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Why Study Networks?

» Components of biological systems (genes, proteins etc)
interact with each other to carry out cell functions.

» Examples of such interactions include signaling, regulation
and interactions between proteins.

» We cannot understand the function and behavior of biological
systems by studying individual components (2 + 2 # 41).

» Networks provide an efficient representation of complex
interactions in cells, and a basis for mathematical/statistical
models to study these systems.
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Central Dogma of Molecular Biology (Extended)
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Networks in Biology: Gene Regulatory Interactions
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Networks in Biology: Gene Regulatory Networks
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Networks in Biology: Protein-Protein Interaction
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Networks in Biology: Protein-Protein Interactions (PPI)
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Networks in Biology: Metabolic Reactions
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Networks in Biology: Metabolic Pathways But Do Networks Matter?

» They Do!

» Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biolog -

Gene Networks and microRNAs Implicated in

Aggressive Prostate Cancer

Liang Wang,' Hui Tang,” Venugopal Thayanithy,® Subbaya Subramanian,® Ann L. Oberg,”
Julie M. Cunningham,l James R. Cerhan,? Clifford J. Steer," and Stephen N. Thibodeau®
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But Do Networks Matter? But Do Networks Matter?
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But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180 molecu|ar
Citation: Molecular Systems Biology 3:140 systems
© 2007 EMBO and Nature Publishing Group  All rights reserved 1744-4292/07 b|0|ogy

www.molecularsystemsbiology.com
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Network-based classification of breast cancer
metastasis

Han-Yu Chuang™®, Eunjung Lee®*®, Yu-Tsueng Liu®, Doheon Lee® and Trey Ideker'24+
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3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and 4" Cancer Genetics Program, Moores Cancer
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Networks: A Short Primer

v

A network is a collection of nodes V and edges E.

v

We assume there are p nodes in the network, and that the
nodes correspond to random variables Xi, ... Xp.

Edges can be undirected X — Y or directed X — Y.

v

» Consider the node set V = {1,2,3}.
» Then edges can be:
undirected: £y, = {1-2,2-3}
directed: £, = {1 —3,3 -2}

% We focus primarily on undirected networks.
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Networks: A Short Primer What Do Edges in Biological Networks Mean?
» A converc11|.ent way to re.prjent the edges of the network is to > In gene regulatory networks, an edge from gene i to gene j
use an adjacency matrix often means that / controls the expression of j: as i's
» Adjacency matrix is a square matrix, with a nonzero entry in expression changes, j's expression also increases/decreases.
(i,j) and (j, i) if there is an edge between nodes i and j » In protein-protein interaction networks, an edge between
. proteins i and j often means that the two proteins bind
A= | x — x shows an an edge between 1 and 2 together and for.m a protein complex.. Therefore, we expect
that these proteins are generated at similar rates.
» In metabolic networks, an edge between compound i and j
Example: often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.
G, 010 » Thus, edges represent some type of association among genes,
A=110 1 proteins or metabolites, defined generally to include /inear or
010 nonlinear associations; more later....
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Statistical Models for Biological Networks

» We use the framework of graphical models

» In this setting, nodes correspond to “random variables”
» In other words, each node of the network represents one of
the variables in the study
» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» In metabolic networks, nodes = metabolites
» In practice, we observe n measurements of each of the
variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis

©AIli Shojaie ENAR Network Course
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Our Plan

We will cover the following topics
» Methods for detecting signal on known networks
» Network analysis based on centrality and clustering
» Topology-based pathway enrichment analysis
» Methods for learning undirected networks

» Co-expression networks
» ARACNE
» Conditional independence graphs

» Gaussian observations (glasso, etc)
» Non-Gaussian and non-linear data (nonparanormal, etc)

» [Will not discuss methods for learning directed networks]

©AIi Shojaie ENAR Network Course
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Introduction

Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)

L 025
L 020
[ J ! - 0.5

@m > V , — 0.10

— 0.05

How can we identify the important nodes?
and what does this even mean?

©AIli Shojaie ENAR Network Course
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|dentifying Important Nodes
@ [ ko015

- 0.05

How can we identify the important nodes?

» We can select the significant nodes based on p-values, after
adjusting for multiple comparisons (FDR, etc)

» But the signal is often weak for lots of tests

» If we believe the network is informative, it may make sense to
use the network to guide our selection

@©AIi Shojaie ENAR Network Course
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Identifying Important Nodes

Possible strategies:

» ldentify individual nodes associated with the outcome by
incorporating the network (signal detection on network)

» Test if (pre-specified) subnetworks are associated with the
outcome (topology-based pathway enrichment analysis)

» Identify collections of (connected) nodes that are associated
with the outcome (de-novo identification of enriched modules)

©AIli Shojaie ENAR Network Course
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Signal Detection on Networks
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Signal Detection on Networks

How can we identify the important nodes in a network?

The simplest option is to limit our search/testing to the central
nodes in the network:

» Nodes connected to many other nodes, aka hub nodes
» Nodes that are close to many other nodes (closeness)

» Nodes that are on many network paths (betweenness)

©AIi Shojaie ENAR Network Course
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Example: Functional Relevance of Hub Nodes

» Inferred genetic interaction network of cancer-related pathway
in prostate cancer (data from TCGA)

» Hubs defined as nodes whose degrees are at the 75th
percentile of the degree distribution

©AIi Shojaie
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Other Measures of Centrality

» Closeness: Total distance of each node to other nodes:
-1

ci=1{>_d(k

keV

where d(j, k) is the (shortest path) distance between j and k.

» Betweenness: The number of paths that go through a node:

bw; = 3 U
o Tik
i#j#k
where mjk(j) is the number of paths between i and k that go
through j, and 7 is the total number of paths between them.

©AlIi Shojaie ENAR Network Course
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|dentifying “Central” Nodes

Calculating centrality measures using igraph:

» Hub nodes: hub_score(graph)
» Closeness: closeness(graph, vids)

» use estimate_closeness() for larger networks)

» Betweenness: betweenness(graph, vids)

» use estimate_betweenness() for larger networks

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Topology-Based Pathway Enrichment
Analysis

©AIli Shojaie ENAR Network Course 9 ©AIi Shojaie ENAR Network Course 10
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Introduction Introduction
Signal Detection on Netuwolrks tSOFP&OgyGSA Signal Detection on Netuwolrks tSoF?IoAlogyGSA
Topology-Based Pathway Enrichment Analysis NetGSA Topology-Based Pathway Enrichment Analysis NetGSA
De-Novo Identification of Enriched Modules ACS . . De-Novo Identification of Enriched Modules © . .
ystematic Comparison A Systematic Comparison
Yeast GAL Pathway Topology-Based Pathway Enrichment Analysis
Ideker et al, 2001
Test for changes in activities of node (genes, brain ROls, etc) in
pre-specified subnetworks, while incorporating network information
e — P
Two possible null hypotheses:
O % P . » Competitive null hypothesis: activity of each pathway is
S B 1L 2 compared with other pathways, often using a permutation test
PR » Assume few genes are differentially connected, and may be
J TS X sensitive to the choice of gene sets
« ‘:V - “ot Y : o & S ’
\ W xR » Self-contained null hypothesis: activity of each pathway is
‘ compared against the null distribution
7 . ) » More rigorous, but may be sensitive to modeling assumptions
K ERIAN < (Goemen & Buhlmann (07), Ackermann & Strimmer (09))
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PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

; PathNet

Introduction topologyGSA
Signal Detection on Networks SPPIA &y
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules

A Systematic Comparison

PathNet!

