Key Concepts of Monday

- How can we search for the center of the cosmos?
- Charting the universe
 - Finding distances (our tool: Standard Candles)
 - Finding speeds (our tool: Doppler Shift, z)
 - Relationship between z and speed (low/high speeds)
 - Correlating distances and speeds (Hubble Diagram)

Coming soon (Homework 3) Does the Hubble Diagram require that we are at the cosmic center? Enter Einstein 1905+ The Shape of Space Highlights of Text Chapter 1

Einstein and a radical new view of space and time

Einstein's ANNUS MIRABILIS papers (1905-06)

(https://en.wikipedia.org/wiki/Annus_Mirabilis_papers)

Four Revolutionary Papers:

(Measurement of the sizes of molecules)

- 1. Brownian motion (heated atoms migrate throughout a containing vessel)
- 2. Photoelectric effect (introduction of "photons"), Nobel Prize, 1922
- 3. Special Relativity (meaning of "simultaneity" and inertial reference frames)
- 4. Mass-energy equivalence (E_{rest} = mc²)

Principles of special relativity

• the laws of physics remain the same for any "inertial" (non-accelerating) frame of reference

• the speed of light has the same value in all inertial frames of reference, independent of the state of motion of the emitting body

• there is no absolute frame of reference

Principles of general relativity

- experiment cannot distinguish causes of acceleration (springs, gravity, etc)
- the paths of light are influenced by gravity (globally and near masses)

Einstein Sets the Stage

Mass and energy are equivalent

Let's look under the hood.

This is why mass can't be accelerated to the speed of light: Requires infinite energy!

Scales measure force

Equivalence Principle

Scales respond equivalently in gravity or an accelerating reference frame. Weight and acceleration are the same.

EASY TO USE

Step and Read-Immediate readings as soon as you step on the bathroom scale

Einstein's Equivalence Principles You can't tell the difference

weightlessness

Weightlessness is possible with or without gravity. You can't tell if you're in an empty universe or a freefalling elevator.

weight and curvature

Light traversing an accelerating rocket **OR** under the influence of gravity follows a curved path. *You can't tell the difference.*

The Curvature of Space

Masses bend space locally.

Gravity and the curvature of space are equivalent.

Since space is curved, all paths through space (including light rays) are also curved.

Black Holes merging https://media.giphy.com/media/OANp03XvXEV9u/giphy.gif

GRAVITY IS THE EFFECT OF CURVED SPACE.

Einstein's famous prediction was verified. He became an instant rock star!

EINSTEIN: POSSIBLE SHAPES OF SPACE

1917: General Relativity: The Field Equation(Cosmic & Local)

"A gravitational field acts on matter telling it how to move. . . matter generates gravitational fields in space-time, telling it how to curve" Text, middle of page 40

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Left side: the shape of space Used to derive the shortest path between points **x** and **y** (light must take it) Right side: The directional "stresses" on space imposed by gravity

Note: cause and effect are not distinguished: mass bends space; the bending of space causes acceleration (deviations from uniform motion); accelerations and bending of space are equivalent

Expanding for sure! Even so, does the Universe actually change???

SS: If cosmic density is really constant and its volume increases then new matter must constantly be created in situ!

Early Theoretical Cosmology

A Universe that can't sit still: from Einstein to LeMaitre

Everyone had long believed in a static Universe

- When he derived General Relativity Einstein realized that his equations had the same problem as Newton's falling sky: imminent gravitational collapse!
- DeSitter showed that an empty universe with matter was stable if it expanded fast enough. Friedman (others) . . .
- In 1927 Lemaitre proposed that Hubble's observations of increasing galaxy-distances was the result of the expansion of space itself (raisin cake, balloon, and trampoline analogies)
 - Nothing can move through space faster than light,
 - but this restriction doesn't apply to space itself!
 - Galaxies don't move **THROUGH** space, they move **WITH** it.

Important!

Expanding Space or Flying Galaxies: They aren't equivalent.

How can we rule one (or both) out?

The Restless Universe Hubble (and colleagues) Highlights of Text Chapter 2

Edwin Hubble 1889 – 1953

100 inch Mt Wilson Telescope

Milton Humason 1891 – 1972

Vesto Slipher 1875 – 1969

Fritz Zwicki 1898 – 1974

Allan Sandage 1926 – 2010

1920s: Slipher and his spectra

1920s: Hubble and his first diagram

Humason's observing skills

Hubble presents the "Hubble Diagram"

If our view is universal then the entire Universe is expanding (with no center)!

Galao

Density decreases

Galaxi

time

Galaxies are conserved, so the distances between them increase; i.e., their density declines. However, individual galaxies and clusters of galaxies don't get any larger since they are bound together by their internal (strong) gravitational forces.

Examples of things in an expanding space You are sitting on one raisin in the center of a rising loaf of raisin bread. You see every other raisin receding You are from you, and those here further away are receding faster.

Does expansion define the center of space?

Hubble estimates the age of the Universe

Play it backwards!

Any (every) pair of galaxies collide at time (separation)/(recession speed)

All pairs or galaxies collide at a universal "Hubble time" = Gy ago

Roadmap

- Density is Destiny: How can the density be measured?
- Sandage searches for signs of early gravitational deceleration. No luck.
- Measuring Galaxy Masses: it's Easy!
 - (if you know the distance)
- What's the Matter? We can feel it, but we can't see it.
 - Skip ahead to Chapter 6: DARK MATTER esp. page 193-201
- Dark Matter in the Milky Way and other galaxies
- Observational 'Proof' of Dark Matter: Gravitational Lenses

Cosmic Expansion:Can Gravity Slow it Down?

What is the fate of the cosmos ? Its gravity (aka mass density) determines the gravitational fate of the Universe

No theory predicts the mass density.

Hubble, Sandage, and Collaborators 1930 – 1970s: Can gravity slow the expansion down?

Hubble and his student Alan Sandage search for cosmic deceleration (that is, curvature in the basic "Hubble Law"): I les telescopes du Mont Palomar ... 1950s to 1980s Sandage and others use the 200-inch telescope to extend Hubble's correlation plot to thousands of faint galaxies

