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A Simple Example

» Suppose we have n = 400 people with diabetes for whom we
have p = 3 serum-level measurements (LDL, HDL, GLU).

» Want to predict these peoples’ disease progression after 1 year.
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A Simple Example

Notation:

» nis the number of observations.
» p the number of

variables/features/predictors.

> y is a n-vector containing
response/outcome for each of n
observations.

» X is a n X p data matrix.

m] = = E Qe
3/15
Classical Statistics
Biological Big Data
Supervised and Unsupervised Learning
Linear Regression on a Simple Example

» You can perform linear regression to develop a model to
predict progression using LDL, HDL, and GLU:

y = Bo+ B1X1 + BoXo + B3 X3 + €

where y is our continuous measure of disease progression,
X1, X, X3 are our serum-level measurements, and € is a noise
term.
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Regression on a Simple Example

You can perform linear regression to develop a model to
predict progression using LDL, HDL, and GLU:

y = Bo+ 1 X1+ BaXo + B3 X3 + €

where y is our continuous measure of disease progression,
X1, X2, X3 are our serum-level measurements, and € is a noise
term.

You can look at the coefficients, p-values, and t-statistics for
your linear regression model in order to interpret your results.
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Regression on a Simple Example

You can perform linear regression to develop a model to
predict progression using LDL, HDL, and GLU:

y = Bo+ B1X1 + BoXo + B3 X3 + €

where y is our continuous measure of disease progression,
X1, X, X3 are our serum-level measurements, and € is a noise
term.

You can look at the coefficients, p-values, and t-statistics for
your linear regression model in order to interpret your results.

You learned everything (or most of what) you need to analyze
this data set in Classical Statistics!
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A Relationship Between the Variables?
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Linear Model Output
Estimate | Std. Error | T-Stat | P-Value
Intercept | 152.928 | 3.385 45.178 | < 2e-16 ***
LDL 77.057 75.701 1.018 | 0.309
HDL -487.574 | 75.605 -6.449 | 3.28e-10 ***
GLU 477.604 | 76.643 6.232 1.18e-09 ***

progression_measure ~ 152.94+77.1xLDL—487.6x HDL+477.6 xGLU.
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Low-Dimensional Versus High-Dimensional

» The data set that we just saw is low-dimensional: n > p.

» Lots of the data sets coming out of modern biological
techniques are high-dimensional: n~ p or n < p.

» This poses statistical challenges! Classical Statistics no longer
applies.
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Low Dimensional
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High Dimensional
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What Goes Wrong in High Dimensions?
» Suppose that we included many additional predictors in our
model, such as
» Age
» Zodiac symbol
» Favorite color
» Mother’s birthday, in base 2
o = = = T DA
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What Goes Wrong in High Dimensions?

» Suppose that we included many additional predictors in our
model, such as

Age

Zodiac symbol

Favorite color

Mother's birthday, in base 2

vV v.vyyYy

» Some of these predictors are useful, others aren't.
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» If we include too many predictors, we will overfit the data.
» Overfitting: Model looks great on the data used to develop it,

but will perform very poorly on future observations.
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What Goes Wrong in High Dimensions?

» Suppose that we included many additional predictors in our
model, such as

Age

Zodiac symbol

Favorite color

Mother's birthday, in base 2

vV v.vyyYy

» Some of these predictors are useful, others aren't.
» If we include too many predictors, we will overfit the data.

» Overfitting: Model looks great on the data used to develop it,
but will perform very poorly on future observations.

» When p = n or p > n, overfitting is guaranteed unless we are
very careful.
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Why Does Dimensionality Matter?

» Classical statistical techniques, such as linear regression,
cannot be applied.

» Even very simple tasks, like identifying variables that are
associated with a response, must be done with care.

» High risks of overfitting, false positives, and more.
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Why Does Dimensionality Matter?

» Classical statistical techniques, such as linear regression,
cannot be applied.

» Even very simple tasks, like identifying variables that are
associated with a response, must be done with care.

» High risks of overfitting, false positives, and more.

This course: Statistical machine learning tools for big — mostly
high-dimensional — data.
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Supervised and Unsupervised Learning

» Statistical machine learning can be divided into two main
areas: supervised and unsupervised.
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Supervised and Unsupervised Learning

» Statistical machine learning can be divided into two main
areas: supervised and unsupervised.

» Supervised Learning: Use a data set X to predict or detect
association with a response y.

» Regression
» Classification
» Hypothesis Testing
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Supervised and Unsupervised Learning

» Statistical machine learning can be divided into two main
areas: supervised and unsupervised.
» Supervised Learning: Use a data set X to predict or detect
association with a response y.
» Regression
» Classification
» Hypothesis Testing
» Unsupervised Learning: Discover the signal in X, or detect
associations within X.
» Dimension Reduction
» Clustering

12/15
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Supervised Learning
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Unsupervised Learning
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‘Course Textbook” . . . with applications in R

An Introduction
to Statistical

Learning

» Available for (free!) download from www.statlearning.com.
» An accessible introduction to statistical machine learning,

with an R lab at the end of each chapter.
» We will go through some of these R labs.
> To learn more, go through them on your own!_

DA
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» Regression: Predict a quantitative response, such as

» blood pressure
» cholesterol level
» tumor size
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Regression Versus Classification

» Regression: Predict a quantitative response, such as

» blood pressure
» cholesterol level
» tumor size

» Classification: Predict a categorical response, such as

» tumor versus normal tissue
» heart disease versus no heart disease
» subtype of glioblastoma

» This lecture: Regression.
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Linear Models

v

We have n observations, for each of which we have p
predictor measurements and a response measurement.

v

Want to develop a model of the form

yi=PBo+ b1Xia+ ...+ BpXip +€i

v

Here ¢; is a noise term associated with the ith observation.

v

Must estimate Sg, 31,...,8p — i.e. we must fit the model.
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Linear Model With p = 2 Predictors
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What Makes a Model Linear?
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What Makes a Model Linear?

» A linear model is linear in the regression coefficients!
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What Makes a Model Linear?

» A linear model is linear in the regression coefficients!

» This is a linear model:

yi = B1sin(Xi1) + B2 XinXiz + €.

» This is not a linear model:

yi = 5i<i1 + sin(52Xi2) + €.
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Linear Models in Matrix Form

» For simplicity, ignore the intercept fp.
» Assume Y7 y; = >~ X =0; in this case, 8y = 0.
» Alternatively, let the first column of X be a column of 1's.

» |In matrix form, we can write the linear model as

y =XB+¢,
I.e.
yi X X2 ... X\ (B €1
y2 Xo1 Xoo ... Xyp B2 €2
= T N
Yn X1 Xm2 ... )<np [3p €n

7/48

Least Squares Regression

» There are many ways we could fit the model

y =X03 +e€.