A simple topology-based pathway enrichment method:

Data from high- Direct Indirect

throughput evidence evidence
experiments () %@ ("

§ Significance \ §
S . S
analysis
3 Y
Samples —
Combined
Hypergeometric test evidence

)

Significant pathways

II]] Direct evidence
Significant genes based on:E Indirect evidence D Non-significant genes
Combined evidence

PathNet: Details

» Each gene's p-value from differential expression is combined
with p-values of its neighbors using Fisher's methods

> {cimo (68))

kene())

SI; =

» The indirect p-value, p' is calculated from SI; by permutation
» Direct (ij) and indirect (pj’) p-values are then combined (ij)

» The significance of ij for genes in each pathway is assessed
using a hypergeometric test

» Implemented in Bioconductor package PathNet

©AIli Shojaie ENAR Network Course 13 ©AIi Shojaie ENAR Network Course 14
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Signal Detection (I):t:\(:g:mf;'il; topologyGSA Signal Detection tl).|11t:<l)3tl\|§gri'; topologyGSA
Topology-Based !’_ath\{vay Enrich_ment Analysis ich]'lcéSA Topology-Based P?thv_vay Enrich_ment Analysis ﬁliiéSA
De-Novo ldentification of Enriched Modules A Systematic Comparison De-Novo ldentification of Enriched Modules A Systematic Comparison
topologyGSA? Signaling Pathway Impact Analysis (SPIA)?

» topologyGSA (Gene Set Analysis Exploiting Pathway _ _ _ _

Topology) assumes that data are normally distributed: » Combines overrepresentation analysis (ORA) with measure of

perturbation of a given pathway under a given condition
1 151 2 2 2 : -
X"~ N, 27), X%~ N(p®, 29) » A bootstrap procedure is used to assess the significance of the

| _ _ - 52 A . observed pathway perturbation (difficult to extend to
> It o_btalns es’Flmates 0 an.d based on the networ s comparison of > 2 conditions)

(think graphical lasso, but with known nonzero entries) _

» Currently not applicable to all pathways (more later)
» It then performs two tests: ) )
» equality of covariance matrices: HS : £ = ¥2 » Analyzes each pathway separately (ignores connections
» equality of means HJ" : u! = p? — it uses different methods between pathways)
depending on the result of HS » Implemented in the Bioconductor package SPIA
» Implemented in R-package topologyGSA (also in graphite)
*Massa et al (2010) *Tarca et al (2009)
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A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence
(i) the overrepresentation of DE genes in a given pathway

» measured by the p-value for the given number of DE genes
Pnpe = P(X > Npe | Ho)

PathNet

Introduction
Signal Detection on Networks tso':ﬂc:ogyGSA

Topology-Based Pathway Enrichment Analysis NetGSA
De-Novo ldentification of Enriched Modules © . .
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway
» the perturbation for each gene in the pathway is defined as

PF(g;
PF(gi) = AE(gi) + X0, ﬁffﬁ(géj))

» PF(gi) is the perturbation factor of gene i (not known)

» [ is the magnitude of effect of gene j on gene i; currently,
betay =1ifj — i

» AE(g;) is the fold change in expression of gene i

» Nps(gj) is the number of downstream genes from gene j

©AIli Shojaie ENAR Network Course 17 ©AIi Shojaie ENAR Network Course 18
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Introduction Introduction
Signal Detection on Networks ts";floAIOgyGSA Signal Detection on Networks tsorﬂlegyGSA
Topology-Based Pathway Enrichment Analysis NetGSA Topology-Based Pathway Enrichment Analysis NetGSA
De-Novo Identification of Enriched Modules AES . . De-Novo Identification of Enriched Modules © . .
ystematic Comparison A Systematic Comparison
The SPIA Methodology The SPIA Methodology
» The accumulated activity of each gene can then be calculated
— -1
as ACC(gj)=B- (I — B)"*AE (8 (E) (F) (8 () ()
» B is the normalized matrix of 3's: Bjj = i/ Nps(gj)
» AFE is the vector of fold changes Q G 0 G
» Requires B to be invertible; would not work otherwise (a) o (b)
. . o
» The total accumulated perturbation of the pathway is then e . B G S
given by t4 = ZiACC(g,-) A o of o 4 A 16] 15] o
. L. B 2| 2| o o] ] 2| 25| 06
» The p-value for pathway perturbation is given by c ol 1| 1fe c 0| 125 128
Ppert = P(Ta > ta | Ho), which is calculated using a E 2 ; 1 iy 2 g ’:: "::
o
bootstrap approach F 4| 4| o] ° K F o/ 05| 05
8
Total 20 e i 0 5 10 Total 40
Pperr=0.57 Total accumulation Prerr=0.24
@©Ali Shojaie ENAR Network Course 19 ©AIli Shojaie ENAR Network Course 20
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Topology-Based Pathway Enrichment Analysis
e . NetGSA
De-Novo Identification of Enriched Modules . .
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence
» The final p-value for each pathway is calculated based on the
p-values from parts (i) and (ii):
» Pe(i)=c —ciIn(c)
> ¢i = Pnpe(i)PperT (i)

ad

0.8
1

0.6

P PERT

0.4

0.2
L

0.0

PathNet

Introduction
Signal Detection on Networks tSOFE’I(XOgyGSA

Topology-Based Pathway Enrichment Analysis
e . NetGSA
De-Novo ldentification of Enriched Modules . .
A Systematic Comparison

An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,
nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without
#running spia function again
res$pG=combfunc (res$pNDE, res$pPERT, combine="norminv")
res$pGFdr=p.adjust (res$pG, "fdr")
res$pGFWER=p.adjust (res$pG, "bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green
points(I(-1log(pPERT))~I(-log(pNDE)),data=res[res$ID=="05210",],col="green",

