
22 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

S c i e n c e D a t a
M a n a g e m e n t

SQLShare is a Web-based application for collaborative data analysis that emphasizes
a simple upload-query-share protocol over conventional database design and ad hoc
interactive query over general-purpose programming. Here, a case study examines the
use of SQLShare as an alternative to script-based scientific workflows for a project in
observational biological oceanography.

Collaborative Science
Workflows in SQL

Data management has replaced data ac-
quisition as the bottleneck to scien-
tific discovery. Consider an example:
in the last decade, several high-

frequency flow cytometers have been developed
to study microorganism composition at very fine
spatial and temporal scales, collecting hundreds
of samples per day for several weeks. A flow cy-
tometer passes a fluid through a fine capillary,
identifying particles in the fluid by analyzing
the absorption and refraction patterns of vari-
ous wavelengths of light. One of the largest flow
cytometry datasets publicly available to marine
biologists is produced by SeaFlow, a new genera-
tion of flow cytometer created at the University
of Washington that continuously measures phy-
toplankton composition and abundance at a rate
of thousands of cells per second.1 The instru-
ment generates the equivalent of 6,700 samples,
representing a dataset of 35–135 Gbytes, after a
typical two-week oceanographic cruise. To date,
the instrument’s dataset represents more than
200 billion cells collected in different seasons and
different environments, but only 10 percent of the
data has been analyzed so far due to challenges in

management and analysis. (See the related sidebar
for more details.)

To contend with such challenges, through a
partnership between the University of Washing-
ton’s eScience Institute and the Armbrust Lab,
we’re developing a new “delivery vector” for re-
lational database technology called SQLShare,
and studying how it can be used to satisfy both
scientific workflow requirements and ad hoc in-
teractive analysis. Here, we present a case study
of SQLShare use in environmental flow cytom-
etry. We argue that the platform offers significant
benefits and lower overall costs than the alterna-
tives: ad hoc scripts and files, scientific workflow
systems, and conventional database applications.

SQLShare: Collaborative Science
via Relational View Sharing
SQLShare is a Web-based query-as-a-service
system that eliminates the initial setup costs as-
sociated with conventional database projects and
instead emphasizes a simple upload-query-share
protocol: users can upload their table-structured
files through a browser and immediately query
them using SQL without needing schema de-
sign, preprocessing, or the assistance of database
administrators. SQLShare users derive new data-
sets by writing and saving SQL queries; these
derived datasets can be queried and manipulated
in the same way as uploaded datasets. Each de-
rived dataset is managed as a view in the underly-
ing database: a named, permanently stored query.

Bill Howe, Daniel Halperin, Francois Ribalet,
Sagar Chitnis, and E. Virginia Armbrust
University of Washington

1521-9615/13/$31.00 © 2013 ieee

CopubliShed by the ieee CS and the aip

CISE-15-3-Howe.indd 22 6/6/13 7:35 PM

may/June 2013 23

Each dataset is also equipped with descriptive
metadata. Everything in SQLShare is accom-
plished by writing and sharing views. Users can
clean data, assess quality, standardize units, inte-
grate data from multiple sources, attach metadata,
protect sensitive data, and publish results. The
resulting network of related views is superficially
similar to the “boxes-and-arrows” abstractions
found in scientific workflow systems (see Figure 1),
but there are some important differences:

•	No special software is required—all data and
processing logic are fully accessible through a
Web browser, and views can be edited directly
in the browser as well.

•	Data never needs to be reprocessed explicitly—
for most queries, the underlying database sys-
tem can efficiently and scalably regenerate re-
sults on demand whenever a view is accessed
(for expensive queries, the results can be mate-
rialized and cached on disk automatically or on
demand).

•	The only size limit for datasets is the storage
capacity of the database itself—unlike script-
based processing, no task can ever crash due to
“out-of-memory” errors (nor thrash due to lim-
ited virtual memory).

•	All collaborators access the same version of
each view, stored centrally in the database: Any
change to a view is immediately and automati-
cally reflected in all future results, eliminat-
ing confusion over which version is current or
correct.

•	 SQLShare stores source code and data, cou-
pling them in a single Web interface: Views and
the input data they require can’t be separated,
so errors resulting from applying a script to the
wrong data can’t occur (in contrast, physical
files are generally decoupled from the scripts

that generate them, and can only be associated
explicitly through elaborate metadata schemes
or sophisticated provenance systems).

•	Ownership of a view affords precise control
over access permissions: Views can be public,
private, or shared explicitly with specific col-
laborators in a centralized manner.

•	Because all data are stored in a centralized lo-
cation, there’s only one global namespace to
manage—it’s impossible to have two datasets
with the same name but different content.

•	A complex network of views can be inspected
visually (see Figure 2), providing an intuitive
form of provenance.

