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Preface

Welcome to the proceedings of the RSSDS: Research School in Statistics and Data
Science, held during July 26–28, 2019, in Melbourne, Australia. This was the third
edition in a series of workshops; the first and second of which were called the S4D:
International Research Summer School in Statistics and Data Science, held in 2017 and
2018, at the University of Caen, in Normandy, France.

The workshop was organized as a collaboration between the French and Australian
statistical research communities, and was sponsored by AFRAN, ANR, Inria, La Trobe
University, the region of Normandy, and the University of Caen. The workshop
brought together academics, researchers, and industry practitioners of statistics and data
science, to discuss numerous advances in the disciplines and their impact on the
sciences and society. Attendees and presenters at the workshop covered numerous
topics, including data analysis, data science, data mining, data visualization, bioin-
formatics, machine learning, neural networks, statistics, and probability.

This year, RSSDS received 23 submissions. After a thorough peer-review process,
11 English papers were selected for inclusion in these proceedings, which implies an
acceptance rate of 47.83%. These 11 papers were presented at the workshop via poster
presentations. In addition to these 11 papers, 7 invited English papers were solicited
from the invited speakers of the workshop. These 7 invited papers were subjected only
to a technical editing process. In total, the proceedings contain 18 high-quality English
papers on various topics from data science to statistics.

The high-quality program would not have been possible without the authors who
chose RSSDS 2019 as their preferred venue for their publications. Furthermore, the
workshop would not have been successful if not for the work of the Program Com-
mittee members and Organizing Committee members, who put a tremendous amount
of effort into organizing the event, and soliciting and reviewing the research papers that
make up the program.

We hope that you enjoy reading and benefit from the proceedings of RSSDS 2019.

October 2019 Hien Nguyen
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Truth, Proof, and Reproducibility:
There’s No Counter-Attack

for the Codeless

Charles T. Gray1(B) and Ben Marwick2

1 La Trobe University, Melbourne, Australia
charlestigray@gmail.com

2 University of Washington, Seattle, USA
bmarwick@uw.edu

Abstract. Current concerns about reproducibility in many research
communities can be traced back to a high value placed on empirical
reproducibility of the physical details of scientific experiments and obser-
vations. For example, the detailed descriptions by 17th century scientist
Robert Boyle of his vacuum pump experiments are often held to be the
ideal of reproducibility as a cornerstone of scientific practice. Victoria
Stodden has claimed that the computer is an analog for Boyle’s pump –
another kind of scientific instrument that needs detailed descriptions of
how it generates results. In the place of Boyle’s hand-written notes, we
now expect code in open source programming languages to be available
to enable others to reproduce and extend computational experiments. In
this paper we show that there is another genealogy for reproducibility,
starting at least from Euclid, in the production of proofs in mathemat-
ics. Proofs have a distinctive quality of being necessarily reproducible,
and are the cornerstone of mathematical science. However, the task of
the modern mathematical scientist has drifted from that of blackboard
rhetorician, where the craft of proof reigned, to a scientific workflow that
now more closely resembles that of an experimental scientist. So, what
is proof in modern mathematics? And, if proof is unattainable in other
fields, what is due scientific diligence in a computational experimental
environment? How do we measure truth in the context of uncertainty?
Adopting a manner of Lakatosian conversant conjecture between two
mathematicians, we examine how proof informs our practice of compu-
tational statistical inquiry. We propose that a reorientation of mathe-
matical science is necessary so that its reproducibility can be readily
assessed.

Keywords: Metaresearch · Reproducibility · Mathematics
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112 C. T. Gray and B. Marwick

In David Auburn’s Pulitzer prize-winning 2000 play Proof, a young mathe-
matician, Catherine, struggles to prove to another mathematician, Hal, that her
argument is not a reproduction of the intellectual work of her deceased father, a
professor [2]. Her handwriting similar to her father’s, there is no way to discern
her proof from his. But if Catherine were a computational scientist, we would
have a very different story. We reimagine Hal challenging Catherine for different
mathematical questions and the reproducibility of her solutions. We consider
simple to complex mathematical questions that can be answered at the black-
board, and then consider the scenario where Catherine must use a combination
of mathematical and computational tools to answer a question in mathematical
science. Via these scenarios, we question to what extent proof methodology con-
tinues to inform our choices as mathematical scientists become as much research
software engineers1 as they are mathematicians.