0.0 02 0.4 06 08 10 pch=19,cex=1.5)
P NDE
©AIli Shojaie ENAR Network Course 21 ©AIi Shojaie ENAR Network Course 22
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Introduction Introduction
Signal Detection on Networks tSoFFIoAIogyGSA Signal Detection on Networks tSoF?IoAIogyGSA
Topology-Based Pathway Enrichment Analysis NetGSA Topology-Based Pathway Enrichment Analysis NetGSA
De-Novo ldentification of Enriched Modules AcSystematic Comparison De-Novo ldentification of Enriched Modules AeSystematic Comparison
. 4
The SPIA Methodology Network-Based Gene Set Analysis (NetGSA)
SPIA two-way evidence plot
: -
o o cusfeaasto » Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways
o . .
- » Assesses the overall behavior of arbitrary subnetworks
£ o\ N\ (pathways): changes in gene expression & network structure
w
e » Uses latent variables to model the interaction between genes
2 ©o - .
ool N N oo defined by the network
L] [ ez
< » Uses mixed linear models for inference in complex data
. S » Computationally challenging for large networks, unless
T SR &e 10 @ 04360 ..
/'5..... .ot i pathways separately analyzed (similar to SPIA)
. .
o - t 2) Ofl d o
T T T T
0 5 10 15
—iog(P NDE) S & M (2009, 2010); Ma, S & M (2016)
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Introduction

Signal Detection on Networks
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De-Novo Identification of Enriched Modules

Problem Setup

©AIli Shojaie

Gene (protein/metabolite) expression data for K experimental
conditions and Ji time points

Network information (partially) available in the form of a
directed weighted graph G = (V/, E), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

Network edges can be directed j — k or undirected j <+ k

Edges defines the effect of nodes on their immediate
neighbors; the weight associated with each edge corresponds
to the value of partial correlation

Represent the network by its adjacency matrix A: Ay # 0 iff
k — j & for undirected edges, Aj = Ay

ENAR Network Course
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NetGSA
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The Latent Variable Model: Main ldea

OO

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

X1 = m
Xo = p2Xi+7 =pi2m+7
X3 = p2a3Xo+y3 = pazpiay1 + p232 + 3

Thus X = Ay where

1 0O O
A= P12 1 0
p12p23 p23 1

©AIi Shojaie ENAR Network Course
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Signal Detection on Networks
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De-Novo Identification of Enriched Modules

The Latent Variable Model

©AIi Shojaie

Let Y be the ith sample in the expression data
Let Y = X + ¢, with signal X and noise £ ~ Nj(0,021,)

The influence matrix A measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

Using X = Ay, we get
Y=M-+e, = Y~ Ny(Au,oZAN +021,)

where  ~ Np(, 031,) are latent variables

ENAR Network Course
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Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write
Y=VY3+MNy+e
where B and ~ are fixed and random effect parameters and
e~ Npp(0,R(0:)), v~ an(oa‘filnp)

e Temporal Correlation incorporated through R

In general, the design matrices, W and I depend on the
experimental settings (similar to ANOVA), and are functions of A

©AlIi Shojaie ENAR Network Course
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Introduction PathNet
Signal Detection on Networks tsoPpIoAIogyGS/-\
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo Identification of Enriched Modules A Systematic Comparison

Estimation of MLM Parameters

MLE for 3:
B =W lw) Wty
where W = agl'll'l’ + R.

BA depends on estimates of afy and 0? (estimated using restricted
maximum likelihood (REML)).

Topology-Based Pathway Enrichment Analysis

De-Novo ldentification of Enriched Modules NetGSA

A Systematic Comparison

Inference using MLM

» Let / be a contrast vector (a linear combination of fixed
effects), and consider the test:

Ho:¢/8=0 wvs. Hi:/8#0

» Use t-test to test the significance of each hypothesis
separately
(s

Vieee

T =

where C = (V/W-1w)™!
» Under the null hypothesis, T is approximately t-distributed
with degrees of freedom that needs to be estimated
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Introduction fatthStGSA Introduction fatththSA
Signal Detection on Networks SOPpll,)AOby Signal Detection on Networks SOF?IOAOoy
Topology-Based Pathway Enrichment Analysis NetGSA Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

“Optimal” Choice of Contrast Vector

» An intuitive choice is the indicator (membership) vector for
the pathway, b, but this only captures changes in mean
» Need to de-couple the effect of subnetwork from other nodes

(©AIli Shojaie ENAR Network Course 31

De-Novo Identification of Enriched Modules A Systematic Comparison

“Optimal” Choice of Contrast Vector

1 0O O
A= P12 1 0
p12p23 p23 1

Consider the set, b = (0,1, 1); then
(bA) = (p12 + p12p23, 1 + p23, 1)
On the other hand,
(bA-b) =(0,1+ p23,1)
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Comparison in Simulated Data

Subnetwork | Mean Network Influence
1 p1=p2 =1 p1=p2 =02
2 p1=1,p0 =2 p1=p2 =02
3 pr=p2=1 p1=0.2,p0 =07
4 H1=1,00=2  p1=02p5 =07
e e
T | - osea -
| |- - Netcsa @
= True Power °©
i < |
] =]
3
&34 Subnetwork 1 3 A Subnetwork 2
i o
3
ol o | T T T -
3 3

T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 06
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Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway

» Gene expression data for 2 experimental conditions: (gal+)
and (gal-)

» Gene-gene and protein-gene interactions as well as association
weights found from previous studies

1 e » Q: which pathways respond to the change in growth medium?
%2 7 Subnetwork 3 I S Subnetwork 4
o
g L T T T T T T T . T T T T T T T
no 01 02 03 04 05 06 o0 01 02 03 04 05 06
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ystematic Comparison A Systematic Comparison
Analysis of Yeast GAL Data 73 sta
» Data: e
» gene expression data for 343 genes
» 419 interactions found from previous studies and integration 5
with protein expression (association among genes also
available)
» Results: w5
. g . . . e
» GSEA finds Galactose Utilization Pathway significant
» NetGSA finds several other pathways with biologically
meaningful functions related to survival of yeast cells in gal—- A
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Introduction Pathiet
Signal Detection on Networks tSoPpIoAIOgyGSA
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A Systematic Comparison

Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

» 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points

» Temporal correlation

» Network correlation

» Q: Which pathways indicate response to environmental stress

» in different experimental conditions
> over time
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Topology-Based Pathway Enrichment Analysis NetGSA Topology-Based Pathway Enrichment Analysis NetGSA
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Yeast ESR Data Model and Results
Gasch et al (2000)
» Model: Let j and k be indices for time and levels of sorbitol
» Gene Expression Data
Experiment Obs. Time (after 33C) EYn = /\N” IEYJk = A(N’ + o+ 61‘) Js k= 2,3
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min o ) )
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min » Temporal correlation is modeled directly via R (as AR(1) process)
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min > Results:
» ~ 3000 genes,
» 47 pathways showed significant changes of expression
» Network Data P Y 8 ne P
) ) » 24 pathways showed changes over time
> 'Use Yea.stNet (Lee et al., 2007) for gene-gene interactions (102,000 » 29 pathways showed changes in response to different sorbitol levels
Interactions among 5'990 yeast genes) _ _ » 12 pathways showed both types of changes
» Use independent .expean\ents of Gasc,jh et al. to estimate weights » Significant pathways overlap with the gene functions recognized by
» Pathways are defined using GO functions Gasch et al.
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Yeast ESR Network

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

Significant subnetworks
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De-Novo Identification of Enriched Modules A Systematic Comparison

Expression Profiles

Average Standardized Expression Levels of Pathways

4

2

-2

standardized expression
-4 0

» Induced and Suppressed Pathways

» Can observe the transient patterns of expressions as predicted by
Gasch et al.
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De-Novo Identification of Enriched Modules A Systematic Comparison

Effect of Noise In Network Information

» Let A be observed network information, and A be the truth.

> It can be shown that, if [|A — A|| is small then, NetGSA still
works (is asymptotically most powerful unbiased test)

S Ja- - -—-—-a- - e 4 ADD-R - —— B
i A- A- A a4 = 'ﬁ— -:'Q i A-D A Q* & :/@
X mye. =X o, - c T ., . +
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magnitude of random error value of fixed noise
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Metabolic Profiling in Bladder Cancer

Targeted metabolic profiling of bladder cancer (BCa) (Putluri et
al., 2012)

v

58 bladder cancer and adjacent benign samples

v

Pathways information obtained from KEGG
» Varying number of identified metabolites per pathway (3-15)
» Q: Which pathways show differential activity in BCa?

PathNet

Introduction
Signal Detection on Networks tsoppchlogyGSA

Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

Metabolic Profiling in BCa

> 63 metabolites identified, mapped to 70 pathways

> 27 pathways with at least 3 members

Color Key

%

-4 0
Row Z-Score

Fatty acid biosynthesis

Biosynthesis of unsaturated fatty acids
Sulfur metabolism

Lysine degradation

Alkaloid biosynthesis Il

Methionine metabolism

Valine, leucine and isoleucine biosynthesis
Pyrimidine metabolism

Valine, leucine and isoleucine degradation
Pantothenate and CoA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis

OoOopoOOODOEDO
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Metabolic Profiling in BCa Metabolic Interaction Network
» Small pathway sizes & significant overlap among pathways
#metaboloites in pathway pathways overlap
[0 R — —
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Significant Pathways

» GSEA does not identify any pathway as differential
» GSA identifies Fatty Acid Biosynthesis as differential

» NetGSA identifies another 7 pathways corresponding to role of
Amino Acid Metabolism in BCa, similar to Putluri et al (2012)

PathNet

Introduction
Signal Detection on Networks tsopploAlogyGSA

Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

R-Package netgsa

adjmats <- prepareAdjMat(data, groups, edges, TRUE)
res <- NetGSA(adjmats$Adj, data, groups, pathways, "REHE")
plot(res) #interactive plotting in Cytoscape
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Selected Topology Based Comparison of these Methods Using Synthetic Data
Pathway Enrichment Methods (Ma, Shojaie, Michailidis, 2019)

Method Null hypothesis  Input

Pathway-Express = competitive DE genes & p-values; . .
sample labels; pathway topology » Comparison of topology-based pathway enrichment methods

NetGSA self-contained expression matrix; sample labels; using two synthetic data sets
pathway membership; network information .

SPIA competitive DE genes with p-values; sample labels; > Gene expression data p ~ 3000
pathway topology » Metabolomics data p ~ 100

topologyGSA self-contained Gene expression matrix; sample labels; .- . .

pology P P » In silico data sets with known signal:

pathway topology

CAMERA competitiv Gene expression matrix; sample labels; 1. Remove the original signal, but keep the correlation structure

. pathway membership 2. Perturb means in one condition (differential expression) for
DEGraph self-contained Gene expression matrix; sample labels; .
nodes in selected pathways

pathway topology ; .

PathNet Competitive DE genes with p-va'ues; Sample |abe|5’ 3 AISO use Sample permutatlon to create data W|th equal
pathway topology correlation structure

Overview of tested pathway enrichment methods. All methods return the p-values
before and/or after correcting for multiple comparisons.
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Comparison Using Synthetic Data
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De-Novo Identification of Enriched Modules A Systematic Comparison

Results for Gene Expression Data — Equal

Covariance
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Results for Metabolomics Data — Equal Covariance

DC <= 0.5 & size <= 11 DC <= 0.5 & size > 11
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Results for Metabolomics Data — Diff Covariance

DC <= 0.5 & size <= 11 DC <= 0.5 & size > 11
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WGCNA
Walktrap

Identifying Enriched Modules in Networks

Two general strategies:

» Assess the significance of data-driven modules (WGCNA):

1. Identify modules (network clustering, etc)
2. Assess the significance of modules

» Search for enriched (connected) subnetworks (often using

greedy search methods)

» Advantage: No need to rely on known pathways — especially
useful when known pathways are not complete, etc

» Disadvantage: Interpretation may become challenging...
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Introduction Introduction
Signal Detection on Networks WGCNA Signal Detection on Networks WGCNA
Topology-Based Pathway Enrichment Analysis Walktrap Topology-Based Pathway Enrichment Analysis Walktrap
De-Novo Identification of Enriched Modules De-Novo Identification of Enriched Modules
6
WGCNA WGCNA
» Here's how it works:
» We previously talked about weighted gene co-expression
(WGCNA), but for estimating networks Data input, clearing,
preproceszing
» However, WGCNA is also used for topology-based enrichment —
analysis, although in a different way than many other
Metwork construction fumuinmnig Bininaiini)
topology-based methods o e o
» Here's how it works: /\
1. Estimate the co-expression network (more in the next lecture) ‘
2 F d d | b | t . th d . th t t d t k Relate conzenzuz modulez Relate modules -
. Find modules by clustering the nodes in the estimated networ > mocdniles ins indivical sefs to extemal traite
3. Summarize the expressions of genes in each module using PCA
(eigen-genes) |
4. Test if the eigen-genes are associated with the outcome Study relationships
arnong traits and modnles I
aNE eigenpene networks
®Horvath & Zhang (2005); Langfelder et al (2008) Let's look at an example in R...
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Walktrap’

WGCNA
Walktrap

» Searches for connected modules containing significant genes
» Weights each edges based on the significance of its

corresponding nodes

wij = (|FC,| + |FCJ|)/2

» Connected significant modules are found through community
detection using a random walk with transition probability

"Petrochilos et al (2013)
©AIli Shojaie
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|dentifying Cancer-Related Modules

©AIli Shojaie

TWHAH

AP

ENAR Network Course

66

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Summary

WGCNA
Walktrap

» Network-based methods (centrality-based, pathway topology,
etc) rely on network information — helpful if correct network

information avail

» What if network information is not available?
» What about differences in network structures — differential

network biology®8?

