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Physics is required for most STEM degrees largely to help develop the habits of mind that typifies 
its professional practice.  As the most mathematically creative of the introductory sciences, physics 
is strongly dependent on students’ conceptual understanding of the basic algebra used, not just 
knowing how to do problems. How we mathematize our subject in physics is an important part of 
developing expertise, and students’ weakness in this domain has been linked to increased likelihood 
of failing the course.  This paper presents research findings from an experiment conducted at 
Rutgers University, in which over 700 first-year engineering students were assessed in their physics 
and chemistry courses in domains of conceptual algebraic thinking, and mathematical attitudes and 
beliefs.  While these students are well prepared by traditional standards to take a calculus-based 
physics course (average Math SAT score of 680, comparable to UCLA and UC Berkeley), the data 
reveal significant weaknesses in students’ algebraic reasoning both in common everyday and 
physical science contexts. We compare results from data collected in a traditionally-taught 
chemistry course and two physics courses, one that is mostly traditionally taught and designed for 
students co-registered in calculus and one that is designed for students less-well prepared 
mathematically and is rich in IE (interactive engagement) practices focused on developing 
mathematical reasoning.  We see that while students’ attitudes and beliefs as measured by the 
CLASS (Colorado Learning Attitudes about Science Survey) become less expert-like for the 
students taking the traditional courses and more expert-like in the IE course, neither the IE nor the 
traditional courses make dramatic improvement in students’ spontaneous and appropriate reasoning 
about linear relationships between abstract quantities. 
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Introduction 
 The 21st Century workplace demands participants who are able to reason mathematically in 
a variety of contexts.  Specifically, the workforce is expected to make mathematical sense of our 
rapidly changing and increasingly technological society.  The question for educators preparing 
students for the 21st century workforce is not how well do our mathematically strongest students 
fare in calculus, but more importantly how effectively do all students reason algebraically in science 
and technology-based contexts?   
 Physical science courses provide an opportunity for students to develop their skills applying 
basic algebraic reasoning to real-world contexts beyond the topics that involve familiar quantities 
typically seen in math class word problems (shopping, games, etc.)  It is not so much a question of 
whether or not students can perform algebraic manipulations, but moreover do they think 
algebraically about new kinds of quantities when they aren’t prompted to calculate?  The former 
involves two kinds of thinking. The first is epistemological in nature – do students consider 
mathematical sensemaking to be a valuable tool that helps them to make sense of the natural world, 
and do they use it spontaneously?  The second is whether they actually reason conceptually in the 
context of physical science with the mathematics they’ve learned in school. Together these ways of 
thinking form what is known as mathematization of physical science. 
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 Addressing the first question associated with mathematization, researchers have articulated 
and developed instruments for measuring some attitudes and beliefs regarding the use of 
mathematics in physical science (Adams et al., 2006; Elby, Frederiksen, Schwarz, & White, 2003; 
Halloun & Hestenes, 1998; Redish, Saul, & Steinberg, 1998).  There is a growing body of evidence 
that these attitudes and beliefs actually become less expert-like as a result of having taken a college 
level introductory physical science course (Adams et al., 2006; Redish, et al., 1998).The CLASS 
(Colorado Learning Attitudes about Science Survey) (Adams et al., 2006) was built upon existing 
attitudes/beliefs surveys to focus on students’ beliefs about physics, learning physics and problem 
solving in physics. Researchers have noted that in the rare cases when improved attitudes are 
observed they often accompany improved learning outcomes as measured by physics concept 
inventories (Brahmia, Boudreaux, & Kanim, 2015; Brewe, Traxler, de, Jorge, & Kramer, 2013; 
Lindsey, Hsu, Sadaghiani, Taylor, & Cummings, 2012; Otero & Gray, 2008)  
 The question of whether students think conceptually using the mathematics that is a 
prerequisite for the course they are taking has been getting some attention in recent years. Redish 
and Kuo (Redish & Kuo, 2015) state, “Despite much research on the learning of both physics and 
math, the problem of how to effectively include math in physics in a way that reaches most students 
remains unsolved.”  Rebello and collaborators (Rebello, Cui, Bennett, Zollman, & Ozimek, 2007) 
conducted a study that focused on measuring horizontal transfer between prerequisite math courses 
and subsequent physics courses, i.e. the spontaneous use of mathematics in physics that calls on 
math already learned in a prior math course.  The researchers interviewed calculus-based physics 
students at Kansas State University, asking them to solve physics problems that involved simple 
integration or differentiation similar to physics problems they had already solved in homework. 
While the students were able to procedurally do the calculus required in a physics problem when it 
was prompted (as it typically is in many end-of-chapter problems) they were largely unsuccessful in 
the interviews at setting up and solving problems that required them to select appropriate calculus 
tools and adapt them to fit a physical situation.  The researchers also surveyed algebra-based 
students before and after instruction using both a trigonometry survey and a set of trigonometry-
based physics problems, and found little evidence of horizontal transfer of trigonometry from math 
to physics for these students.  The authors report “…we had assumed that the problems would 
involve horizontal transfer and therefore be perceived as relatively straightforward by the students.  
It appears however that this was not the case with most students.”   
 Although instructors commonly use calculus to derive equations as part of their 
explanations in physics and chemistry courses, the actual creative problem solving that students 
engage in, even in calculus-based courses, is largely algebraic in nature.  And in a calculus-based 
course the instructors assume, as Rebello et. al did in their research, that students have a conceptual 
understanding of algebra before taking the course. The introductory courses in physics and 
chemistry introduce hundreds of new physical quantities that are largely unit rates or product 
quantities formed by combining newly learned quantities into even newer ones (eg molarity, density, 
acceleration, electric field). Proportional reasoning with these quantities  (i.e., the reasoning about 
linear relationships in physics and chemistry that includes ratio reasoning, scaling and covariational 
reasoning) is ubiquitous as students learn to reason and make sense mathematically. 
 This paper describes a novel effort to begin addressing the questions:  How well do 
freshmen students reason about linear relations before, during and after taking an introductory 
physical science course?  And, does improving student attitudes and beliefs about the use of 
mathematics in science help facilitate students’ spontaneous and appropriate algebraic thinking in 
science courses? 
 There currently are no validated concept inventories that probe deeply into this specific 
aspect of physics learning. Prior studies that involve proportional reasoning in physics have largely 
used the Lawson Classroom Test of Scientific Reasoning (Lawson, 1978) to correlate reasoning 



