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Reminders

e HW2 due next Wednesday before class
* Dr. Greenstadt will be watching the presentations



Outline

e Support Vector Machines
— Optimization Objective
— Large Margin Intuition
— Kernels

e Random Forest
— Ensemble Methods
— Algorithm
— Node split
— OOB error



Outline

e Support Vector Machines
— from Dr. Andrew Ng’s notes

e Random Forest
— from Dr. Leo Breiman
— from Dr. Markus Kalisch



Alternative view of logistic regression

1

he(®) = 1 + e~0"2 J

ho(x) = g(2)
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Alternative view of logistic regression
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Alternative view of logistic regression
Cost of example: = (yloghg(z) + (1 —y)log(1l — he(x)))

example (x,y) contributes 1 1
= —ylo — (1 —y)log(1l —
ylog T———r (1 —y)log(1l— < n o7
If .y = 1L(want "z > 0): If,y = 0(want "z < 0):
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Support vector machine
Logistic regression:

Support vector machine:
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Support vector machine
Logistic regression:

mmx [iy i) (Tlog ho(x ( ))) +(1— y(i)) —log(1 — hg(;g(i))))

(¢
\_Y / 8 : p=
Support vector machine: | *$(@'x?) cost)(Ox) Y

min (u—57°%+1 2u=>5

. Y
2 4O 4

min 10((u=52%+1) 2u=5

min 10u-5)*+10 S>u=5

min (' {1/‘”(*03{ 1 (()'I'.z'm) + (1 ;/m)(‘()sl()(()'ll.r("))} + — Z ();/“-)
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Wednesday - January 28, 2015



Support vector machine
Logistic regression:

min — [i y(’;) (— log hg(:z(i))) + (1 - y(i)) ((_ log(1 — he(m(i))))

1
o m
i=1

' i ' ‘—FI—'

Support vector machine: A B
min (u—57°%+1 2u=>5

Logistic regression: A+ /B

min 10((u - 52 4+1) > u=75| |Supportvector machine: A+B

min 10u-57%+10 > u=>5

m

‘ . ) ) . -] T ‘
C Y !) , " (i) N L I (7 2
111()1112 {1/k cost (0 U 4 (1 Y ))( osty(0 at ))} + 5 E ().'/'
11 t—1
A B

Wednesday - January 28, 2015 10




SVM hypothesis

m

| - . | - N l n ‘

M Y \ ( » 1) / { 3 > oy ¢ =

— 111{)111( E {g/“ cost (07" + (1 4 ))(().s/.()(()l at ))} + 3 E ()J.)
i—1

i1
Hypothesis:

Unlike logistic regression, SVM does not output probability

ho(x)= |1 if OTx=0
0 otherwise
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Outline

e Support Vector Machines
v — Optimization Objective

— Large Margin Intuition

— Kernels

e Random Forest
— Ensemble Methods
— Algorithm
— Node split
— OOB error



Large Margin Intuition
SVM hypothesis

m

min ' {g/mvos/l((}[ Y (1 g Neost (07 ;1'("))} b Z 07)
! 1 —1 1 |

If .y = 1(wanté”z > 0): = 0(want#’z < 0):
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Large Margin Intuition
SVM hypothesis

m

Ly (i) r o) (i) | 2
111()111( {z/ cost (07N + (1 — y'")cost( 0l } Z()

(not |ust > () c= 100 000 (notjust< O)
If .y = 1(w§nt9 r > 1) If, y :(),(want9 r < —1):
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Large Margin Intuition

SVM Decision Boundary: Linearly separable case

Large margin classifier
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Large Margin Intuition

Large margin classifier in presence of outliers

\ = —>Cverylarge
) L x
X X @/
X
| <~ - Cnottoo large

g
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Math Behind the Large Margin
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Math Behind the Large Margin

Vector Inner Product

N
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Math Behind the Large Margin

N

Vector Inner Product Uy V1
5 U= U= |
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Math Behind the Large Margin

-
o = (f&N)
SVM DeC|S|on Boundary

wni$0 = 4ol +0)) <4 (EheD) - ¥ ler
};97 m(” >1|  ifyD =1 t;\g\:n

0Tz < -1 ifyD =0 1_9-1 Sero
S;ﬂ'(|to.+i°‘\. ey I O - 0':1

Wednesday - January 28, 2015 20



Math Behind the Large Margin

SVM DeC|S|on Boundary D40
> nnn Z@z = '—' “B“ < \
s.t. | g e =] iyt k
Al C \M:\.
pt) |

oy =1 ify” =0
\\'1101'0_117':\' is the projection of V! (mlu 111( vector 0.
Simplification:
o Q“‘-\\e\\? |

o O ' Woll \ome.
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Math Behind the Large Margin

