
Bref3 specification, p. 1 May 14, 2018

Bref3 format specification

General information and overview:

1. Bref3 (pronounced “bee-ref three”) stands for “binary reference version 3”. Bref3 format is a binary format for

storing phased, non-missing genotypes for a list of samples.

2. This document provides pseudocode for reading for reading Bref3 format. The pseudocode defines the

structure of a Bref3 file.

3. Integer values are read using the readByte() , readUnsignedShort(), and readInt() methods described in the

documentation for the Java DataInput interface in the java.io package.

a. The readByte() method reads a signed one-byte integer in the range: [-128, 127].

b. The readUnsignedByte() method reads an unsigned one-byte integer in the range: [0, 255].

c. The readUnsignedShor()) method reads an unsigned two-byte integer in the range: [0, 65535].

d. The readInt() method stores a signed four-byte integer in the range: [-231, 231 – 1].

4. String values are read stored in the Modified UTF-8 format, and read using the readUTF() method described in

the documentation for the Java DataInput interface in the java.io package.

5. The Bref3 format stores the genotype data in data blocks. Each data block contains the marker and genotype

information for a set of consecutive markers. Each marker is either “allele-coded” or “sequence-coded”.

a. If a marker is allele-coded, the indices of haplotypes carrying non-major alleles are stored. This is an

efficient storage format for markers whose non-major alleles have low frequency

b. For markers that are sequence-coded, the list of distinct allele sequences present in the sequence-coded

markers in the data block is stored, and the index of the distinct allele sequence carried by each

haplotype is stored.

c. The number of distinct allele sequences for the sequence-coded markers in a data block must be

< 65535.

6. In the following pseudocode:

 in implements java.io.DataInput and reads from a bref3 file.

 nHaps denotes the number of haplotypes.

 nRecs denotes the number of records in a data block. Each marker corresponds to one VCF record.

 nSeqs denotes the number of distinct allele sequences present in the sequence-coded records in a data

block.

 nAlleles denotes the number of alleles (including the REF allele) for a marker.

7. The following code for the readRecords() method returns the list of records in a bref3 file.

Bref3 specification, p. 2 May 14, 2018

Pseudocode for reading Bref3 format:

in = <java.io.DataInput reading from a bref3 file>

snvPerms = <list of lexicographically-sorted permutations of [“A”,“C”,“G”,“T”]>

def readRecords(in):

 // Read “magic number” and confirm the file format and version

 if in.readInt() != 2055763188:

 exit // file is not a bref3 file

 program = readString(in) // program used to create bref3 file

 samples = readStringArray(in) // sample IDs

 nHaps = 2*samples.length // number of haplotypes

 recList = [] // list of VCF records read

 nRecs = in.readInt() // number of records in next data block

 while (nRecs != 0):

 readDataBlock(in, samples, recList, nRecs)

 nRecs = in.readInt()

 return recList

def readString(in):

 return in.readUTF()

def readStringArray(in):

 length = in.readInt()

 array = []

 for j in range(0, length):

 array.add(readString(in))

 return array

def readByteLengthStringArray(in):

 length = in.readUnsignedByte()

 array = []

 for j in range(0, length):

 array.add(readString(in))

 return array

Bref3 specification, p. 3 May 14, 2018

def readDataBlock(in, samples, recList, nRecs):

 chrom = readString(in) // CHROM for all records in data block

 nSeqs = in.readUnsignedShort() // number of distinct allele sequences in

 sequence-coded records

 hap2Seq = []

 for j in range(0, 2*samples.length):

 hap2Seq.add(in.readUnsignedShort()) // index of sequence carried by each

 haplotype at sequence-coded records

 for j in range(0, nRecs):

 rec = readRecord(in, chrom, samples, nSeqs, hap2Seq)

 recList.add(rec)

def readRecord(in, chrom, samples, nSeqs, hap2Seq):

// returns marker, list of samples, allele carried by each haplotype

 marker = readMarker(in, chrom)

 coding = in.readByte()

 if coding == 0:

 return readSeqCodedRecord(in, samples, marker, nSeqs, hap2Seq)

 else if coding == 1:

 return readAlleleCodedRecord(in, samples, marker)

def readMarker(in, chrom):

 marker.chrom = chrom

 marker.pos = in.readInt() // POS field

 marker.id = readByteLengthStringArray(in) // ID field

 alleleCode = in.readByte() // encodes SNV alleles if alleleCode != -1

 if alleleCode == -1:

 marker.alleles = readStringArray(in) // number of alleles (REF + ALT)

 marker.end = in.readInt()

 else:

 marker.nAlleles = 1 + (alCode & 0b11) // number of alleles (REF + ALT)

 permIndex = (alleleCode >> 2)

 marker.alleles = snvPerms[permIndex][0:nAlleles] // REF is alleles[0]

 marker.end = -1

 return marker

Bref3 specification, p. 4 May 14, 2018

def readSeqCodedRecord(in, samples, marker, nSeqs, hap2Seq):

 seq2Allele = []

 for j in range(0, nSeqs):

 seq2Allele.add(in.readUnsignedByte())

 hap2Al = []

 for j in range(0, hap2Seq.length):

 hap2Allele.add(seq2Allele[hap2Seq[j]])

 record.marker = marker

 record.samples = samples

 record.hapToAllele = hap2Al

 return record

def readAlleleCodedRecord(in, samples, marker):

 nHaps = 2*samples.length

 nAlleles = marker.alleles.length

 int[][] hapIndices

 majorAllele = -1

 for j in range(0, nAlleles):

 hapIndices.add(readIntArray(in))

 if hapIndices[j]==null:

 majorAllele = j;

 hap2Allele = []

 for j in range(0, nHaps):

 hap2Allele.add(major)

 for j in range(0, hapIndices.length):

 if hapIndices[j] != null:

 for hap in hapIndices[j]:

 hap2Allele[hap] = j

 record.marker = marker

 record.samples = samples

 record.hapToAllele = hap2Al

 return record

def readIntArray(in):

 length = in.readInt()

 if length == -1:

 return null

 else:

 array = []

 for j in range(0, length):

 array.add(in.readInt())

 return array