Mathematical science is the compendium of research that binds the Cather-
ine’s methodology of work indistinguishably from her father’s. However, in com-
putational science, we not only do not have a common language in the traditional
sense, with programming languages such as Python, R, and C++ performing
overlapping tasks, but our research workflows comprise tools and platforms and
operating systems, such as Linux or Windows, as well. Many inadvertent rea-
sons conspire so that scientists are arriving at similar problems with different
approaches to data management and version control. Code scripts, arguably the
most immediately analogous to mathematical proof, are but one of the many
components that make up the outputs of computational science.

If Catherine were a contemporary computational mathematician, she would
not only struggle to reproduce another person’s work, but she would likely strug-
gle to reproduce her own. She may be overwhelmed by the diversity of research
outputs [5], and find that she needs to rewrite her work to unpick what she did
with specific computational functions under specific software package releases.
The language of mathematical science has changed from something we write, to
something we collect. In order to diligently answer scientific questions computa-
tionally, the mathematician must now consider her work within that of a research
compendium. In this paper we ask: how can we extend the certainty afforded
by a mathematical proof further down the research workflow into the ‘mangle
of practice’ [31]? We show that communities of researchers in many scientific
disciplines have converged on a toolkit that borrows heavily from software engi-
neering to robustly provides many points to verify certainty, from transparency
via version control, to stress testing of algorithms. We focus on unit testing as a
strong measure of certainty.

1 We might argue here we employ the term research software engineer (RSE) as
Katz and McHenry would define Super RSEs, developers who ‘work with and
support researchers, and also work in teams of RSEs who research and develop
their own software, support it, grow it, sustain it, etc.’ [20]. Or choose the more
ambiguous Research Software Engineers Association definition of RSEs as people in
academia who ‘combine expertise in programming with an intricate understanding
of research’ [45].
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1 The Technological Shift in Mathematical Inquiry

The task of a mathematical scientist in the pre-computer age was largely that of
a blackboard rhetorician, where the craft of proof reigned. For a proof such as
that featured in Auburn’s play, the argument can often be included in the article,
or as a supplementary file. This allows the reader to fully reproduce the author’s
reasoning, by tracing the flow of argument through the notation. As comput-
ers have become ubiquitous in research, mathematical scientists have seen their
workflow shift to one that now more closely resembles that of a generic scientist,
concerned with diligent analysis of observational and experimental data, medi-
ated by computers [30]. But the answer to the question of what constitutes a
diligent attempt to answer a scientific question examined in a computationally
intensive analysis, is unclear, and remains defined by the era of the blackboard
mathematician.

So, what is proof in mathematics, when experimental and computer-assisted
methods are common? And, beyond mathematics, in fields where literal proofs
are unattainable, what counts as an equivalent form of scientific certainty in
a computational experimental environment? How do we measure truth in the
context of uncertainty? Among the histories of science we can trace three efforts
to tackle these questions. First is the empirical effort, most prominently repre-
sented by Robert Boyle (1627–1691), known for his vacuum pump experiments
[34]. Boyle documented his experiments in such detail and to an extent that
was uncommon at the time. He was motivated by a rejection of the secrecy
common in science at his time, and by a belief in the importance of written
communication of experimental expertise (as a supplement to direct witnessing
of experimental procedures). Boyle’s distinctive approach of extensive documen-
tation is often cited by modern advocates of computational reproducibility [35].
Making computer code openly available to the research community is argued
to be the modern equivalent of Boyle’s exhaustive reporting of his equipment,
materials, and procedures [22].

A second effort to firming up certainty in scientific work, concerned with
statistical integrity, can be traced at least as far back as Charles Babbage (1791–
1871), mathematician and inventor of some of the first mechanical computers.
In his 1830 book ‘Reflections on the Decline of Science in England, and on
Some of Its Causes’ he criticised some of his contemporaries, characterising them
as ‘trimmers’ and ‘cooks’ [14]. Trimmers, he wrote, were guilty of smoothing
of irregularities to make the data look extremely accurate and precise. Cooks
retained only those results that fit their theory and discarded the rest [26]. These
practices are now called data-dredging, or p-hacking, where data are manipulated
or removed from an analysis until a desirable effect or p-value is obtained [17].

A third effort follows the history of formal logic through to the time when an
equivalence between philosophical logic and computation was noted. This obser-
vation is called the Curry-Howard isomorphism or the proofs-as-programs inter-
pretation. First stated in 1959, this correspondence proposed that proofs in some
areas of mathematics, such as type theory, are exactly programs from a particu-
lar programming language [37]. The bridging concepts come from intuitionistic
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logic and typed lambda calculi, which have lead to the design of computational
formal proof management systems such as the Coq language. This language is
designed to write mathematical definitions, execute algorithms and theorems,
and check proofs [3]. This correspondence has not been extensively discussed in
the context of reproducibility, but we believe it has relevance and is motivating
beyond mathematics. Our view is that this logic-programming correspondence
can be extended in a relaxed way beyond mathematics in proofs to scientific
claims in general, such that computational languages can express those claims
in ways that can establish a high degree of certainty.