ability at entry into the introductory physics course with pre-post learning gains (e.g., as measured 
by the Force Concept Inventory). We join math education researchers (Thompson & Saldanha, 
2003) in the view that proportional reasoning is multifaceted and generally context dependent.  For 
our study we wanted a better assessment of student reasoning than the Lawson test, which was 
developed as a way of gauging the Piagetian developmental level of students.  The Lawson test 
contains just four proportional reasoning items.  We developed a suite of questions (reported on in 
Boudreaux, Kanim and Brahmia (Boudreaux, Kanim, & Brahmia, 2015)) that probe proportional 
reasoning as it is commonly used in the introductory course.  This suite of questions was used in the 
study reported on here. 
 In addition, this paper describes changes in students’ attitudes and beliefs about the use of 
mathematics in the context of their physics course, as measured by the CLASS in chemistry and in 
physics.  The chemistry version of the CLASS, the CLASS-Chem, is largely similar to the CLASS-
physics with some additional statements, such as those on the atomic-molecular perspective of 
chemistry. We report on the categories from the CLASS that are directly related to student attitudes 
about the use of mathematics in physical science. 
 We compare and contrast two populations.  One population includes engineering students 
that are simultaneously enrolled in a large enrollment traditionally taught calculus-based physics 
course with minor IE (interactive engagement) modifications (clickers, short weekly minilab), a 
traditionally taught calculus-based chemistry course, and a traditionally taught math course at the 
level of introductory calculus or higher.  The other population includes engineering students 
enrolled in a transformed calculus-based physics course (Brahmia, 2008) designed for students 
underprepared mathematically, about half of whom are also enrolled in the same calculus-based 
chemistry as the comparison group, and ~80% of whom are co-registered in a traditionally taught 
pre-calculus math course their first semester of study.  We address the following research questions: 

1. Are students enrolled in a typical sequence of traditionally taught, first-year engineering 
courses likely to become more effective algebraic thinkers after one and two semesters of 
instruction, and can the level of intervention targeted at developing mathematical reasoning 
impact these outcomes? 

