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ABSTRACT
We present a system to support generalized SQL workload analysis
and management for multi-tenant and multi-database platforms.
Workload analysis applications are becoming more sophisticated to
support database administration, model user behavior, audit secu-
rity, and route queries, but the methods rely on specialized feature
engineering, and therefore must be carefully implemented and reim-
plemented for each SQL dialect, database system, and application.
Meanwhile, the size and complexity of workloads are increasing as
systems centralize in the cloud. We model workload analysis and
management tasks as variations on query labeling, and propose
a system design that can support general query labeling routines
across multiple applications and database backends. The design
relies on the use of learned vector embeddings for SQL queries as
a replacement for application-specific syntactic features, reducing
custom code and allowing the use of off-the-shelf machine learning
algorithms for labeling. The key hypothesis, for which we provide
evidence in this paper, is that these learned features can outperform
conventional feature engineering on representative machine learn-
ing tasks. We present the design of a database-agnostic workload
management and analytics service, describe potential applications,
and show that separating workload representation from labeling
tasks affords new capabilities and can outperform existing solutions
for representative tasks, including workload sampling for index
recommendation and user labeling for security audits.
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1 INTRODUCTION
Extracting patterns from a SQL query workload has enabled a num-
ber of important features in database systems, including workload
compression [3], index recommendation [2], modeling user and
application behavior [9, 31, 35], query recommendation [1], pre-
dicting cache performance [5, 29], and designing benchmarks [35].
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These techniques can be used as part of a more comprehensive
approach to automate database administration [26].

However, the diversity of applications have led to a diversity
of solutions, each relying on specialized feature engineering. For
example, workload summarization for index recommendation uses
the structure of join and group by operators as features [3], query
recommendation may pre-process a query into fragments before
making recommendations [13], and security audits may require
user-defined functions to enforce particular policies [32].

In fact, the features and the algorithms to extract them tend to
be the significant contributions in the papers in this space. But
the state of the art in a variety of applications is to learn features
automatically. For instance, Natural Language Processing appli-
cations previously relied on parsing and labeling sentences as a
pre-processing step, but now use learned vector representations
almost exclusively [6, 28]. This approach not only obviates the need
for manual feature engineering and pre-processing, but also has
the potential to significantly outperform more specialized methods.

We see three trends motivating an analogous role for general-
ized workload representations. First, workload heterogeneity is
increasing, making it difficult to maintain SQL parsers and feature
extraction routines. The number of SQL-like languages is increasing,
with inconsistent support and syntax for even relatively common
features such as outer joins. Second, workload scale is increasing.
Cloud-hosted, multi-tenant database services including Redshift [8],
Snowflake [4], BigQuery [23] and more receive millions of queries
daily from thousands of customers using hundreds of schemas;
relying on brittle parsers (or worse, manual inspection) to iden-
tify query patterns that influence administration decisions is no
longer tenable. Third, new use cases for centralized workload man-
agement are emerging. For example, SQL debugging [7], database
forensics [27], and data use management [32] motivate a more
automated analysis of user behavior patterns, and cloud-hosted
multi-tenant systemsmotivate a more automated approach to query
routing and resource allocation.

In this work, we propose Querc, a database-agnostic systems for
mining andmanaging large-scale and heterogeneousworkloads.We
model workload management and analysis as a set of query labeling
tasks. For instance, workload sampling can be reduced to labeling
each query as present or absent in the sample, error prediction
involves labeling each query with an error type, query routing
involves labeling each query with a cluster resource to which the
query should be routed, and so on. Because our framework depends
only on the query text (along with typical metadata such as arrival
timestamp and userid issuing the query), it can be used with any
DBMS and any SQL dialect. In fact, as we will show, features learned
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with a workload against a particular schema and SQL dialect can be
effective even when used with a different schema and SQL dialect.

The weakness of this approach is that it requires enormous
amounts of data to be effective. But as database products migrate to
the cloud, service providers have access to workloads from a large
number of customers, potentially even across different database
products. Since the input is just the query text, these diverse work-
loads can be processed as one very large dataset. But the resulting
vectors can still be used to train models to support specific appli-
cations, as we will show on two representative tasks: workload
summarization for index selection and user prediction for security
audits and routing.

2 SYSTEM ARCHITECTURE
Figure 1 illustrates the architecture of Querc. There are three ap-
plications, X, Y, Z. Each application has its own database, DB(X),
DB(Y), and DB(Z), though thesemay be logical instances in the same
physical multi-tenant service. In this example, DB(X) and DB(Y) are
tenants in the same service. Each application is also associated with
a separate stream of queries (at left), where query(X,t) indicates a
batch of queries arriving for application X at time instant t .

