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Part I: WHY?



Why Integrate Omics Data?

Biology is complex, heterogenous and structured!
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Why Integrate Omics Data?

Comprehensive view of biology requires looking at multiple types of omics
data (TCGA, ENCODE, etc)

= integrative analysis of multiple structured omics data
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Why Integrate Omics Data?

Possible reasons:
@ To confirm or narrow down omics signals
@ To complement or boost omics signals
@ To glean



Omics data integration can lead to new discoveries...
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Reconstructing targetable pathways in lung
cancer by integrating diverse omics data

O. Alejandro Balbin1'2'3, John R. Prensner1'2, Anirban Sahu1'2, Anastasia Yocum1f2, Sunita Shankar1f2,
Rohit Malik1'2, Damian Ferminz, Saravana M. Dhanasekaran1'2, Benjamin Chandler!, Dafydd Thomasz,
David G. Beer2, Xuhong Cao'?2, Alexey |. Nesvizhskiil23 & Arul M. Chinnaiyan1'2'3

Global ‘multi-omics’ profiling of cancer cells harbours the potential for characterizing the
signalling networks associated with specific oncogenes. Here we profile the transcriptome,
proteome and phosphoproteome in a panel of non-small cell lung cancer (NSCLC) cell lines in
order to reconstruct targetable networks associated with KRAS dependency. We develop a
two-step bioinformatics strategy addressing the challenge of integrating these disparate data
sets. We first define an ‘abundance-score’ combining transcript, protein and phospho-protein
abundances to nominate differentially abundant proteins and then use the Prize Collecting
Steiner Tree algorithm to identify functional sub-networks. We identify three modules centred
on KRAS and MET, LCK and PAK1T and B-Catenin. We validate activation of these proteins in
KRAS-dependent (KRAS-Dep) cells and perform functional studies defining LCK as a critical
gene for cell proliferation in KRAS-Dep but not KRAS-independent NSCLCs. These results
suggest that LCK is a potential druggable target protein in KRAS-Dep lung cancers.




Omics data integration can lead to new discoveries...

Cell Systems

Integrated Transcriptome and Proteome Analyses
Reveal Organ-Specific Proteome Deterioration in Old

Rats
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In Brief

Ori et al. quantified the molecular
alterations that occur between young and
old rats in two organs: brain and liver. By
integrating genomic and proteomic
measurements, the authors were able to
reveal that changes in translation are the
primary cause of protein level alterations
during aging. However, they also
identified other levels of regulation such
as protein localization and
phosphorylation that co-participate in
modifying the proteome in old animals.




Omics data integration can lead to new discoveries...
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Integrated analysis of global
proteome, phosphoproteome,
and glycoproteome enables
complementary interpretation of

_disease-related protein networks

- Jong-Moon Park™*, Ji-Hwan Park>*, Dong-Gi Mun®*, Jingi Bae**, Jae Hun Jung®,
- Seunghoon Back?, Hangyeore Lee?, Hokeun Kim?, Hee-Jung Jung®, Hark Kyun Kim?,
- Hookeun Lee!, Kwang Pyo Kim*, Daehee Hwang?® & Sang-Won Lee3

. Multi-dimensional proteomic analyses provide different layers of protein information, including

. protein abundance and post-translational modifications. Here, we report an integrated analysis of

. protein expression, phosphorylation, and N-glycosylation by serial enrichments of phosphorylation

- and N-glycosylation (SEPG) from the same tissue samples. On average, the SEPG identified 142,106

. unmodified peptides of 8,625 protein groups, 18,846 phosphopeptides (15,647 phosphosites),

. and 4,019 N-glycopeptides (2,634 N-glycosites) in tumor and adjacent normal tissues from three

. gastric cancer patients. The combined analysis of these data showed that the integrated analysis

. additively improved the coverages of gastric cancer-related protein networks; phosphoproteome

. and N-glycoproteome captured predominantly low abundant signal proteins, and membranous or

. secreted proteins, respectively, while global proteome provided abundances for general population of
. the proteome. Therefore, our results demonstrate that the SEPG can serve as an effective approach for
. multi-dimensional proteome analyses, and the holistic profiles of protein expression and PTMs enabled
- improved interpretation of disease-related networks by providing complementary information.




Omics data integration can lead to new discoveries...