2. Are students enrolled in a typical sequence of traditionally taught, first-year engineering 
courses likely to adopt expert-like attitudes and beliefs regarding mathematization in 
chemistry and physics, and can the level of intervention targeted at developing 
mathematical reasoning impact these outcomes? 

 If as a research community we develop a more refined understanding of how students learn 
to mathematize in our courses, this knowledge can inform instructors and curriculum designers to 
help create learning environments that produce students who reason scientifically and are better 
prepared for either the continuation of studies in a STEM discipline, or for being a productive 
participant in the 21st century workplace regardless of their major field of study.  This paper and its 
findings represent a step in that direction. 
 

Research Methods 
 The first phase of this project involved the development of questions that probe students’ 
spontaneous and appropriate proportional reasoning in novel contexts, and is reported on in 
Boudreaux et al. (Boudreaux, et al., 2015) 

 
 
 



Question development 
In collaboration between Andrew Boudreaux, Stephen Kanim and this paper’s author a large 

number of written questions to gauge student facility with proportional reasoning were developed 
(Boudreaux, et al., 2015). Most of the questions were designed to focus on a single reasoning sub-
skill of proportional reasoning.  In all cases neither a calculator nor multistep problem solving are 
required.  

The items underwent repeated cycles of validation and modification over a 3-year period. A 
sample of the questions is presented in Table II of this paper in their final form.  Initially, all items 
asked students to explain their reasoning and show their work. We collected written responses from 
over 1000 students enrolled in a variety of courses (general education physics, introductory 
calculus-based and algebra-based physics, and physics for pre-service elementary teachers) taught 
at the researchers’ home institutions.  We created scoring rubrics based on student responses.  Three 
coders initially scored tests to establish inter-rater reliability before we analyzed the data.  We then 
created multiple-choice versions of the questions, with distractors based on the student difficulties 
identified during the analysis of written work and interviews.  We established question validity 
through interviews conducted with individual students at WWU (Western Washington University).  
Results from the interviews and from the analysis of written responses were used to guide 
modifications to improve not only the clarity but also the effectiveness of the distractors in 
characterizing student reasoning.  

Boudreaux and colleagues at WWU conducted the interviews with student volunteers from 
calculus-based introductory physics courses, general education physics courses, and a physics 
course for pre-service elementary teachers.  They conducted over 20 interviews with each interview 
lasting about one hour.  The interviews were videotaped for later transcription and analysis.  They 
used a semi-structured protocol.  The interviewer posed specific proportional reasoning questions 
and asked the interview subject to “think out loud.”  The interviewer clarified the question as 
needed, prompted the subject to explain his or her thinking after periods of sustained silence, and 
asked the subject to elaborate on statements that were brief or unclear. The interviewer did not offer 
hints or guiding questions.   

 
Large-scale study 
The results presented in this paper derive from a large-scale study involving the freshman and 

sophomore non-honors engineering students at a Rutgers University (N = 2,115 pretests and 1,784 
post tests administered in all).  The students in this study were comparatively well prepared 
mathematically; their mean mathematics SAT (2011/2012 test version) score was 680 (comparable 
to UCLA and UC Berkeley (College Board, 2015)) 

We administered a suite of multiple-choice proportional reasoning items as an ungraded in-
class pretest during the first week of the introductory, calculus-based physics courses and the 
calculus-based general chemistry course in fall 2013.  The testing conditions were the same in the 
physics courses for the post-test, which was administered 10 days before the end of the semester.  
There was a substantial drop in number of students taking post-test in Chemistry due to the fact that 
the test was administered online outside of class. (see Table I).   