» Most common approach in classical statistics is least squares:

miniﬁmize {lly - X,8||2} :

Here ||a]|? = Y 7, a2.

i

» We are looking for 1, ..., 3, such that

Z(Yi — (B1Xi1 + ..+ BpXip))?
i=1

is as small as possible, or in other words, such that

n
> vi—9)
P

is as small as possible, where y; is the ith predicted value.

8/48




Let's Try Out Least Squares in R!

Chapter 3 R lab

www.statlearning.com

9/48

Least Squares Regression

» When we fit a model, we use a training set of observations.
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Least Squares Regression

v

When we fit a model, we use a training set of observations.
We get coefficient estimates 31, ..., Bp.
We also get predictions using our model, of the form

Vi = BiXin + -+ BpXip

vy

v

We can evaluate the training error, i.e. the extent to which
the model fits the observations used to train it.

10/48

Least Squares Regression

» When we fit a model, we use a training set of observations.
> We get coefficient estimates 1, ..., 3p.
» We also get predictions using our model, of the form

Vi = P1iXi + ...+ BpXip.

» We can evaluate the training error, i.e. the extent to which
the model fits the observations used to train it.
» One way to quantify the training error is using the mean
squared error (MSE):
MSE = * zn:(yi -9 = : Zn:()/i — (BiXin+ .+ BpXip)).
n n

i=1 i=1
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n

1 . 1 o 5 .
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Least Squares Regression

» When we fit a model, we use a training set of observations.

> We get coefficient estimates 1, ..., 3p.

» We also get predictions using our model, of the form

Vi=piXn+ ...+ BpXip-

» We can evaluate the training error, i.e. the extent to which
the model fits the observations used to train it.

» One way to quantify the training error is using the mean
squared error (MSE):

1 n A2 1 . 5 D 2
MSE = - Z;(yi — Vi) = - Z;(Yi — (81 Xin+ ...+ BpXip))
1= 1=

» The training error is closely related to the R? for a linear
model — that is, the proportion of variance explained.
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| east Squares as More Variables are Included in the Model

» Training error and R? are not good ways to evaluate a
model’'s performance, because they will always improve as
more variables are added into the model.
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Least Squares as More Variables are Included in the Model

» Training error and R? are not good ways to evaluate a
model’s performance, because they will always improve as
more variables are added into the model.

» The problem? Training error and R? evaluate the model’s
performance on the training observations.

» If | had an unlimited number of features to use in developing
a model, then | could surely come up with a regression model
that fits the training data perfectly! Unfortunately, this model
wouldn’t capture the true signal in the data.

» We really care about the model's performance on test
observations — observations not used to fit the model.
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The Problem

As we add more variables into the model...

R? Training Error

Number of Variables Number of Variables

.. the training error decreases and the R? increases!
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Why is this a Problem?

» We really care about the model’s performance on observations
not used to fit the model!

» We want a model that will predict the survival time of a new
patient who walks into the clinic!

» We want a model that can be used to diagnose cancer for a
patient not used in model training!

» We want to predict risk of diabetes for a patient who wasn't
used to fit the model!
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Why is this a Problem?

» We really care about the model’'s performance on observations
not used to fit the model!

» We want a model that will predict the survival time of a new
patient who walks into the clinic!

» We want a model that can be used to diagnose cancer for a
patient not used in model training!

» We want to predict risk of diabetes for a patient who wasn't
used to fit the model!

» What we really care about:

(}/test - }l}test)2>

where
ytest - letest,l + ...+ BpXtest,pa
and (Xtest, Ytest) Was not used to train the model.

> The test error is the average of (yiest — Viest)> Over a bunch of
test observations.

13 /48

Training Error versus Test Error

As we add more variables into the model...

R? Training Error Test Error

Number of Variables Number of Variables Number of Variables

.. the training error decreases and the R? increases!

But the test error might not!
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Training Error versus Test Error

As we add more variables into the model...

R? Training Error Test Error

4

Number of Variables Number of Variables Number of Variables

.. the training error decreases and the R? increases!

But the test error might not!

15/48

Why the Number of Variables Matters

» Linear regression will have a very low training error if p is
large relative to n.

» A simple example:
(a) (b)

y
-7 -6 -5 -4 -3

-8

T T T T T T T
-25 -20 -15 -10 -05 00 05 10 -1.0 -08 -06 -04 -02 00 02

X X

» When n < p, you can always get a perfect model fit to the
training data!

» But the test error will be awful.
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Model Complexity, Training Error, and Test Error

» In this course, we will consider various types of models.

» We will be very concerned with model complexity: e.g. the
number of variables used to fit a model.

» As we fit more complex models — e.g. models with more
variables — the training error will always decrease.

» But the test error might not.

» As we will see, the number of variables in the model is not the
only — or even the best — way to quantify model complexity.

17 /48

An Example In R

xtr <- matrix(rnorm(100%100) ,ncol=100)

xte <- matrix(rnorm(100000%*100) ,ncol=100)

beta <- c(rep(1,10),rep(0,90))

ytr <- xtryx)beta + rnorm(100)

yte <- xtel*)beta + rnorm(100000)

rsq <- trainerr <- testerr <- NULL

for(i in 2:100){

mod <- Im(ytr~xtr[,1:i])

rsq <- c(rsq,summary(mod)$r.squared)

beta <- mod$coef[-1]

intercept <- mod$coef[1]

trainerr <- c(trainerr, mean((xtr[,1:i]%*)betatintercept - ytr)~2))
testerr <- c(testerr, mean((xtel[,1:i]%*Ybetat+intercept - yte)~2))

}

par (mfrow=c(1,3))

plot(2:100,rsq, xlab=’Number of Variables’, ylab="R Squared", log="y")
abline(v=10,col="red")

plot(2:100,trainerr, xlab=’Number of Variables’, ylab="Training Error",log="y")
abline(v=10,col="red")

plot(2:100,testerr, xlab=’Number of Variables’, ylab="Test Error",log="y")
abline(v=10,col="red")
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A Simulated Example

R Squared

Training Error

Number of Variables

le-21 le-14 1le-07 1e+00

le-28

Test Error

T T T T T T
0 20 40 60 80

Number of Variables

50 100 200 500

5 10 20

Number of Variables

» 1st 10 variables are related to response; remaining 90 are not.

» R? increases and training error decreases as more variables are
added to the model.

» Test error is lowest when only signal variables in model.

19/48

Bias and Variance

» As model complexity increases, the bias of A - the average
difference between (5 and 3, if we were to repeat the
experiment a huge number of times — will decrease.
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» As model complexity increases, the bias of A - the average
difference between (5 and 3, if we were to repeat the
experiment a huge number of times — will decrease.

