scheme, 257 

-meson, 25, 37 
suppression, 350 

J N  

K = 0 band, 223 
Kamiokande, 370 
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kaon, 315 

Kelson-Garvey mass formula, 141-143 
kinematical moment of inertia, 332 
Klein-Gordon equation, 79 
K+-meson, 25, 35, 36, 42, 185 
Kronecker delta, 401 
Kurie plot, 194 

A-particle, 36 
Land6 formula, 63, 407, 408 
Laplace's equation, 78 
lattice 

factory, 392 

gauge calculation, 343 
spacing, 345 

left-handed particles, 187 
lepton, 22 

leptonic processes, 182 
level-density parameter, 13 
Levi-Civita symbol, 29 
lifetime, 18, 162 
Lippmann-Schwinger equation, 432 
liquid drop model, 139, 152, 205, 208 
(6Li,"He)-reaction, 201 
local group, 358 
logarithmic derivative, 282 
longitudinal form factor, 105 
long-wavelengt h 

approximation, 191 
limit, 172 

number, 23 

Lorentzian shape, 163 
Lorentz invariance, 79 
LS-coupling scheme, 256 

magic number, 9, 239 
magnetic 

charge density, 127 
dipole moment, 61-64, 129-132 

intrinsic, 61 
orbital, 61 

dipole operator, 61-62, 128 
moment, 127-132 
multipole transition, 172 
term, 109 
transition, 168 

Majaron, 203 

Majorana 
fermion, 202 
particle, 24 

major shell, 240 
mass, 10 

defect, 18 
excess, 18 

master equation, 324 
matrix 

diagonalization, 237 
element, reduced, 407 
method, 68,135, 236-237 

matter density, 120 
maximum spin, 323 
Maxwell-Boltzmann distribution, 358, 362 
mean 

field, 249 
approach, 337 
theory, 271 

life, 162 

exchange, 7% 
-nucleus scattering, 309-315 

meson 

mesonic current, 63, 132 
microscopic model, 235, 298 
mirror nuclei, 73 
mixing angle, 41, 42, 183 
model 

algebraic, 233 
bag, 341 
Fermi gas, 155, 341 
folding, 298 
Goldhaber-Teller, 213 
independent particle, 238-240 
liquid drop, 139, 152, 205, 208 
microscopic, 235, 298 
nuclear structure, 235 
optical, 291-303 
quark, 39 
rotational, 218-229 
shell, 238, 256-271, 393 
single-particle, 130, 179 
two-centered, 272 
vibrational, 205-212 

modified radial wave function, 282, 412 
moment of inertia, 221 
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dynamic, 331 
kinematical, 332 
static, 332 

dependence, 103 
transfer, 107, 108, 116, 288 

A4 I-transitions, 226 
Monte Carlo 

calculation, 345 
technique, 394 

Mott, formula, 107 
multiple excitation, 279 
multiplicity, 347 
multjpolarity selection rule, 176 
multipole 

electromagnetic, 172-174 
expansion, 124--126, 276 
moment, 126 

muon, 22, 350 
muonic atom, 120-121 

natural line width, 162, 163 
nd-scattering, 80 
negative parity, 397 
neon burning, 380 
neutral 

atom, 10 
weak current, 183 

neutrino, 4, 22, 395 
astronomy, 366 
cooling, 382 
helicity, 187 
mass, 187 

oscillation, 371 
spectrum, 367 

momentum 

measurement, 194-195 

neutrinoless double &decay, 202 
neutron, 3, 27 

absorption, 384 
P--decay, 23, 181-183, 356 
-deficient nucleus, 317-318 
delayed, 151 
electric 

dipole rnoment, 126 
form factor, 114 

excess, 7, 140 

-neutron scattering, 80 
number, 7 
prompt, 151 
-proton mass difference, 138 
-rich nucleus, 318, 384 
star, 381, 382 
target, 80 
wave function, 27 

neutronization, 383 
Nilsson 

orbital, 251 
scheme, 254-255 
state, 251 
-Strutinsky approach, 335-340 

nn-scattering length, 93 
nonleptonic processes, 182 
nonlocal potential, 295, 301 
nonresonant reaction, 361-362 
Nordheim rules, 133 
( n , p )  reaction, 303 
np-scattering, 80, 85 
nuclear 