 
Table I:  Assessment administration Fall 2013 Rutgers University (engineering students) 
 

Subject PreTest PostTest #versions 
Physics - 

Mechanics 
Supervised 

In class 
Supervised 

In class 
8 

General 
Chemistry 

Supervised 
In class 

Unsupervised 
Online 

6 



The suite administered to the freshmen contained 13 items in all, distributed on two tests in two 
different subjects: Seven items were administered on the test for mechanics students (npre=759 and 
npost=769), and six on the test for chemistry students (npre=692 and npost=494).  The majority of the 
students (n=613) students took both the mechanics and the chemistry course simultaneously. For all 
classes, these proportional reasoning items were bundled with a standardized concept inventory (the 
Force Concept Inventory(FCI) (Hestenes, Wells, & Swackhamer, 1992) in the physics course and 
the Chemical Concepts Inventory(CCI) (Journal of Chemical Education, 2015) in the chemistry 
course.)  In a single sitting, students first completed the proportional reasoning suite, followed 
immediately by the concept inventory. The students were not constrained by time and were awarded 
credit for participation.  The students took an identical posttest, administered under the same 
conditions in physics and online in chemistry (see Table I), at the end of the course.  We report on 
the percentage of students who selected the correct answers and the p-values from repeated t-tests. 

In order to test the effect of surface features on student reasoning, we administered matched 
versions of selected proportional reasoning items on different versions the suite (see Table I.)  The 
suite was administered in the recitation section of the course, and within a given recitation the 
versions were assigned randomly.  We administered identical versions of the suite on the pretest and 
the posttest to each student in the study.   These features are described in detail in a separate paper 
(Brahmia, Kanim, & Boudreaux, 2015) but relevant findings will be discussed here also.   

 
Table II:  Sample questions from the physics (mechanics) and the chemistry suites. 

Sample from the Physics Suite Sample from the Chemistry Suite 
P1. A bicycle is equipped with an odometer to 
measure how far it travels.  A cyclist rides the 
bicycle up a mountain road.  When the odometer 
reading increases by 8 miles, the cyclist gains H 
vertical feet of elevation. Find an expression for 
the number of miles the odometer reading 
increases for every vertical foot of elevation gain.  
a. sin-1(H/8) b. sin-1(8/H) c. H/8 d. 8/H e. none of 
these 

P2. Consider the following statement about 
Winnie the Pooh’s dream:“There are three times 
as many heffalumps as woozles.”  Some students 
were asked to write an equation to represent this 
statement, using h for the number of heffalumps 
and w for the number of woozles.  Which of the 
following is correct?   
a.  3h/w  b.  3h = w   c. 3h + w   d. h = 3w  e. 
both a and b 

1. C1. Catherine shuffles her feet across her living room carpet and 
then she touches a doorknob, which has a surface area of 30 
square centimeters.  When she touches the doorknob she 
transfers 3 microcoulombs of electric charge that spreads out 
uniformly over the doorknob’s surface. Catherine divides 30 by 3 
and gets 10.  
Which of the following statements about the number 10 is true? 
10 is the total number of… 

2. a. microcoulombs of charge transferred 
3. b. square centimeters of surface area covered by the charge 
4. c. microcoulombs of charge that covers one square centimeter 
5. d. square centimeters that one microcoulomb of charge covers 
6. e. none of the above 
7. C2. You are part of a team that has invented a new, high-tech 

material called “traxolene.”  One gram of traxolene has a volume 
of 0.41 cubic centimeters.  For a laboratory experiment, you are 
working with a piece of traxolene that has a volume of N cubic 
centimeters.  Which of the following expressions helps figure out 
the mass of this piece of traxolene (in grams)? 
a. N/0.41   b. 0.41/N   c. N⋅0.41  d. (N + 1)⋅0.41 e.none of these 

 
In addition to the in-class testing, the students took the CLASS-physics and CLASS-chemistry 

online as a pretest during the first week of class, mid-year and as a post test during the last week of 
class.  The CLASS is comprised of 42 statements in physics, and 50 in chemistry,  with which 
experts clearly agree or disagree.  Students rate the statements using a 5 point Likert scale, where 1 
represents “completely disagree”, 3 is neutral and 5 represents “completely agree”.  Example 
statements are: 

“In physics(chemistry), it is important for me to make sense out of formulas before I can use 
them correctly.” 
“If I want to apply a method used for solving one physics(chemistry) problem to another 
problem, the problems must involve very similar situations.” 