Questions of confidence in scientific results are far from restricted to the
domains of mathematics or computers; indeed, science is undergoing a broad
reexamination under what is categorised as a crisis of inference [12]. How we
reproduce scientific results is being examined across a range of disciplines [6,38].
An early answer to some of these questions is that authors should make avail-
able the code that generated the results in their paper [11,36]. These recom-
mendations mark the emergence of a concern for computational reproducibility
in mathematics. This paper extends this argument for computational repro-
ducibility further into the workflow of modern statistical inquiry, expanding and
drawing on solutions proposed by methods that privilege computational repro-
ducibility.

Systemic problems are now being recognised in the practice of conventional
applied statistics, with a tendency towards dichotomania [1] that reduces com-
plex and nuanced questions to Boolean statements of TRUE or FALSE. This has
diluted the trust the can be placed in scientific results, and led to a crisis of
replication, where results can not easily be reproduced [12] and questionable
research practices [13] proliferate.

As the conventions of statistics are called into question, it stands to reason
that the research practices of the discipline of statistics itself require exami-
nation. For those practicing statistical computing, a conversation is emerging
about what constitutes best practice [43]. But best practice may be unrealis-
tic, especially for those applying statistics from fields where their background
has afforded limited computational training. And thus the question is becom-
ing reframed in terms of good enough standards [44] we can reasonably request
of statistical practitioners. By extension, we must reconsider how we prepare
students in data-analytic degree programs.

Proofs, derivations, verification, all form the work of mathematics. How do
we make mathematical arguments in a computational2 environment? In con-
structing mathematical arguments, we posit that we require an additional core
element: unit testing for data analysis. We propose an expansion of the spectrum
of reproducibility, Fig. 1, to include unit testing for data analytic algorithms facil-
itated by a tool such as testthat:: [41], for answering mathematical research

2 We focus in this manuscript on R packages, but the reader is invited to consider
these as examples rather than definitive guidance. The same arguments hold for
other languages, such as Python, and associated tools.
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Fig. 1. We propose updating this spectrum of reproducibility [25] with unit tests for
data analysis. In addition to the advertising, the formal scientific argument put for-
ward, many informal and traditionally hidden scientific outputs comprise the com-
pendium of research that produces the results. Given the underutilised nature of
unit tests, we suggest there is further work to be done to facilitate the adoption of
good enough [44] research software engineering practices for answering mathematical
questions computationally. The informal components of mathematical research com-
pendium are shaded grey. This figure has been adapted with permission [33] and is
licensed under CC-BY 2.0.

questions computationally. In order to motivate this practice, we turn to the
purest of sciences, mathematical proof.

2 Truth in Mathematics

The titular proof [2] of Auburn’s play is a mathematical argument, a formalised
essay in mathematical science. The creator of the proof, Catherine, is questioned
by Hal, who is capable of following the argument; that is, Hal can replicate an
approximation of the type of thought process that leads to a reproduction of the
argument presented in the proof.

In Fig. 1, we have coloured the components, black formal argument, and
grey informal work, of mathematics Hal would need to reproduce the proof. In
order to verify the results, Hal would need to follow the formal argument, to
understand what was written in the proof, but also need to do informal work,
to understand the links between concepts for verification.

Hal would come to the problem with a different background and education
to Catherine. Although work is necessary for the verification of the results, the
reproduction of the reasoning, the work required would be different for Hal and
Catherine, based on their respective relevant preparation. However, the language
of mathematics carries enough uniformity that Hal can fill in the work he requires
to understand the result, from reasoning and mathematical texts. If Catherine
were asking a mathematical question computationally, the presentation of the
results carries not millennia of development of methodology, as does the noble
craft of mathematics, but less than a century of frequently disconnected devel-
opments separated by disparate disciplines.
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We begin with traditional mathematics and end with answering questions
in computational mathematics. To this aim, we adopt, in the manner of
Lakatos’ Proofs and Refutations’ conversant conjecture, scenarios between Hal
and Catherine, where Hal challenges Catherine over her authorship of the proof.
In each scenario, we imagine the challenge would play out for different ways
of answering mathematical questions. We argue the thinking work of mathe-
matical science is not as immediately inferable in a computational experimental
environment, and that the roots of mathematical science in proof lead to an
overconfidence that science is as readily reproducible as a proof.

2.1 Prove It!

Let us suppose Catherine claimed she could demonstrate a property about the
order3 on natural numbers, N = {1, 2, 3, . . . } , the counting numbers.