P-decay operator, 191 
fission, see fission 
force, 5, 57, 72, 95 

saturation, 11 
interaction, 72-80 
magneton, 61 
matrix element, 164 
matter, 155-158 

density, 12 
potential, 69, 78, 95-102 

symmetry, 76 
radius, 2, 110 
reaction, 6 
reactor, 152 
size, 12 
structure, 5 

model, 235 
transparency, 349 

nuclei 
277112,319 
2 2 6 A ~ I  164 
“A1, 118 
2SmA1, 204 
37Ar, 371, 387 
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5B, 357 
'B, 363 
142Ba, 151 
7Be, 190 
'Be, 159, 272, 364, 375 
209Bi, 273, 324, 325 
'12Bi, 150 
82Br, 202 
IzC, 18, 160,204,269,304,312, 364, 

14C, 313 
16C, 138, 139, 159 
39Ca, 273, 286 

40Ca, 106, 123, 206, 238, 264, 286, 
302 

41Ca, 264, 273, 288 
42Ca, 264 

48Ca, 16, 123, 264 
lo6Cd, 202 
IIOCd, 211 
112,114,116~d 1 211 

118Cd, 210 
13%e, 330 
254Cf, 151 
37Cl, 371, 387 
6oCo, 4, 186 

lSzDy, 330 
154Dy, 328 
152E~ ,  187, 234 

16F, 138, 139, 159 
17F, 131, 273 
19F, 255, 366 
56Fe, 14, 20, 118, 382 
253Fm1 319 
222Z'r, 164 
71Ga, 372 
3H, 273, 391 
3He, 72, 114,131,195,201,273,357, 

363, 391 
4He, 118, 238, 312, 357, 363 
5He, 273, 357, 375 
*He, 318 

365, 375 

40,42,44,46,48C8, 119 

43,44,45,46,47(=;1, 265 

&decay, 186 

electron capture, 187 

l7OHf, 223 
laOHg, 317 
39K, 273 
82Kr, 202, 203 
92Kr, 151 
'Li, 273, 375 
'Li, 312 
'Li, 80, 190 
'*Mg, 272 
25Mg, 233, 273 
26Mg, 204 
"N, 160, 204 
I3-l4N, 365 
15N, 131, 273, 365 
16N, 138, 159 
lgNa, 218 
21Na, 315 
23Na, 255 
16Ne, 138, 139, 159 
lgNe, 218, 255 
20Ne, 204, 234, 268, 290, 315, 366, 

2*Ne, 204, 255, 290 
56Ni, 267, 388 
"Ni, 267 
60Ni, 186, 211, 313 
62Ni, 211,267, 268 

"0, 159 
140, 365 
I5O, 273 
I60, 138, 159, 205, 209, 218, 238, 

1 7 0 ,  131,273,366 
l80, 273, 366 
"0,  318 
206Pb, 106, 158 
'07Pb, 273 
208Pb, 121, 172, 206, 209, 238, 244, 