» But as complexity increases, the variance of B — the amount
by which the 3's will differ across experiments — will increase.

» The test error depends on both the bias and variance:

Test Error = Bias? + Variance.
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Bias and Variance

» As model complexity increases, the bias of BA — the average
difference between (5 and 3, if we were to repeat the
experiment a huge number of times — will decrease.

» But as complexity increases, the variance of B - the amount
by which the 3's will differ across experiments — will increase.

» The test error depends on both the bias and variance:

Test Error = Bias? 4+ Variance.

» There is a bias-variance trade-off. We want a model that is
sufficiently complex as to have not too much bias, but not so
complex that it has too much variance.
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A Really Fundamental Picture

High Bias Low Bias
Low Variance High Variance
- - e mmme-—— -—

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity
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Overfitting
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» Fitting an overly complex model — a model that has too much
variance — is known as overfitting.
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Overfitting

» Fitting an overly complex model — a model that has too much
variance — is known as overfitting.

» In the high-dimensional setting, when p > n, we must work
hard not to overfit the data.

» In particular, we must rely not on training error, but on test
error, as a measure of model performance.

» How can we estimate the test error?

] = = = = 1PN 6
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Training Set Versus Test Set
» Split samples into training set and test set.
» Fit model on training set, and evaluate on test set.
Training Set Test Set
=] F = = E DA
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» Fit model on training set, and evaluate on test set.

Training Set Test Set

Q: Can there ever, under any circumstance, be sample overlap
between the training and test sets?
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» Split samples into training set and test set.

» Fit model on training set, and evaluate on test set.

Q: Can there ever, under any circumstance, be sample overlap
between the training and test sets?
A: Never!
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Training Set Versus Test Set

» Split samples into training set and test set.

» Fit model on training set, and evaluate on test set.

Training Set

= =
Training Set Versus Test Set

DA
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» Split samples into training set and test set.

» Fit model on training set, and evaluate on test set.

Training Set

You can't peek at the test set until you are completely done all
aspects of model-fitting on the training set!

Dac
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Training Set And Test Set

To get an estimate of the test error of a particular model on a
future observation:

1. Split the samples into a training set and a test set.
2. Fit the model on the training set.

3. Evaluate its performance on the test set.

4

. The test set error rate is an estimate of the model’s
performance on a future observation.
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Training Set And Test Set

To get an estimate of the test error of a particular model on a
future observation:

1. Split the samples into a training set and a test set.
2. Fit the model on the training set.

3. Evaluate its performance on the test set.

4

. The test set error rate is an estimate of the model’s
performance on a future observation.

But remember: no peeking!

2548




Choosing Between Several Models

» In general, we will consider a lot of possible models — e.g.
models with different levels of complexity. We must decide
which model is best.
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Choosing Between Several Models

» In general, we will consider a lot of possible models — e.g.
models with different levels of complexity. We must decide
which model is best.

» We have split our samples into a training set and a test set.
But remember: we can't peek at the test set until we have
completely finalized our choice of model!

» We must pick a best model based on the training set, but we
want a model that will have low test error!
» How can we estimate test error using only the training set?

1. The validation set approach.
2. Leave-one-out cross-validation.
3. K-fold cross-validation.

» In what follows, assume we have split the data into a training
set and a test set, and the training set contains n observations.
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Validation Set Approach

Split the n observations into two sets of approximately equal size.
Train on one set, and evaluate performance on the other.

[123 n |

!

722 13 91
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Validation Set Approach

For a given model, we perform the following procedure:

1. Split the observations into two sets of approximately equal
size, a training set and a validation set.

a. Fit the model using the training observations. Let B(tra,-n)
denote the regression coefficient estimates.
b. For each observation in the validation set, compute the test

error, & = (yl - XI'T/B(train))2'
2. Calculate the total validation set error by summing the ¢;'s
over all of the validation set observations.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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Leave-One-Out Cross-Validation

Fit n models, each on n — 1 of the observations. Evaluate each
model on the left-out observation.

[123 n |
123 n
123 n
123 n
123 n
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Leave-One-Out Cross-Validation

For a given model, we perform the following procedure:

1. Fori=1,... n:
a. Fit the model using observations 1,...,i—1,i+1,...,n. Let
B(iy denote the regression coefficient estimates.

b. Compute the test error, e; = (y; — X,-Té(,-))Q.
2. Calculate > ; e, the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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5-Fold Cross-Validation

Split the observations into 5 sets. Repeatedly train the model on 4
sets and evaluate its performance on the 5th.

[123 n |
!

123 n

123 n

123 n

123 n

123 n
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K-fold cross-validation

A generalization of leave-one-out cross-validation. For a given
model, we perform the following procedure:

1. Split the n observations into K equally-sized folds.
2. Fork=1,..., K:

a. Fit the model using the observations not in the kth fold.
b. Let e, denote the test error for the observations in the kth fold.

3. Calculate Zszl ek, the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.
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An Example In R

xtr <- matrix(rnorm(100*100) ,ncol=100)

beta <- c(rep(1,10),rep(0,90))

ytr <- xtri*)beta + rnorm(100)

cv.err <- NULL

for(i in 2:50){

dat <- data.frame(x=xtr[,1:i],y=ytr)

mod <- glm(y~.,data=dat)

cv.err <- c(cv.err, cv.glm(dat,mod,K=6)$deltal1])
}

plot(2:50, cv.err, xlab="Number of Variables",
ylab="6-Fold CV Error", log="y")

abline(v=10, col="red")
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Output of R Code

6-Fold CV Error

T T T T
10 20 30 40 50

Number of Variables

» Six-fold CV identifies the model with just over ten predictors.

» First ten predictors contain signal, and the rest are noise.
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After Estimating the Test Error on the Training Set...
After we estimate the test error using the training set, we refit the

“best” model on all of the available training observations. We then
evaluate this model on the test set.

Big Picture

DA
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Let's Try Out Cross-Validation in R!

Chapter 5 R lab

First Half: Cross-Validation
www.statlearning.com
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Summary: Four-Step Procedure

1. Split observations into training set and test set.

2. Fit a bunch of models on training set, and estimate the test
error, using cross-validation or validation set approach.

3. Refit the best model on the full training set.

4. Evaluate the model's performance on the test set.
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Why All the Bother?

Q: Why do | need to have a separate test set? Why can't | just
estimate test error using cross-validation or a validation set
approach using all the observations, and then be done with it?
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Why All the Bother?

Q: Why do | need to have a separate test set? Why can't | just
estimate test error using cross-validation or a validation set
approach using all the observations, and then be done with it?