Figure 1. The SQLShare data model. (a) A dataset’s internal structure
consists of a relational view, attached metadata, and a cached preview
of the results. (b) A newly uploaded dataset creates both a physical
base table and an initial (trivial) wrapper view. (c) The physical data
are stored in base tables, but are never modified directly. (d) Wrapper
views are indistinguishable from other SQLShare datasets, except
that they reference physical base tables. (e) Derived datasets can
be created by any user. Permissions are managed in the underlying
database.

(b)

(c)

(d)

(e)
SQL view preview metadata

k0 : v0
k1 : v1
…

(a)

Figure 2. A set of related datasets in SQLShare representing the integration of data from three research cruises organized as
a dependency graph. These dependencies are derived automatically from the queries themselves and need not be tracked
explicitly by a separate system.

Tokyo_all_merged_data_time_binned

Tokyo_0_merged_data_time_binned

Tokyo_0_merged_data_time

Tokyo_0_merged

Tokyo_1_merged_data_time_binned

Tokyo_1_merged_data_time

Tokyo_1_merged

Tokyo_2_merged_data_time_binned

Tokyo_2_merged_data_time

Tokyo_2_merged

CISE-15-3-Howe.indd 23 6/6/13 7:35 PM

24 Computing in SCienCe & engineering

•	The SQL definition of each view provides a
concise and declarative expression of the logic,
eliminating data-representation issues.2

•	Ad hoc interactive exploration is supported di-
rectly: With sufficient permissions, any view can
be copied, modified slightly, and re-executed—
no matter who owns the original.

Our initial experience with SQLShare has al-
lowed us to reject the conventional wisdom that

“scientists won’t write SQL.” Our experience is
that they can and will. We find that even non-
programmers can create and share SQL views
for a variety of tasks, including those considered
the turf of general-purpose scripting languages:
quality control, data integration, basic statistical
analysis, sampling, binning and aggregation, data
cleaning, and reshaping in preparation for visu-
alization. We also find that researchers are using
SQL not just to manipulate data themselves, but

Why Use sQL for
CoLLaborative Data anaLysis?

Why was the script-based approach for analyzing the
SeaFlow data problematic? Here are the issues cited

by our colleagues in Oceanography and echoed by our
other collaborators:

•	 Scripts for data processing and ad hoc analysis, typically
written in R, must be manually re-executed, sometimes
by multiple collaborators, when new data arrives or the
logic changes.

•	 These scripts assume all data can be loaded in the main
memory; redesigning algorithms to exploit secondary
storage or multiple computers in parallel is often beyond
the capabilities of domain researchers.

•	 New versions of scripts and/or the results they produce
must be redistributed among collaborators, creating
the opportunity for confusion; also, older, deprecated
versions of scripts and data can’t be “recalled” by their
authors, and thus might (silently) continue to be used to
make wrong decisions.

•	 Given a dataset generated by some variant of these
scripts, there’s no unambiguous way to determine its
provenance—that is, the exact series of steps that pro-
duced it.

•	 Files must be read and written by each step in the
pipeline, incurring a dependence on brittle file for-
mats and requiring explicit paths that can complicate
portability.

Some of these problems motivated the study of scientific
workflow management systems (SWMS), which aim to
raise the level of abstraction for expressing and executing
science data-processing pipelines by offering features for
managing provenance, reusing components, and execut-
ing pipelines on heterogeneous platforms. These systems
have enjoyed success in large-scale projects involving
substantial investment in IT infrastructure,1 where the
cost of workflow development can be amortized over
many repeated executions. However, despite years of
productive research, these systems haven’t been widely
adopted.2 In particular, we find that workflow systems are

difficult to deploy in the long tail of science3,4—that is, the
smaller labs and individual researchers who may operate
at the “forward edge” of science where rapidly changing
requirements, exploding data volumes, and limited access
to in-house IT infrastructure and expertise make develop-
ment of reusable pipelines for data processing prohibitively
expensive. As a result, we seek a system that emphasizes
simple, interactive analysis instead of software engineering,
yet automatically provides workflow-like provenance and
reuse features as a side effect.

Our observation is that although relational databases
support interactive analysis and can comfortably handle
the scale of the data, they haven’t enjoyed significant up-
take in these scenarios. It’s tempting to ascribe this under-
use to a mismatch between scientific data and the models
and languages of commercial database systems.5 But our
experience is that relational models and languages aren’t
the problem.6 Instead, we find that the barrier to adoption
is the assumption that, before these models and languages
can be used, we must engineer a database schema and
populate it only with clean, integrated, and well-structured
data. But it’s clear that developing a definitive database
schema for a project at the frontier of research, where
knowledge is undergoing sometimes daily revision, is a
challenge even for database experts. Moreover, concerns
about controlling unpublished research data—a concern
that conflicts with the need for unfettered collaboration
and sharing—complicate centralization and organization
in a database. Researchers want fine-grained control over
their data, and scripts and files give them this measure of
control where databases (by default) don’t.