Each application is associatedwith oneQworker, but eachQworker
operates multiple classifiers. Qworkers may not be entirely state-
less, as some labeling tasks process a small window of queries.
However, the state is assumed to be small such that the Qwork-
ers do not need their own local storage and can be load balanced
and parallelized in typical ways. Each classifier is a pre-trained
(embedder, labeler) pair. The same trained embedder may be used
across multiple applications. This split design is critical, because
we want to learn features using a very large, combined workload,
but an individual classifier may perform better when trained on an
application-specific workload. In this example, application X and
application Y both share the same embedder, EmbedderA, trained
on the combined X and Y workloads, written EmbedderA(X,Y). This
log sharing between customers may not always be permitted by
customers for security reasons, and in this example, application Z
uses only its own data. But there is some incentive for customers
to pool their data as the additional signal can potentially improve
accuracy, and some cloud providers support features to allow data
sharing between customers.

The Labeler passes the query on to the database, but also trans-
mits the query back to a central training module (“Training, Eval-
uation, and Offline Labeling” in Figure 1). The training module
manages training sets, including the (parallel) execution of train-
ing and evaluation routines, then deploys trained models back to
Qworkers. There is significant ongoing research in the database,
systems, and ML communities on runtime architectures for training
and deploying models (e.g., [21]); we do not discuss them further
since our requirements are relatively modest.

Since Querc is specialized for query workload analytics rather
than general machine learning, one datamodel can be shared among
most applications. The only messages passed between components
are labeled queries. A labeled query is a tuple (Q, c1, c2, c3, . . . )
where ci is a label. This simple model captures situations where a
query arrives already equipped with a timestamp, a userid, an IP
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Figure 1: System architecture. Queries arrive for three dif-
ferent applications X , Y , and Z and are processed by one or
more (embedder, labeler) pair before being sent on to the
database, centralized for offline labeling tasks, or both.

address, etc., but also captures more verbose query logs that are
returned from the database.

The training module also records the queries with their predicted
labels for retraining, evaluation, and to support offline analysis
tasks. Offline tasks are those that do not require or do not allow pro-
cessing each query separately, and can be implemented as typical
batch jobs. For example, query clustering is important for work-
load summarization [16], but does not require real-time labeling of
individual queries.

Training data is collected periodically from the databases in the
form of query logs. These logs are (batched) sequences of labeled
queries, but with additional labels to be used for training, such
as runtime, memory usage, error codes, security flags, resource
IDs. We do not specify the mechanism by which these logs are
transmitted from the database to Querc, since most systems have
robust means of exporting logs in appropriate forms.

In some applications, Querc may not be in the critical path for
query execution to avoid any performance overhead or reduce
dependencies. In these cases, queries will be forked to Querc. No
change to the architecture is required in this case; queries come in,
and labeled queries are collected in the training module. The query
is simply not forwarded to the database.

This architecture is not designed for continuous learning, as the
training is handled separately from real time query labeling. Not all
algorithms can support fully continuous learning, and an important
design goal is to support simple machine learning algorithms as
labelers. Model training is therefore assumed to occur infrequently
as a batch job.

3 LEARNING VECTOR REPRESENTATIONS
There are multiple choices for embedders; we describe two initial
models we evaluate in this paper:
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Figure 2: The LSTM Autoencoder network architecture
learns to generate the input token in the decoding phase.
Once trained, the encoder can be used to output a vector rep-
resentation for the text of a query.

Context prediction models: Mikolov et al. [17, 24, 25] pro-
posed learning a vector representation for words by predicting the
next word in a context, and then deriving a vector representation
for larger semantic units (sentences, paragraphs, documents) by
adding a vector representing the paragraph to each context as an
additional “word." The learned vector for this virtual context word
is used as a representation for the entire paragraph. This "Doc2Vec"
method has been shown to capture semantic relationships that work
well for, say, sentiment classification and clustering tasks [14, 18].
This approach can be applied directly for learning representations
of SQL queries: We can use fixed-size context windows to learn a
representation for each token in the query, and include an identifier
to learn a representation of entire query.

LSTM AutoEncoders: The paragraph vector approach in the
previous section is viable, but it requires a hyper-parameter for the
context size. There is no obvious way to determine a context size for
queries, for two reasons: First, there may be semantic relationships
between distant tokens in the query. Second, the length of queries
vary widely in ad hoc workloads [10, 12]. To avoid setting a context
size, we can use Long Short-Term Memory (LSTM) networks [36],
which are modified Recurrent Neural Networks (RNN) that can
automatically learn how much context to remember and how much
of it to forget, thereby removing the dependency on a fixed context
size. LSTMs have successfully been used in sentence classification,
semantic similarity between sentences and sentiment analysis [30].
We use a standard LSTM encoder decoder network [20, 37] with
architecture as illustrated in Figure 2.