Students are then scored based on the percentage of statements about which they are in agreement 
with experts, and on the percentage of statements about which they disagree. Students can neither 
agree nor disagree by selecting “neutral”. 

 
Completion of the pre- and post- online CLASS replaced a quiz grade or provided extra points 

on a test in all courses. Many students in the traditionally taught physics and chemistry courses 
either did not participate in the post-test, or did not agree to have their data be part of this study.  
We attribute this in part to survey fatigue.  We report on matched pre/post results, and we have 
eliminated any tests that showed patterns of low effort (long strings of same answer). 

 
 

Results 
Proportional Reasoning Survey 
 Table III shows the matched set of pre, mid-year and post test scores on the suite of 
questions that each group was asked.  The students in both mechanics courses received identical 
questions, and the chemistry students received a different set of questions that spanned a similar set 
of proportional reasoning constructs.  Table II includes sample questions from both the mechanics 
and the chemistry suite.   
 
Table III:  Math reasoning scores:  percentage correct and p-values from significance test reported 
for the pretest, mid-year test and the end of year test. 
 

 Pre Mid Post Repeated t-test 
Mechanics Trad/IE 

(nmatched=447) 
58 52 57 p-value < 10-4 pre-mid; 

p-value < 10-3 mid-post; 
p-value =0.79 pre-post 

Chemistry Trad  
(nmatched=416) 

59 52 57 p-value < 10-6 pre-mid; 
p-value < 10-3 mid-post; 
p-value = 0.45 pre-post 

 Mechanics IE 
(underprepared)  

(nmatched=90) 

43 43 50 p-value = 0.91 pre-mid; 
p-value <0.005 pre-post 

 
 
Attitudes and Beliefs Survey 
 Figure 1 shows the CLASS results for all three courses, labeled “Chem Trad” for the 
traditionally taught chemistry course, “Phys Trad/IE” for the mostly traditionally taught physics 
course and “Phys IE” for the transformed interactive engagement physics course for mathematically 
underprepared students.  The data is clustered into the categories defined by the survey authors 
(Adams et al., 2006). For clarity we select only the 5 categories that are directly related to students’ 
attitudes and beliefs about mathematization in physics:  Problem Solving General, Problem Solving 
Sophistication, Sensemaking/Effort, Conceptual Understanding(Physics), Applied Conceptual 
Understanding (Physics), Conceptual Connections(Chemistry) and Conceptual Learning 
(Chemistry).  As is common practice for representing these data, we plot the percentage of the 
students who agreed with the experts, called “favorable” on the vertical axis versus the percentage 
who disagree, called “unfavorable”.  Since being neutral is an option, those two scores do not, in 
general, add up to 100%.  Pre-test and post-test are represented by black icons, and the mid year 
measurement is in gray.  The gray, dashed arrows point from pre-test to mid-year, and mid-year to 
post-post test.  The bold black arrows point from pretest to posttest. A movement to becoming more 



expert-like is represented by change arrows that point up and to the left on the graph.  Arrows that 
point down and to the right represent degradation, or a change in attitudes and beliefs to becoming 
less expert-like. 
 

 
 
  