Despite these weaknesses, the core technology of rela-
tional databases remains attractive for science. The data-
sets we encounter are naturally modeled as relations—such
as comma-separate values (CSV) files and “rectangular”
spreadsheets. These relations are frequently too large to be
manipulated in main memory, but nearly all databases are
equipped with out-of-core algorithms and can automati-
cally select among the algorithms using cost-based alge-
braic optimization. Of course, performance is irrelevant if
we can’t use the programming interfaces and languages to
implement the tasks that researchers must perform. But we
(and others) have found that many of these analysis tasks

CISE-15-3-Howe.indd 24 6/6/13 7:35 PM

may/June 2013 25

also to exchange ideas and collaborate—sharing
SQL queries lets researchers communicate in
terms of science questions instead of computer
programs.

Now that we’ve offered a sense of our approach
to the problem, let’s consider how this works in
practice. The following case study shows how
scientists use SQLShare as an alternative to
script-based scientific workflows in observational
biological oceanography.

Case Study: A Census of Microbial
Ocean Populations Using SeaFlow
The most abundant organisms in the world’s
oceans are microbes less than 20 micrometers
(µm) in size. Together, these organisms drive
biogeochemical cycling of major elements, with
almost 50 percent of organic carbon production
on Earth generated and recycled by these small
microbes. Satellite images of chlorophyll-a con-
centrations in the surface ocean have transformed

can be easily expressed as SQL queries.6,7 As an example,
Figure A illustrates binning a time series on three-minute
intervals for integration with other data streams—a task
that was initially assumed to be inappropriate for imple-
mentation in the database.

References
1. T. Crithclow et al., “Working with Workflows: Highlights from

5 Years Building Scientific Workflows,” Proc. Scientific Discovery

through Advanced Computing (SciDAC) Conf., 2011; www.mcs.anl.

gov/uploads/cels/papers/scidac11/final/Critchlow_2011-Scidac-

poster-paper-rev-5.pdf.

2. S. Cohen-Boulakia and U. Leser, “Search, Adapt, and Reuse: The

Future of Scientific Workflows,” SIGMOD Record, vol. 40, no. 2,

2011, pp. 6–16.

3. P.B. Heidorn, “Shedding Light on the Dark Data in the Long

Tail of Science,” Library Trends, 2008, vol. 57, no. 2, article

no. 299.

4. P. Murray-Rust and J. Downing, “Big Science and Long-Tail

Science,” blog, 29 Jan. 2008; http://blogs.ch.cam.ac.uk/

pmr/2008/01/29/big-science-and-long-tail-science.

5. P.G. Brown, “Overview of SciDB: Large Scale Array Storage,

Processing and Analysis,” ACM Sigmod Conf., ACM, 2010,

pp. 963–968.

6. B. Howe et al., “Database-as-a-Service for Long-Tail Science,” Proc.

23rd Scientific and Statistical Database Management Conf., Springer-

Verlag, 2011, pp. 480–489.

7. J. Cohen et al., “MAD Skills: New Analysis Practices for Big Data,”

Proc. Very Large Databases Endowment, VLDB Endowment, vol. 2,

no. 2, 2009, pp. 1481–1492.

Figure A. Two implementations of a time-binning task, where each measured variable is averaged across three-minute intervals.
Variables from different sensors are binned to the same intervals, then joined to construct a single dataset. Data from multiple
research cruises are similarly integrated, then merged into a single overall dataset.

 1 table <- read.csv("table.csv")

 2 # define 3 min time intervals

 3 breaks <- seq(

 4 min(table$time),

 5 max(table$time),

 6 by=3)

 7 # bin the table according to the breaks

 8 b <- cut(table$time, breaks=breaks)

 9

10 # calculate the mean of each variable

11 b.time <- tapply(table$time, b, mean))

12 b.Fluo <- tapply(table$Fluo, b, mean))

13 b.Temp <- tapply(table$Temp, b, mean))

14 b.Oxyg <- tapply(table$Oxyg, b, mean))

15 b.Nitr <- tapply(table$Nitr, b, mean))

16 b.Lat <- tapply(table$Lat, b, mean))

17 b.Lon <- tapply(table$Lon, b, mean))

18

19 binned.table <- data.frame(

20 cbind(b.time, b.Fluo, b.Temp,

21 b.Oxyg, b.Nitr,

22 b.Lat, b.Lon))

23 write.csv(binned.table,"binned.csv")

 1 WITH data AS

 2 (SELECT * FROM [table.csv]),

 3 -- compute the minimum timestamp

 4 bounds AS

 5 (SELECT min(time) AS mintime FROM data),

 6 -- assign each timestamp a bin

 7 binned AS

 8 (SELECT bounds.mintime +

 9 floor((data.time – bounds.mintime)/3.0)