An LSTM autoencoder is trained by sequentially feeding words
from the query to the network one word at a time, and then attempt-
ing to reproduce the input. The LSTM network not only learns the
encoding for the samples, but also the relevant context window as-
sociated with the samples. The final output of the encoder network
gives us an encoding for the query. Once this network has been
trained, an embedded representation for a query can be computed
by passing the query to the encoder network, completing a forward
pass, and using the hidden state of the final encoder LSTM cell as
the learned vector representation.

There are multiple prior approaches in the NLP literature that
compare the efficacy of these models and their relative performance
[17, 22, 30]. For this paper, we consider context-based models (i.e.,
doc2vec) and LSTM AutoEncoders.

4 APPLICATIONS
The applications supported by this system reduce to query labeling,
and general workflow consists of two machine learning models: a

representation learner (an embedder) and a classifier. We split the
task into two parts to allow the same representation to be used for
multiple applications.

Workload summarization for index recommendation: The
goal [3, 16] is to find a representative sample of the workload as
input to further database administration, tuning, and testing tasks
[3, 33]. In particular, workload summarization aids index recommen-
dation, since the recommendation process is typically quadratic in
the size of the workload [3]. While index recommendation systems
are well-studied and ship with most production databases [2, 3], the
quality of the representative sample determines the overall quality
of the final recommendations. In Section 5, we show that a simple
sampling procedure using learned features delivers a significant
runtime improvement over the built-in sampling procedure in the
SQL Server database system.

Enforcing query routing policies: Query Routing in a dis-
tributed database involves identifying the cluster resources on
which to execute the incoming query. The policies that govern these
routing decisions may involve customer SLAs, security considera-
tions (e.g., certain applications must use a physically distinct cluster
from other applications), auditing requirements (e.g., queries from
certain accounts or those accessing certain tables must be logged
for auditing purposes). Even in modern cloud-hosted database prod-
ucts such as Snowflake [4] and BigQuery [23], these policies tend
to be manually encoded, and management of these policies as they
evolve, while maintaining multiple heterogeneous clusters used
by thousands of customers, is increasingly perceived as untenable.
Under the hypothesis that queries that follow a particular policy
tend to have similar features, Querc can help identify policy miscon-
figuration by detecting when a predicted routing decision differs
from the assigned routing decision.

Error prediction: Particular syntax patterns in the workload
may be associated with resource errors or bugs in the database sys-
tem. In a multi-tenant, multi-database, and high-volume scenario,
identification of the syntactic patterns that tend to trigger errors,
either manually or with scripts, becomes untenable: there may be
hundreds of error codes, each with hundreds of subtle patterns that
tend to trigger them, across hundreds of tenant schemas. Using
learned features, a classifier to predict errors from syntax is trivial
to engineer. This prediction allows the query to be routed to a dif-
ferent runtime environment that is instrumented, equipped with
more more memory per node, or running a more stable version of
the database engine. We consider this application in a tech report
companion to this paper [11].

Resource allocation: The structure of the query is not suffi-
cient to accurately predict its runtime or memory footprint, but
it can provide a hint that can be used for load balancing, schedul-
ing, and as an input for optimization. If we can coarsely categorize
queries as memory-intensive, long-running, etc. with some degree
of accuracy, these labels can be used as a simple, database-agnostic
way to speculatively allocate resources. Training data is readily
available from the query logs themselves. We consider this applica-
tion in a tech report companion to this paper [11].

Query recommendation: The query recommendation prob-
lem can be modeled as a prediction of the next query the user will
submit to the database based on the recent history of queries [1].
This prediction is then shown to the user though an appropriate
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Figure 3: Workload runtime using indexes recommended
under various time budgets. For most time budgets, the
workload summaries improve runtimes, even when the
embedders were trained on an unrelated workload (lstm-
Snowflake and doc2vecSnowflake).

client application to assist in query authoring. Our framework can
generate features that can be used to train query recommendation
models. We consider this application in a tech report companion to
this paper [11].

Security auditing: To the extent that users’ individual work-
loads tend to follow predictable patterns, an anomalous query may
be a sign that a user’s account has been compromised. By formulat-
ing a prediction problem that tries to guess the user that submitted
the query from the syntax alone, we can identify anomalous queries
for security audits. In our framework, the labeler is a simple classi-
fier V → user .