Cancer Cell

Integrated Analyses Identify a Master MicroRNA
Regulatory Network for the Mesenchymal Subtype
in Serous Ovarian Cancer

Da Yang,'-11 Yan Sun,'-7-11 Limei Hu,-1" Hong Zheng,811 Ping Ji,' Chad V. Pecot,® Yanrui Zhao,® Sheila Reynolds,®
Hanyin Cheng,1-12 Rajesha Rupaimoole,2 David Cogdell,’ Matti Nykter,1® Russell Broaddus,? Cristian Rodriguez-Aguayo,*
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SUMMARY

Integrated genomic analyses revealed a miRNA-regulatory network that further defined a robust integrated
mesenchymal subtype associated with poor overall survival in 459 cases of serous ovarian cancer {(OvCa)
from The Cancer Genome Atlas and 560 cases from independent cohorts. Eight key miRNAs, including
miR-506, miR-141, and miR-200a, were predicted to regulate 89% of the targets in this network. Follow-up
functional experiments illustrate that miR-506 augmented E-cadherin expression, inhibited cell migration
and invasion, and prevented TGFpB-induced epithelial-mesenchymal transition by targeting SNAI2, a tran-
scriptional repressor of E-cadherin. In human OvCa, miR-506 expression was correlated with decreased
SNAI2 and VIM, elevated E-cadherin, and beneficial prognosis. Nanoparticle delivery of miR-506 in ortho-
topic OvCa mouse models led to E-cadherin induction and reduced tumor growth.
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More on Omics Data Integration

Broadly, two existing integration approaches:
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Broadly, two existing integration approaches:
@ Horizontal integration (same variables, different studies/subjects)

Variables/features 1, ..., p

X3 (n5xp)

X, (n,xp)




More on Omics Data Integration

Broadly, two existing integration approaches:

o \Vertical integration (different platforms/variables, same subjects)

Samples 1,...,n

X5 (nxp5) X, (nxp,)
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Existing Approaches: Meta Analysis

Horizontal integration

Variables/features 1, ..., p

X5 (n3xp)

X, (n,xp)

@ Used extensively in GWAS (especially in consortiums)
@ Used to boost the signal (larger sample size)
@ Used to confirm previous findings (reproducibility)



Existing Approaches: Meta Analysis

Table 3 | Summary of methods for meta-analysis of genome-wide data

Method

Pvalue
meta-analysis

Fixed effects

Random
effects

Bayesian
approach

Multivariate
approaches

Other

extensions

Description

Simplest meta-analytical
approach

Synthesis of effect sizes.
Between-study variance is
assumed to be zero

Synthesis of effect sizes.
Assumes that the individual

studies estimate different effects

Incorporates prior assessment
of the genetic effects

Incorporates the possible

correlation between outcomes or

genetic variants

A set of different approaches

that allows for the identification

of multiple variants across
different diseases

Advantages

Allows meta-analysis when
effects are not available

Effects readily available
through specialized software

Generalizability of results

Most direct method for
interpretation of results as
posterior probabilities given
the observed data

Increased power can identify
variants that conventional
meta-analysis do not reveal
using the same data sets

Summary results of previous
meta-analyses can be used

Disadvantages

Direction of effect is not always
available; inability to provide effect
sizes; difficulties in interpretation

Results may be biased if a large
amount of heterogeneity exists

Power deserts in discovery efforts;
may yield spuriously large summary
effect estimates when there are
selection biases

Methodologically challenging;
GWAS-tailored routine software
not available; subjective prior
information used

Computationally intensive; software
not available for all analyses; some
may require individual-level data

May need additional exploratory
analyses for the identification of
variants; prone to systematic biases

Main software used

METAL, GWAMA,
R packages

METAL, GWAMA,
R packages

GWAMA, R packages

R packages

GCTA for multi-locus
approaches

Software developed
by the authors

of the proposed
methodologies

Evangelou & loannidis (2012) Nat. Rev. Gen.
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Existing Approaches: Direct Integration
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Existing Approaches: Direct Integration

Vertical integration

Samples 1,...,n

X5 (nxps) X, (nxp,)
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Existing Approaches: Direct Integration

Vertical integration

Samples 1,...,n

X5 (nxps) X, (nxp,)

The simplest approach: concatenate the variables!!
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Existing Approaches: Direct Integration

Vertical integration

Samples 1,...,n

X5 (nxps) X, (nxp,)

The simplest approach: concatenate the variables!!
@ Can result in way-too-many variables
@ Can discern conditional associations with phenotype y