10 * 3.0 as binid

11 FROM data, bounds)

12 -- compute the average of each bin

13 SELECT binid

14 , avg(Fluo) as Fluo

15 , avg(Temp) as Temp

16 , avg(Oxyg) as Oxyg

17 , avg(Nitr) as Nitr

18 , avg(Lon) as Lon

19 , avg(Lat) as Lat

20 , avg(time) as time

21 FROM binned

22 GROUP BY binid

23 ORDER BY binid ASC

CISE-15-3-Howe.indd 25 6/6/13 7:35 PM

26 Computing in SCienCe & engineering

our view of photosynthetic microbe (phytoplank-
ton) distribution, but provide little information
about specific populations of phytoplankton.
Also, finer-scale details are lost due to the data
aggregation required to counteract cloud cover.
Our ability to develop high-resolution maps of
the distribution and abundance of these organ-
isms is critical to understanding ecosystem func-
tions and the sensitivity of these processes to
environmental changes. Progress in this area has
been limited largely because we lack observation-
al tools for microbes.

SeaFlow Overview
To address these issues, the University of Wash-
ington’s SeaFlow project has developed an en-
tirely new flow cytometer.1 SeaFlow taps into
the seawater intake on ships and continuously (at
a rate of up to 24,000 cells per second) measures
abundance, cell size, and f luorescence signals
from pigments within individual phytoplankton
cells (0.5–20 µm), while simultaneously logging
underway temperature, salinity, chlorophyll, and
fluorescence. Data files are created every three
minutes, yielding a sampling resolution of one
kilometer (km) along a cruise track.

To date, about 130 days of continuous cytom-
etry data have been collected, sampling 60,000 km
in the North Pacific Ocean, a dataset compa-
rable to collecting 120,000 traditional flow cy-
tometry samples. A set of software tools has been

developed to automatically cluster and analyze cy-
tometric populations.3 This processed data can be
accessed and visualized through our Web portal
(http://seaflow.ocean.washington.edu). Figure 3
is a cytogram that illustrates SeaFlow’s ability
to discriminate between microbial populations.
A key remaining challenge is to create collaborative
data processing and a management and analysis plat-
form, with both on-ship and onshore components,
to allow scalable, interactive analysis of the rapidly
expanding datasets. This challenge is the motiva-
tion for our collaborative work with SQLShare.

Data Processing Workflows for SeaFlow
The SeaFlow instrument produces up to 24,000
particle counts per second, depending on ambi-
ent cell concentrations. Each particle is associated
with five measurements corresponding to the in-
tensity of scattered light (a proxy for cell size) and
the fluorescence emitted by different pigments
(for example, chlorophyll a and phycoerythrin)
within the organism. Cells are clustered into dif-
ferent microbial populations using a variant of
k-means (a cluster analysis method aimed at par-
titioning n observations into k clusters in which
each observation belongs to the cluster with the
nearest mean). Data size is then reduced by com-
puting the summary statistics for each popula-
tion. The summarized SeaFlow data are then
merged with other data streams from the research
cruise.

Figure 3. Example of flow cytometric signatures of phytoplankton populations in the North Pacific Ocean. (a) Red
fluorescence from chlorophyll versus forward light scattering (a proxy of cell size) identified five distinct phytoplankton
populations: large and small elongated phytoplankton, large and small nanoplankton, and ultraplankton. (b) Orange
fluorescence from phycoerythrin versus forward light scattering was used to identify the cyanobacteria Synechococcus,
cryptophytes, and fluorescent microspheres (beads) added as an internal standard.

Light scattering

0

0

10,000

10,000

20,000

20,000

Re
d

u
or

es
ce

nc
e

30,000

30,000

40,000

40,000

50,000

50,000

60,000

60,000

Light scattering(a) (b)
0

0

10,000

10,000

20,000

20,000

O
ra

ng
e

u
or

es
ce

nc
e

30,000

30,000

40,000

40,000

50,000

50,000

60,000

60,000

Large nanoplankton
Small nanoplankton
Large elongated
Small elongated
Cryptophytes
Ultraplankton
Synechococcus
Beads
Non-
uorescent
particles

CISE-15-3-Howe.indd 26 6/6/13 7:35 PM

may/June 2013 27

Additional SeaFlow measurements include a
continuous flow-through thermosalinograph (TSG)
to measure salinity and temperature (and some-
times dissolved oxygen), latitude and longitude
from the ship’s navigation system, and depth pro-
files from conductivity, temperature, and depth
(CTD) packages. More sensors can be added
depending on the cruise and the particular sci-
ence mission. Certain variables such as location,
time, temperature, and salinity are integrated
into the SeaFlow data during the cruise. Much
of the other data must be processed before being
integrated with other datasets. This processing is
done offline, after the cruise. The entire cruise
dataset must then be integrated and shared with
colleagues in a timely manner. It’s at this phase
that the script-oriented “pipeline” model breaks
down due to poor scalability beyond main mem-
ory, complications from multiple versions, and
poor provenance. Consider these examples.