A: In general, we are choosing between a whole bunch of models,
and we will use the cross-validation or validation set approach to
pick between these models. If we use the resulting estimate as a
final estimate of test error, then this could be an extreme
underestimate, because one model might give a lower estimated
test error than others by chance. To avoid having an extreme
underestimate of test error, we need to evaluate the “best” model
obtained on an independent test set. This is particularly important
in high dimensions!!
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Regression in High Dimensions

» We usually cannot perform least squares regression to fit a
model in the high-dimensional setting, because we will get
zero training error but a terrible test error.
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» We usually cannot perform least squares regression to fit a
model in the high-dimensional setting, because we will get
zero training error but a terrible test error.

» Instead, we must fit a less complex model, e.g. a model with
fewer variables.
» We will consider five ways to fit less complex models:

1. Variable Pre-Selection

2. Forward Stepwise Regression

3. Ridge Regression

4. Lasso Regression

5. Principal Components Regression

» These are alternatives to fitting a linear model using least
squares.
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Regression in High Dimensions

» We usually cannot perform least squares regression to fit a
model in the high-dimensional setting, because we will get
zero training error but a terrible test error.

» Instead, we must fit a less complex model, e.g. a model with
fewer variables.
» We will consider five ways to fit less complex models:

1. Variable Pre-Selection
2. Forward Stepwise Regression
3. Ridge Regression
4. Lasso Regression
5. Principal Components Regression
» These are alternatives to fitting a linear model using least
squares.

» Each of these approaches will allow us to choose the level of
complexity — e.g. the number of variables in the model.
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Regression in High Dimensions

» We usually cannot perform least squares regression to fit a
model in the high-dimensional setting, because we will get
zero training error but a terrible test error.

» Instead, we must fit a less complex model, e.g. a model with
fewer variables.

If you

» fit your model carelessly;

» do not properly estimate the test error;

» or select a model based on training set rather than test set
performance;

then you will woefully overfit your training data, leading to a
model that looks good on training data but will perform
atrociously on future observations.

Our intuition breaks down in high dimensions, and so rigorous
model-fitting is crucial.
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The Curse of Dimensionality

Q: A data set with more variables is better than a data set with
fewer variables, right?
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The Curse of Dimensionality

Q: A data set with more variables is better than a data set with
fewer variables, right?

A: Not necessarily!

Noise variables — such as genes whose expression levels are not
truly associated with the response being studied — will simply
increase the risk of overfitting, and the difficulty of developing an
effective model that will perform well on future observations.

On the other hand, more signal variables — variables that are truly
associated with the response being studied — are always useful!
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Wise Words

In high-dimensional data analysis, common mistakes are simple,
and simple mistakes are common.

— Keith Baggerly
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Before You're Done Your Analysis

» Estimate the test error.

» Do a “sanity check” whenever possible.

» “Spot-check” the variables that have the largest coefficients in
the model.

» Rewrite your code from scratch. Do you get the same answer
again?

Fitting models in high-dimensions: one mistake away from disaster!
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Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression
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Linear Models in High Dimensions

» When p is large, least squares regression will lead to very low
training error but terrible test error.
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Linear Models in High Dimensions

» When p is large, least squares regression will lead to very low
training error but terrible test error.

» We will now see some approaches for fitting linear models in
high dimensions, p > n.

» These approaches also work well when p~ nor n> p.
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Motivating example

» We would like to build a model to predict survival time for
breast cancer patients using a number of clinical
measurements (tumor stage, tumor grade, tumor size, patient
age, etc.) as well as some biomarkers.
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Motivating example

» We would like to build a model to predict survival time for
breast cancer patients using a number of clinical
measurements (tumor stage, tumor grade, tumor size, patient
age, etc.) as well as some biomarkers.

» For instance, these biomarkers could be:

» the expression levels of genes measured using a microarray.
» protein levels.

» mutations in genes potentially implicated in breast cancer.

» How can we develop a model with low test error in this

setting?
3/45
Variable Pre-Selection
Subset Selection
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Lasso Regression
Remember

» We have n training observations.

» Our goal is to get a model that will perform well on future
test observations.

» We'll incur some bias in order to reduce variance.
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Variable Pre-Selection

The simplest approach for fitting a model in high dimensions:

1. Choose a small set of variables, say the g variables that are
most correlated with the response, where g < n and g < p.

2. Use least squares to fit a model predicting y using only these
q variables.

This approach is simple and straightforward.

5/ 45
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Variable Pre-Selection in R

xtr <- matrix(rnorm(100*100),ncol=100)
beta <- c(rep(1,10),rep(0,90))

ytr <- xtri*J/beta + rnorm(100)

cors <- cor(xtr,ytr)

whichers <- which(abs(cors)>.2)

mod <- lm(ytr~xtr[,whichers])

print (summary (mod) )
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How Many Variable to Use?

» We need a way to choose g, the number of variables used in
the regression model.

» We want g that minimizes the test error.

» For a range of values of g, we can perform the validation set
approach, leave-one-out cross-validation, or K-fold
cross-validation in order to estimate the test error.

» Then choose the value of g for which the estimated test error
is smallest.

7/45
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Estimating the Test Error For a Given g

This is the right way to estimate the test error using the validation
set approach:
1. Split the observations into a training set and a validation set.

2. Using the training set only:
a. ldentify the g variables most associated with the response.
b. Use least squares to fit a model predicting y using those g

variables.
c. Let Bi,..., B4 denote the resulting coefficient estimates.
3. Use Bi,...,Bq obtained on training set to predict response on

validation set, and compute the validation set MSE.
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Estimating the Test Error For a Given g

This is the wrong way to estimate the test error using the
validation set approach:
1. Identify the g variables most associated with the response on
the full data set.
2. Split the observations into a training set and a validation set.

3. Using the training set only:
a. Use least squares to fit a model predicting y using those g

variables.
b. Let 31,...,Bq denote the resulting coefficient estimates.
4. Use B,...,[Bq obtained on training set to predict response on

validation set, and compute the validation set MSE.
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Frequently Asked Questions

» Q: Does it really matter how you estimate the test error?
A: Yes.
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Frequently Asked Questions

» Q: Does it really matter how you estimate the test error?
A: Yes.

» Q: Would anyone make such a silly mistake?
A: Yes.
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A Better Approach

» The variable pre-selection approach is simple and easy to
implement — all you need is a way to calculate correlations,
and software to fit a linear model using least squares.
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» But it might not work well: just because a bunch of variables
are correlated with the response doesn’'t mean that when used
together in a linear model, they will predict the response well.
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A Better Approach

» The variable pre-selection approach is simple and easy to
implement — all you need is a way to calculate correlations,
and software to fit a linear model using least squares.

» But it might not work well: just because a bunch of variables
are correlated with the response doesn’'t mean that when used
together in a linear model, they will predict the response well.