2ogPb, 273 
Io6Pd, 202 
'12Po, 150 
226Ra, 164 
Io3Rb, 314 
lozRu, 211 

379 

z S 7 ~ o ,  319 

268, 269, 273 

250, 314, 316 
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41Sc, 273 
48Sc, 16 
'%e, 202, 203 
28Si, 218 
15?3ml 187 
120-121Sn, 315 
13*Sn, 318 
22fiTh, 164 
48Ti, 119 

zo8Tl, 150 
169Tm, 227 
232U, 151 
235U, 151, 152, 159, 160 
236U, 151, 152, 160 
238U, 2, 144, 147, 152, 159, 160, 320 
136Xe, 324, 325 
84Zr, 333 
90Zr, 206, 238, 317, 353 

form factor, 113-119 
-nucleon 

207~1,273 

nucleon, 2, 27 

interaction, 80, 218 
potential, 303 
scattering, 346 
scattering phase shifts, 84 

potential, 306 
scattering, 292, 303-308 

-nucleus 

number, 7 
valence, 257 

big-bang, 356--357 
explosive, 383 
heavy element, 384 
hydrostatic, 363-366, 373-380 
stellar, 357-360 

closed shell, 240 
compoiind, 17, 280 
deformed, 126 
even-even, 133 
even-mass, 133 
hyper-, 315 
mirror, 73 
neutron-rich, 318, 384 

nucleosynthesis 

nucleus 

odd-mass, 132,133,227,255 

proton-rich, 318, 386 
spherical, 65, 218 
superheavy, 244, 318 

integration, 345 
simulations, 271 

odd-odd, 133, 134 

numerical 

occupancy representation, 247 
octupole vibration, 209 
odd 

-mass nucleus, 132,133, 227,255 
-odd nucleus, 133, 134 

off-shell, 100 
w-meson, 42 
one 

-body 
contribution, 14 1 
Hamiltonian, 240 

potential, 306 

excitation, 209, 271, 305 
state, 247 

95 

-boson exchange (OBE), 97 

-particle one-hole (lplh) 

-pion exchange potential (OPEP), 94, 

on-shell, 100 
operator 

adjoint, 230 
boson, 230 
effective, 268-270 
electric 

multipole, 125 
quadrupole, 65 

fermion creation, 31 
isoscalar, 75 
isospin, 29 
magnetic 

nuclear @-decay, 191 
permutation, 44 
projection, 217, 258, 259, 293 
qiiadratic spin-orbit, 76, 78 
s-matrix, 434 
spin, 69 

dipole, 61-62, 128 
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-orbit, 76 
tensor, 71 
time development, 433, 434 
two-body spin-orbit, 77 

model, 291-303 
optical 

formal derivation, 292-295 
microscopic, 298-302 
phenomenological, 295-298 
potential, 295, 310 

theorem, 423 
orbital angular momenta, 240 
overlapping resonance, 284 
oxygen burning, 380 

pairing, 129, 133, 232 
energy parameter, 140 
force, 140 
interaction, 9, 229 

Coulomb energy, 140 
decoupling, 227, 228 
inelasticity, 89 
level density, 13 
pairing energy, 140 
shape, 206 
surface energy, 139 
volume energy, 139 

Paris potential, 98 
parity, 30, 58-59, 76, 397 

antiparticle, 399 
negative, 397 
nonconservation, 184-1 87 
positive, 397 
rotational wave function, 222 
selection rule, 176 
transformation, 222 
violation, 4 

half-life, 151, 164 
wave, 83, 412 
width, 163, 281 

parameter 

partial 

partially conserved axial-vector current 

partons, 117 
Pauli 

(PCAC), 188 

exclusion principle, 38, 44, 60, 90, 

form factor, 113 
matrix, 29, 69 

96, 99, 155, 399 

PCAC, 188 
pd-scattering, 80 
pep  process, 367 
permutation, 76 

operator, 44 
perturbation, 165 

method, 55 
technique, 344 

(p, y) reaction, 363, 364 
phase 

diagram, 343 
shift, 80-89, 282, 413, 418 
transition, 346 

+meson, 42 
phonon, 209 
photodisintegration, 357, 374, 382, 384 
photon, 352 
pickup reaction, 17, 286 
n-mesic atom, 309, 398 
pion 

absorption, 309-310 
-decay constant, 188 
fast, 309 
-nucleon 

coupling constant, 96, 188 
scattering, 122 

-nucleus scattering, 122-123, 310 
production, 310 
scattering, 3 10-3 13 
soft, 391 
stopped, 309 
wave function, 33 

