
analysis of multireader ROC data [2]

To simplify notation we assume that the experiment has only one replication. If both readers and cases are treated as random, the general linear model in BWC can be written as follows:

[image: image1.wmf]()()()

ijkijkijikjkijk

Arcmrmcrc

me

=++++++

,



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1)

where 
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 is the pseudovalue for the ROC curve area of the modality i, reader j, and case sample k, 
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r

 is the random effect due to reader j, 
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c

 is the random effect due to case sample k, and 
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 represents the error term when the experiment is repeated under identical condition.  

Our first concern is related to the validity of independent and additive random terms in model (1). Since 
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is an estimate based on data from all n cases in the sample, we feel that the assumption that reader, case sample effects, and their interaction terms, along with the error term are independent and have an additive effect on 
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 may be too strong.  Here are our reasons. Let us assume that the values of the decision variable generating the ROC curve area follow a linear mixed effect model,
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where 
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 is the value of the decision variable for the modality i, reader j, case k, and the true disease state t. Here 
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 is the sampling error term, and

each of the random terms has mean zero and constant variance, which does not depend on the true disease status.This is the same decision variable model used by both BWC and Roe and Metz (1997) in their respective simulation studies.    Since 
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 is a complicated non-linear function of the decision variable values 
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, we can show that if the model (2) is true,
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 will not follow the model (1) with additive and independent random effects and error terms. Furthermore, the model (1) assumes that 
[image: image14.wmf]''

cov(,)0  if jj'  and k k'.

ijkijk

AA

=¹¹

 However, we note that 
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 is a non-linear function of 
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. Given that 
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 are correlated, we conclude that 
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Our second concern is related to the range of 
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 in the model (1). Since 
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is an estimate for the ROC curve area, its range is usually between 0 and 1. However, random variables in the  right side of  model (1) can range between -( and +(.Therefore, a transformation, like a logit, may be more appropriate for the model (1).

Our third concern is related to the concept of the random effect due to a case sample. Although the "variability due to cases" seems to be a natural notion,  it is difficulty to define precisely and operationalize this notion. For example, how is this variability different from the sampling variability we estimate with the standard error of the area under the ROC curve? Since this notion may be related to the concept of a covariate,

a better way to deal with this issue may be to extend the regression framework for the area under the ROC curve proposed by Dodd and Pepe (2003) for independent data to multi-reader-modality data.

As for our concerns on the bootstrap method proposed in BWC, we would like to

detail our precise concern on the proposed method.  Using the same notation as above, we can write 
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Because 
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 are not independent, to derive valid bootstrap estimates we have to modify the standard bootstrap method in the i.i.d case to account for the correlation structure of the data.  To understand the issues associated with the BWC’s bootstrap method, we first need to understand what is the definition of a bootstrap estimator for the variance of 
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 are correlated. (For a more detailed description on this, see Shao and Tu (1995)). 

Let 
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Then, the bootstrap estimator for the variance of 
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 is given by the following formula:
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where 
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, and 
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 is the conditional variance given 
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. Since we cannot directly calculate the bootstrap variance estimator given in (3), we need to use a Monte Carlo method for approximating 
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,b=1,…,B, from the estimated 
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From this definition for the bootstrap variance estimator, we see that

the validity of the bootstrap variance estimator depends on two closely related assumptions: (1) we can have a consistent estimator 
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 for the joint distribution 
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, and (2) we can effectively sample from the estimated joint distribution 
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In the case where 
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 are i.i.d., we can write 
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 and estimate the univariate distribution function Fij(.) by its empirical distribution. We can also easily generate a bootstrap sample 
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 by a simple random sampling with replacement from 
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. However, when 
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are correlated, how to deal with these two issues is not obvious due to the multivariate nature of 
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. The method taken by BWC for estimating this multivariate distribution and generating a bootstrap sample from it was to treat reader and cases as either random or fixed. However, it is not clear to us what is the property of the resulting bootstrap procedure.

In addition, the proposed re-sampling method seems to treat diseased and non-diseased patients in the same way. However, as we know

the distribution of diseased patients is different from that of a non-diseased patient, they should be treated differently.

Finally, we must point out that, despite our concerns, the BWC methods seem to have undergone extensive development, testing and use without serious problems arising.  Thus the method appears to be robust enough that the concerns raised in our book and in this letter do not seem to constitute "fatal flaws".
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