The order on a set of numbers is dense if, for any two numbers we can find
a number in between. More formally, we say an ordered set P is dense if, for all
x < y in P , there exists z in P such that x < z < y.

Catherine presents the following argument that the order on N is not dense.
In this case she chooses a type of indirect proof, an existence proof [4], where
she presents a counterexample demonstrating that the density property is not
true for all cases for N.

Proof. The order on N is not dense. Let us, in the spirit of Lewis Carroll4,
be contrary and suppose, by way of contradiction, that the order on N, is dense.
Then for any two numbers, x and y, in N such that x < y, I should be able to
find a distinct number z in N between them, that is x < z < y. But, consider
the numbers 3 and 4. Let x = 3 and y = 4, then x < y. There is no distinct
number, z, that exists between x and y. Since this rule must be true for any two
numbers x < y in the order to be dense, we have shown the order on natural
numbers N is not dense. ⊓"

A standard way to prove something is not true, is to assume it is true, and
derive a contradiction [9]. Arguably, this reasoning goes to the heart of the prob-
lem of dichotomania lamented by 800 scientists in a recent protest paper about
the misinterpretation of statistics in Nature [1]. A null hypothesis test of a differ-
ence between two groups will assume the opposite of what we suspect is true; we
believe there to be a difference between two groups and take a sample from each
of the groups and perform a test. This test assumes there is no difference, null,
between the two groups and that any observed differences in sampling are due to

3 Let P be a set. An order on P is a binary relation ! on P such that, for all x, y, z ∈ P :
we have x ! x; with x ! y and y ! x imply x = y; and, finally, x ! y and y ! z
imply x ! z. We then say ! is reflexive, antisymmetric, and transitive, for each of
these properties, respectively [8].

4 Lewis Carroll, author of Alice in Wonderland, is a writing pseudonym used by
Charles Lutwidge Dogson, born in 1832, who taught mathematics at Christ Church,
Oxford [7].
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random chance. The calculation returned, the p-value, is the likelihood we would
observe the difference under those null assumptions. Crucially, the calculation
returned is probabilistic, a number between 0 and 1, not a TRUE or FALSE, the
logic of a proof by contradiction. The logic does not apply to a situation where,
within a single group of people, some people might be resistant to treatment,
and some might not be, say, and we have estimated a likelihood of the efficacy of
the treatment. Dichotomania is the common misinterpretation of a probabilistic
response in a dichotomous framework; scientists are unwittingly framing null
hypothesis significance testing in terms of a proof by contradiction.

In order to illustrate our central point, we now turn to a direct argument,
rather than the indirect approach of contradiction, in order to examine the pro-
cess of the making of a proof. In both the case of the direct, and indirect proofs,
however, Hal could challenge Catherine, as he did in the play.

“Your dad might have written it and explained it to you later. I’m not
saying he did, I’m just saying there’s no proof that you wrote this” [2].

2.2 The Steps in the Making of a Proof

Let us now suppose Catherine’s proof instead demonstrated a density property
on the order on the real numbers,

R = {. . . ,−3, . . . ,−3.3, . . . , 0, . . . , 1, . . . , 100.23, . . . } ,

i.e., the whole numbers, and the decimals between them. Catherine claims the
order on R is dense, which is to say, if we choose any two distinct numbers in
the real numbers, we can find a distinct number between them.

Catherine would construct her proof in the manner laid out in the introduc-
tory monograph When is a Proof? [9], in Table 1, provided to undergraduate
mathematics majors at La Trobe University. These steps comprise formal and
informal mathematical work, showing that mathematical work comprises more
than the advertising, as it is labelled in the reproducibility spectrum presented
in Fig. 1. In the case of pure mathematics, the advertising would be the paper
that outlines the proof, the formal mathematical argument, but the informal
work is left out.

Catherine presents the following proof to Hal to show the order on real num-
bers, R, is dense.

Proof. The order on R is dense. Let x < y in R. Let5 z := (x+ y)/2. To see that
x < z < y, we begin with x < y, so, x + x < x + y and x + y < y + y, which
gives,

5 In mathematics, we read := as ‘be defined as’, =⇒ as ‘implies’, and < as ‘less than
but not equal to’.
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Table 1. The steps in the making of a proof from Brian A. Davey’s primer, When is a
Proof? [9]. The formal steps that contribute to the final proof are in bold, the hidden
informal work, in italics. These steps are summarised in terms of p =⇒ q in the final
column of the table.