example 1: error propagation. A bug was discovered
in the initial R script responsible for computing
summary statistics of the different microbial pop-
ulations, a task on which the majority of the post-
processing depended. Resolving the bug wasn’t
an especially onerous task, but it took significant
effort and communication with collaborators
to ensure that everyone was using and sharing
the corrected data. With SQLShare, this data is
stored in one central place and is automatically re-
generated on demand as needed.

example 2: scaling data integration. The R scripts
used to process SeaFlow data pertain to only one
cruise; each cruise is processed independently.
This approach complicates longitudinal analysis
across multiple cruises. Combining and repro-
cessing files from different cruises is one solu-
tion, but it requires loading tens of gigabytes into
memory at once, which isn’t feasible without an
investment in new hardware.

In SQLShare, datasets from multiple cruises
can be combined with a single UNION query (see
Figure 2). Thanks to the closure properties of the
underlying relational algebra, we know that a set
of cruises can be handled identically to a single
cruise: everything is a relation. Evaluation is lazy;
nothing is recomputed until the results are ac-
cessed. More importantly, no assumptions about
available memory are made when manipulating
these datasets, and the performance is excellent.
In this way, SQLShare facilitates a new class of
longitudinal science questions that were previously
deemphasized because of logistical challenges.

For example, macroecology questions involving
the relationships between organisms and their en-
vironment at large spatial scales can’t be studied
without convenient, efficient access to large-scale
datasets.

To solve these problems and migrate the over-
all workflow to SQLShare, the processing scripts
must be reimplemented in SQL. It might seem
surprising that this is possible; SQL has a repu-
tation for being a simple, inexpressive language.
But we find in practice that most data-processing
tasks reduce to table manipulations, at which SQL
excels.

For example, Figure A (see the sidebar) shows
two implementations of the same task, one in R
(a free software programming language for sta-
tistical computing and analysis) and one in SQL.
The task is to average a series of measurements
by three-minute intervals. The two implementa-
tions are of superficially comparable length and
complexity and produce the same results, up to
structural distinctions. The R script must read
from and write to a file, exposing a parameter
that’s dependent on the user’s local file system re-
sources. The storage for the SQL version is im-
plicit. The SQL version can also be optimized by
the database and executed regardless of the avail-
able memory, whereas line 1 of the R version reads
the entire file into memory—a critical limitation
for long cruises.

SQLShare Design and Implementation
SQLShare (see http://escience.washington.edu/
sqlshare) has three components, all of which are
cloud-hosted: a Web-based user interface (UI), a
Representational State Transfer (REST) Web
service, and a database back end. The UI is a
Django Python application (a Web framework
similar to Ruby on Rails), hosted on Amazon Web
Services. The UI communicates with the back
end exclusively through REST calls, ensuring
that all client tools have full access to all features.
The Web service is implemented on Microsoft
Azure as (one or more) Web Roles. The database
also is implemented using Microsoft’s SQL Azure
system, which is very similar to Microsoft’s SQL
Server platform.

Data Model
Figure 4 shows a screenshot of SQLShare. The
data model consists of a single entity: the dataset.
A dataset consists of a named SQL query (imple-
mented as a view in the underlying database), a
free-text description, and a collection of metadata
tags. We also compute and cache a preview of each

CISE-15-3-Howe.indd 27 6/6/13 7:35 PM

28 Computing in SCienCe & engineering

view’s results to afford low-latency browsing of
the relatively static science datasets we encounter
in practice.

When a new dataset is uploaded, the system
creates both the physical base table and a trivial
wrapper view of the form SELECT * FROM TABLE.
Then, users can modify the wrapper view or cre-
ate derived views. Figure 1 illustrates the situation.
Users rarely interact directly with the underlying
physical tables: every dataset is associated with a
view. By erasing the distinction between logical
view and physical table, we preserve the ability to
choose when views should be fully materialized
(that is, precomputed and stored on disk). Because
there are no destructive updates supported, we
can cache view results as aggressively as space will
allow. When a view definition changes, down-
stream dependent views might no longer be valid.
In this case, before applying the change, we cre-
ate a snapshot of any views that would have been
invalidated by the change. With this approach, no
change or access to any view will ever be rejected
outright, although we do warn the user when de-
pendent objects are affected.

Researchers can load data into SQLShare by
uploading files through a browser. The system
makes an attempt to infer the file’s record struc-
ture and schema by recognizing column names,

identifying row and column delimiters, and infer-
ring the data type in each column. Files with no
column headers receive default names. Various
data-quality issues are addressed automatically:
files with an inconsistent number of columns or
inconsistent data types among rows can still be
uploaded successfully. The design goal is to be tol-
erant in getting data into the system and encour-
age the use of queries and views to repair quality
problems. Here are some examples:

•	Numeric data is often polluted with string val-
ues representing NULL (such as “N/A,” “None,”
or “-”), complicating automatic type inference; we
can repair this situation easily by writing a simple
view to replace these strings with a true NULL.

