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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

A Simple Example

I Suppose we have n = 400 people with diabetes for whom we
have p = 3 serum-level measurements (LDL, HDL, GLU).

I We wish to predict these peoples’ disease progression after 1
year.
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Biological Big Data

Supervised and Unsupervised Learning

A Simple Example

Notation:

I n is the number of observations.

I p the number of
variables/features/predictors.

I y is a n-vector containing
response/outcome for each of n
observations.

I X is a n × p data matrix.
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Linear Regression on a Simple Example

I You can perform linear regression to develop a model to
predict progression using LDL, HDL, and GLU:

y = β0 + β1X1 + β2X2 + β3X3 + ε

where y is our continuous measure of disease progression,
X1,X2,X3 are our serum-level measurements, and ε is a noise
term.

I You can look at the coefficients, p-values, and t-statistics for
your linear regression model in order to interpret your results.

I You learned everything (or most of what) you need to analyze
this data set in AP Statistics!
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A Relationship Between the Variables?

progression
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Linear Model Output

Estimate Std. Error T-Stat P-Value

Intercept 152.928 3.385 45.178 < 2e-16 ***
LDL 77.057 75.701 1.018 0.309
HDL -487.574 75.605 -6.449 3.28e-10 ***
GLU 477.604 76.643 6.232 1.18e-09 ***

progression measure ≈ 152.9+77.1×LDL−487.6×HDL+477.6×GLU.
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Low-Dimensional Versus High-Dimensional

I The data set that we just saw is low-dimensional: n � p.

I Lots of the data sets coming out of modern biological
techniques are high-dimensional: n ≈ p or n � p.

I This poses statistical challenges! AP Statistics no longer
applies.
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Low Dimensional
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

High Dimensional

9 / 14

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

What Goes Wrong in High Dimensions?

I Suppose that we included many additional predictors in our
model, such as

I Age
I Zodiac symbol
I Favorite color
I Mother’s birthday, in base 2

I Some of these predictors are useful, others aren’t.

I If we include too many predictors, we will overfit the data.

I Overfitting: Model looks great on the data used to develop it,
but will perform very poorly on future observations.

I When p ≈ n or p > n, overfitting is guaranteed unless we are
very careful.
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Why Does Dimensionality Matter?

I Classical statistical techniques, such as linear regression,
cannot be applied.

I Even very simple tasks, like identifying variables that are
associated with a response, must be done with care.

I High risks of overfitting, false positives, and more.

This course: Statistical machine learning tools for big – mostly
high-dimensional – data.
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Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Supervised and Unsupervised Learning

I Statistical machine learning can be divided into two main
areas: supervised and unsupervised.

I Supervised Learning: Use a data set X to predict or detect
association with a response y .

I Regression
I Classification
I Hypothesis Testing

I Unsupervised Learning: Discover the signal in X , or detect
associations within X .

I Dimension Reduction
I Clustering
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Supervised and Unsupervised Learning

Supervised Learning

13 / 14

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Unsupervised Learning
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High-Dimensional Statistical Learning:
Bias Variance Tradeoff and the Test Error

Ali Shojaie
University of Washington

http://faculty.washington.edu/ashojaie/

September 2, 2017
International Society for Business and Industrial Statistics

Bu Ali Sina University – Hamedan, Iran

1 / 36

Supervised Learning

2 / 36



Regression Versus Classification

I Regression: Predict a quantitative response, such as
I blood pressure
I cholesterol level
I tumor size

I Classification: Predict a categorical response, such as
I tumor versus normal tissue
I heart disease versus no heart disease
I subtype of glioblastoma

I This lecture: Regression.

3 / 36

Linear Models

I We have n observations, for each of which we have p
predictor measurements and a response measurement.

I Want to develop a model of the form

yi = β0 + β1Xi1 + . . .+ βpXip + εi .

I Here εi is a noise term associated with the ith observation.

I Must estimate β0, β1, . . . , βp – i.e. we must fit the model.
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Linear Model With p = 2 Predictors

5 / 36

Linear Models in Matrix Form

I For simplicity, ignore the intercept β0.
I Assume

∑n
i=1 yi =

∑n
i=1 Xij = 0; in this case, β0 = 0.

I Alternatively, let the first column of X be a column of 1’s.