5 EXPERIMENTS
We consider two applications: Workload summarization for index
selection, and labeling tasks for security audits and query routing.

5.1 Workload Summaries for Index Selection
The workload summarization task (with respect to index recom-
mendation) is to find a subset Qsub of a given query workload Q ,
such that the set of indexes recommended based on Qsub is similar
to the the set of indexes recommended for the overall workload
Q . Previous solutions are primarily variants of the approach of
Chaudhuri et al. [3], which uses K-medioids to cluster the queries
and selects a witness query from each cluster. However, the authors
emphasize that a custom distance function should be developed for
specific workloads; our hypothesis is that generic representation
learning approaches obviate the need for these custom distance
functions.

In the Querc framework, this task is offline and does not require
real-time labeling of queries. Instead, we perform the task as an
offline unsupervised learning task. In our approach, we assign each
query to a vector (using a suitably trained embedder), then simply
use K-means to find K query clusters and pick the nearest query to
the centroid in each cluster as the representative subset. To deter-
mineK , we use an intentionally simple method (the “elbowmethod"
[15]) which runs the K-means algorithm in a loop with increasing
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Figure 4: Runtime for each query under no indexes and un-
der indexes recommended with a three-minute time budget.
For a few specific queries, the presence of a recommended
index results in significantly worse performance.

K till the rate of change of the sum of squared distances from cen-
troids plateaus. Although better methods exist, we highlight the
effect of the learned vectors rather than the choice of K .

Setup: Following the evaluation strategy of Chaudhuri et al.[3],
we first run the index selection tool on the entire workloadQ , create
the recommended indexes, and measure the runtime tor iд for the
original workload. We then run use the workload summarization
algorithm to produce a reduced set of queriesQsub , re-run the index
selection tool, create the recommended indexes, and again measure
the runtime tsub of the entire original workload. We use SQL Server
2016 and the Database Engine Tuning Advisor, which performs its
own summarization on the input according to the documentation.
We use anm4.larдe AWS EC2 instance as the server. We use TPC-H
with scale factor 1 as the workload for comparison with previous
results and to interpret the recommended indexes, but we also
show how the method performs when trained on a more complex
Snowflake workload.

We pass the summarized workload to the tuning advisor, along
with a time budget (a parameter supported by the tuning advisor).
Each experiment involves clearing caches, generating indexes, ap-
plying the indexes, and running the full workload. We report the
time running the workload; the time budget specifies the time limit
under which the advisor must return a set of recommendations.

Results: Figure 3 shows the results. The x-axis is the time
budget, and the y-axis is the runtime for the entire workload after
building the recommended indexes. For time budgets less than 3
minutes, the advisor does not produce any index recommendations
for any method, and the runtime is constant at 1200 seconds. As we
relax the time budget, different sets of indexes are recommended,
each associated with a separate runtime. The full workload (blue
line) varies dramatically with the time budget, and surprisingly it
gets worse before it gets better. For the summarized workloads,
the workload is small enough that the runtimes are constant: Once
three minutes have elapsed, the advisor has found the “optimal" set
of indexes, and allowing more time does not change the result.

We evaluate four trained embedders: two methods on two work-
loads. The two methods are Doc2Vec and the LSTMAutoencoder,
and the two workloads are TPC-H itself, and a separate workload
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Account
Labeling

User
Labeling

Doc2Vec 78.8% 39%
LSTMAutoencodder 99.1% 55.4%

Table 1: Query Labeling results

of 500,000 queries from the Snowflake service. When training the
embedder on TPC-H (doc2VecTPCH and lstmTPCH), the advisor
finds close-to-optimal indexes in about three minutes as opposed
to the six minutes the advisor requires on the full workload. Sur-
prisingly, under tight time budgets, the index recommendations
made by the native system can actually hurt performance relative
to having no indexes at all. The reason is that the optimizer chooses
a bad plan for a few particular queries, but the effect is enough to
hurt the overall runtime. Figure 4 shows the sequence of queries in
the workload on the x-axis and the runtime for each query on the
y-axis under no indexes and the low-quality indexes found at the
three-minute time budget. All instances of TPC-H query 18 (queries
640-680 in Figure 4) take much longer than they would take when
run without these indexes, because the optimizer finds a bad plan.

Transfer Learning: Figure 3 also illustrates the capacity for
transfer learning using Querc: When training the embedder on the
snowflake dataset — a completely unrelated workload to TPC-H
workload in the SQL Server dialect — the summarized workload
still outperforms native SQL Server for most time budgets. This
transfer learning effect allows us to bootstrap new applications
without waiting for a representative workload to accumulate, and
to avoid having to repeatedly re-implement brittle parsers and
feature extractors for each new dialect of SQL we encounter.