•	We can replace missing or nondescriptive
column names with aliases in the SELECT clause.

•	We can filter out bad rows and columns en-
tirely with an appropriate WHERE or SELECT
clause, respectively.

•	 We can reconstruct logical datasets that have been
artificially decomposed into multiple files with
a UNION clause—for example, we can represent
one week of sensor data as seven one-day files.

This idiom of uploading dirty data and clean-
ing it declaratively in SQL by writing and saving

Figure 4. Annotated screenshot of the SQLShare system. The options on the left support browsing datasets in typical ways: by
popularity, recency, and tags. Each dataset consists of its SQL definition, a text description, a set of tags, and a preview of its result.

CISE-15-3-Howe.indd 28 6/6/13 7:35 PM

may/June 2013 29

views has proven extremely effective; it insulates
other users from the problems without resulting
in multiple versions of the data accumulating, and
without requiring external scripts to be written
and managed. Everything is in the database.

Further, all permissions handling is pushed
down into the database. Each SQLShare user is as-
sociated with a database user and a schema, and
permissions changes in the UI are translated into
GRANT and REVOKE statements in the database.
Web authentication is handled through an open
standard for authentification (OAuth) and Shibbo-
leth. Once authentication is confirmed, the service
impersonates the user when issuing queries.

Key Features
The SQLShare data model, API, and supported
features are designed to lift certain database fea-
tures, such as views, and suppress others, such
as document-description language (DDL) and
transactions. Following are summaries of the dis-
tinguishing features.

no schema. We don’t allow CREATE TABLE state-
ments; tables are created directly from the col-
umns and types are inferred in (or extracted from)
uploaded files. Just as users might place any file
on a filesystem, we let them put any table into the
SQLShare “tablesystem”—not just those tables
that comply with a predefined schema.

appends and incremental upload. Datasets can be
uploaded in chunks. This mechanism lets large
files be uploaded safely, but also affords support
for appends. A chunk for a table can arrive at any
time, and the table can be freely queried between
chunks (the chunked upload is non-transactional).
Appends are handled in the view layer and not
physically inserted into the underlying table.
Each chunk is created as a separate table, and the
base view is rewritten as a UNION of these chunks.
There are two advantages to this approach.

First, this organization is exactly what’s re-
quired for distributed query processing in many
vendors’ systems, especially Microsoft SQL
Server. Each chunk is placed on a separate disk
or server, allowing each to be scanned and fil-
tered in parallel. Distributed query isn’t the same
as true parallel query processing, but it can still
significantly improve performance and be used
to implement federated databases. Second, the
original partitioning of the data is preserved for
provenance reasons. If a “bad” chunk is uploaded,
it can be trivially removed or replaced by simply
editing the query rather than editing the database.

This approach emphasizes dataset-level opera-
tions over row-level operations; we find dataset-
level operations to be researchers’ natural unit of
processing and a closer analog to the file-oriented
manipulation to which they are accustomed.

Tolerance for structural inconsistency. Files with
missing column headers, columns with nonhomo-
geneous types, and rows with irregular numbers of
columns are all tolerated. We encourage research-
ers to put data into SQLShare as early as possible
in the pipeline, and use SQL itself to clean the data
to improve provenance and transparency.

Metadata and tagging. SQLShare encourages cre-
ating views frequently and liberally. Navigating
and browsing the hundreds of views that result
from the use of SQLShare has emerged as a chal-
lenge not typically encountered in database ap-
plications. To help solve the problem, views can
be named, described, and tagged through the UI
and programmatically through the REST Web
service. The tags can be used to organize views
into virtual folders. In future work, we’ll imple-
ment bulk operations—such as download, delete,
tag, and change permissions—on virtual fold-
ers. We’re also experimenting with a feature that
would allow regular expression (regex) find-and-
replace over a set of view definitions to simplify
refactoring. We envision SQLShare evolving into
a database-backed integrated development envi-
ronment (IDE) for SQL and user-defined func-
tion (UDF) development.

append-only, copy-on-write. We don’t allow de-
structive updates. Users insert new information
by uploading new datasets. These datasets can be
appended to existing datasets if the schemas match.
Name conflicts are handled by versioning—the con-
flicting dataset is renamed, and views that depend on
the old version are updated to reflect the change.

simplified views. To make views simpler to use,
we avoid the awkward CREATE VIEW syntax. In
SQLShare, view creation is a side effect of querying—
the current results can be saved by simply typing
a name. This simple UI adjustment appears to be
effective, with more than 2,500 views registered
in the system by more than 350 users.

provenance browsing. We find that some users cre-
ate deep hierarchies of simple, incremental views.
This usage pattern is encouraged: the optimizer
doesn’t penalize you at runtime, and a composition
of simple queries is easier to read and understand