I In matrix form, we can write the linear model as

y = Xβ + ε,

i.e.



y1
y2
...
yn


 =




X11 X12 . . . X1p

X21 X22 . . . X2p
...

...
. . .

...
Xn1 Xn2 . . . Xnp







β1
β2
...
βp


+




ε1
ε2
...
εn


 .
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Least Squares Regression

I There are many ways we could fit the model

y = Xβ + ε.

I Most common approach in classical statistics is least squares:

minimize
β

{
‖y − Xβ‖2

}
.

Here ‖a‖2 ≡∑n
i=1 a

2
i .

I We are looking for β1, . . . , βp such that

n∑

i=1

(yi − (β1Xi1 + . . .+ βpXip))2

is as small as possible, or in other words, such that
n∑

i=1

(yi − ŷi )
2

is as small as possible, where ŷi is the ith predicted value.
7 / 36

Least Squares Regression

I When we fit a model, we use a training set of observations.
I We get coefficient estimates β̂1, . . . , β̂p.
I We also get predictions using our model, of the form

ŷi = β̂1Xi1 + . . .+ β̂pXip.

I We can evaluate the training error, i.e. the extent to which
the model fits the observations used to train it.

I One way to quantify the training error is using the mean
squared error (MSE):

MSE =
1

n

n∑

i=1

(yi − ŷi )
2 =

1

n

n∑

i=1

(yi − (β̂1Xi1 + . . .+ β̂pXip))2.

I The training error is closely related to the R2 for a linear
model – that is, the proportion of variance explained.

I Big R2 ⇔ Small Training Error.
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Least Squares as More Variables are Included in the Model

I Training error and R2 are not good ways to evaluate a
model’s performance, because they will always improve as
more variables are added into the model.

I The problem? Training error and R2 evaluate the model’s
performance on the training observations.

I If I had an unlimited number of features to use in developing
a model, then I could surely come up with a regression model
that fits the training data perfectly! Unfortunately, this model
wouldn’t capture the true signal in the data.

I We really care about the model’s performance on test
observations – observations not used to fit the model.

9 / 36

The Problem

As we add more variables into the model...

... the training error decreases and the R2 increases!
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Why is this a Problem?

I We really care about the model’s performance on observations
not used to fit the model!

I We want a model that will predict the survival time of a new
patient who walks into the clinic!

I We want a model that can be used to diagnose cancer for a
patient not used in model training!

I We want to predict risk of diabetes for a patient who wasn’t
used to fit the model!

I What we really care about:

(ytest − ŷtest)
2,

where
ŷtest = β̂1Xtest,1 + . . .+ β̂pXtest,p,

and (Xtest , ytest) was not used to train the model.

I The test error is the average of (ytest − ŷtest)
2 over a bunch of

test observations.
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Training Error versus Test Error

As we add more variables into the model...

... the training error decreases and the R2 increases!

But the test error might not!
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Training Error versus Test Error

As we add more variables into the model...

... the training error decreases and the R2 increases!

But the test error might not!
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Why the Number of Variables Matters

I Linear regression will have a very low training error if p is
large relative to n.

I A simple example:

I When n ≤ p, you can always get a perfect model fit to the
training data!

I But the test error will be awful.
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Model Complexity, Training Error, and Test Error

I In this course, we will consider various types of models.

I We will be very concerned with model complexity: e.g. the
number of variables used to fit a model.

I As we fit more complex models – e.g. models with more
variables – the training error will always decrease.

I But the test error might not.

I As we will see, the number of variables in the model is not the
only – or even the best – way to quantify model complexity.
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A Simulated Example

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Variables

R
 S

qu
ar

ed

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

0 20 40 60 80 100

1e
−

28
1e

−
21

1e
−

14
1e

−
07

1e
+

00

Number of Variables

Tr
ai

ni
ng

 E
rr

or

●
●
●
●
●

●

●

●

●●●●
●●●●●●

●●●●●●●
●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●

●●●●●●●●
●●●●●

●
●●●

●
●●●

●●●●
●●

●
●●

●

●
●●

●

●
●●

●
●

●

0 20 40 60 80 100

1
2

5
10

20
50

10
0

20
0

50
0

Number of Variables

Te
st

 E
rr

or

I 1st 10 variables are related to response; remaining 90 are not.

I R2 increases and training error decreases as more variables are
added to the model.

