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Abstract Discovering regulatory interactions from time course gene expres-
sion data constitutes a canonical problem in functional genomics and systems
biology. The framework of graphical Granger causality allows one to estimate
such causal relationships from these data. In this study, we propose an adap-
tively thresholding estimates of Granger causal effects obtained from the lasso
penalization method. We establish the asymptotic properties of the proposed
technique, and discuss the advantages it offers over competing methods, such
as the truncating lasso. Its performance and that of its competitors is assessed
on a number of simulated settings and it is applied on a data set that captures
the activation of T-cells.
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1 Introduction

Reconstructing gene regulatory networks is a critical problem in systems bi-
ology. Gene regulation is carried out by binding of protein products of tran-
scription factors (TF) to cis-regulatory elements of genes, which results in
change of expression levels of the regulated genes. Such relationships are often
represented in the form of directed graphs with transcription factors (TF) reg-
ulating target genes. This interpretation of effects of transcription factors on
regulated genes, as a physical intervention mechanism therefore implies that
regulatory interactions among genes are by definition causal.

In the theory of graphical models, causal relationships among random vari-
ables are modeled using directed (acyclic) graphs, where an edge among two
random variables indicates a direct causal effect. Statistical methods based
on observational data can only determine associations among random vari-
ables and causal discovery requires additional assumptions and/or information
about the underlying system. This implies that, reconstructing gene regula-
tory networks may be only feasible through carefully designed perturbation
experiments. Such experiments are often expensive and only possible in case
of model organisms and cell lines. However, regulatory mechanisms become
evident if the expression level of gene Y is affected by changes in expression
levels of gene X. Time course gene expression data provide a dynamic view of
expression levels of all the genes under study, and therefore, can provide cues
to the causal relationships among genes, which can be used to reconstruct the
gene regulatory network.

Two of the most popular approaches for inferring gene regulatory networks
using time course gene expression data are dynamic Bayesian Networks, Mur-
phy (2002) and Granger causality, Granger (1969). Dynamic Bayesian Net-
works (DBNs), generalize the notion of Bayesian networks to allow for cycles
in the graph, through expanding the state space of the model by replicat-
ing the variables in the network over time points. Cyclic networks are then
transformed to directed acyclic graphs (DAGs) by breaking down cycles into
interactions between variables at two different time points. Ong et al (2002)
and Perrin et al (2003) discuss applications of DBNs for inferring regulatory
networks from time course gene expression data.

On the other hand, Granger causality is motivated by a practical inter-
pretation of predictability among random variables. In particular, given two
random variables X and Y , if the autoregressive model of Y based on past val-
ues of both variables significantly outperforms the model based on Y alone, X
is said to be Granger-causal for Y . In the context of gene expression analysis,
this definition implies that changes in expression levels of Y could be explained
by expression levels of X from previous time points. Exploring Granger causal
relationships is closely related to analysis of vector autoregressive (VAR) mod-
els. Therefore, while applying DBNs to high-dimensional applications may be
computationally prohibitive, statistical methods can be used to derive Granger
causal relationships among genes from time-course gene expression data using
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standard techniques for analysis of VAR models (see Yamaguchi et al (2007);
Opgen-Rhein and Strimmer (2007) for examples of such approaches).

Unlike the original application area of Granger causality in econometrics, in
gene regulatory network applications, the number of available samples is often
small compared to the number of genes in the study. As a result, sparse VAR
models have been explored by a number of researchers, including Fujita et al
(2007) and Mukhopadhyay and Chatterjee (2007), to obtain reliable estimates
of gene regulatory networks when the number of genes, p is large compared to
the sample size, n.

Penalized estimation methods provide sparse estimates of high dimensional
statistical models. Arnold et al (2007) use the lasso (or `1) penalty to discover
the structure of graphical models based on the concept of Granger causality in
a financial setting. More recently, a similar framework, using the group lasso
penalty was used by Lozano et al (2009) to group the effect of observations of
each variable over past time points.

A main challenge in applying both DBN and Granger causality models to
discover gene regulatory networks is that as the number of time points in-
creases, the number of variables used in the replicated representation of the
network also increases. As a result, many available methodologies simply ignore
possible effects of genes on each other from time points far in the past, result-
ing in possible loss of information. To overcome this challenge, Shojaie and
Michailidis (2010a) proposed to simultaneously estimate the order of the vec-
tor auto-regressive model, as well as the interactions among variables using a
non-convex penalty, called the truncating lasso penalty, and showed that when
the effects of variables on each other decay over time, the proposed penalty
consistently estimates the order of the time series, as well as the structure of
the regulatory network in high dimensional sparse settings.