Figure 1:  CLASS result, by categories 
associated with mathematization.  The 
favorable scores are plotted on the 
vertical axis and the unfavorable on the 
horizontal axis.  Improvement is 
represented by movement up and to the 
left. nPhysTrad=172, nPhysIE=64, nChem=120 
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Discussion 
 There are several interesting patterns to note in the data regarding the measures of 
reasoning about linear relationships.  The first is the glaring result that even though students may 
test very well on the Math SAT, their algebraic reasoning is likely to be much more primitive than 
their instructors think it is.  The average pretest scores are less than 60% on questions that seem to 
be at the level of early secondary school algebra.  Even more striking is that students’ algebraic 
reasoning does not improve after having taken science courses that make heavy use of algebraic 
reasoning in the context of their discipline, regardless of the discipline. In addition, we report 
elsewhere that by altering surface features of the questions we see effects on the robustness of 
student reasoning.   We see that the robustness, i.e. consistent use of reasoning across contexts and 
representations, of students’ algebraic reasoning is context dependent, being less robust with 
abstract quantities like electric charge.  We report also that the robustness is dependent on the 
complexity of the numbers used, being less robust with decimals than whole numbers, and much 
less robust with variables (Brahmia, Kanim, & Boudreaux, 2015). 
 Regarding the patterns of differences between the more traditionally taught courses and the 
course that focuses on developing mathematical reasoning, we see patterns with effects on a small 
scale.  The students in the traditionally taught courses (that assume a conceptual understanding of 
algebra) actually reason less well at the end of the first semester.  This deficit is rectified in the 
second semester bringing the students back to their starting point.  Attending to the development of 
mathematization in the context of physics appears to do no harm to the students in the modified 
course during the first semester as their scores do not change, and helps them in the long run. None 
of these changes represent a very large normalized gain (percentage of what needs to be gained 
[post-pre]/[100%-pre]), which implies that improving students’ algebraic reasoning in the context of 
physical science is a very challenging pedagogical problem. 
 Regarding attitudes and beliefs, students in the completely IE course clearly benefit from 
the targeted focus on the development of mathematical reasoning, and end up much more expert-
like in there attitudes and beliefs about mathematization in physics than any of the students, and 
gained the most since they also started out much less expert-like than their engineering peers.  The 
data from the traditional chemistry course score show trends similar to the published research 
regarding traditional courses.  It is interesting that the students in both physics courses show less 
degradation of their attitudes than in their chemistry course.  This may be because both physics 
courses involve at least some level of interactive engagement, while the chemistry course is an 
instructor-focused, lecture course only.  We note similar trends on concept inventories when we 
look at pre and post test measurements, which is reported on in detail elsewhere (Brahmia, 
Boudreaux and Kanim, 2015). Comparing these three courses we see FCI normalized gains of 0.51 
in the IE course, and 0.22 in the more traditional physics course, and essentially no gain on the CCI 
in the chemistry course.  
 
 
Conclusion and Implications for Instruction 
 Mathematization of the physical sciences involves mathematical sensemaking, usually with 
abstract physical quantities.  It involves attitudes about the use of mathematics, and fundamentally 
an appreciation for the utility of thinking mathematically.  And it involves a facility and tendency to 
represent ideas and processes using mathematical constructs.  We propose that student algebraic 
reasoning resources are fairly primitive, and that physics and chemistry are optimum disciplines for 
developing them further.   We provide evidence in this paper that the mathematization goals 
implicit in the physical science courses are largely not being met. 
 It is known in mathematics education research that reasoning with quantity is challenging 
for students; it poses a significant challenge in college-level introductory physical science courses 



where students are bombarded with new and abstract quantities throughout their courses.  We 
present evidence that even curricula shown to be highly effective at meeting many of the 
instructional goals of introductory physics are not as effective as they could be at activating 
reasoning resources that students have already developed, and these curricula often result in no or 
small improvement in students becoming more expert-like in the mathematization of physics. There 
has been a longstanding challenge in the physics education and chemistry education research 
communities to obtain anything other than negative or zero gains on the CLASS.  By targeting 
students’ mathematical sensemaking we present here a clear signal that students benefit and that 
they become more expert-like in their attitudes and beliefs about the role and utility of mathematical 
thinking in the physical sciences. 
 This work represents a preliminary step into understanding students’ mathematization of 
the physical sciences.  In order to move forward, we first must clearly understand what our 
instructional goals are for helping students develop mathematization – what does it mean to “think 
like a physical scientist”?  There is much work to be done in better understanding the timeline of 
developing expert-like mathematical sensemaking.  And even once we know what we hope students 
will learn, how can we better integrate this kind of reasoning development into the courses we 
teach? 
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