11



Existing Approaches: Kernel-Based Methods

12



Existing Approaches: Kernel-Based Methods

Vertical integration using kernel regression

12



Existing Approaches: Kernel-Based Methods

Vertical integration using kernel regression

Kernel Regression
+H
[ )
YV E
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Existing Approaches: Kernel-Based Methods

Vertical integration using kernel regression

Kernel Regression

o Penalized regression in terms of a kernel K

+

§ = argmin ||y — K85+ A||8]| <
SeRN

12



Existing Approaches: Kernel-Based Methods

Vertical integration using kernel regression
Kernel Regression

o Penalized regression in terms of a kernel K

§ = argmin ||y — K85+ A||8]| <
SeRN

@ ldeal for predicting y in the dual space
@ Also used to test for association between y and X (SKAT)
12



Existing Approaches: Kernel-Based Methods

Can define different kernels (or feature maps) for different omics data types

Data Kernel Matrix

Early ]
integration l ‘ -

B

- .

S
Intermediate
integration
Late
integration e

Pavlidis et al (2001, 2002)
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Existing Approaches: Kernel-Based Methods
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Existing Approaches: Kernel-Based Methods

o Early integration

Samples 1,...,n

X1 (nxp,)

X, (nxp,)

X (nx(p,+p,

)

(N

Xr
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Existing Approaches: Kernel-Based Methods

o Intermediate integration

Samples 1,...,n

X1 (nxp,)

X, (nxp,)

(1

1XI

5 (1

X1

(N

Xr
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Existing Approaches: Kernel-Based Methods

o Late integration

Samples 1,...,n

X1 (nxp,)

X, (nxp,)

(1

1XI

5 (1

X1
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. . 1
Kernel-Penalized Regression

"Randolph et al (2018)
15



. . 1
Kernel-Penalized Regression

"Randolph et al (2018)
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Kernel-Penalized F{egression1

@ How can we incorporate network information?

@ How can we evaluate association of individual omics measures and the
response (biomarker discovery)?

"Randolph et al (2018)
15



Kernel-Penalized Regression
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Kernel-Penalized Regression

o Use the duality between the feature space (RP) and the observation
space (R") — formally, the (Escoufier (1977), ...)
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Kernel-Penalized Regression

o Use the duality between the feature space (R”) and the observation
space (R") — formally, the (Escoufier (1977), ...)

@ Can incorporate additional structure, e.g., network information

RP <X Rn

\
/4

X

16



Kernel-Penalized Regression

o Use the duality between the feature space (R”) and the observation
space (R") — formally, the (Escoufier (1977), ...)

@ Can incorporate additional structure, e.g., network information
@ Can also incorporate multiple data omics data

A\

f T | 1T
_R{p/X R % y [RY
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Example: Integrating Metabolomics Data

Integrating targeted (Xj) and unbiased (X5) metabolomics profiling data for
the same subjects

17



Example: Integrating Metabolomics Data

Integrating targeted (Xj) and unbiased (X5) metabolomics profiling data for
the same subjects

LOO CV-prediction error for the
original data

| Lasso Ridge KPR
MSE | 29.00 30.68 27.25

17



Example: Integrating Metabolomics Data

Integrating targeted (Xj) and unbiased (X5) metabolomics profiling data for

the same subjects
MSE for estimation of regression

coefficients, based on our B~

14 =

LOO CV-prediction error for the
original data

7
| Lasso Ridge KPR %10‘
MSE | 29.00 30.68 27.25 ©

— KPR
— Ridge
Lasso

5 0 5 10 15 20
log(Size of Penalty)

17



Another Example: Analysis of Microbiome Data

Simulation setup

o Simulate the outcome based on real microbiome data:

» we use the data from Yatsunenko et al (2012) consisting of p = 495 taxa for
n = 100 subjects with y =log(age)

» the original study showed that a 2D-MDS based on the phylogenetic tree
captures the pattern in response (left)

» we generate y™ similarly in a phylogenetically-informed PCR (right)
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Another Example: Analysis of Microbiome Data

Simulation results

Squared Error in Estimation
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4,
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Existing Approaches: Unsupervised Learning Methods

20



Existing Approaches: Unsupervised Learning Methods

Vertical integration
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Existing Approaches: Unsupervised Learning Methods

Vertical integration

@ Integrative clustering
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Existing Approaches: Unsupervised Learning Methods

Vertical integration

@ Integrative clustering

Patient Samples

Genomic Features

Z
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Existing Approaches: Unsupervised Learning Methods