SVM Deasuon Boundary D40
> mln 292 = '—' “9“ < \
C “‘-"‘5

s.t. | i 0] = 1 if 4
pre iyt
where pt is the projection of z“ ()nlu 111( vector 0.
Simplification: Mo f“ sl o

()]
e\ | © / Q/
o O ' Woll \ome.
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Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition

— Kernels

e Random Forest
— Ensemble Methods
— Algorithm
— Node split
— OOB error



Kernels

Non-linear Decision Boundary
Predict y = 1 if
o = 0y + 91:5:_1 + 92:1_:2 + Qs ay

%2 OOO + 9433% -+ 655[33 —+ .. Z 0
OpO \\.(1)1 \ N L LT R R
N o o tlasise .
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Kernels

Non-linear Decision Boundary

Predict y = 1 if

0 = 0y + ()1:1;_1 + 02:1_:_2 + Oy 009

- Ooo + Oy + 0525+ >0
O 00 C?QO \\.(:\1 \ ;Q é).*e,%.-hwzb
o oC O O . O oftlauite.

Xy
~—>S°*- e,f. + Q\QL + G]Q3f .

Y h |
.Q‘= %\, Sz'-'\(;' .C-_,_-;.xnc.b S-v., =*tl fs-‘)‘to'"

s there a different / better choice of the features f1. fo. [3 ?

ooooo
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Kernel
A W)
)\ \7)

Kernels

\ 4
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Given I, compute new feature depending
on proximity to landmarks /(1) 72} (%)
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Kernels

Kernel
A ’:\\ D) Given X, compute new feature dgpending
. . 2 on proximity to landmarks (") (%) (%)
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Kernels

Kernel
A ,:a D) Given I, compute new feature depending

o o % on proximity to landmarks (") (%) (%)
X2 3 \
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Kernels

Kernels and Similarity ] ) d
/ > T TS
11 = similarity (. (1) = exp (II- 1) )

y
o=

If o~ 1) {
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o* Q™ = i,
-C\’ie"‘f(‘ 25‘3”:1 1 - L
}s“)"“) ‘C-;
If x if far from A 1T 7
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Kernels

%
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Kernels

S, =-S5, ©, =\, S,=\, ® ;=0

$,6l, L,20, &K20.
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Choosing the landmarks

N
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Kernels

Given I:

—=> f; = similarity(x, l(i))

N
7
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Kernels

SVM with Kernels

= Given (MU (BB L () gy,
- choose [(])—I(]) ](3)_1(2)““31(7”)_ (rn}
Given example Z: — v &o
fi|= similarity (z /f“) L= ‘E; L=
— |f>[= similarity (x ](2)) :
A
: ()
For training ple (! ) : Q)
S (X(“ 9.(“) ,E‘\ ZS--
) ‘\ (-a) \1 N
L = Sam \(\'. S A
-2(-‘ = \h( 3 9\ ) Q.‘r( a-\ \
(‘\ 1(0\\)
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Kernels

SVM with Kernels ' f |
m- %
Hypothe5|s leen z, compute features f € R""! BelR

Training:
m
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Kernels

SVM parameters:
1
C (=15 ).»Large C: Lower bias, high variance. (s

—

/]

o Large o°: Features/i vary more smoothly.
—> Higher bias, lower variance. .

Q'
Q.:‘fk' -——-——"“‘-'l “ ) _/

24‘

wall )

< Small C: Higher bias, low variance.  (luye X)

N

Small o°: Features f; vary less smoothly. 1
Lower bias, higher variance. ‘

L x,

N

A 4
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Using an SVM

Use SVM software package (e.g. liblinear, libsvm, ...) to solve for
parameters 0. A

Need to specify:
- Choice of parameter C.
Choice of kernel (similarity function):

E.g. No kernel (“linear kernel”) Ot Oix 4+t On¥a = o A+l
Predict “y = 1" if 10 > 0 —>n lome , ™ small X<

e — —_—

-~ Gaussian kernel:

f. o Hl . [{jm‘ 2
PEEPT e , where [\ = (), odle w  loma
Need to choose o S, Ba

7 |
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Using an SVM

@ ‘
Kernel (similarity) functions: + CYIR Y
rEunction f = kernel (:_:_1,;:_2) [
i
. -BHxl—x2H2 X
'y o
return s"h

=2 Note: Do perform feature scaling before usirllé‘t'he Gaussian kernel.
we!
\ = %-X . N
\\\l\\’; “?*“\"" N, Q \)1.
J
= (x,-0) % (am Y =~ - s La)

C/?l too c!._{‘ \‘ S wf’.lhs
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Using an SVM

Other choices of kernel

Note: Not all similarity functions similarity(z,[) make valid kernels.
<> (Need to satisfy technical condition called “Mercer’s Theorem” to make
sure SVM packages’ optimizations run correctly, and do not diverge).