I Test error is lowest when only signal variables in model.
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Bias and Variance

I As model complexity increases, the bias of β̂ – the average
difference between β and β̂, if we were to repeat the
experiment a huge number of times – will decrease.

I But as complexity increases, the variance of β̂ – the amount
by which the β̂’s will differ across experiments – will increase.

I The test error depends on both the bias and variance:

Test Error = Bias2 + Variance.

I There is a bias-variance trade-off. We want a model that is
sufficiently complex as to have not too much bias, but not so
complex that it has too much variance.
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A Really Fundamental Picture
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Overfitting

I Fitting an overly complex model – a model that has too much
variance – is known as overfitting.

I In the omics setting, when p � n, we must work hard not to
overfit the data.

I In particular, we must rely not on training error, but on test
error, as a measure of model performance.

I How can we estimate the test error?

19 / 36

Training Set Versus Test Set

I Split samples into training set and test set.

I Fit model on training set, and evaluate on test set.

Q: Can there ever, under any circumstance, be sample overlap
between the training and test sets?
A: No no no no no no.
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Training Set Versus Test Set

I Split samples into training set and test set.

I Fit model on training set, and evaluate on test set.

You can’t peek at the test set until you are completely done all
aspects of model-fitting on the training set!
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Training Set And Test Set

To get an estimate of the test error of a particular model on a
future observation:

1. Split the samples into a training set and a test set.

2. Fit the model on the training set.

3. Evaluate its performance on the test set.

4. The test set error rate is an estimate of the model’s
performance on a future observation.

But remember: no peeking!
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Choosing Between Several Models

I In general, we will consider a lot of possible models – e.g.
models with different levels of complexity. We must decide
which model is best.

I We have split our samples into a training set and a test set.
But remember: we can’t peek at the test set until we have
completely finalized our choice of model!

I We must pick a best model based on the training set, but we
want a model that will have low test error!

I How can we estimate test error using only the training set?

1. The validation set approach.
2. Leave-one-out cross-validation.
3. K -fold cross-validation.

I In what follows, assume we have split the data into a training
set and a test set, and the training set contains n observations.
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Validation Set Approach

Split the n observations into two sets of approximately equal size.
Train on one set, and evaluate performance on the other.
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Validation Set Approach

For a given model, we perform the following procedure:

1. Split the observations into two sets of approximately equal
size, a training set and a validation set.

a. Fit the model using the training observations. Let β̂(train)

denote the regression coefficient estimates.
b. For each observation in the validation set, compute the test

error, ei = (yi − xTi β̂(train))
2.

2. Calculate the total validation set error by summing the ei ’s
over all of the validation set observations.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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Leave-One-Out Cross-Validation

Fit n models, each on n − 1 of the observations. Evaluate each
model on the left-out observation.
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Leave-One-Out Cross-Validation

For a given model, we perform the following procedure:

1. For i = 1, . . . , n:

a. Fit the model using observations 1, . . . , i − 1, i + 1, . . . , n. Let
β̂(i) denote the regression coefficient estimates.

b. Compute the test error, ei = (yi − xTi β̂(i))
2.

2. Calculate
∑n

i=1 ei , the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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5-Fold Cross-Validation

Split the observations into 5 sets. Repeatedly train the model on 4
sets and evaluate its performance on the 5th.
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K-fold cross-validation

A generalization of leave-one-out cross-validation. For a given
model, we perform the following procedure:

1. Split the n observations into K equally-sized folds.

2. For k = 1, . . . ,K :

a. Fit the model using the observations not in the kth fold.
b. Let ek denote the test error for the observations in the kth fold.

3. Calculate
∑K

k=1 ek , the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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After Estimating the Test Error on the Training Set...

After we estimate the test error using the training set, we refit the
“best” model on all of the available training observations. We then
evaluate this model on the test set.
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Big Picture
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Big Picture
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Big Picture
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Big Picture
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Big Picture
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Summary: Four-Step Procedure

1. Split observations into training set and test set.

2. Fit a bunch of models on training set, and estimate the test
error, using cross-validation or validation set approach.

3. Refit the best model on the full training set.

4. Evaluate the model’s performance on the test set.
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Linear Models in High Dimensions

I When p is large, least squares regression will lead to very low
training error but terrible test error.

I We will now see some approaches for fitting linear models in
high dimensions, p � n.