Vertical integration
@ Integrative clustering

Patient Samples Latent variable space Integrated Clusters

MYC amplification

Subtype 1 (TPS3m MYC over-expr:
Bg (MYC) amy ation)

oy o amp

| " — O Subtypel3 (TPS3 mutation| s
" oa I 8q normal) =]
@ ), - b
5 1y Subtype 2a (Hypprmutated &
® N N1 Classic ON, chm 2
N X Ao ' Subtype 2b [CIN-low, CIMP) 8 L
L 0 =
§ D 2*
S v - . 0 Z2
5] v 1 -2

o _6-4

A8 Mutation Cose=az2 074

LATVS)

' Copy number 2

Gene expression

Methylation

4246 | www.pnas.org/cgi/doi/10.1073/pnas.1208949110

@ See Ronglai et al (2009, 2013); SungHwan et al (2015)
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Existing Approaches: Unsupervised Learning Methods

Vertical integration
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Existing Approaches: Unsupervised Learning Methods

Vertical integration
@ Integrative dimension reduction
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Existing Approaches: Unsupervised Learning Methods

Vertical integration

@ Integrative dimension reduction

» Canonical Correlation Analysis (CCA), which looks for correlated omics
measures — see, e.g. Witten et al (2009)
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Existing Approaches: Unsupervised Learning Methods

Vertical integration

@ Integrative dimension reduction

» Canonical Correlation Analysis (CCA), which looks for correlated omics
measures — see, e.g. Witten et al (2009)

» Integrative Matrix Factorization (PCA, etc) — see Lock et al (2013);
Argelaguet et al (2018)

Joint Individual
Structure Structures Noise
A A A
(] o\ \ ()
+ + e
WOHERE
T ,k '
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Part lll: Extensions
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Starting Point

nawre

LETTERS

Vol 457 “2 February 2009|dol10.1038/nature0 7762

Metabolomic profiles delineate potential role for
sarcosine in prostate cancer progression

Arun Sreekumar' 4, Laila M. Poisson®, Thekkelnaycke M. Rajendiran™*¥, Amjad P. Khan'“¥, Qi Cao'”,

Jindan Yu'"", Bharathi Laxman'"", Rohit Mehra"", Robert J. Lonigro”, Yong Li'", Mukesh K. Nyati"’r', Aarif Ahsan”,
Shanker Kalyana-Sundaram'~, BoHan'~, XuhongCao' *, Jaeman Byun’, Gilbert . Omenn®’*, Debashis Ghosh*™**,
Subramaniam Pennathur®*’, Danny C. Alexander'?, Alvin Berger'®, Jeffrey R. Shuster'?, John T. Wei*?,
Sooryanarayana Varambally'**, Christopher Beecher'** & Arul M. Chinnaiyan23441¢

Multiple, complex molecular events charucterize cancer develop
ment and pragression’~. Deciphering the molecular networks that
distinguish organ-confined disease fram melastalic disease may
lead to the identification of eritical biomarkers for cancer invasion
and disease aggressiveness. Althangh gene and protein expression
have been extensively profiled in human tumours, little is known
about the global metabolomic alterations that characterize neo-
plastic progression. Using a combination of high-throughput
liquid-and-gas chromatography-based mass spectrometry, we
profiled more than 1,126 metaboliles across 262 dinical samples

colatid ton nrvwtata snnvar (A tlecnae and 1IN waclh ot welna andd

were diflerential (Wikoxon P+20,05), with a lalse disovery rate
(FDIN) of 999. Tikewise, far urine, 36 out of 583 (6%) metabalites
were ditferential [Wilcoxon P<_0LOSL withan FDRaf67%. Thas, our
mital focus was direcied towards understanding the tissue metabo-
lomic profiles as they showed more robust alterations.

Tissue samples were derived frome benign adjacent prostate
(n=16), chnically localized prostate cancer (= 12, PCA) and meta-
static prostate cancer (n=14) patients, Selection of merastatic tissne
samples from different sites (see Supplementary Table 2) minmized
charactenzation of analytes speafic to cels of non-prostatic origin. In

raral hinh theann b avrat o ol tha rleci aomasitivale deacred

Color Key

-4 024
Row Z-Score

Color Key

-4 0.2 4
Row Z-Score
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Prostate Cancer...