\&lw
< s 2
Many off-the-shelf kernels available: / b‘ L u\;\‘_ R

- Polynomial kernel: ke p) - &’C,\i,-\‘b @E
(x"'«l\‘s o (T L= \?) , (R )
K ~_ ~

4 4 A
- More esoteric: String kernel, chi-square kernel, histogram

intersection kernel, ... Q‘M\L%, 0
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Multi-class classification

Multi-class classification

T ox

% A
X A |
X%/ AN™ ye 1,23, K}
_ 4y

O\ =0
o¥e OO
>

Many SVM packages already have built-in multi-class classification
functionality.
- Otherwise, use one-vs.-all method. (Train X SVMs, one to distinguish

y = 1 fromtherest,fori = 1,2, ..., K), get 9<1), 9(2): C Q_(_’f_)
: S (i)\T R K
Pick class ¢ with largest (0\")" z ‘d?' g2 T B K
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Logistic regression vs. SVMs

. =number of features (. € R’"Jrl), ™ — number of training examples

= If 1 is large (relative to1m): (€g. n2m, nz10,000 , m=10- 1000)

-, Use logistic regression, or SVM without a kernel (“linear kernel”)

=/ If v is small, M is intermediate: (ar |-tose, m=10-10,000)<
—» Use SVM with Gaussian kernel oy Tero
Ot ¥ O
If 7vis small, mis large: (1= [-toeo, = s:,ooo-l-) - Te*d *
~ Create/add more features, then use lggistic regression or SVM
| without a kernel ™

~
=> Neural network likely to work well for most of these settings, but may be
slower to train.
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Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition
v — Kernels

e Random Forest
— Ensemble Methods
— Algorithm
— Node split
— OOB error
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RANDOM FOREST
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RANDOM FOREST

Advantages: Accurate, easy to use, fast, robust
Disadvantages: Difficult to interpret

In general: Combines results of different
predictors (decision trees)

Ensemble methods combine predictions of
weak classifiers.




Ensemble methods

* Simple (a.k.a. weak) learners are good

— e.g., naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

— Low variance, don’t usually overfit

* Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

e Can we combine weak classifiers to
form a strong classifier?
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Ensemble methods: boosting

» l|dea: given a weak learner, run it multiple times on (reweighted)
training data, then let the learned classifiers vote

* On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a hypothesis — h;
— A strength for this hypothesis — o

* Final classifier:

- A linear combination of the votes of the different classifiers
weighted by their strength
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Ensemble methods: bagging

* Bagging or bootstrap aggregation a
technique for reducing the variance of an
estimated prediction function.

 Random forest is a bagging classifier with a
committee of trees.

* For classification, a committee of trees each
cast a vote for the predicted class.



Bagging reduces variance

0.5

0.0

-05

Single tree decision boundary

T T T
0.0 05 1.0

100 bagged trees |*
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Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition
v — Kernels

e Random Forest

v — Ensemble Methods
— Algorithm
— Node split
— OOB error



Random Forest Algorithm

(a) Draw a|bootstrap sample|Z* of size N from the training data.

(b) Grow a random-forest tree 7T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;,, is reached.

1. Select|m variables at random|from the p variables.

ii. Pick the best variable/split-point among the m.

111. Split the node into two daughter nodes.

2. Output the ensemble of trees {7} }%.

To make a prediction at a new point z:
cion- B _ 1B
Regression: fif(x) = 5> ,—; Tu(x).

Classification: Let Cy(x) be the class prediction of the bth random-forest

Wednesday - January 28, 2015 49



Healthy

[Diseased

Wednesday - January 28, 2015

Healthy

Diseased

Diseased
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Tree 1
diseased healthy
m rt
healthy diseased
retirmrking
healthy healthy
m rt
healthy diseased

Wednesday - January 28, 2015

Tree 2

old young
healthy diseased
mal female
healthy healthy
New sample:

old, retired, male, short
Tree predictions:
diseased, healthy,

Majority rule:
diseased
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Differences to standard tree

* Train each tree on bootstrap resample of data
(Bootstrap resample of data set with N samples:

Make new data set by drawing with replacement N
samples; i.e., some samples will probably occur
multiple times in new data set)

* For each split,
consider only m randomly selected variables
 Don’t prune

* Fit B trees in such a way and use average or majority
voting to aggregate results
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Why Random Forests works:

* Mean Squared Error = Variance + Bias?
— |f trees are sufficiently deep, they have very small
bias
* How could we improve the variance over that
of a single tree?



