PACKAGE = immatch
TASK = imcombine
input =
@object
List of images to combine
output = object1.fits
List of output images
(headers=
) List of header files (optional)
(bpmasks=
) List of bad pixel masks (optional)
(rejmask=
) List of rejection masks (optional)
(nrejmas=
) List of number rejected masks (optional)
(expmask=
) List of exposure masks (optional)
(sigmas
=
) List of sigma images (optional)
(logfile=
STDOUT) Log file
(combine=
average) Type of combine operation
(reject
=
minmax) Type of rejection
(project=
no) Project highest dimension of input images?
(outtype=
real) Output image pixel datatype
(outlimi=
) Output limits (x1 x2 y1 y2 ...)
(offsets=
none) Input image offsets
(masktyp=
none) Mask type
(maskval=
0.) Mask value
(blank
=
0.) Value if there are no pixels
(scale
=
none) Image scaling
(zero
=
none) Image zero point offset
(weight
=
none) Image weights
(statsec=
) Image section for computing statistics
(expname=
) Image header exposure time keyword
(lthresh=
INDEF) Lower threshold
(hthresh=
INDEF) Upper threshold
(nlow
=
1) minmax: Number of low pixels to reject
(nhigh
=
1) minmax: Number of high pixels to reject
(nkeep
=
1) Minimum to keep (pos) or maximum to reject (neg
(mclip
=
yes) Use median in sigma clipping algorithms?
(lsigma
=
3.) Lower sigma clipping factor
(hsigma
=
3.) Upper sigma clipping factor
(rdnoise=
0.) ccdclip: CCD readout noise (electrons)
(gain
=
1.) ccdclip: CCD gain (electrons/DN)
(snoise
=
0.) ccdclip: Sensitivity noise (fraction)
(sigscal=
0.1) Tolerance for sigma clipping scaling correction
(pclip
=
-0.5) pclip: Percentile clipping parameter
(grow
=
0.) Radius (pixels) for neighbor rejection
(mode
=
ql)