Born approximation (PWBA), 290 
plane wave, 82, 190, 409, 430 

( p , n )  reaction, 303 
Poisson's equation, 79 
polarization, 84, 86, 410 
polar vectors, 185 
positive parity, 397 
potential 

barrier, 147 
a-decay, 144 
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Bonn, 98 
central, 83 
complex, 88, 422 
Coulomb, 79, 426 
density-dependent, 300 
double-hump, 154 
effective, 416 
energy surface, 340 
harmonic oscillator, 102, 240 
nonloca1, 295, 301 
nuclear, 69, 78, 95-102 
nucleon-nucleon, 303 
nucleon-nucleus, 306 
one-body, 72 
one-boson exchange, 96, 306 
optical model, 295, 310 
Paris, 98 
quark-quark, 100 
repulsive, 418 
scattering, 284 
short-range, 79, 82 
spin-orbit, 296 
square-well, 417 
Yukawa, 80, 306 

FPI-chain, 363 
PPII-chain, 3F3 
PPIII-chain, 364 
( p ,  p’) reaction, 303 
pp-scattering, see proton-proton scatter- 

ing 
probability current density, 410 
projection operator, 217, 258, 259, 293 
prolate spheroidal shapes, 255 
prompt neutron, 151 
protori, 27 

cliargr! radius, 114 
inelastic scattering, 303 
number, 7 
-proton scattering, 80, 84, 346 
-rich n u c h s ,  318, 386 
wave fruiction, 26 

pseudorapidity, 348 
pseudoscalar, 40, 185 

mesons, 40 
p-shell, 266 
&-resonance, 39, 122, 308-310, 312 

QCD, see quantum chromodynamics 
QGP, see quark-gluon plasma 
quadratic spin-orbit operator, 76, 78 
quadrupole 

interaction, 229 
moment, 224 
transition, 210, 225, 269 
vibration, 207, 232, 267 

chromodynamics (QCD), 2, 5, 21, 
38, 77, 96, 100, 341, 343, 395 

electrodynamics, 319, 350 
mechanical tunneling, 3 

charge, 27 
-gluon plasma, 326, 340-353,390 

mass, 25 
matter, 341 
model, 39 
-quark interaction, 100 
substructure, 117 
weak decay, 183 

quantum 

quark, 21 

signature, 349-353 

quasi-elastic scattering, 115 
Q-value, 189-190, 202 

,P-decay, 189 
P+-decay, 189 
electron capture, 190 

Racah coefficient, 405 
radioactive beam, 318, 390 
radioactivity, 1 
radium, 1 
radiiis, root-mean-square, 110 
random-phase approximation (RPA), 271 
range, 80 
rapidity, 347 
reaction 

channel, 280 281, 423 
charge exchange, 215, 303, 306, 314 
cross section, 15, 283, 423 
direct, 280, 286-291, 303 
(d,n), 290, 315 
( d , p ) ,  286, 288, 315 
( 3 H ~ , t ) ,  201 
matrix, 424 
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nonresonant, 360-362 

nuclear, 6 
( P , T ) ,  363, 364 
pickup, 17, 286 

(n,  P), 303 

h n ) ,  303 
(PIP'), 303 
stripping, 17, 286 

red giant, 359 
reduced 

matrix element, 164, 407 
rotation matrix element, 401 
transition probability, 173, 277 

coordinate, 75 
momentum, 76 

heavy-ion collision, 326, 390 
shell model, 393 

renormalization, 262, 268 
reorientation effect, 280 
repulsive potential, 418 
residual interaction, 238, 256, 429 
resonance, 37 

pmeson, 42 
Riemann zeta function, 343 
right-handed particles, 187 
rigid body, 227, 229 
root-mean-square (rms) radius, 109 
Rosenbluth formula, 113 
rotation, 76 

relative 

relativistic 

energy, 283 

matrix, 400 
element, 401 

rot at ional 
alignment, 329 
band, 222 
Hamiltonian, 221 
model, 218-229 
wave function, 222 