» What we really want to do: pick the g variables that best
predict the response.
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Subset Selection

Several Approaches:

» Best Subset Selection: Consider all subsets of predictors

» Stepwise Regression: Greedily add/remove predictors

» Modern Penalized Methods
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Best Subset Selection

» We would like to consider all possible models using a subset of
the p predictors.
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Best Subset Selection

v

We would like to consider all possible models using a subset of
the p predictors.

v

In other words, we'd like to consider all 2P possible models.

v

This is called best subset selection.

Unfortunately, this is computationally intractable:

» When p =3, 2P = 8.

» When p =6, 2P = 64.

» When p = 250, there are 2250 x 108° possible models.
According to www.universetoday.com, this is around the
number of atoms in the known universe.

» Not feasible to consider so many models!

v
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Best Subset Selection

» We would like to consider all possible models using a subset of
the p predictors.

» In other words, we'd like to consider all 2P possible models.

» This is called best subset selection.

» Unfortunately, this is computationally intractable:

» When p =3, 2P = 8.

» When p =6, 2P = 64.

» When p = 250, there are 2259 ~ 10% possible models.
According to www.universetoday.com, this is around the
number of atoms in the known universe.

» Not feasible to consider so many models!

» Need an efficient way to sift through all of these models:
forward stepwise regression.

13 /45
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Forward Stepwise Regression

1. Use least squares to fit p univariate regression models, and
select the predictor corresponding to the best model
(according to e.g. training set MSE).

2. Use least squares to fit p — 1 models containing that one
predictor, and each of the p — 1 other predictors. Select the
predictors in the best two-variable model.

3. Now use least squares to fit p — 2 models containing those
two predictors, and each of the p — 2 other predictors. Select
the predictors in the best three-variable model.

4. And so on....

This gives us a nested set of models, containing the predictors

MiCMyCM3C....
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Forward Stepwise Regression With p = 10
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Example in R

xtr <- matrix(rnorm(100%*100) ,ncol=100)
beta <- c(rep(1,10),rep(0,90))

ytr <- xtri*J/beta + rnorm(100)
library(leaps)

out <- regsubsets(xtr,ytr,nvmax=30,method="forward")

print (summary (out))
print (coef (out,1:10))
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Which Value of g is Best?

» This procedure traces out a set of models, containing between
1 and p variables.

» The gth model contains g variables, given by the set M.
» Q: Which value of g is best?
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Which Value of g is Best?

v

This procedure traces out a set of models, containing between
1 and p variables.

v

The gth model contains g variables, given by the set M.

» Q: Which value of g is best?
A: The one that minimizes the test error!

v

We can select the value of g using cross-validation or the
validation set approach.
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y =B3X3+¢€
and the best model with two variables is
y = BaXy + PgXg + €.
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Drawback of Forward Stepwise Selection

» Forward stepwise selection isn't guaranteed to give you the
best model containing g variables.

» To get the best model with g variables, you'd need to consider
every possible one; computationally intractable.

» For instance, suppose that the best model with one variable is

y = B3X3+¢€
and the best model with two variables is
y = BaXy + [PgXg + €.

Then forward stepwise selection will not identify the best
two-variable model.

» Q: Does this really happen in practice?
A: Yes.

18 /45
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How To Do Forward Stepwise?

Wrong: Split the data into a training set and a validation set.
Perform forward stepwise on the training set, and identify the
model with best performance on the validation set. Then, refit the
model (using those g variables) on the full data set.
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Right: Split the data into a training set and a validation set.
Perform forward stepwise on the training set, and identify the value
of g corresponding to the best-performing model on the validation
set. Then, perform forward stepwise selection in order to obtain a
g-variable model on the full data set.
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How To Do Forward Stepwise?

Wrong: Split the data into a training set and a validation set.
Perform forward stepwise on the training set, and identify the
model with best performance on the validation set. Then, refit the
model (using those g variables) on the full data set.

Split the data into a training set and a validation set.
Perform forward stepwise on the training set, and identify the value
of g corresponding to the best-performing model on the validation
set. Then, perform forward stepwise selection in order to obtain a
g-variable model on the full data set.

Bottom Line: We estimate the test error in order to choose the
correct level of model complexity. Then we refit the model on
the full data set.
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Let's Try It Out in R!

Chapter 6 R Lab, Part 1

www.statlearning.com
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Ridge Regression and the Lasso
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by using subsets of the predictors.
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Ridge Regression and the Lasso

» Best subset, and stepwise regression control model complexity
by using subsets of the predictors.

» Ridge regression and the lasso instead control model
complexity by using an alternative to least squares, by
shrinking the regression coefficients.

» This is known as regularization or penalization.

» Hot area in statistical machine learning today.
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Crazy Coefficients

» When p > n, some of the variables are highly correlated.
» Why does correlation matter?

» Suppose that X; and X, are highly correlated with each
other... assume X; = X, for the sake of argument.
» And suppose that the least squares model is

y =X —2X5 4+ 3X;.
» Then this is also a least squares model:

y = 100000001.X; — 100000002X, + 3X5.
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Crazy Coefficients

» When p > n, some of the variables are highly correlated.

» Why does correlation matter?

» Suppose that Xj and X5 are highly correlated with each
other... assume X; = X, for the sake of argument.
» And suppose that the least squares model is

y =X —2Xo 4+ 3X;.
» Then this is also a least squares model:

y = 100000001.X; — 100000002X; + 3X5.

» Bottom Line: When there are too many variables, the least
squares coefficients can get crazy!

» This craziness is directly responsible for poor test error.

» It amounts to too much model complexity.
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A Solution: Don't Let the Coefficients Get Too Crazy

» Recall that least squares involves finding 3 that minimizes

ly — XB|.
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J
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A Solution: Don't Let the Coefficients Get Too Crazy

» Recall that least squares involves finding 3 that minimizes

ly — XB|.

» Ridge regression involves finding 3 that minimizes

ly = XBI>+ A5
J

» Equivalently, find 3 that minimizes

ly — XB|I?

subject to the constraint that

p
> B <s
j=1
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Ridge Regression

» Ridge regression coefficient estimates minimize

ly = X8>+ A 57
J

» Here ) is a nonnegative tuning parameter that shrinks the
coefficient estimates.

» When A\ = 0, then ridge regression is just the same as least
squares.

» As ) increases, then le(ﬁf’jy decreases — i.e. coefficients
become shrunken towards zero.

> When A = 0o, B = 0.
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Ridge Regression As \ Varies
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Ridge Regression In Practice

» Perform ridge regression for a very fine grid of A values.

» Use cross-validation or the validation set approach to select
the optimal value of A — that is, the best level of model
complexity.