I These approaches also work well when p ≈ n or n > p.
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Motivating example

I We would like to build a model to predict survival time for
breast cancer patients using a number of clinical
measurements (tumor stage, tumor grade, tumor size, patient
age, etc.) as well as some biomarkers.

I For instance, these biomarkers could be:
I the expression levels of genes measured using a microarray.
I protein levels.
I mutations in genes potentially implicated in breast cancer.

I How can we develop a model with low test error in this
setting?
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Remember

I We have n training observations.

I Our goal is to get a model that will perform well on future
test observations.

I We’ll incur some bias in order to reduce variance.
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Variable Pre-Selection

The simplest approach for fitting a model in high dimensions:

1. Choose a small set of variables, say the q variables that are
most correlated with the response, where q < n and q < p.

2. Use least squares to fit a model predicting y using only these
q variables.

This approach is simple and straightforward.
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How Many Variable to Use?

I We need a way to choose q, the number of variables used in
the regression model.

I We want q that minimizes the test error.

I For a range of values of q, we can perform the validation set
approach, leave-one-out cross-validation, or K -fold
cross-validation in order to estimate the test error.

I Then choose the value of q for which the estimated test error
is smallest.
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Estimating the Test Error For a Given q

This is the right way to estimate the test error using the validation
set approach:

1. Split the observations into a training set and a validation set.

2. Using the training set only:

a. Identify the q variables most associated with the response.
b. Use least squares to fit a model predicting y using those q

variables.
c. Let β̂1, . . . , β̂q denote the resulting coefficient estimates.

3. Use β̂1, . . . , β̂q obtained on training set to predict response on
validation set, and compute the validation set MSE.
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Estimating the Test Error For a Given q

This is the wrong way to estimate the test error using the
validation set approach:

1. Identify the q variables most associated with the response on
the full data set.

2. Split the observations into a training set and a validation set.

3. Using the training set only:

a. Use least squares to fit a model predicting y using those q
variables.

b. Let β̂1, . . . , β̂q denote the resulting coefficient estimates.

4. Use β̂1, . . . , β̂q obtained on training set to predict response on
validation set, and compute the validation set MSE.
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Frequently Asked Questions

I Q: Does it really matter how you estimate the test error?
A: Yes.

I Q: Would anyone make such a silly mistake?
A: Yes.
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A Better Approach

I The variable pre-selection approach is simple and easy to
implement – all you need is a way to calculate correlations,
and software to fit a linear model using least squares.

I But it might not work well: just because a bunch of variables
are correlated with the response doesn’t mean that when used
together in a linear model, they will predict the response well.

I What we really want to do: pick the q variables that best
predict the response.
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Subset Selection

Several Approaches:

I Best Subset Selection: Consider all subsets of predictors
Computational mess!

I Stepwise Regression: Greedily add/remove predictors
Heuristic and potentially inefficient

I Modern Penalized Methods
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Ridge Regression and the Lasso

I Best subset, and stepwise regression control model complexity
by using subsets of the predictors.

I Ridge regression and the lasso instead control model
complexity by using an alternative to least squares, by
shrinking the regression coefficients.

I This is known as regularization or penalization.

I Hot area in statistical machine learning today.
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Crazy Coefficients

I When p > n, some of the variables are highly correlated.
I Why does correlation matter?

I Suppose that X1 and X2 are highly correlated with each
other... assume X1 = X2 for the sake of argument.

I And suppose that the least squares model is

ŷ = X1 − 2X2 + 3X3.

I Then this is also a least squares model:

ŷ = 100000001X1 − 100000002X2 + 3X3.

I Bottom Line: When there are too many variables, the least
squares coefficients can get crazy!

I This craziness is directly responsible for poor test error.

I It amounts to too much model complexity.

13 / 31

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

A Solution: Don’t Let the Coefficients Get Too Crazy

I Recall that least squares involves finding β that minimizes

‖y − Xβ‖2.

I Ridge regression involves finding β that minimizes

‖y − Xβ‖2 + λ
∑

j

β2j .

I Equivalently, find β that minimizes

‖y − Xβ‖2

subject to the constraint that
p∑

j=1

β2j ≤ s.
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Ridge Regression

I Ridge regression coefficient estimates minimize

‖y − Xβ‖2 + λ
∑

j

β2j .

I Here λ is a nonnegative tuning parameter that shrinks the
coefficient estimates.

