1900-20: Are we at the Center of the Cosmos?

Where's the Center?

1 der

The power of symmetry

Where's the Center?

1920s: Shapley and "Globular Clusters"

Our Observational Toolkit

- Our toolkit of Vital Measurement Methodologies
- Cosmocartography I: How we measure cosmic distances
- "standard candles"
- Cosmocartography II: How we measure cosmic speeds
- \quad Doppler shifts, $\Delta \lambda$ " (aka redhifts z $=\Delta \lambda / \lambda_{0}$)
- How z relates to the speed of recession when $z<0.7$
- How this relation changes when $z>0.7$

Cosmocartography I: Measuring distances

Radiation, Luminosity, Brightness, and the Inverse Square Law

- Luminosity: the total rate of light emission (energy per seond) Radiant energy per second, Intrinsic property Watts, Solar luminosit
- Brightness: Energy reaching the surface of a detector
- (energy per second per area)

Radiant energy per second per aperture area your pupil, front end of a telescope)
Not intrinsic; depends on distance between
emitter (source) and aperture

- Inverse Square Law

Brightness prop.. to Luminosity / (distance) ${ }^{2}$

$L=4 \pi(\text { dist })^{2} \times B$

How distances are measured?

- Radar
solar system
- Parallax

10,000 light years (not very far)

Standard Candles

- Bright stars of known luminosity nearest dozen galaxies
- Bright variable stars whose period and luminosity are calibrated ("Cepheids") nearest hundred galaxies
- Supernovae type la
- Several billion light years

Cosmic Standard Candles

-"Cepheid variables" are very luminous (> $1000 \mathrm{~L}_{\odot}$) pulsating stars with large and highly characteristic brightness patterns. They are easily recognized.

- Their periods are correlated with their luminosities

Cosmic Standard Candles

- "SN la" are examples of extremely rare and luminous standard candles
- can see them out to many billions of light years
- trace largest cosmic distances

Cosmocartography II: Measuring radial speeds

The "Doppler Shift"

The Doppler Effect for a Moving Sound Source

The "Doppler Shift"

$$
z=\Delta \lambda / \lambda_{0}=\left(\lambda-\lambda_{0}\right) / \lambda_{0}
$$

The "Doppler Shift"

$$
z=\Delta \lambda / \lambda_{0}=\left(\lambda-\lambda_{0}\right) / \lambda_{0}
$$

The "Doppler Shift"

Doppler shift $\Delta \lambda / \lambda_{0}$: Proxy for speed

Shorter wavelengths are bluer
Longer wavelengths are redder

Shorter wavelengths are bluer
Longer wavelengths are redder

Elliptical Galaxy at $z=0.7$

70% stretch
(Slliptical Golaxy ot

no stretch

Although v / c cannot exceed $1, \mathrm{z}$ is not limited by relativity. We have measured redshifts of 10 in very distant galaxies!

Redshift and Recession Speed when v approaches c

Classical: $z=v / c<1$
Relativity: no upper limit to z

RELATIVISTIC REDSHIFT
EqUATION 5

1920s: Slipher and his spectra

Observations: Hubble's distances and Slipher's Doppler shifts (TBD)

Virgo

Ursa Major

Corona Borealis

Boōtes

Hydra

Redshift

1200 km/s
$\underset{\substack{111 \\ \| 540 \mathrm{kms}}}{1111111}$

$22,000 \mathrm{~km} / \mathrm{s}$

$39,400 \mathrm{~km} / \mathrm{s}$

$60,600 \mathrm{~km} / \mathrm{s}$

1920s: Hubble and his first diagram

Redshift and Recession Speed when v approaches c

We routinely measure $z>1$

Redshift and Lookback time

We routinely measure $z>1$

"GN-z11"
(HW2)

Redshift
$=11.09 \pm 0.08$

Evolving structure (model)

$$
Z=\text { Redshift }
$$

Opaque surface (CMB) is at $z \approx 1000$