» Perform ridge on the full data set, using that value of .
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Example in R

xtr <- matrix(rnorm(100*100) ,ncol=100)

beta <- c(rep(1,10),rep(0,90))

ytr <- xtrixY%beta + rnorm(100)

library(glmnet)

cv.out <- cv.glmnet(xtr,ytr,alpha=0,nfolds=5)
print(cv.out$cvm)

plot(cv.out)

cat ("CV Errors", cv.out$cvm,fill=TRUE)

cat ("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill1=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat ("Number of Zero Coefficients",

sum(abs (coef (cv.out))<1e-8),fill=TRUE)
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R Output
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Drawbacks of Ridge

» Ridge regression is a simple idea and has a number of
attractive properties: for instance, you can continuously
control model complexity through the tuning parameter \.
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Drawbacks of Ridge

» Ridge regression is a simple idea and has a number of
attractive properties: for instance, you can continuously
control model complexity through the tuning parameter \.

» But it suffers in terms of model interpretability, since the final
model contains all p variables, no matter what.

» Often want a simpler model involving a subset of the features.

» The lasso involves performing a little tweak to ridge regression
so that the resulting model contains mostly zeros.

» In other words, the resulting model is sparse. We say that the
lasso performs feature selection.

» The lasso is a very active area of research interest in the
statistical community!
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» The lasso involves finding 3 that minimizes

ly = XBI> + 1> 18)l.
J

» Equivalently, find B that minimizes

ly — XB|*

subject to the constraint that

p
> 1Bl <s.
=1
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The Lasso

» The lasso involves finding 3 that minimizes

ly = X8I+ A 15l
j

» Equivalently, find 3 that minimizes

ly — X8>

subject to the constraint that

p
> 1Bl <s.
j=1

» So lasso is just like ridge, except that 51_2 has been replaced

with |5J|
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» Lasso is a lot like ridge:
» )\ is a nonnegative tuning parameter that controls model
complexity.
» When A =0, we get least squares.
» When X is very large, we get AL = 0.
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The Lasso

» Lasso is a lot like ridge:
» )\ is a nonnegative tuning parameter that controls model
complexity.
» When A\ =0, we get least squares.
» When X is very large, we get 35 = 0.
» But unlike ridge, lasso will give some coefficients exactly equal
to zero for intermediate values of !

o F = = E DA
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Lasso In Practice

» Perform lasso for a very fine grid of A values.

» Use cross-validation or the validation set approach to select
the optimal value of A — that is, the best level of model
complexity.

» Perform the lasso on the full data set, using that value of A.
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Example in R

xtr <- matrix(rnorm(100*100) ,ncol=100)

beta <- c(rep(1,10),rep(0,90))

ytr <- xtrixYbeta + rnorm(100)

library(glmnet)

cv.out <- cv.glmnet(xtr,ytr,alpha=1,nfolds=5)
print(cv.out$cvm)

plot(cv.out)

cat ("CV Errors", cv.out$cvm,fill=TRUE)

cat("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat ("Number of Zero Coefficients",sum(abs(coef(cv.out))<1le-8),
fill=TRUE)
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R Output
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Mean-Squared Error

-8 -6 -4 -2 0
log(Lambda)
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Pros/Cons of Each Approach

Approach Simplicity?* | Sparsity?** | Predictions?***
Pre-Selection Good Yes So-So
Forward Stepwise Good Yes So-So
Ridge Medium No Great
Lasso Bad Yes Great

* How simple is this model-fitting procedure? If you were stranded
on a desert island with pretty limited statistical software, could you

fit this model?

** Does this approach perform feature selection, i.e. is the
resulting model sparse?
*** How good are the predictions resulting from this model?
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No “Best” Approach

» There is no “best” approach to regression in high dimensions.
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No “Best” Approach

» There is no “best” approach to regression in high dimensions.
» Some approaches will work better than others. For instance:

» Lasso will work well if it’s really true that just a few features
are associated with the response.

» Ridge will do better if all of the features are associated with
the response.
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No “Best” Approach

» There is no “best” approach to regression in high dimensions.
» Some approaches will work better than others. For instance:
» Lasso will work well if it's really true that just a few features
are associated with the response.
» Ridge will do better if all of the features are associated with
the response.
» If somebody tells you that one approach is “best”... then they
are mistaken. Politely contradict them.
» While no approach is “best”, some approaches are wrong

(e.g.: there is a wrong way to do cross-validation)!
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Let's Try It Out in R!

Chapter 6 R Lab, Part 2

www.statlearning.com
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Making Linear Regression Less Linear

What if the relationship isn’t linear?

y = 3sin(x) + ¢
y=2e"+¢€
y:3x2+2x—|—1+6

If we know the functional form we can still use “linear regression”
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Making Linear Regression Less Linear

y = 3sin(x) + e

y=3x24+2x+1+¢€
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Making Linear Regression Less Linear
What if we don't know the right functional form?
Use a flexible basis expansion:

» polynomial basis

x| = [ x| x*] | xF
» hockey-stick (/spline) basis
x| = x| (x—t) || (x—te),
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Making Linear Regression Less Linear
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Making Linear Regression Less Linear
For high dimensional problems, expand each variable
and use the Lasso on this expanded problem.
k must be small (~ 5ish)
Spline basis generally outperforms polynomial
O = = E E DA

44/45




Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Bottom Line

Much more important than what model you fit is how you fit it.
» Was cross-validation performed properly?

» Did you select a model (or level of model complexity) based
on an estimate of test error?
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Classification
» Regression involves predicting a continuous-valued response,
like tumor size.
O = = = = Ay
2/50




Logistic Regression
K-Nearest Neighbors
Bayes-Based Classifiers
SVM

Classification

» Regression involves predicting a continuous-valued response,
like tumor size.
» Classification involves predicting a categorical response:

» Cancer versus Normal
» Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3

2/50

Logistic Regression
K-Nearest Neighbors
Bayes-Based Classifiers
SVvM

Classification

» Regression involves predicting a continuous-valued response,
like tumor size.
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» Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3
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Classification

v

Regression involves predicting a continuous-valued response,
like tumor size.
Classification involves predicting a categorical response:

» Cancer versus Normal
» Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3

v

v

Classification problems tend to occur very frequently in the
analysis of high-dimensional data.

v

Just like regression,
» Classification cannot be blindly performed in high-dimensions
because you will get zero training error but awful test error;
» Properly estimating the test error is crucial; and
» There are a few tricks to extend classical classification
approaches to high-dimensions, which we have already seen in
the regression context!
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Classification

» There are many approaches out there for performing
classification.

» We will discuss a few, logistic regression, K-nearest neighbors,
discriminant analysis and support vector machines.
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Logistic Regression

» Logistic regression is the straightforward extension of linear
regression to the classification setting.
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Logistic Regression
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regression to the classification setting.

» For simplicity, suppose y € {0,1}: a two-class classification
problem.
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Logistic Regression

» Logistic regression is the straightforward extension of linear
regression to the classification setting.