8ldeker & Krogan (2012)
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Network Analysis and Applications in Biology:
Learning Undirected Networks

Ali Shojaie & George Michailidis

ENAR 2020
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Learning Undirected Networks

Learn network from data (structure learning):
» Data matrix: Xpxp.
» Features correspond to the p nodes in the network.

» Goal: Learn edges between nodes = learn the statistical
relationships between features.

@ @
o
D
@
o O
® @
®
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Why Do We Need Network Inference?

» Despite progress, our knowledge of interactions is limited.

» The entire genome is a vast landscape, and experiments for
discovering networks are very expensive.

» From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later).

» Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.

©AlIi Shojaie ENAR Network Course
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Network Inference — An Overview

Two general classes of network inference methods:
» Methods based on marginal measures of association:
» Co-expression Networks (based on linear measures of
association)
» Methods based on mutual information (can accommodate
non-linear associations)
» Methods based on conditional measures of association:

» Methods assuming (multivariate) normality (glasso, etc)
» Generalizations to allow for nonlinear dependencies
(nonparanormal, etc)

©AlIi Shojaie ENAR Network Course




Introduction
Networks Based on Marginal Associations
Networks Based on Conditional Associations

Graphical Models

Probabilistic Graphical Models!

Joint multivariate probability distribution where dependencies can
be represented as a network.

Advantages:

» Graphical models offer efficient factorized forms for joint
distributions with easily interpretable dependencies.

» Conditional dependencies denoted via an edge in network.

» Convenient visual representation.

'For a detailed technical introduction, see Graphical Models, Exponential
Families, and Variational Inference by Wainwright & Jordan (2008)
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Marginal Association Networks
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Correlation Networks (Association Networks)

» Simplest (and most-widely used!) method for estimating
networks — key assumption:
large correlation = presence of an edge
» Let r(i,j) be correlation between X; and Xj; we claim an edge
between i and j if |r(i,))| > 7.
» 7: a user-specified threshold (tuning parameter).

o e e e B
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Limitations of Correlation Networks

1. The estimation is highly dependent on the choice of 7.

2. Correlations capture linear associations, but many real-world
relationships are nonlinear.

3. Large correlations can occur due to confounding.
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Limitations of Correlation Networks

The estimation is highly dependent on the choice of 7.

» We can work with weighted co-expression networks (WGCNA)

» We can instead test Hp : r,, =0
» A commonly used test is based on the Fisher transformation

1 1+r 1
Z = 5 In <1—r> = artanh(r) ~p, N (0, \/HT3>
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.

1 0.8 -0.8 -1
1 1 1 -1 1 -1
P
v 7 — — T ™~ \\
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.

» We can use other measures of association, for instance,
Spearman correlation or Kendal's 7.

» These methods define the correlation between two variables,
based on the ranking of observations, and not their exact
values.

» They can better capture non-linear associations.

» We can instead use mutual information; this has been used in
many algorithms, e.g. ARACNE.
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ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks2

1. ldentifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2Margolin et al (2006)
©AlIi Shojaie ENAR Network Course 12
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Key Idea: Data Processing Inequality (DPI)

I(A, C) < min[I(A, B), I(B, C)]

where
I(gi, 8;) = logP(gi, &)/ P(&i)P(s))

» Look at every triplet and remove the weakest link

» Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)

@©AIi Shojaie ENAR Network Course
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Algorithm Details

» The algorithm examines each gene triplet for which all
pairwise Mls are greater than a cut-off and removes the edge
with the smallest value based on DPI.

» Each triplet is analyzed even if its edges have been selected for
removal by prior DPI applications to other triplets.

» The least of the three Mls can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent, but still do not interact.

©AlIli Shojaie ENAR Network Course 14
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Rationale and Guarantees

» If Mls are estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, if the
network is a tree and has only pairwise interactions.

» The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.

©AIi Shojaie ENAR Network Course
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Rationale and Guarantees

Theorem. Let 7;; be the set of nodes forming the shortest path in the network
between nodes i and k. Then, if Mls can be estimated without errors, ARACNE
reconstructs an interaction network without false positives edges, provided: (a)
the network consists only of pairwise interactions, (b) for each j € m, Ii; > Iik.

Further, ARACNE does not produce any false negatives, and the network
reconstruction is exact iff (c) for each directly connected pair ij and for any other
node k, we have I;; > min[l;x, Ijx].

ENAR Network Course 16
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Performance on Synthetic Data

- & % | - ARACNE
10" —&- Bayesian Network
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Application: B-lymphocytes Expression Data
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Application: B-lymphocytes Expression Data Software
> MYC (proto-oncogene) subnetwork (2063 genes) » Implemented in the R-package minet:
» 29 of the 56 (51.8%) predicted first neighbors biochemically source ("http://bioconductor.org/biocLite.R")
. . . 1 L' n 1 n
validated as targets of the MYC transcription factor. biocLite("minet")
. . . pe . » 1 | 1 i i =
» New candidate targets were identified, 12 experimentally Main e.stlmatlon f_unCt'on_aracne(“flm’ eps=0)
validated. » mim: mutual information matrix
» 11 proved to be true targets. mim <- build.mim(syn.-data, estimator="spear1‘na.n") ‘
] ) » eps: threshold for setting an edge to zero, prior to searching
» The candidate targets that have not been validated are over triplets
possibly also correct.
@©Ali Shojaie ENAR Network Course 19 ©AIli Shojaie ENAR Network Course 20
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Limitations of Correlation Networks
Large correlations can occur due to confounding.

if
/

e
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Markov Networks

Markov Network
An undirected graphical model that characterizes conditional
dependence (= direct relationships).

» Edge: Two nodes are conditionally dependent.

» No edge: Two nodes are conditionally independent.

> W

Shoe Size » Conditions on all other nodes.
©AIli Shojaie ENAR Network Course 21 ©AIli Shojaie ENAR Network Course 22
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Markov Networks — Conditional Dependence

Regression Interpretation:

» Imagine trying to predict the observations in Node A
(response) by the observations of all other nodes (predictors).

» Node B predictive of Node A (with all other nodes in model).

» A is conditionally dependent on B.
» Edge.

» Because of other nodes in model, Node B does not add any
predictive value for Node A.