The decay condition in Shojaie and Michailidis (2010a) (referred to as S-
M henceforth) is a natural assumption in many time series models. However,
when this condition is not satisfied, the truncating lasso penalty may fail
to correctly estimate the order of the time series. In this study, we discuss
examples where the decay assumption of S-M may fail to hold, and propose
a new estimator, based on adaptive thresholding of lasso estimates, which
can be used to simultaneously estimates the order of the VAR model and the
structure of the network. The new estimator is based on the assumption that if
the true VAR model includes non-ignorable effects at any given time point, the
number of edges in the network should exceed a certain threshold. We formally
state this assumption in Section 2.2.2, where we also investigate the effect of
violations of this assumption on false positive and false negative errors.

The remainder of the paper is organized as follows. In Section 2, we review
some background material and present the new methodology and discuss its
asymptotic properties. Section 3 includes a comparative analysis of the per-
formance of the proposed estimator over a set of simulation studies, whereas
applications to time-course gene expression data from T-cell activation are
presented in Section 4. Section 5 discusses some final remarks on the choice
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of appropriate penalty, and methods for evaluating the validity of underlying
structural assumption.

2 Estimation of Regulatory Networks from Time Course Gene
Expression Data

We start this section by a brief introduction of two classes of statistical models
for analysis of genetic networks using time series observations, namely dynamic
Bayesian Networks (DBN) and graphical Granger causality. We then discuss
penalized methods for estimation of gene regulatory networks and introduce
our new estimator based on an adaptively thresholded lasso penalty. Computa-
tional issues and asymptotic properties of the proposed estimator are discussed
at the end of the section.

2.1 Estimation of Gene Regulatory Networks from Time Course Gene
Expression Data

Bayesian networks models (BN) correspond to probability distributions over a
directed acyclic graph (DAG). More specifically, let G = (V,E), denote a DAG
with the node set V and the edge set E ⊂ V ×V . Denote the random variables
on the nodes of the graph by X1, . . . , Xp, where p = |V | is the cardinality of
the set V . For a DAG G, it is clear that if (i, j) ∈ E ⇒ (j, i) /∈ E. We represent
E through the adjacency matrix A of the graph, a p×p matrix whose (j, i)−th
entry indicates whether there is an edge (and its weight) from node j to node
i. We represent an edge from j to i by j → i, and denote by pai the set of
parents of node i.

A probability distribution P is said to be (Markov) compatible with G if it
admits the following decomposition based on the set of parents of each node
in the graph (Pearl (2000)):

P(X1, . . . , Xp) = Πi∈V P(Xi|pai). (1)

Pearl (2000) shows that if P is strictly positive, the Bayesian network G
associated with P is unique and P and G are compatible. This implies that
the joint Gaussian distributions defined according to (1) on nodes of G are
uniquely defined and Markov compatible with G. Markov compatible proba-
bility distributions on DAGs can be defined using structural equation models,
where each variable is modeled as a (nonlinear) function of its parents. Given
latent variables Zi, i = 1, . . . , p for each node i, the general form of these
models is given by:

Xi = fi(pai,Zi), i = 1, . . . ,p (2)

In (2), the latent variables represent the unexplained variation in each node,
which is independent of the effect of its parents. For Gaussian random vari-
ables, the function fi is linear, in the sense that it corresponds to the linear
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regression of Xi on the set of its parents pai. In other words, for Gaussian
random variables (2) takes the form:

Xi =
∑
j∈pai

ρijXj + Zi, i = 1, . . . , p (3)

where ρij represent the effect of gene j on i for j ∈ pai and ρij are the
coefficients of the linear regression model of Xi on Xj , j ∈ pai. Note that in
this case ρij = 0 whenever j /∈ pai.

The main limitation of Bayesian networks is the requirement that the un-
derlying graph needs to be a DAG. However, gene regulatory networks often
include cycles (e.g. the cell cycle) or feedback loops that control the expres-
sion levels of genes. Thus, a more general class of probability distributions
on graphs is needed that allows for the presence of directed cycles. To over-
come this shortcoming, Murphy (2002) introduced a generalization of Bayesian
networks for analysis of time series data, called dynamic Bayesian networks
(DBN). In DBNs, random variables in the study are replicated over time, and
directed edges are only allowed from variables in each time point to those
in the future time points. In its simplest form, edges in DBN are limited to
those from variables in t to variables in t + 1. Such a model corresponds to
a Markov model. More generally, for variables X1, . . . Xp observed over time
points t = 1, . . . , T , edges are allowed from any time point t to future time
points t′ > t.