» For simplicity, suppose y € {0,1}: a two-class classification
problem.

» The simple linear model

y=X3+e€

doesn't make sense for classification.
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Logistic Regression

» Logistic regression is the straightforward extension of linear
regression to the classification setting.

» For simplicity, suppose y € {0,1}: a two-class classification
problem.

» The simple linear model

y=XB+e

doesn’'t make sense for classification.
» Instead, the logistic regression model is

xp(X T
Ply =11X) = 1j—§5§p(XﬁT)ﬁ)'
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Logistic Regression

» Logistic regression is the straightforward extension of linear
regression to the classification setting.

» For simplicity, suppose y € {0,1}: a two-class classification
problem.

» The simple linear model

y=X3+e€

doesn’t make sense for classification.
» Instead, the logistic regression model is

exp(X ')
1+exp(XTH)

P(y = 1X) =

» We usually fit this model using maximum likelihood — like
least squares, but for logistic regression.

4/50

Logistic Regression
K-Nearest Neighbors
Bayes-Based Classifiers
SVvM

Why Not Linear Regression?

1.0
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Probability of Cancer
0.0 05 .

| Il

Probability of Cancer
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0 2000 4000 6000 8000 10000 500 1000 1500 2000 2500 3000 3500
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» Left: linear regression.
» Right: logistic regression.
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Ways to Extend Logistic Regression to High Dimensions
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Ways to Extend Logistic Regression to High Dimensions

1. Variable Pre-Selection
2. Forward Stepwise Logistic Regression

3. Ridge Logistic Regression
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Ways to Extend Logistic Regression to High Dimensions

1. Variable Pre-Selection

2. Forward Stepwise Logistic Regression
3. Ridge Logistic Regression
4

. Lasso Logistic Regression
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Ways to Extend Logistic Regression to High Dimensions

Variable Pre-Selection

Forward Stepwise Logistic Regression

w nNp o=

Ridge Logistic Regression

4. Lasso Logistic Regression

How to decide which approach is best, and which tuning parameter
value to use for each approach? Cross-validation or validation set
approach.
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What is an appropriate validation measure?

For classification without a probability or score:

» Misclassification rate:

#test samples misclassified

total # of test samples

7/50
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What is an appropriate validation measure?

For probablistic classification

» Can still use misclassification rate.
» Like in continuous regression could use SSE:

> (vi— i)

iEtest

» Often preferable to use “predictive [log]likelihood":

— log [ H p\l_i (1 _ ﬁi)l_yi

i€test

» Can also use ROC-curve-based metric (eg. AUC)

Remember though; all of these must be conducted on a separate

validation set.
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Example in R: Lasso Logistic Regression

xtr <- matrix(rnorm(1000%20) ,ncol=20)

beta <- c(rep(1,5),rep(0,15))

ytr <- 1x((xtrix%beta + .5*rnorm(1000)) >= 0)

cv.out <- cv.glmnet(xtr, ytr, family="binomial", alpha=1)
plot(cv.out)
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K-Nearest Neighbors

» Can | take a totally non-parametric (model-free) approach to
classification?
» K-nearest neighbors:

1. ldentify the K observations whose X values are closest to the
observation at which we want to make a prediction.

2. Classify the observation of interest to the most frequent class
label of those K nearest neighbors.
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K-Nearest Neighbors
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K-Nearest Neighbors
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K-Nearest Neighbors

KNN: K=10
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K-Nearest Neighbors

KNN: K=1 KNN: K=100
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K-Nearest Neighbors

» Simple, intuitive, model-free.

» Good option when p is very small.

» Curse of dimensionality: when p is large, no neighbors are
“near”. All observations are close to the boundary.

» Do not use in high dimensions!
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K-Nearest Neighbors

v

Simple, intuitive, model-free.

v

Good option when p is very small.

v

Curse of dimensionality: when p is large, no neighbors are
“near”. All observations are close to the boundary.
Do not use in high dimensions!

v

» unless, you use it with a dimension reduction approach
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Bayes-Based Classifiers

Suppose rather than knowing P (y = j|x)...

we have information on fj(x) = P (x|y = j), the feature
distribution within each class

How do we use this to make predictions?
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Bayes-Based Classifiers

Suppose rather than knowing P (y = j|x)...

we have information on fi(x) = P (x|y = j), the feature
distribution within each class

How do we use this to make predictions?

Using Bayes Theorem:

PR /(G L
P(y _./|X) - Zk fk(X)T‘-k

here mx = P(y = k) is the prior probability of class k.
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Estimating the Rule

To apply Bayes Theorem

fi(x)7;

A A

we need
> fi(x) fork=1,....K
» T fork=1,.... K
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Estimating 7y

7y is generally simple to estimate

» If your data are a random sample; then can use the sample

proportion
R
n

» Otherwise can use outside information (eg. historical data)

If you change population proportions; it is easy to adjust the rule.
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Estimating fx(x)

Estimate of fx(x) = P (x|y = k) is more difficult.
This is a density estimation problem.

The tools we discuss for this break down into 3 general categories
» flexible, non-parametric estimates
» parametric estimates

» shrunken parametric estimates

The above are ordered (more-or-less) by where they fall on
bias/variance spectrum:

more flexible — less bias/more variance
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Parametric fi(x) Estimate

Discriminant Analysis:

Most well known estimator of this type is Linear/Quadratic

Here we assume that f,(x) is Gaussian density, N(ux, Zx)

A

Logistic Regression
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Parametric f,(x) Estimate

Most well known estimator of this type is Linear/Quadratic
Discriminant Analysis:

Here we assume that fx(x) is Gaussian density, N(ux, Xk)

A
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Discriminant Analysis

There are three main types of unpenalized discriminant analysis:
» Quadratic (QDA)
» Linear (LDA)
» Diagonal (DDA)

These make different assumptions on the covariance structure:

» QDA makes no assumptions
» LDA assumes a pooled variance ¥ = X for all k

» DDA assumes a pooled variance; and further that ¥ is
diagonal (i.e. no correlation among covariates!)
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Discriminant Analysis

Why would we choose DDA over QDA?
Remember, flexibility comes at a price!

QDA will have the least bias; but has many more parameters to
estimate

Often good estimates of the correlation don’t improve
classifications much

DDA takes into account the scale of each feature, but trades a bit
of bias for potentially a large reduction in variance
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, we need to estimate the parameters. The

» To make this work

ng/n and

ML estimates are given by 7y
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LDA for p=1
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, we need to estimate the parameters. The

» To make this work

ng/n and

ML estimates are given by 7y
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> The picture is very similar if K > 2...or if p >ﬂ1
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LDA for p > 1
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LDA for p > 1
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QDA vs LDA
The level-curves for each class look identical with LDA;
QDA allows for different classes to have differently shaped
ellipsoids...
Results in non-linear decision boundaries (quadratic in fact)
T
* =z »aco
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DDA

For DDA...