Step -1 Translate the statement to be proved into ordinary English
and look up appropriate definitions

Step 0 Write down what you are asked to prove. Where appropriate,
isolate the assumptions, p, and the conclusion, q

p =⇒ q

Step 1 Write down the assumptions, p: “Let . . . ” Assume p

Step 2 Expand Step 1 by writing out definitions: “i.e., . . . ” Define p

Step 3 Write down the conclusion, q, which is to be proved: “To prove: . . . ” State q

Step 4 Expand Step 3 by writing out definitions: “i.e., . . . ” Define q

Step 5 Use your head: do some algebraic manipulations, draw a diagram, try
to find the relationship between the assumptions and the conclusion

Work

Step 6 Rewrite your exploration from Steps 3, 4 and 5 into a proof.
Justify each statement in your proof

Formalise work

Step 7 The last line of the proof “Hence q.”

x+ x < x+ y < y + y

=⇒ x+ x

2
<

x+ y

2
<

y + y

2

=⇒ 2x
2

<
x+ y

2
<

2y
2

=⇒ x <
x+ y

2
< y

=⇒ x < z < y,

since z = (x+ y)/2, as required.

Catherine presents the formal proof, the science that in Fig. 1 is described as
the advertising, a subcomponent, of the compendium of research she created in
order to arrive at this argument. Hal wishes to verify the results and investigate
whether Catherine merely reproduced her father’s reasoning. In the case of proof,
what is published is the formal argument, but as the steps in Table 1, this is not
all of what makes a proof. We could think of the steps presented in Table 1 in
terms of a mathematical statement p =⇒ q, which we read as p implies q, as
given in the final column of the table. We now revisit the proof Catherine offered
in terms of these steps.

We begin, step 0; we state what we wish to prove, p =⇒ q, in plain English.
We wish to show the real numbers, R, are dense; i.e., for all x < y in R, there
exists z such that x < z < y.
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Step 1, we assume p is true. We assume we have two distinct numbers x and
y in R with x < y; i.e., x is less than y, and x is not equal to y. Step 2, nothing
to define as we are familiar with < and R.

Step 3, we state what we wish to prove, q; the order on R is dense. Step 4,
i.e., we need to show there exists z in R such that x < z < y. Now, Catherine
has offered a solution z := (x+ y)/2 that Hal wishes to verify.

Step 5, Suppose Hal asks, what if both x and y are negative numbers? Is it
still true that x < z < y? Hal might verify his understanding of + by thinking
about positive and negative numbers as steps taken to the left or the right. In
Fig. 2, Hal considers the case where both numbers are negative, x, y < 0. In this
case, we have x steps to left, and y steps to the left, which we imagine as arrows
of appropriate length. If we lay both arrows end to end, we see the number of
combined steps to the left. If we consider the half-way point of x and y laid
beside each other, (x+ y)/2, we see this falls between where the arrow heads of
x and y fall.

Fig. 2. On the left, Hal might begin to verify his understanding of + by first considering
the case where both numbers are negative, x, y < 0. In this case, we might think of +
as combining x steps to the left with y steps to the left. The halfway point (x+ y)/2,
falls in the middle of the two arrows laid side by side, which also falls between where
the two ends of the arrows fall. On the right, Hal considers the case where x < 0, y > 0
and |x| < |y|. Here x+ y can be thought of as y steps to the right and then x steps to
the left. Again, the halfway point (x + y)/2 falls halfway between the tips of the two
arrows above.

Now Hal can flip the arrows in the opposite directions to construct an argu-
ment for if both numbers were positive, x, y > 0.

But then Hal asks in Fig. 2, what if one number were positive and one number
were negative? Is (x+y)/2 still halfway between? Let us assume, as mathemati-
cians say, without loss of generality that the magnitude of x is strictly less than
y, that is |x| < |y|, the number of steps in x is less than the number of steps of
y. Hal now considered where one would end up if one took y steps to the right
and then x steps to left. He checks that he does not need to consider two cases,
as he would end up in the same place if he took x steps to the left and then
y steps to the right. Again, (x + y)/2 falls between where he would start and
where he would end.

Now Hal has verified his understanding of +, which may or may not be the
way that Catherine arrived at her result, but after this work he is capable of fully
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reproducing the mathematical result presented. He reads the proof Catherine has
provided, and verifies Steps 6, and Step 7. Catherine has proved that the order
on R is dense. With this proof, as with the proof presented in Sect. 2.1, Hal
cannot disqualify the possibility that Catherine merely reproduced her father’s
work.

Even in these relatively simple proofs, Step 5, the informal work of verification
and understanding vastly outweighs what goes into the formal proof. But these
toy examples belie a process of redefinition and re-examination, as illustrated
in the discussion within a hypothetical mathematics classroom that forms the
narrative of Lakatos’ Proofs and Refutations [21]. We now move to a recently
published proof to illustrate this process of redefinition.