A closely related model for analysis of time series, which we adapt in
this work, was developed in the econometrics literature based on the work
of Granger (1969). In this framework, called Granger causality, interactions
among variables are defined if past observations of one variable result in im-
proved prediction of other variable. More specifically, let X1:T ≡ {X}Tt=1 and

Y 1:T ≡ {Y }Tt=1, be trajectories of two stochastic processes X and Y up to time
T . Then, X is said to be Granger-causal for Y if the joint prediction model in
(4) significantly outperforms the model in (5).

Y T = AY 1:T−1 +BX1:T−1 + εT (4)

Y T = AY 1:T−1 + εT (5)

Graphical Granger causal models (GGC) extend the notion of Granger
causality among two variables to p variables. In general, define a vector time se-
ries Xt = (Xt

1, . . . , X
t
p)

T
and consider the corresponding vector auto-regressive

(VAR) model (Lütkepohl (2005), Chapter 2):

XT = A1XT−1 + . . . AdXT−d + εT . (6)

Here, d denotes the order of the time series and At, t = 1, . . . , d are p ×
p matrices whose coefficients represent the magnitude of interaction effects
among variables at different time points.

In this model, XT−t
j is considered Granger-causal for XT

i if the correspond-

ing coefficient, Ati,j is statistically significant. It is then easy to see that, the
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GGC corresponds to a DAG with p× (d+ 1) variables, in which the ordering
of the set of p-variate vectors XT−d, . . . ,XT is determined by the temporal
index and the ordering among the elements of each vector is arbitrary. As with
DBNs, the interactions in GGCs are only allowed to be forward in time, i.e.
of the form XT−t

j → XT
i , t = 1, . . . , d.

2.2 Penalized Likelihood Estimation Methods for Gene Regulatory Networks

2.2.1 Background

In the analysis of gene regulatory networks, the number of genes often exceeds
the available samples of the gene expression data. As a result, an estimate of
the gene regulatory network based on graphical Granger causality may include
spurious edges that do not correspond to interactions among the genes. In
such situations, penalized estimation methods can improve the accuracy of
the model, especially for reconstructing the true regulatory network. Shojaie
and Michailidis (2010b) show that for Gaussian random variables, when the
variables inherit a natural ordering, the likelihood function can be written
as a function of the adjacency matrix of the corresponding DAG. They also
show that the penalized estimate of the adjacency matrix can be obtained by
solving p − 1 penalized regression problems. Using this connection, general
weighted lasso estimates of gene regulatory networks can be found by solving
the following p distinct `1-regularized least squares problems for i = 1, . . . , p:

argmin
θt∈Rp

n−1‖X Ti −
d∑
t=1

X T−tθt‖22 + λ

d∑
t=1

p∑
j=1

|θtj |wtj (7)

where X t denotes the n×p matrix of observations at time t, and X ti denotes the
ith column of X t. In this formulation, wtj = 1 corresponds to lasso estimates,

and adaptive lasso estimates are obtained by setting wtj = |Âtij |−γ , where

Âtij is a consistent estimate of Atij . Shojaie and Michailidis (2010b) consider
a modification of the adaptive lasso, which they call 2-stage lasso in which
wtj = 1∨|Âtij |−γ , and Âtij is obtained using an initial lasso estimate and γ = 1.

As pointed out in S-M, the order of the VAR model d is often unknown.
Therefore, to estimate the GGC, one either has to include all the previous
time points by setting d = T − 1, or set d to an arbitrary value. While the
latter choice may result in ignoring some of the edges from the true network,
the former results in a model with p(T − 1) covariates, which in turn exhibits
inferior performance. To overcome this shortcoming, the authors propose to
estimate the GGC using the truncating lasso penalty, which is given as the
solution of the following non-convex optimization problem, for i = 1, . . . , p:

argmin
θt∈Rp

n−1‖X Ti −
d∑
t=1

X T−tθt‖22 + λ

d∑
t=1

Ψ t
p∑
j=1

|θtj |wtj (8)
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Ψ1 = 1, Ψ t = M I{‖A(t−1)‖0<p2β/(T−1)}, t ≥ 2

where M is a large constant, and β is the allowed false negative rate. S-M
propose an efficient algorithm for solving the optimization problem in (8), and
show that the proposed penalty gives a consistent estimate of the order of the
underlying VAR model, as well as the structure of the network if the model
satisfies a decay assumption.

2.2.2 Adaptively Thresholded Lasso Estimate

The decay assumption for the truncating lasso estimate considered in S-M is
a natural assumption in many applications. However, there are examples of
VAR models that do not satisfy this assumption. As an example, consider the
VAR model whose adjacency matrix is depicted in the top panel of Figure 2.
In this case, observations at time T are affected by those in time T − 1 and
T − 3, whereas no significant effects exists from observations in time T − 2.
In Section 4, we show that the time series model of T-cell regulation shows
a similar pattern of influence. In such cases when the decay assumption fails
to hold, the truncating lasso penalty of S-M may not give a correct estimate
of the order of the time series, which results in an incorrect estimate of the
regulatory network. Examples of such cases are given in Sections 3.2 and 4.