I When λ = 0, then ridge regression is just the same as least
squares.

I As λ increases, then
∑p

j=1(β̂Rλ,j)
2 decreases – i.e. coefficients

become shrunken towards zero.

I When λ =∞, β̂
R
λ = 0.
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Ridge Regression As λ Varies
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Ridge Regression In Practice

I Perform ridge regression for a very fine grid of λ values.

I Use cross-validation or the validation set approach to select
the optimal value of λ – that is, the best level of model
complexity.

I Perform ridge on the full data set, using that value of λ.

17 / 31

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Drawbacks of Ridge

I Ridge regression is a simple idea and has a number of
attractive properties: for instance, you can continuously
control model complexity through the tuning parameter λ.

I But it suffers in terms of model interpretability, since the final
model contains all p variables, no matter what.

I Often want a simpler model involving a subset of the features.

I The lasso involves performing a little tweak to ridge regression
so that the resulting model contains mostly zeros.

I In other words, the resulting model is sparse. We say that the
lasso performs feature selection.

I The lasso is a very active area of research interest in the
statistical community!
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The Lasso

I The lasso involves finding β that minimizes

‖y − Xβ‖2 + λ
∑

j

|βj |.

I Equivalently, find β that minimizes

‖y − Xβ‖2

subject to the constraint that
p∑

j=1

|βj | ≤ s.

I So lasso is just like ridge, except that β2j has been replaced
with |βj |.
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The Lasso

I Lasso is a lot like ridge:
I λ is a nonnegative tuning parameter that controls model

complexity.
I When λ = 0, we get least squares.
I When λ is very large, we get β̂L

λ = 0.

I But unlike ridge, lasso will give some coefficients exactly equal
to zero for intermediate values of λ!
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Lasso As λ Varies
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Lasso In Practice

I Perform lasso for a very fine grid of λ values.

I Use cross-validation or the validation set approach to select
the optimal value of λ – that is, the best level of model
complexity.

I Perform the lasso on the full data set, using that value of λ.
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Ridge and Lasso: A Geometric Interpretation
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Pros/Cons of Each Approach

Approach Simplicity?* Sparsity?** Predictions?***

Pre-Selection Good Yes So-So
Forward Stepwise Good Yes So-So

Ridge Medium No Great
Lasso Bad Yes Great

* How simple is this model-fitting procedure? If you were stranded
on a desert island with pretty limited statistical software, could you
fit this model?
** Does this approach perform feature selection, i.e. is the
resulting model sparse?
*** How good are the predictions resulting from this model?
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No “Best” Approach

I There is no “best” approach to regression in high dimensions.
I Some approaches will work better than others. For instance:

I Lasso will work well if it’s really true that just a few features
are associated with the response.

I Ridge will do better if all of the features are associated with
the response.

I If somebody tells you that one approach is “best”... then they
are mistaken. Politely contradict them.

I While no approach is “best”, some approaches are wrong
(e.g.: there is a wrong way to do cross-validation)!
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Making Linear Regression Less Linear

What if the relationship isn’t linear?

y = 3 sin(x) + ε

y = 2ex + ε

y = 3x2 + 2x + 1 + ε

If we know the functional form we can still use “linear regression”

26 / 31



Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Making Linear Regression Less Linear

y = 3 sin(x) + ε: 
x


→


sin(x)




y = 3x2 + 2x + 1 + ε:


x


→


x x2



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Making Linear Regression Less Linear

What if we don’t know the right functional form?

Use a flexible basis expansion:

I polynomial basis


x


→


x x2 · · · xk




I hockey-stick (/spline) basis


x


→


x (x − t1)+ · · · (x − tk)+




28 / 31



Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Making Linear Regression Less Linear
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Making Linear Regression Less Linear

For high dimensional problems, expand each variable


x1 x2 · · · xp


→


x1 · · · xk1 x2 · · · xk2 · · · xp · · · xkp




and use the Lasso on this expanded problem.

k must be small (∼ 5ish)

Spline basis generally outperforms polynomial
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Bottom Line

Much more important than what model you fit is how you fit it.

I Was cross-validation performed properly?

I Did you select a model (or level of model complexity) based
on an estimate of test error?
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Classification

Classification

I Regression involves predicting a continuous-valued response,
like tumor size.