Routhian, 339 
RPA, 271 
r-process, 385 
Rutherford 

cross section, 276 
formula, 2, 107 

scattering, 428 

S 
-matrix, 424, 433 

operator, 434 
-process, 385 

Sachs form factor, 113 
sampling, 345 
saturation 

density, 155 
nuclear force, 11, 145 

scalar, 185, 402 
product, 69 

scaling factor, 114 
scattered wave, 410 
scattering 

amplitude, 82, 303-306, 410, 414 
antinucleon, 99, 303 
compound elastic, 284 
Coulomb, 93, 427 
cross section, 81, 282, 286, 411, 412 
deep-inelastic, 117, 324 
elastic, 16, 115 
electron, 105-120, 391 
equation, 429 
inclusive, 117 
inelastic, 16 
intermediate energy proton, 123 
length, 90-95, 419 

nn, 93 
T = 0, 95 

meson-nucleus, 309-315 
Mott, 107 
neutron 

-deuteron, 80 
-neutron, 80 
-proton, 80, 85 

-nucleon, 86, 346 
-nucleus, 292, 303-308 

-nucleon, 122 
-nucleus, 122-123, 310 

nucleon 

pion, 310-313 

plane, 82, 410 
problem, 6 
proton 
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-deuteron, 80 
-proton, 80, 84, 346 

quasi-elastic, 115 
Rutherford, 428 
shape-elastic, 284 

Schmidt values, 131 
Schrodinger 

equation, 68, 79, 82, 147, 166, 409, 

representation, 433 

-quantized notations, 248 
-rank spherical tensor, 402 

Fermi decay, 198 
forbidden decay, 201 
Gamow-Teller decay, 198 
magnetic moment, 128 

-empirical 

422,427 

second 

selection rule 

semi 

effective interaction, 264 
mass formula, 139-143 

-1eptonic processes, 182 
seniority, 232 
S-factor, 361 
shape 

coexistence, 332-335 
parameter, 206 
vibration, 206-212 

correction, 272, 338-339 
effect, 141 
model, 256 
-model 

structure, 335 

shell, 240 

space, 256-258 

short-range potential, 79, 82 
C-baryon, 45 
single 

-charge exchange, 313 
-particle 

basis states, 237 
energy, 252 
estimate, 178-181 
model, 130, 179 
spectrum, 240 

singlet scattering length, 92 
Slater determinant, 237 
soft pion, 391 
solar neutrino problem, 372 
Sommerfeld number, 149, 275, 361 
space reflection, 397 
spectroscopic notation, 245 
spherical 

Bessel function, 83, 111, 172, 289, 

harmonics, 59, 60, 83, 125, 191, 288, 
290,413,415 

289, 398 
integral, 67 

nucleus, 65, 218 
polar coordinates, 398 
shell model, 238, 256-271 
tensor, 399 

second-rank, 402 
wave, 82 

spin, 40, 59, 256 
alignment, 326 
dependence, 86 
-isospin term, 218 
operator, 69 
-orbit 

energy, 243-244 
operator quadratic, 76 
term, 296 

spontaneous fission, 150 
spurious state, 214 
square-well potential, 417 
state density, 13 
static quadrupole moment, 225 
statistical field theory, 345 
stellar 

evolution, 355 
nucleosynthesis, 357-360, 363-366, 

373-386 
stopped pion, 309 
stopping power, 348 
strangeness, 25, 35, 36 

enhancement, 350 
production, 349 

strange quark, 25, 35-36, 40, 50, 349 
strength function, 285 
stripping reaction, 17, 286 