Why Random Forests works:
Var (;ZB;T,-(C)) ZZCOI Ti(x))

i=1j=

1 B
N (Zm{z(r () + arw)))

i=1 \ j#i
1 B
2
= BQZ((B—DG -p+0)
i=1
B(B —1)po? + Bo? : :
_ B( g’j Tho De-correlation gives
(B—1)po2 o? better accuracy
— +
B B
2 2
B - po o
—r TR T B
: 1 — -
N pgz n 02 P Decreases, if number of trees B
B increases (irrespective of p)
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Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition
v — Kernels

e Random Forest
v — Ensemble Methods
v/ — Algorithm

— Node split

— OOB error



Splitting the nodes

At each node:

* m predictor variables are selected at random
from all the predictor variables p.

* The predictor variable that provides the best
split, according to some objective function (eg
information gain), is used to do a binary split on
that node.

At the next node, choose another m variables at
random from all predictor variables and do the
same. (Breiman suggests m= %vp, Vp, and 2vp)
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Use a subset of variables

* Arandomly selected subset of variables is
used to split each node

* The number of variables used is decided by
the user (default=sqrt(p))

* Smaller subset of variables produces less
correlation but lower predictive power v
Optimum range of values is often quite wide



Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition
v — Kernels

e Random Forest
v — Ensemble Methods
v/ — Algorithm
v — Node split
— OOB error



Generalization error = Out-of-bag error

* Similar to leave-one-out cross-validation, but almost
without any additional computational burden

e OOB erroris a random number, since based on
random resamples of the data

Data: Out of bag samples:
old, short — diseased old, short — diseased

young, short — healthy
young, tall — healthy: —_ young, tall — healthy

: ~— young, tall — healthy

young, short — diseased young, tall — healthy

old, short — diseased
young, short — healthy ‘

young, tall — healthy l
old, short— diseased MUng

diseased healthy
o >

healthy diseased
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Advantages of Random Forest

* No need for pruning trees

* Accuracy and variable importance generated
automatically

* Overfitting is not a problem

* Not very sensitive to outliers in training data
* Easy to set parameters

* Good performance

Wednesday - January 28, 2015
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Trees vs Random Forest

Trees yield insight into RF has smaller prediction
decision rules variance and therefore
Rather fast usually a better general

performance

Easy to tune parameters
Easy to tune parameters

- Prediction of trees tend to - Slower (can be

have a high variance parallelized)
- “Black Box”: Rather hard
to get insights into decision
rules
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Random Forest vs LDA

+Can model nonlinear class
boundaries

+ OOB error “for free” (no CV
needed)

+ Works on continuous and
categorical responses
(regression / classification)

+ Gives variable importance
+ Very good performance )

- “Black box” x %
- Slower but fast enough x x
X X

Wednesday - January 28, 2015

+ Very fast

+ Discriminants for visualizing
group separation

+ Can read off decision rule

- Can model only linear class
boundaries
- Mediocre performance
- No variable selection

. X
- Only on categorical

X

response X" x
- Needs CV for estimating

prediction error
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Practical example

Dataset in CPP ~100,000 users fuzzy AST parser

co d e j a m preprocessing

System.out_printin(“hello, world!");

Extract features

(classiﬁcation

majority
vote

Random Forest
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Results
| Application _|Classes _|Instances | Result |

Stylometric plagiarism 250 class 2250 95.3%
detection

Copyright investigation Two-class 360 98.9%
Authorship verification Two-class/One-class 960 93.2%

* A new principled method with a robust syntactic feature set for
performing source code stylometry.

e Our authorship attribution technique is impervious to common off-the-
shelf source code obfuscators.
* Insights about programmers and coding style.
* Implementing harder functionality makes programming style more
unique
e Better programmers have more distinct coding style
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Common Applications of Random Forests

e Classification
— Land cover classification
— Cloud/shadow screening

* Regression
— Biomass mapping
— Continuous fields (percent cover) mapping



Outline

e Support Vector Machines
v — Optimization Objective
v/ — Large Margin Intuition
v — Kernels

e Random Forest

v — Ensemble Methods
v/ — Algorithm

v — Node split

v _ Q0B error
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