CISE-15-3-Howe.indd 29 6/6/13 7:35 PM

30 Computing in SCienCe & engineering

than one huge query. However, databases provide
no natural way to browse and inspect a hierarchy
of views. The catalog must be queried manually. In
SQLShare, we’re actively developing two features
to support this use case. First, we’re developing a
provenance browser that creates an interactive visu-
alization of the dependency graph of a hierarchy
of composed views to afford navigation, reasoning,
and debugging. Users can click each node in the
graph to access the view definition in the exist-
ing SQLShare interface. Second, we’re rendering
each table name in a view definition as a link if it
refers to a view, affording more direct navigation
through the hierarchy.

semiautomatic visualization. Visualization is an
immediate requirement among frequent users of
SQLShare. VizDeck is a Web-based visualiza-
tion client for SQLShare that uses a card game
metaphor to assist users in creating interactive
visual dashboard applications in just a few sec-
onds without training.4 VizDeck generates a hand
of ranked visualizations and UI widgets, and the
user plays these cards into a dashboard template,
where the program automatically synchronizes
the cards into a coherent Web application that
the user can save and share with other users. By
manipulating the hand dealt—that is, playing the
“good” cards and discarding unwanted cards—the
system learns statistically which visualizations
are appropriate for a given dataset, improving the
quality of the hand dealt for future users.

automatic starter queries. SQLShare users fre-
quently lack significant SQL expertise, but they’re
fully capable of modifying example queries to suit
their purposes (see, for example, the Sloan Digital
Sky Survey; http://cas.sdss.org). For some collab-
orators, we seed the system with starter queries by
asking them to provide English questions that we
translate (when possible) into SQL. This manual
approach doesn’t scale, however, so we’ve explored
automatically synthesizing good example queries
from the data’s structural and statistical features.5
Users upload data and example queries that in-
volve reasonable joins, selections, and unions;
SQLShare automatically generates GROUP BYS.
We’re in the process of deploying this feature in
the production system.

T he early response to our system has
been remarkable. One postdoctoral
fellow was pretty excited during the
first demonstration when a simple

SQL query that was written live in less than a

minute produced a result she had spent a week
creating manually by cleaning and prefiltering a
handful of spreadsheets and then computing a join
between them using copy-and-paste techniques.
Within a day, the same researcher had derived and
saved several new queries.

This isn’t an isolated experience: the direc-
tor of her lab has contributed several of her
own SQL queries. She commented that the tool
“allows me to do science again,” explaining that
she felt “locked out” from personal interaction
with her data because of technology barriers, rely-
ing instead on indirect requests to students and IT
staff. She’s not alone—as we mentioned, more than
2,500 views have been saved in the SQLShare sys-
tem by more than 350 users since its deployment.

We originally focused on facilitating explor-
atory, interactive analysis of datasets that were
outgrowing script-oriented solutions. However, as
we’ve described here, a pure SQL approach to sci-
entific workflow realizes a variety of advantages,
even relative to workflow management systems
that are designed expressly for these situations.
We find that the provenance, maintainability, lazy
evaluation, and scalability provide a “white-box”
workf low solution that’s markedly superior to
“black-box” approaches that rely on scripts and files.

Our next steps include surfacing the provenance
information in the UI in a more direct way, letting
users browse and interact with the hierarchy of views
like that in Figure 2. We’re also exploring a distrib-
uted deployment of SQLShare to allow multiple
universities to share data in a controlled way. To
support sensitive data, we’re establishing a locally
deployable version of SQLShare that’s compliant
with the Health Insurance Portability and Account-
ability Act (HIPAA), International Traffic in Arms
(ITAR), and Family Education Rights and Privacy
Act (FERPA) regulations. Visit http://sqlshare.
escience.washington.edu to access this system.

Acknowledgments
This research was sponsored by US National Science
Foundation award 1064505, the Gordon and Betty
Moore Foundation, and Microsoft Research.

References
1. J. Swalwell, F. Ribalet, and E.V. Armbrust, “SeaFlow: A

Novel Underway Flow-Cytometer for Continuous

Observations of Phytoplankton in the Ocean,”

Limnology and Oceanography: Methods, 2011, vol. 9,

pp. 466–477.

2. E.F. Codd, “A Relational Model of Data for Large

Shared Data Banks,” Comm. ACM, 1970, vol. 13,

no. 6, pp. 377–387.

CISE-15-3-Howe.indd 30 6/6/13 7:35 PM

3. F. Ribalet, D.M. Schruth, and E.V. Armbrust, “Flow-

Phyto: Enabling Automated Analysis of Microscopic

Algae from Continuous Flow Cytometric Data,”

Bioinformatics, vol. 27, no. 5, 2011, pp. 732–733.

4. A. Key et al., “VizDeck: Self-Organizing Dashboards

for Visual Analytics,” Proc. ACM Sigmod Conf., ACM,

2012, pp. 681–684.