I Classification involves predicting a categorical response:
I Cancer versus Normal
I Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3

I Classification problems tend to occur even more frequently
than regression problems in the analysis of omics data.

I Just like regression,
I Classification cannot be blindly performed in high-dimensions

because you will get zero training error but awful test error;
I Properly estimating the test error is crucial; and
I There are a few tricks to extend classical classification

approaches to high-dimensions, which we have already seen in
the regression context!
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Classification

Classification

I There are many approaches out there for performing
classification.

I We will discuss two, logistic regression and support vector
machines.
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Classification

Logistic Regression

I Logistic regression is the straightforward extension of linear
regression to the classification setting.

I For simplicity, suppose y ∈ {0, 1}: a two-class classification
problem.

I The simple linear model

y = Xβ + ε

doesn’t make sense for classification.

I Instead, the logistic regression model is

P(y = 1|X ) =
exp(XTβ)

1 + exp(XTβ)
.

I We usually fit this model using maximum likelihood – like
least squares, but for logistic regression.
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Why Not Linear Regression?
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I Left: linear regression.

I Right: logistic regression.
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Ways to Extend Logistic Regression to High Dimensions

1. Variable Pre-Selection

2. Forward Stepwise Logistic Regression

3. Ridge Logistic Regression

4. Lasso Logistic Regression

How to decide which approach is best, and which tuning parameter
value to use for each approach? Cross-validation or validation set
approach.
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Support Vector Machines

I Developed in around 1995.

I Touted as “overcoming the curse of dimensionality.”

I Does not (automatically) overcome the curse of
dimensionality!

I Fundamentally and numerically very similar to logistic
regression.

I But, it is a nice idea.
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Separating Hyperplane
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Classification Via a Separating Hyperplane

Blue class if β0 + β1X1 + β2X2 > c; red class otherwise.
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Maximal Separating Hyperplane

Note that only a few observations are on the margin: these are the
support vectors.
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What if There is No Separating Hyperplane?
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Classification

Support Vector Classifier: Allow for Violations
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Support Vector Machine

I The support vector machine is just like the support vector
classifier, but it elegantly allows for non-linear expansions of
the variables: “non-linear kernels”.

I However, linear regression, logistic regression, and other
classical statistical approaches can also be applied to
non-linear functions of the variables.

I For historical reasons, SVMs are more frequently used with
non-linear expansions as compared to other statistical
approaches.
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Non-Linear Class Structure

This will be hard for a linear classifier!
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Try a Support Vector Classifier

Uh-oh!!
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Classification

Support Vector Machine

Much Better.
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Classification

Is A Non-Linear Kernel Better?

I Yes, if the true decision boundary between the classes is
non-linear, and you have enough observations (relative to the
number of features) to accurately estimate the decision
boundary.

I No, if you are in a very high-dimensional setting such that
estimating a non-linear decision boundary is hopeless.

17 / 20

Classification

SVM vs Other Classification Methods

I The main difference between SVM and other classification
methods (e.g. logistic regression) is the loss function used to
assess the “fit”:

n∑

i=1

L(f (xi ), yi )

I Zero-one loss: I (f (xi ) = yi ), where
I () is the indicator function. Not
continuous, so hard to work with!!

I Hinge loss: max(0, 1− f (xi )yi )

I Logistic loss: log(1 + expf (xi )yi
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SVM vs Logistic Regression

I Bottom Line: Support vector classifier and logistic regression
aren’t that different!

I Neither they nor any other approach can overcome the “curse
of dimensionality”.

I The “kernel trick” makes things computationally easier, but it
does not remove the danger of overfitting.

I SVM uses a non-linear kernel... but could do that with logistic
or linear regression too!

I A disadvantage of SVM (compared to, e.g. logistic regression)
is that it does not provide a measure of uncertainty: cases are
“classified” to belong to one of the two classes.

19 / 20

Classification

In High Dimensions...

I In SVMs, a tuning parameter controls the amount of flexibility
of the classifier.

I This tuning parameter is like a ridge penalty, both
mathematically and conceptually. The SVM decision rule
involves all of the variables (the SVM problem can be written
as a ridge problem but with the Hinge loss).

I Can get a sparse SVM using a lasso penalty; this yields a
decision rule involving only a subset of the features.

I Logistic regression and other classical statistical approaches
could be used with non-linear expansions of features. But this
makes high-dimensionality issues worse.
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