In the Combat Conditions of New Mathematics. Suppose, now, that
Catherine’s proof were for the theorem pertaining to quasi-primal algebras, pre-
sented in the recent publication ‘The homomorphism lattice induced by a finite
algebra’ [10] in Order, a mathematics journal devoted to ‘original research on
the theory and application of ordered sets’. In addition to the informal work
demonstrated by the proof that the order on R is dense, the making of this
proof involved a redefinition of the result proved, through a process writing sev-
eral proofs. In terms of Table 1, initially a result was considered, p =⇒ q.
A proof was written for this result. At this point the mathematicians realised,
however, that the converse could be shown, that is, q =⇒ p. And so, a proof
was generated for a new result, p ⇐⇒ q. In the case of this proof, the act of
writing the proof itself redefined the result in question. In the combat conditions
of new mathematics, the process of writing a proof is doing mathematical sci-
ence, and involves a great deal more work than is presented in the advertising
of the science.

Hal may require graduate-level knowledge of abstract algebra to reproduce
this proof, but as a professional mathematician, this is not a great leap. More
challenging the proof may be, but the process of reproduction would be similar.
Even if this were the proof, Hal would not know if Catherine merely reproduced,
as he did, her father’s proof.

But what if Catherine were posing her mathematical question computation-
ally? Would Hal be able to reproduce her results?

2.3 Is Computational Mathematics Mired in Proof Methodology?

When we are exploring and answering mathematical questions in a computa-
tional environment, we consider some aspects of our work to be formal and
some informal. But in omitting the greyed informal work in Fig. 1, are we still
approaching compendia of research from the perspective of a blackboard math-
ematician?

Given we use statistics in most science, arguably most scientific questions are
posed, to some extent, mathematically. The output format, a published paper,
remains similar to mathematics of the pre-computer age. But the informal work
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of answering mathematical questions has changed significantly. Now that much
work is done computationally, there are multiple research outputs that comprise
the compendium of science that produces the published paper.

Let us now suppose that Catherine had a statistical estimator for a pop-
ulation parameter of interest. That is, Catherine has an equation that, given
some data, she can approximate some value about the population, such as an
overall average. Let us further suppose, as is increasingly common, that she does
not have a closed-form solution, meaning she cannot write out a mathemati-
cal argument in the traditional sense. Instead, she demonstrates the estimator’s
performance through simulation studies.

Now suppose Hal challenges Catherine to prove that she created the science
that produced the paper. Given what is on the piece of paper, how can Hal know
that Catherine’s code does what she said it does? It is unclear what assumptions
were made, about, say, sample size and distribution. How can Hal verify her
results? Through adopting research software engineering principles, Catherine
can facilitate a process akin to proofs and refutations, the redefinition described
in the Sect. 2.2, The combat conditions of new mathematics. The process of
redefinition is transcribed by version control, but further to this, the software
itself provides a modular framework, such as a theorem in mathematics, for
future work to scaffold and extend. New software can be developed that either
extends, or redefines the existing software. One analogous way this is occurring
is in the rise of metapackages, such as tidyverse:: [42] and metaverse:: [39],
that collect software to solve particular problems in an opinionated [29] manner,
that guide the end-user to what the creators consider to be good enough practice.
This is analogous to classes of mathematics, such as group theory or analysis,
that collect results, theorems, that rely upon each other, and where certain
underlying assumptions, such as the Axiom of Choice6, are made. Indeed, as
Martin-Löf proposed a shift in terminology from computer science to computing
science, they make the following remark.

It has made programming an activity akin in rigour and beauty to that of
proving mathematical theorems [23].

How are contemporary researchers answering mathematical questions? Alex
Hayes, current maintainer and one of the many authors of broom:: [32], an open
source R package that amalgamates hundreds of contributions towards providing
a suite of tools that tidily7 [15] extract statistical model information from R

6 Turning to the bible of algebra, Lattices and Order [8], we learn the Axiom of Choice
‘asserts that it is possible to find a map which picks one element from each member
of a family of non-empty sets’.

7 From Wickham’s Tidy data [15], we describe data as tidy if

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

.
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algorithms, recently noted the underdeveloped nature of the implementation of
statistical algorithms [16]:

In practice, most people end up writing a reference implementation and
checking that the reference implementation closely matches the pseu-
docode of their algorithm. Then they declare this implementation correct.
How trustworthy this approach is depends on the clarity of the connection
between the algorithm pseudocode and the reference implementation.