» A is conditionally independent of B.
» No Edge.

©AlIi Shojaie ENAR Network Course
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Markov Networks — Conditional Dependence

i1
/

Shoe Size

e
(]

A

Correlation.
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Markov Networks — Conditional Dependence

i1
/

Shoe Size

A

Conditional Dependence.
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Markov Networks — Conditional Dependence

How can we learn conditional dependencies?

» A and B are conditionally independent given C if

P(A,B| C)=P(A| C)P(B| C)

» Generally difficult (need to estimate multivariate densities).

» Alternatively, can use nonparametric approaches, e.g.
conditional mutual information, but not easy in high
dimensions.

» Often resort to models, or simple measures, such as partial
correlations...

©AIi Shojaie ENAR Network Course
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Partial Correlation

» Partial correlation measures the correlation between A and B
after the effect of the other variables are removed.

» In our example, this means correlation between shoe size and
IQ, after adjusting for age.

» The partial correlation between A and B given C is given by:

— PACPBC

\/1_IOAC\/1_IOBC

» Alternatively, regress A on C and get the residual, ra; do the
same for B to get rg. The partial correlation between A and
B give C is Cor(ra, rg).

PAB.C = ,O(A, B|C) =

©AlIi Shojaie ENAR Network Course
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Partial Correlation

» Partial correlation is symmetric = undirected network
» Partial correlation takes values between -1 and 1

» In partial correlation networks, we draw an edge between A
and B, if the partial correlation between them is large

» Calculation of partial correlation is more involved

©AIli Shojaie ENAR Network Course
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A Simple Example

1 8 .7 1 6 0
Correlation = 8 1 .8 | PartialCorr=1| 6 1 .6
7 8 1 0 6 1

True Network Correlation Partial Correlation

© @ ©

® ®
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A Larger Example

» A network with 10 nodes and 20 edges
» n = 100 observations

» Estimation using correlation & partial correlation (20 edges)

True Network

ONN(©)

Partial Correlation

ONN©)

Correlation
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Partial Correlation for Gaussian Random Variables
» For Gaussian (multivariate normal) random variables, partial
correlation between X; and X; given all other variables is given
) ) by the inverse of the (standardized) covariance matrix ¥.
Gaussian Graphical Models (GGMs) N L , _
» The (/,j) entry in X! gives the partial correlation between X;
and X; given all other variables X\; ;.
» Multivariate normal: X ~ N(0,X)
» © = Y1 = inverse covariance/precision /concentration matrix.
» Zeros in © = conditional independence!
» Edges correspond to non-zeros in ©.
@©AIli Shojaie ENAR Network Course 31 ©AlIi Shojaie ENAR Network Course 32
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Partial Correlation for Gaussian Random Variables
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Estimating GGMs

From the discussion so far, to estimate the network, we can

1. Calculate the empirical covariance matrix: for (centered)
n x p data matrix X, S = (n — 1) 1X7X.

2. Get the inverse of S. Non-zero values of S~ give the edges.

While simple, this may not work well in practice, even with large

© @ samples!
True Graph Est Graph
- x x 0
- x 0 X — x 0 e e
X — X
0 x - X x =0 €] €]
0 0 0 -—
- x 0 x - 0 0 x e e
X — x 0 0 — x 0
0 x — X 0 x — X @ @
x 0 x = x 0 x = & &
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Estimating GGMs in High Dimensions Estimating GGMs in High Dimensions
Many problems arise in high-dimensional settings, when p > n.
» First, S is not invertible if p > n!
» Even if p < n, but nis not very large, we may still get poor
estimates, and many false positives/negatives. » A number of methods have been recently proposed for
estimating GGMs in high dimensions.
Ti Graph Est Graph . . . .
e o » The main idea in most of these methods is to use a
a a regularization penalty, like the lasso.
s e » We discuss two approaches:
» neighborhood selection
¢ . » graphical lasso
@ @
[ [
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Estimating GGMs in High Dimensions — Method 1

The idea behind neighborhood selection, is to estimate the graph
by fitting a penalized regression of each variable on all other
variables.

» Find neighbors of each node X; by /1-penalized regression or
lasso:

min}g}mize 1X; — X815 + A Z |Bf<|
ey

» The final estimate is found by combining all of the edges from
these individual regression problems.
» Symmetry — (3 not always same as B}‘.
» Use min or max rule.

©AIli Shojaie ENAR Network Course
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Estimating GGMs in High Dimensions — Method 2

Estimate a sparse © via penalized maximum likelihood estimation
(MLE).

Graphical Lasso (glasso)
max(iamize logdet(©) — tr(50) — A||©]1

» Blue: Log-likelihood; logdet denotes the logarithm of the
determinant of © and tr the trace (sum of diagonal elements)
S0.

» Red: Penalty term encourages zeros on the off-diagonal
elements of ©.

(©AIli Shojaie ENAR Network Course 38
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Comparing the Two Approaches

» Neighborhood selection is an approximation for graphical
lasso:
» Consider regression of Xj on X, # k
» Then, the regression coefficient for neighborhood selection is
related to the j, k element of ©:

0;

J
=

» Neighborhood selection is computationally more efficient, and
may gives better estimates, but doesn’t give an estimate of ©!

©AlIi Shojaie ENAR Network Course
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A Real Example

» Flow cytometry proteomics in single cells (Sachs et al, 2003).
» p = 11 proteins measured in n = 7466 cells

A =36 A=27
Raf Raf

Mek _— Ink

P\cg

P\PZ K

PIP3
S

Mek

AN
IS
aeayel

.\ge

<3
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How to Choose \?

» A modulates trade-off between model fit and network sparsity:

» )\ =0 gives a dense network (no sparsity).
» As )\ increases, network becomes more sparse.

» A number of approaches proposed in the literature and used
in practice

1. Cross-Validation — tends to yield overly dense networks.
2. Extended BIC — adjusted BIC for high dimensions.

3. Controlling the probability of falsely connecting disconnected
components at level o (Banerjee et al, 2008):

o) = —tal0l20)
Vn—2+t, 2(a/2p?)’
(tn—2(«) is the (100 — a)% quantile of t-dist with n — 2 d.f.)

4. Stability selection — Choose A that gives the most stable

[PPSR P 4 - T "SSP PEEIN \
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Other Types of Graphical Models

©AIi Shojaie ENAR Network Course 42
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Nonparanormal (Gaussian Copula) Models

> Suppose X » N(0,X), but there exist monotone functions
fi,j=1,...psuch that [fi(X1),...f(Xp)] ~ N(0,X)

» X has a nonparanormal distribution X ~ NPN,(f,X).

» f and X are parameters of the distribution, and estimated from
data.