5.2 Labeling for Security Audits
We consider the conditions under which the learned features from
query syntax are sufficient to predict username and customer ac-
count, where each customer has many users. When the predicted
username differs from the actual username, we can potentially flag
the query for an audit. Predicting username can help flag queries for
security audits, account and cluster labels can identify misrouted
queries. labels from query syntax using the two embeddingmethods
described in Section 3 over the Snowflake dataset.

Setup: We use embedders pre-trained on 500000 Snowflake
queries. The experiment itself is run on another dataset of 200000
Snowflake queries labeled with username, account_id and clus-
ter_name for the cluster that ran the query. Next we train classifiers
(randomized decision trees) for username and customer account.

Results: Table 1 shows the results for the labeling experiments.
The numbers denote the 10-fold cross validation score on the respec-
tive task. We find that LSTM based embedders beats Doc2Vec on
all tasks. The LSTM method achieves near perfect accuracy when
predicting the customer account, which is because it automatically
incorporates signal from the schema, and different customers use
primarily different schemas (there are instances of shared schemas,
but that is the less common case). The method was completely
generic and knows nothing about schemas or queries. For user
prediction, the task is more difficult, and the overall accuracy is
lower at 55%. Upon further analysis we found that the user labeling

#queries #users accuracy
73881 28 49.3%
55333 10 37.4%
18487 46 31.8%
5471 21 96.2%
4213 6 58.5%
3894 12 99.7%
3373 9 99.8%
2867 6 99.8%
1953 15 89.1%
1924 4 98.1%
1776 9 95.2%
1699 5 99.8%
1108 12 98.2%

Table 2: Top accounts with user prediction accuracy.

task has > 95% accuracies for a majority of accounts (Table 2). The
accounts that had poor accuracies for user labeling had one distinc-
tive property: multiple users running the exact same query, making
the users nearly indistinguishable. In the sample of workload that
we were working with, there were two accounts that had a number
of repetitive queries by different users (for instance, 69% percent of
the 74000 queries in an account had more than one user label), and
these two accounts also covered around 65% of the total queries,
bringing down the overall accuracy of classifiers.

6 FUTUREWORK
Other methods: There are a variety of other methods for learn-
ing representations of text that we do not evaluate in this paper.
Our goal is not to identify the best possible representation learn-
ing approach but rather to show that these methods can compete
with and outperform classical approaches that rely on task-specific
heuristics and feature engineering (extracting JOIN clauses, count-
ing the number of attributes, etc.), and to organize the methods
into a coherent system architecture.

Alternative methods can be roughly categorized into non-neural-
network based methods and neural-network-based methods. The
non-neural-network-based methods, including non-negative ma-
trix factorization (NMF), bag-of-words representations, and LDA
[22] have been shown to be less effective than neural-network-
based-methods in a variety of contexts [19, 25]. Apart from the
methods considered in this paper, there are more recent neural-
network-based methods using Convolutional Neural Networks
(CNNs) adapted for text data. However, Yin et al. [34] showed that
RNN based methods (e.g., LSTMs) perform well and are robust in a
broad range of tasks when compared to CNNs. However, we plan
to extend the current work to include a rigorous comparison of the
techniques not covered in this paper.

Publish pre-trained models: The results in Section 5 demonstrate
that the proposed framework in this paper has potential to use pre-
trained models on generic workloads to aid analytics for previously
unseen query. In future work, we will build this framework as a
service which is accessible by third parties. Given the workloads
that we have access to from Snowflake [4], such a service could be
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really beneficial for researchers who do not have access to massive
query workloads.

7 CONCLUSIONS
We presented the architecture for Querc, a database-agnostic work-
load analytics service that captures the structural and schema pat-
terns present in the query workload automatically, largely elimi-
nating the need for the specialized syntactic feature engineering
that has motivated a number of papers in the literature. The pro-
posed architecture provides a new way of organizing a variety of
database administration and user productivity tasks, and provides
a mechanism by which to automatically adapt database operations
to specific query workloads. Our evaluation of this architecture
showed that our general framework outperformed or was compet-
itive with previous approaches that required specialized feature
engineering, and also admitted simpler classification algorithms
because the inputs are numeric vectors with well-behaved algebraic
properties rather than result of arbitrary user-defined functions for
which few properties can be assumed. The use of transfer learning
in Querc allows workload analytics to be SQL dialect independent
and enables the capability to bootstrap new analytics tasks and
avoid re-implementing brittle codes paths.
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