This is not to carp upon diligent scientists; we need to do far more to support
the software engineering principles we expect from those who answer mathe-
matical questions computationally [28]. Mathematicians are trained to provide
enough work such that the hidden steps illustrated in italics in Table 1 can be
reproduced by their target audience. The detail of mathematical work shown
is tempered for level of the audience, but the same process described in bold
in Table 1 is the same. But, does the workflow Alex describes above equip the
target audience with enough information such that they can understand all the
details of the entire argument put forward?

Code has the appearance of being highly logical, it’s easy to assume it’s
infallible; and whilst the logic of the code is robust, the pipeline that carries the
algorithm to implementation may be susceptible to compromising factors, with
typos being just one example of inadvertent error.

Because code appears so logical, we assume it is analogous to proof for our
intended audience to follow. But we were trained to leave out the informal messy
thinking work associated with mathematics; trusting the formal argument pro-
vides enough information to verify and reproduce the mathematics. Does our
code do what we think it does? In addition to providing the research outputs
in the spectrum of reproducibility, Fig. 1, we posit mathematical science should
adopt the software development practice of unit testing, to ensure the mathe-
matical results can be verified and reproduced.

3 Testing

Testing is the software engineering tool that is provides a key piece of the corre-
spondence between scientific claim and programming. Just as the Curry-Howard
isomorphism expresses proofs-as-programs to link mathematics and program-
ming, we argue that tests are the link between scientific claims more generally
and programming. In a test the researcher isolates a scientifically meaningful
part of their code, and creates a witness so that others can easily see that the
code does what the researcher intends it to do. In this section we consider a
‘vital’ [40] research output, testing, that it is unlikely the mathematical scientist
has been trained in. There are many such under-formalised skills represented in
Fig. 18. In 2016, a quarter of packages on R package archives CRAN, Biocon-
8 Indeed, the natural consequence of questioning how we practice mathematical science
is how we train the next generation of practitioners. Important, however this may
be, this is beyond the scope of this manuscript.
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ductor, and rOpenSci, included tests, a repository by repository breakdown of
this is shown in Table 2.

Table 2. Percentage of R packages in repositories that have unit tests included. These
results are from Jim Hester’s presentation on covr:: in September 2016 [18].

Repository Tests Total

CRAN 2091 9772 21%

Bioconductor 449 1258 36%

rOpenSci 84 146 58%

2624 11,176 24%

Now, Hayes advises people against using untested software [16]. It is alarming
that, by this logic, we would be insane to use three quarters of packages avail-
able. But Hayes continues, ‘You have two jobs. The first job is to write correct
code. The second job is to convince users that you have written correct code’ [16].
The disconnect here suggests a failure to communicate broadly the importance of
testing of algorithms in the dissemination of research. As researchers, we believe
our science is as reproducible as a traditional mathematical proof; however, the
growing literature of the replication crisis demonstrates we have not succeeded
in rendering our science reproducible.

rOpenSci’s review system recommends using the covr:: [19] package to mea-
sure how the code behaves with different expected outputs. From the creator of
covr::, we obtain the following definition of test coverage.

Test coverage is the proportion of the source code that is executed when
running these tests [19].

3.1 What Is a Test?

Tests demonstrations that a given input produces an expected output. They are
grouped contextually in a file; the context being a certain aspect of the algorithm
that should be tested [40]. An example of a context for a test is the question, does
a given function return the expected result for different inputs? Each test com-
prises a collection of expectations. Each expectation runs a function or functions
from the package, and checks the returned output is as expected. In this case, we
have a test for the expect_equal function: one expectation checks the function
successfully runs when given equal inputs, and another expectation checks that
the function fails when passed two non-equal inputs.

An example test from the testthat:: [41] contains two expectations.

test_that("basically principles of equality hold", {
expect_success(expect_equal(1, 1))
expect_failure(expect_equal(1, 2))

})

https://www.rstudio.com/resources/webinars/covr-bringing-test-coverage-to-r
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3.2 How Good Are We at good Enough testing?

A response to the replication crisis has been to examine questionable research
practices [13], frequently borne of tradition and convention within different dis-
ciplines, deviate from evidence-based best-practice research methodology. We
suggest it is a questionable research practice to draw conclusions about the effi-
cacy of statistical estimators from untested code.

Given only a quarter of R packages have unit tests associated with them,
we are falling short of best practice in scientific computing [43]. In a recent
assessment of what constitutes good enough practice in scientific computing [44],
unit testing was not included. However, for mathematical science, where the
algorithms implemented and the code written is often complex, we suggest that
unit testing should be considered good enough practice, in spite of the additional
learning curve. With the backdrop of the replication crisis, it is crucial we have
confidence in the algorithms we implement.