» For continuous distributions, the nonparanormal family is the
same as the Gaussian copula family

» To estimate the nonparanomal network:

i) transform the data: [A(X1),...f(Xp)]

ii) estimate the network of the transformed data (e.g. calculate
the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)

©AlIi Shojaie ENAR Network Course
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A Related Procedure

» Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation
> Let rJ’ be the rank oij among le,
be the average rank
» Calculate Spearman’s p or Kendall's 7

Pik = 271([*5‘)(4*&)
J \/Z, Y =520 (rf — F)?
j Z sign (()ﬁlef/)(X;i*Xli/D

n(n—1) 4=
1<i<i’<n

., x(and 7; = (n+1)/2

> If X ~ NPN,(f,X), then X = 2sin(pjxm/6) = sin(7jxm/2)
» Therefore, we can estimate ¥ ! by plugging in rank-based
correlations into graphical lasso (R-package huge)
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A Real Data Example

» Protein cytometry data for cell signaling (Sachs et al, 2005)

» Transform the data using a Gaussian copula (Liu et al, 2009),
giving marginal normality

» Pairwise relationships still seem non-linear

10 1 2 3

o
o«
o
T

P38
PJNK

PJNK

» Shapiro-Wilk test rejects multivariate normality:
p<2x10716

©AIli Shojaie ENAR Network Course

45

Introduction
Networks Based on Marginal Associations
Networks Based on Conditional Associations

Graphical Models for Discrete Random Variables

» In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

» Need to estimate CIG for other distributions: binomial,
poisson, etc

» In this case, the estimators do not have a closed-form!

» A special case, which is computationally more tractable, is the
class of pairwise MRFs

©AIi Shojaie ENAR Network Course
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Pairwise Markov Random Fields

» The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist

» The pairwise MRF associated with graph G over the random
vector X is the family of probability distributions P(X) that
can be written as

P(X) o< exp Z G (Xj, Xk)

(,k)eE

» For each edge (j, k) € E, ¢j« is called the edge potential
function
» For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables?

3Wainwright & Jordan, 2008

©AlIi Shojaie ENAR Network Course
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Graphical Models for Binary Random Variables

» Suppose Xi, ..., X, are binary random variables,
corresponding to, e.g. SNPs, or DNA methylation

» A special case of discrete graphical models is the Ising model
for binary random variables

1
Py(x) = 40) exp Z 01X XKk

(,k)eE
» A pairwise MRF for binary data, with ¢ji(x;j, xi) = 0jicxjxx
» x' e {-1,+1}"
» The partition function Z(0) ensures that the distribution sums
tol
» (j,k) € Eiff 6 # 0!

©AIli Shojaie ENAR Network Course
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Graphical Models for Binary Random Variables

» We can consider a neighborhood selection* approach with an
/1 (lasso) penalty to find the neighborhood of each node
N() = {k € V: (j.k) € E}

» For j=1,...,p, need to solve (after some algebra)

n
ming n_lz f(6; x —Zﬁjk)gix,’;—i—/\HO_jHl
i—1 Py

» f(0;x) =log {exp (Zk;éj ijxk> + exp <f D ke ijxk>}
» This is equivalent to solving p penalized logistic regression
problems, which is straightforward (R-package glmnet)

“*Ravikumar et al (2010)
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Other Non-Gaussian Distributions

» Assume a pairwise graphical model

P(X) o exp 29j¢>j(Xj)+ Z Oik Pk (Xj5 Xi)

jev (,k)eE

» Then, similar to the Ising model, graphical models can be
learned for other members of the exponential family

» Poisson graphical models (for e.g. RNAseq), Multinomial
graphical models, etc

» All of these can be learned using a neighborhood selection
approach, using the glmnet package®

» We can even learn networks with multiple types of nodes (gene
expression, SNPs, and CNVs)®

*Yang et al (2012)
®Yang et al (2014), Chen et al (2015)
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Mixed Graphical Models

ENAR Network Course
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A General Approach for Estimation of Graphical Models

» Consider n iid observations from a p-dimensional random
vector x = (Xi,...,Xp) ~ P

» Consider the (undirected) graph G = (V/, E) with vertices
V=A{1,...,p}

» Want to estimate edges £ C V x V that satisfy
Vj € V., AN(j) such that:

pi(XiH{ Xk, k # J3) = pi(XiH{Xk - k € NG)}) = pi(XG[{ Xk = (k.j) € E})

» N(j) is the minimal set of variables on which the conditional
densities depend
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Estimating Conditional Independencies

Question: how to condition?

» Approach 1: Estimate the joint density (X1, ...
get the conditionals f;(X; | X_})
» Efficient, coherent
» Computationally challenging
» Restrictive: how many joint distributions do you know?
» Hard to check if assumptions hold!

» Approach 2: Estimate the conditionals directly f;(X; | X_;)

» Computationally easy
> Leads to easy & flexible models (regression)!
» May not be efficient or coherent

, Xp); then

©AIli Shojaie ENAR Network Course
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A Semi-parametric Approach

» Consider additive non-linear relationships (additive model):

=) (X)) +e

k)

X | X_j

» Then if fj(Xyk) = fj(X;) = 0, we conclude that X; and Xj are

conditionally independent, given the other variables
» In other words, we assume that conditional distributions and
conditional means depend on the same set of variables

» We then use a semi-parametric approach for estimating the
conditional dependencies
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SpaCE JAMY

» Sparse Conditional Estimation with Jointly Additive Models
(SpaCE JAM)

m'pklg}lzefz o= b IB+A S (I

k#j k>j

on1/2
KOa0)ll2 + i ()113)

fir (i) = VirBj
W is a n x r matrix of basis functions for fj
Bjk is an r-vector of coefficients

The standardized group lasso penalty for functions || fi||2

vV vyVvyy

» This is a convex problem, and block coordinate descent
converges to the global minimum

"Voorman et al (2014), R-package spacejam
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SpaCE JAM

Estimating fj and fj; seems redundant...

y =tanh(x) + eps y=X+eps y =x"2 + eps
S -
N — EbK
— Exly] © -
- .
>~ o > ~ 4 ]
- 4
<?1 .
T T T T T T T T T T T T T T T T T T
-4 -2 0 2 4 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
X X X
but necessary for non-linear functions
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Comparison on Simulated Data
non-linear relationships (p = 100, n = 50)