» level curves are spheres (not ellipsoids).
» decision boundaries are still linear

» sometimes called naive bayes (that doesn’'t mean it's bad
though!)

» with 74 = % for all k, and equal variances (ie. ¥ = o/); this
is just the nearest centroid classifier
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-DA vs logistic regression

Discriminant Analysis model can actually be rewritten as
multinomial logistic models:

Beginning with

_ i) — )T
'D(y_./| ) Zk fk(X)T"k
and
fulx) o exp | (x = )T 5 (x — k)

substituting and simplifying we get

e'li

Py =Jjlx) = S e
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-DA vs logistic regression

el

Py =Jjlx) = S e

where
k= Bo+x'B+x"T 1 x

This is just a multinomial logistic model with quadratic terms and
interactions.

In particular for LDA (where ¥, = ¥ is pooled) we have
cancellation and get

e = Bo+x'

Simply a linear logistic model.
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Shrunken Parametric Estimates

Sometimes the optimal bias/variance tradeoff is between two
parametric classes.

For example: We may not have the data to estimate completely
different covariance matrices for each class (i.e. QDA); but we may
not want to use identical covariance matrices.

In this case we can take a weighted combination of our estimates.
This is called regularized discriminant analysis.

This is a type of shrunken parametric estimator.
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Regularized Discriminant Analysis

For shrinking between QDA /LDA we use:
ill(?DA _ A\SLDA (1- )\)il?DA
For shrinking between LDA and Naive Bayes we use
$RDA _ \§'LDA | (1- )\)fNB

A is a tuning parameter, and is generally selected via CV

32/50

Logistic Regression
K-Nearest Neighbors
Bayes-Based Classifiers
SVvM

DA in High Dimensions

All of the Discriminant Analysis techniques discussed so far use all
the features.

For high dimensional problems this will lead to over-fitting

One popular solution is to shrink each class-mean estimate /i
towards the overall mean [i using element-wise soft-thresholding

This method is called Nearest Shrunken Centroids (though it
should probably more appropriately be “nearest shrunken DDA")
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Regularized DA Methods

> Recall that in PAM, ji;'s are soft thresholded towards the
common mean fi;,

> Alternatively, pjx’'s can be penalized
» towards zero, using a lasso penalty

D> Il
ik

» or towards each other, using a fused lasso penalty

Z Z |\1hjic — fhjicr |-

J kK

Both of these are implemented in R-package penalizedLDA.
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Regularized DA Methods

> Recall that in PAM, [ij's are soft thresholded towards the
common mean fi;,

> Alternatively, uj's can be penalized
» towards zero, using a lasso penalty

> lnl;
ik
» or towards each other, using a fused lasso penalty
Z Z |1jk — k|-
J kK

Both of these are implemented in R-package penalizedLDA.

» Another option, which is especially helpful when using QDA is
to penalize the covariance matrices Xk (or their inverses).
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Let's Try It Out in R!

Chapter 4 R Lab

www.statlearning.com
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Support Vector Machines

» Developed in around 1995.
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Support Vector Machines

» Developed in around 1995.
» Touted as “overcoming the curse of dimensionality.”

» Does not (automatically) overcome the curse of
dimensionality!

» Fundamentally and numerically very similar to logistic
regression.

» But, it is a nice idea.
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B

Classification Via a Separating Hyperplane

Variable 2

Blue class if Bg + 51 X1 4+ 82X> > ¢; red class otherwise.
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Variable 1
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Maximal Separating Hyperplane

Variable 2
1

Variable 1

Note that only a few observations are on the margin
support vectors.

. these

are the

o & = = E DA
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Support Vector Classifier: Allow for Violations
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Support Vector Machine

» The support vector machine is just like the support vector
classifier, but it elegantly allows for non-linear expansions of
the variables: “non-linear kernels”.
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non-linear functions of the variables.

42/50

Logistic Regression
K-Nearest Neighbors
Bayes-Based Classifiers
SVM

Support Vector Machine

» The support vector machine is just like the support vector
classifier, but it elegantly allows for non-linear expansions of
the variables: “non-linear kernels”.

» However, linear regression, logistic regression, and other
classical statistical approaches can also be applied to
non-linear functions of the variables.

» For historical reasons, SVMs are more frequently used with
non-linear expansions as compared to other statistical
approaches.
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Non-Linear Class Structure
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This will be hard for a linear classifier!
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Support Vector Machine

Variable 2

Variable 1

Much Better.

DA
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Is A Non-Linear Kernel Better?
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Is A Non-Linear Kernel Better?

» Yes, if the true decision boundary between the classes is
non-linear, and you have enough observations (relative to the

number of features) to accurately estimate the decision
boundary.
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Is A Non-Linear Kernel Better?

» Yes, if the true decision boundary between the classes is
non-linear, and you have enough observations (relative to the

number of features) to accurately estimate the decision
boundary.

» No, if you are in a very high-dimensional setting such that
estimating a non-linear decision boundary is hopeless.
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SVM vs Other Classification Methods

» The main difference between SVM and other classification

methods (e.g. logistic regression) is the loss function used to

assess the “fit": .

> L), 1)

i=1
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SVM vs Other Classification Methods

» The main difference between SVM and other classification

methods (e.g. logistic regression) is the loss function used to
assess the “fit":

> L(F(xi), )
i=1

» Zero-one loss: I(f(x;) = y;), where
/() is the indicator function. Not
continuous, so hard to work with!!

» Hinge loss: max(0,1 — f(x;)y;)
» Logistic loss: log(1 4 expf(x;)y;
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SVM vs Other Classification Methods

» The main difference between SVM and other classification

methods (e.g. logistic regression) is the loss function used to

assess the “fit": .

ST L), i)

i=1

— Zero-one loss

» Zero-one loss: I(f(x;) = y;), where : — Hinge loss
. . . . — Logistic loss

/() is the indicator function. Not
continuous, so hard to work with!!

Lly:, flz;))

» Hinge loss: max(0,1 — f(x;)y;)

» Logistic loss: log(1 + expf(x;)y;

v fla;)
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In High Dimensions...
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In High Dimensions...

» In SVMs, a tuning parameter controls the amount of flexibility
of the classifier.

» This tuning parameter is like a ridge penalty, both
mathematically and conceptually. The SVM decision rule
involves all of the variables (the SVM problem can be written
as a ridge problem but with the Hinge loss).

» Can get a sparse SVM using a lasso penalty; this yields a
decision rule involving only a subset of the features.

» Logistic regression and other classical statistical approaches
could be used with non-linear expansions of features. But this
makes high-dimensionality issues worse.
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