@ Prostate cancer (PCa) is the most common cancer in men
@ About 221K new cases per year in the US

@ About 28K deaths per year in the US — second leading cause of deaths in
cancers (behind lung cancer)

@ 5-year survival rate for localized PCa is nearly 100%

24



Prostate Cancer...(ctd.)

@ PCa is driven by multiple factors & many genes implicated (androgen
receptor, the TMPRSS2-ETS gene family fusion, BRCA1 and BRCA2)

@ The prostate glands require androgen to work properly

@ Androgen hormonal therapy is widely used in older patients (over 75
years) rather than radical prostatectomy or radiation therapy

Q (CRPC) does not respond to hormone
(androgen) treatments or gets worse with hormone therapy

@ poor survival prognostics for CRPC patients: mean survival time < 2 yrs
@ Precise molecular alterations driving CRPC not well-understood

25



Data from Sreekumar et al (2009)

o Transcriptomic and metabolomic data for 12 PCa and 16 benign adjacent
tissue samples

@ Mostly matched samples, but few !

@ Given the small sample size, need to

» preserve all samples
» reduce dimension

26



Omics Data Integration: Beyond Vertical and Horizontal

What if we have data on different platforms, but the ?

27



Omics Data Integration: Beyond Vertical and Horizontal

What if we have data on different platforms, but the samples don't maich?

27



More on Omics Data Integration

Solution: Use pathways as the common dimension!

28



More on Omics Data Integration

Solution: Use pathways as the common dimension!

m xk Pathway
Summaries
I
Integrative
Analysis
| > ——>
X3 (n,xp,) i
X, (noxp,) g
3 \N3XP3
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Rank-Based Integration

Metabolomics and Transcriptomics data from non-matching samples

29



Rank-Based Integration
Metabolomics and Transcriptomics data from non-matching samples

Transcriptomics Metabolomics
i Benign PCa
1 T ——

Pathway Ranks

GSEA NetGSA
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Rank-Based Integration
Metabolomics and Transcriptomics data from non-matching samples

Transcriptomics Metabolomics
i Benign PCa
1 ]

Pathway Ranks

— i
GSEA B
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Step 1: Rank-Based Integration

Rankings vs Integrative Score
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Step 2: Network Enrichment Analysis

Network permutation test to identify key pathways with active neighbors

Starch and sucroseGl act abol
metabo.{{&Q alactose metabolism

Fructose mannose
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Glycine; serine and
threonine metabolism
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Ascorbateaw / N ‘
metabélism ~ 4 D-Glut e and ¢ _ bol
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Putting Things Together

Rank-based integrative pathway scores vs. network enrichment p-values

Integrative Score

Riboflavin metabolism
Biotin metabolism
Amino sugar metabolism

Cysteine metabolism

-log10(P(net perm))

Valine, leucine and isoleucine biosynthesis

= Aminosugar Metabolism, or Hexosamine Biosynthesis Pathway (HBP)

Score

—~log(0.01)

~log(0.03)

-log(0.1)

-log(0.3)

—log(1)
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Clinical Relevance of HBP
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Expressions of HBP Genes in PCa

HK GPI
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GNPNAT1 Expression in PCa
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Therapeutic Potential
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Therapeutic Potential

@ HBP components elevated in localized PCa, but down-regulated in
castrate resistant PCa (CRPC)

@ Genetic loss of function experiments for GNPNAT1 in CRPC-like cells led
to increased proliferation and aggressiveness, in vitro and in vivo
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Therapeutic Potential

@ Addition of HBP metabolite UDP-N-acetylglucosamine to CRPC-like cells
reduced the expression of cell cycle genes and attenuated tumor cell
proliferation, both in vitro and in vivo; also demonstrated additive efficacy

when combined with enzalutamide in vitro
e
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Other Related Projects
o FDR control for omics data integration (multivariate test statistic:s)2
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1Alishahi, Ehyaei & S., A generalized Benjamini-Hochberg procedure for multivariate hypothesis testing
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Other Related Projects

@ FDR control for omics data integration (multivariate test statis.tics)2
@ Integrative multi-layer network analys;is3

1Alishahi, Ehyaei & S., A generalized Benjamini-Hochberg procedure for multivariate hypothesis testing

Zhang et al (2018)
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Other Related Projects

@ FDR control for omics data integration (multivariate test statis.tic:s)2
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Other Related Projects

@ FDR control for omics data integration (multivariate test statistics)2

@ Integrative multi-layer network analysis3
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What's Next?

Network-based integration of omics data over multiple subpopulations
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