5. B. Howe et al., “Database-as-a-Service for Long-

Tail Science,” Proc. 23rd Scientific and Statistical Data-

base Management Conf., Springer-Verlag, 2011,

pp. 480–489.

bill howe is the Director of Research for Scalable
Data Analytics at the University of Washington
eScience Institute and an affiliate assistant profes-
sor in the Depar tment of Computer Science
and Engineering. His research interests include
data management, analytics, and visualization sys-
tems for science applications, with an emphasis on
domain-specific query languages and query alge-
bras. Howe has a PhD in computer science from
Portland State University. He currently leads the
SQLShare, VizDeck, and GridFields projects, and
co-leads the Myria project that aims to provide a
cloud-hosted service for large-scale data manipula-
tion and analytics targeting scientists. Contact him
at billhowe@cs.washington.edu.

Francois ribalet is a research assistant professor of
oceanography in the Armbrust Lab at the University of
Washington. His research interests include microbial
communities across ocean basins. Ribalet has a PhD in

biological sciences from the Open University of London,
UK. Contact him at ribalet@u.washington.edu.

daniel halperin is a postdoctoral researcher at the
University of Washington eScience Institute, where he
contributes to SQLShare, Myria, and other projects. His
prior research focused on wireless networking and secu-
rity. Halperin has a PhD in computer science and engi-
neering from the University of Washington. His research
has earned best paper awards at the 2008 IEEE Security
and Privacy conference and 2013 USENIX Networking
Systems Design and Implementation conference, and
several of his projects have been featured in the New
York Times and on PBS NOVA ScienceNOW. Contact
him at dhalperi@escience.washington.edu.

sagar chitnis is a research engineer at the University
of Washington eScience Institute and currently leads
the development of SQLShare. His research interests
include cloud systems, automated testing, embedded
computing, and managed deployment. Chitnis holds
a master’s degree in computer science from the Uni-
versity of Southern California (USC). Contact him at
sagarc@cs.washington.edu.

e. virginia armbrust is a professor of oceanogra-
phy at the University of Washington. Her research
interests include marine microbes and ecosystems.
Ambrust has a PhD in biological oceanography from
the Massachusetts Institute of Technology and the
Woods Hole Oceanographic Institution. Contact her
at armbrust@u.washington.edu.

The American Institute of Physics (AIP) is a not-for-pro t membership corporation chartered
in New York State in 1931 for the purpose of promoting the advancement and diffusion of the
knowledge of physics and its application to human welfare. Leading societies in the elds of
physics, astronomy, and related sciences are its members.

In order to achieve its purpose, AIP serves physics and related elds of science and technology
by serving its member societies, individual scientists, educators, students, R&D leaders, and the
general public with programs, services, and publications—information that matters.

The Institute publishes its own scienti c journals as well as those of its member societies;
provides abstracting and indexing services; provides online database services; disseminates
reliable information on physics to the public; collects and analyzes statistics on the profession and
on physics education; encourages and assists in the documentation and study of the history and
philosophy of physics; cooperates with other organizations on educational projects at all levels;
and collects and analyzes information on federal programs and budgets.

The scientists represented by the Institute through its member societies number more than
134,000. In addition, approximately 6,000 students in more than 700 colleges and universities
are members of the Institute’s Society of Physics Students, which includes the honor society
Sigma Pi Sigma. Industry is represented through the membership of 37 Corporate Associates.

Governing Board: Louis J. Lanzerotti* (chair), Richard Baccante, Barry Barish, Malcolm R. Beasley,
G. Fritz Benedict, J. Daniel Bourland,* Terri Braun, Robert Byer, Timothy A. Cohn, Beth Cunningham,*
Bruce H. Curran,* Robert Doering, Michael D. Duncan,* H. Frederick Dylla*(ex of�cio), David Ernst,
Janet Fender, Judith Flippen-Anderson,* Brian J. Fraser,* Jaime Fucugauchi, A. Jeffrey Giacomin,*
Mark Hamilton, John Haynes, Paul L. Kelley, Angela R. Keyser, James T. Kirby Jr, Kate Kirby,*
Rudolf Ludeke,* Jim Marshall, Kevin B. Marvel,* Christine McEntee, Catherine O’Riordan, Elizabeth
A. Rogan, Charles E. Schmid,* Benjamin B. Snavely* (ex of�cio), David Sokoloff, Scott Sommerfeldt,
Gene Sprouse, Gay Stewart, Hervey (Peter) Stockman, Michael Turner.

 *Executive Committee member.

Management Committee: H. Frederick Dylla, Executive Director and CEO; Richard Baccante,
Treasurer and CFO; Theresa C. Braun, Vice President, Human Resources; John S. Haynes, Vice
President, Publishing; Catherine O’Riordan, Vice President, Physics Resources; Benjamin B.
Snavely, Secretary.

w
w

w
.a

ip
.o

rg

CISE-15-3-Howe.indd 31 6/6/13 7:35 PM