3.3 Analysis of Testing Code in R Packages

So, what packages have tests? We provide a preliminary analysis of tests in
CRAN packages in Fig. 3. The code and data used to generate the results pre-
sented here are openly available at https://github.com/softloud/proof.

We provide analysis for packages associated with CRAN task view [46], opin-
ionated [29] collections of R packages that are relevant to a particular type of sta-
tistical analysis, maintained voluntarily by experts in their respective fields [46].
CRAN task views provide a convenient taxonomy of R packages for a preliminary
exploratory analysis of patterns of test use among R package authors.

Packages listed in a task view are may be interpreted by users as more stable
and trustworthy than other packages, because they have passed some kind of
inspection by maintainer of the task view who listed the package (however the
review and curation process is not open or documented). And yet, even amongst
the 4105 packages associated with task views, 1524 packages were without tests;
37 per cent of packages associated with CRAN task view were without tests.

The proportion of task view packages with tests has fallen over the last
decade. This does not seem surprising given the uptake of R amongst com-
munities of researchers in applied sciences with little formal programming and
computer science training, such as psychology and ecology.

Figure 4 shows that there is wide variation in test coverage. Even the largest
and fastest growing CRAN task views have very different proportions of packages
with tests (Survival, about 0.23, compared to Web Technologies about 0.66). We
find few clear patterns in the presence of tests over time, between different CRAN
task views, and with metadata such as the number of authors, the size of the
package and the centrality of the package (as measured by the union of the
number of reverse dependencies and reverse imports). Based on these data, we
suggest there is much work to be done in developing methods and opinionated
tools that guide users towards good enough practices.

https://github.com/softloud/proof
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Fig. 3. This panel shows some basic details of tests in R packages listed in CRAN
task views [46]. The measure of interest, test size ratio, was calculated by dividing the
test file size with the overall package source file size from the unofficial CRAN mirror
on GitHub. This is a rough indicator of test coverage, future work should consider
more precise metrics such as those produced by the covr:: package. (a) the distribution
of the ratio of test file size to total package size, test size ratio. (b) scatter plots
demonstrate the relationship between test size ratio and number of authors, overall
package size, and number of packages imported and calling the package, respectively.
(c) the proportion of all task view packages that contain tests over time. (d) boxplot
detailing the distribution of file size ratio over time.
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Fig. 4. (a) shows the change in the number of packages in each CRAN task view over
time. (b) shows the proportion of packages in each CRAN task view that have tests.

4 Tempered Uncertainty and Computational Proof

It’s easy to lie with statistics, but it’s even easier without them [27]. In a com-
putational experimental setting, we often cannot achieve the satisfying precision
offered by a proof. We can, however, adopt good enough practices in sharing
and testing code to increase confidence in our scientific conclusions. Given the
prevalence of generalised linear models, we can think of the practice of much
science as the interpretation of

y ≈ bx,

where: x represents what we know about the data; y, the observed response
of interest that we wish to investigate how it responds to x; and b, the how it
responds, approximated unknown. It may not be possible to provide the rigour of
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a closed-form mathematical solution, but we can aim to temper the uncertainty,
and bolster confidence, in computational arguments via automated testing, ver-
sion control, and other computational outputs.

We suggest there is much work to be done in developing good enough prac-
tices [44] we can ask mathematical scientists to adopt. For example, we do not
have a chance to discuss in this manuscript the role of markdown and html
reporting in reproducible science. Indeed, the question of good enough prac-
tice can be posed for each research output. Less than offering answers, this
manuscript seeks more to suggest there is a rich line of inquiry [28] in the rela-
tionship between scientific truth, mathematical proof, and computational repro-
ducibility and rigour.

4.1 Coda

Returning to Catherine and Hal from Auburn’s Proof [2], we can now imag-
ine her as computational mathematician who provides a compendium of repro-
ducible research. To demonstrate the rigour of her computational work, she
would provide unit tests for the algorithms she had implemented. Catherine
would share her work openly via her GitHub or similar repository, where the
development of her ideas would be timestamped and recorded. The structure
of her research compendium of would be automatically standardised via a tool
such as rrtools:: [24]. At publication, her compendium would be deposited on
a trustworthy, DOI-issuing repository for others to link to and cite.

And she would feel safe asking questions about good enough practice [44],
and how to avoid questionable research practices [13], because there is an under-
standing in the community that no one is trained in all these things, so we are
all always learning.

There would be no struggle, as there was in Auburn’s play, to show that
the mathematician who created these research outputs was Catherine. But that
wouldn’t matter - she and Hal would be having far too much fun collaborating
on the next question.
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