» Forest density estimation (Liu et al, 2011) assumes that ) Nonlinear
underlying graph is a forest, and estimates the bivariate be ,
densities non-parametrically. e R DDA SpaCE JAM: X, X_
. ) oo - - = = = SpaCE JAM: x, X
» Graphical random forests (Fellinghauer et al, 2013) uses g s ooz [P B SpaCE JAM: x, X%, x°
random forests to flexibly model conditional means g7 e EET o nonparanormal
> Th ider conditional dependencies through conditional $87 AT _onsiTToT T - — - Bassoetal (2009)
ey consider conditional dependencies through conditiona 5o | 2;/’ -~ P . forest density estimation
mean 55 ’/ ,’ Lo - = - = graphical random forests
» They allow for general random variables, discrete or continuous %’ « ‘,' O : graphical lasso
» Use a random forest to estimate E[X; | X\ ;] non-parametrically 59 | = = = neighborhood selection
: ) S ) 2 T sparse partial correlation
» Theoretical properties have not yet been justified E o l‘ | | | |
=2
0 10 20 30 40
Number of incorrectly estimated edges
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Comparison on Simulated Data Estimation of Cell Signaling Network
linear relationships (p = 100, n = 50)
Sparse partial Non- Random
G . # Estimated  correlation paranormal forest SP‘_?‘(;E AM
’ aussian edges ' ' ' ' '
=
0o | SpaCE JAM: X, X*
E o P ‘.q:-._.._‘--t.‘-f.‘ft"d-_-"l‘: — = = SpaCE JAM: X, X3 Sachs et al (2005)
e Pl R SpaCE JAM: x, X%, x° PIP2  picg
Eo | & e - .
go | § A nonparanormal : ek
> f — — — Basso et al (2005) e ]
‘g% 1% e forest density estimation ' \orat
5 ¥ - = - = graphical random forests e 16
“2 21 graphical lasso P pink
5 ‘ — = = neighborhood selection PKA 1 g
g o di e sparse partial correlation PKC
S T T T T T T T I
2
0 10 20 30 40 50 60 70
10
Number of incorrectly estimated edges
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Other Extensions of GGMs

» Multiple Graphical Models

» For groups of observations, estimate graphical models with
shared structure across groups and individual structure within
groups.

» Time Varying Graphical Models
» Smoothly varying graph over time estimated via local kernel
smoothers.

» Change points in graph structure over time estimated via
fusion penalties.

» Latent Variable Graphical Models
» Assume observed features are dependent on latent variables
which exhibit a low-rank effect. Estimate a sparse (graph
structure) plus low-rank inverse covariance matrix.

©AIli Shojaie ENAR Network Course
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Joint Estimation of Multiple Graphical Models
A Brief Introduction

Key idea:

» We observe data from different a priori known sub-populations

» Sub-populations may correspond to sub-types of a disease (e.g.
neural, proneural, mesenchymal and classical in glioblastoma)

» For each sub-population, there exists an undirected graphical
model

» The underlying graphical models share common structure

Main issue: What type of common structure is assumed, and how
to enforce it?
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[[lustrative framework: Gaussian case

» X~ N(0,%4), k=1,...,K.
» Ok =%, k=1,...,K so that O, ~ O, for all k # ¢

» Different approaches build either on maximum likelihood
estimation or on neighborhood selection
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Pictorial Motivation - |

50
50

20 30 40
30 40

20

10
10
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Selected Approaches - |

Rich literature on the topic with many variants appearing in
statistics, machine learning and bioinformatics literature

» Hierarchical penalty?:
> Let ©k(i)) = ali)w(in)), k=1,....K
» For identifiability, assume «a(i,j) > 0 for all variable pairs (i, )

» P(©) = AaJali + Ay Zle |7k|1 — combine two lasso
penalties

8Guo et al (2011)
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Selected Approaches - Il

» Fusing penalties®:

» Variant 1:

K
P(©) = Z)\k|@k|l + Z/\k,d@k — O¢)1

k=1 k¢

element-wise fused lasso penalty, encourages similarities
between all elements of the K graphical models

» Variant 2:

K

P©) =D MlOuli+ > 4| D (O(i)))?

ij \ k=1

encourages strong fusing towards a common graphical model

°Danaher et al (2014)
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Selected Approaches - IlI Pictorial Motivation - |l
» Cai et al (2016) propose a mixed (o, /¢1 norm: g
min{@}i&l (maxlSkSK]@kh)
K, 1/2
k 2
s.t. max; ; E 7’5/(@/( — /|(i,j) <t, ]
k=1 8
» The objective function encourages sparsity across all K
models. The constraint is imposed on the maximum of the °
element-wise group ¢ norm to encourage the groups to share 8
a common graphical structure. 2
10 20 30 40 50 10 20 30 40 50
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Selected Approaches - |V

» Saegusa & S (2016) encode similarity between different sets of
edges for pairs of models (k, ¢) through a Laplacian penalty

» Ma & M (2016) use group lasso penalties across different
subsets of the edges

Both approaches require external information through prior
knowledge (e.g. functional pathways, literature, etc.)
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Application: Lipid Interaction Networks in CKD

» Chronic Kidney Disease (CKD) is strongly linked to
cardiovascular morbidity and mortality.

» Despite the diversity of human plasma lipidome, studies of
CKD have been traditionally limited to measuring total
cholesterol, triglycerides, and lipoproteins

» New technologies allow researchers to profile a large number
of lipid species (p ~ 450) from various lipid classes
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Lipid Interaction Networks in CKD

Objective: Understand lipid interactions from two related study
cohorts!?

» Clinical Phenotyping Resource and Biobank Core (CPROBE)
— Pprogressors vs non-progressors patients

» Chronic Renal Insufficiency Cohort (CRIC) — early stage
CKD vs late stage CKD patients

Analysis pipeline and results in Ma et al (2019)
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CPROBE/CRIC Modules

= ysoPE
plasmenyl-PC
2 plasmenyl-PE
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CPROBE/CRIC Differential Sub-Networks!?

TAG cluster CL-PE cluster

A} CPROBE — stage 2-3 B) CPROBE —stage 4.5 A) CPROBE — stage 2-3 B) CPROBE —stage 45

<

Figure: Black edges: common backbone; blue edges: present in early
stage/NP; red edges: present in late stage/P

1Based on NetGSA enrichment analysis — see Lecture 2
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Biological Relevance of Discovered Modules

» Of interest is the “disregulation” of a module comprising of
triacylglycerols (TAGs) and another one of cardiolipins with
phosphatidylethanolamines (CL-PE) in CRIC/CPROBE

» Of particular interest is the second (CL-PE) module, that
points to role of cellular lipid metabolism and specifically the
activity of the mitochondrial respiratory chain after checking
the module for enrichment; thus, the loss of lipids may lead to
decreased mitochondrial fusion and fragmented mitochondria

» Concordant with recent findings in the literature that
mitochondrial damage and dysfunction might be a highly
prevalent abnormality in early CKD (eGFR>60)

©AIi Shojaie ENAR Network Course

74