Index 459 

strong interaction, 341 
structure function, 116-119 
SU,, 232 

(flavor), 41, 43 
Sudbury Neutrino Observatory (SNO), 

370 
SUq symmetry, 11 
sum rule, 214 
Super 

Kamiokande, 370 
Proton Synchrotron (SPS), 348 

superallowed 0-decay, 199 
supercritical field, 320 
superdeformation, 219, 329-331 
superdeformed band, 323 
superheavy nucleus, 244, 318 
supernova, 381-383 

SN 1987a, 388 
surface energy, 139, 153, 208 
symmetrical state, 44 
symmetric rotor, 226 
symmetry, 21 

energy, 140, 202 
Galilean, 76 
isospin, 73 
"-scattering, 86 
nuclear 

force, 72-78 
potential, 76 

parity, 76 
time reversal, 76 
translational, 75 

tensor 
adjoint, 401 
force, 68-71, 86 
operator, 71 
product, 69, 70 

ternary fission, 151 
thermal radiation, 351 
Thomas 

-Reiche-Kuhn (TRK) sum rule, 214 
spin-orbit potential, 296 

-body force, 72, 81, 97 
-parameter 

three 

Fermi distribution, 112, 119 
Gaussian distribution, 112 

time 
-dependent 

Hamiltonian, 165 
Hartree-Fock, 325 
perturbation theory, 165-168 
Schrodinger equation, 165 
wave function, 162 

development operator, 433, 434 
-reversal invariance, 76, 81 

l-matrix, 87, 100, 432 
top, 35 
transition 

allowed, 192, 199 
E2, see quadrupole transition 
electric, 168 

electromagnetic, see electromagnetic 

forbidden, 192 
interband, 226 
intraband, 225, 226 
magnetic, 168 
matrix, 432 

element, 164, 191 
phase, 346 
probability, 161-167, 190 

&decay, 190-201 
quadrupole moment, 225 
rate 

multipole, 172 

transition, 168-181 

@decay, 190 
energy dependence, 175 
vibration model, 211 

translational invariance, 75 
transmission coefficient, 147, 148 
transversality condition, 169, 170 
transverse form factor, 107 
triple-a process, 375 
triplet-D state, 61, 66 
triplet-S state, 61, 62, 66 
tritium, 72 
turning radius, 417 
two 

-body 
contribution, 142 



correlation, 202, 351 
matrix element, 262-267 
spin-orbit operator, 76, 77 

-centered shell model, 272 
-component wave function, 187 
-nucleon system, 57 
-parameter Frrmi form, 112, 295 
-particle interferometry, 351 

u (atomic mass unit), 18 
US group, 231 
ultra-relativistic collision, 326 
uncertainty relation, 115, 126 
uniform density sphere, 179 
uniformly charged sphere, 138, 297 
units, 18-19 
universal 

constcant), 19 
weak interaction, 182 -187 

T-meson, 26, 37 

valence 
niicleon, 257 
space, 232, 258 
state, 254 

valley of xtaldity, 7 
van der Waals force, 101 
variational calculation, 246-248 
vector, 185 

coupling constant, 184, 188 
meson, 42 
product, 70 
spherical harmonics, 171 

model, 205-212 
motion, 267 

energy, 139 
term, 155, 296 

vihrational 

v o l ~  me 

wave 
number, 82 
vector, 82 

W-hoson, 182 
weak int,cract.ion, 181- 187 

coupling constant, 183 
freeze-out, 356 

universal, 182-187 
Weisskopf estimates, 178 
Wejzacker m a s  formula, 139-141, 152 
Wentzel-Kramers-Brillouin (WKB) method, 

148 
width, 18, 162, 323 
Wigner 

-Eckart theorem, 126, 164, 406 
supermultiplet, 11 

Woods-Saxon form, 12, 112, 295 

Z-baryon, 45 

yrast band, 322 
Yiikawa potential, 80, 306 

2-boson, 182 
zero-coupled pair, 129 
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