

Where's the Center?

The power of symmetry

Where's the Center?

1920s: Shapley and "Globular Clusters"

Our Observational Toolkit

- Our toolkit of Vital Measurement Methodologies
- Cosmocartography I: How we measure cosmic distances
- "standard candles"
- Cosmocartography II: How we measure cosmic speeds
- "Doppler shifts, $\Delta \lambda$ " (aka redhifts $z = \Delta \lambda / \lambda_0$)
- How z relates to the speed of recession when z < 0.7
- How this relation changes when z > 0.7

Cosmocartography I: Measuring distances

Radiation, Luminosity, Brightness, and the Inverse Square Law

 Luminosity: the total rate of light emission (energy per seond)

Radiant energy per second, Intrinsic property Watts, Solar luminosit

- Brightness: Energy reaching the surface of a detector
- (energy per second per area)
 Radiant energy per second per aperture area your pupil, front end of a telescope)

Not intrinsic; depends on distance between emitter (source) and aperture

Inverse Square Law

Brightness prop.. to Luminosity / (distance)²

$$L = 4\pi (dist)^2 \times B$$

How distances are measured?

- Radar solar system
- Parallax

 10,000 light years
 (not very far)

Standard Candles

- Bright stars of known luminosity nearest dozen galaxies
- Bright variable stars whose period and luminosity are calibrated ("Cepheids")
 nearest hundred galaxies
- Supernovae type la
 - Several billion light years

Cosmic Standard Candles

• "Cepheid variables" are very luminous (> 1000 L_{\odot}) pulsating stars with large and highly characteristic brightness patterns. They are easily recognized.

Their periods are correlated with their luminosities

Cosmic Standard Candles

- "SN Ia" are examples of extremely rare and luminous standard candles
- can see them out to many billions of light years
- trace largest cosmic distances

Cosmocartography II: Measuring radial speeds

The "Doppler Shift"

The Doppler Effect for a Moving Sound Source

The "Doppler Shift"

 $z = \Delta \lambda / \lambda_o = (\lambda - \lambda_o) / \lambda_o$

Shorter wavelengths are bluer

Longer wavelengths are redder

This observer sees redshift

 λ is compressed by a factor of v/c, where v is the emitter's speed and c if the speed of light in space

$$\lambda = \lambda o(1 + v/c), v < 0$$

v/c = z = "blueshift"

 λ is stretched by a factor of v/c, where v is the emitter's speed and c if the speed of light in space:

$$\lambda = \lambda o(1 + v/c), v > 0$$

v/c = z = "redshift"

The "Doppler Shift"

 $z = \Delta \lambda / \lambda_o = (\lambda - \lambda_o) / \lambda_o$

Shorter wavelengths are bluer

Longer wavelengths are redder

Although v/c cannot exceed 1, z is not limited by relativity. We have measured redshifts of 10 in very distant galaxies!

Redshift and Recession Speed

when v approaches c

Classical: z = v/c < 1

Relativity: no upper limit to z

1920s: Slipher and his spectra

Observations: Hubble's distances and Slipher's Doppler shifts (TBD)

1920s: Hubble and his first diagram

Hubble's distances, Slipher's Doppler shifts, Humason's observing skills Hubble presents the "Hubble Diagram"

Redshift and Recession Speed when v approaches c

We routinely measure z > 1

Redshift and Lookback time

We routinely measure z > 1

Evolving structure (model)

Z = Redshift