To address this shortcoming, here we propose to consider the use of adap-
tive thresholding to provide a consistent estimate of the regulatory networks
from time course gene expression data. The main idea for the proposed penalty
(which replaces the decay assumption of S-M) is that a given time point in-
cludes true effects in the VAR model only if the number of edges in the network
should exceed a certain threshold (we formalize this assumption in the follow-
ing discussion).

Thresholding of lasso estimates has been also considered as a tool to im-
prove the accuracy of lasso estimates in Wasserman and Roeder (2009); Mein-
shausen and Yu (2009). More recently, Zhou (2010) considered iterative thresh-
olding of both lasso and Dantzig selector estimates for estimation of high di-
mensional sparse regression models with random design matrix. The author
studied asymptotic properties of the thresholded estimator and shows that it
results in accurate model selection, as well as nearly optimal `2 loss.

To obtain consistent estimates of the order d, as well as edges of the reg-
ulatory network, we modify the thresholding framework of Zhou (2010) so
that only adjacency matrices with significant number of edges are included in
the estimate of the regulatory network. Consider, as before, random variables
X1, . . .XT from a VAR model of order d with Gaussian noise, i.e.

XT = A1XT−1 + . . . AdXT−d + εT , εT ∼ N(0, σ2Ip) (9)

where Ip denotes the p× p identity matrix. The adaptively thresholded lasso
estimate of GGC is found through the following three-step procedure:

(i) Obtain the regular lasso estimate of the adjacency matrices of GGC Ãtλn
by solving (7) with tuning parameter λ = λn
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(ii) Define Ψ t = exp
(
M1{‖Ãt‖0<p2β/(T−1)}

)
, t = 1, . . . T , and find the thresh-

olded estimator by setting:

Âtij = Ãtij1{|Ãtij |≥ τΨt} (10)

Here M is a large constant and τ is the tuning parameter for the thresh-
olding step.

(iii) Estimate the order of the time series by setting

d̂ = max
t

{
t : ‖Ât‖0 ≥ p2β/(T − 1)

}
Before discussing the asymptotic properties of the proposed adaptively

thresholded lasso estimator, we compare some features of the new estimator
with the truncating lasso estimator of S-M, and discuss the appropriate choice
of tuning parameters λn and τ .

The proposed adaptively thresholded estimate is found by first obtain-
ing an estimate of the adjacency matrices using regular lasso. Then, in the
thresholding step, simultaneous sparsity and order selection in VAR models
is achieved by setting small values of the estimated adjacency matrix to zero,
while controlling for the total number of nonzero elements of the adjacency
matrix. Finally, the index of the last time point in which a significant number
of nonzero elements exist in the estimated adjacency matrix is defined as the
estimate of the order of VAR model.

As pointed out earlier, the thresholded estimator requires less stringent
assumptions about the structure of the time series model, and as shown in
Theorem 1, the consistency of the estimates of the adjacency matrix and the
order of the time series are achieved under the usual sparsity and restricted
eigenvalue (RE) assumptions. In addition, since the thresholded estimator is
found by adaptive thresholding of the regular lasso estimates, the resulting op-
timization problem is convex. In contrast, although the algorithm for finding
the truncating lasso estimate of S-M is shown to be convergent, the resulting
estimate may correspond to a local optimum. On the other hand, the thresh-
olded estimator requires appropriate values of two tuning parameters λn and
τ , and hence the truncating lasso estimate may be obtained more directly. In
particular, S-M propose the following error-based choice of tuning parameter,
which controls a version of false positive probability:

λe = 2n−1/2Z∗ α
2(T−1)p2

(11)

where α is the probability of false positive determined by the user, and Z∗q
denotes the upper qth quantile of the standard normal distribution. This alle-
viates the need for searching over the parameter space for appropriate values
of λ and provides an intuitive connection to the original definition of Granger
causality between two time series given earlier.

Based on the asymptotic properties of the thresholded lasso estimator, and
given λ0 =

√
2 log ((T − 1)p)/n, Zhou (2010) suggests the following choices for
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tuning parameters λn and τ :

λn = c1σλ0

τ = c2σλ0

for positive constants c1 and c2. Considering the fact that, the choice of the
thresholding parameter β is determined by the acceptable degree of false neg-
ative error, for λ0 =

√
2 log ((T − 1)p)/n, and an estimate σ, tuning parame-

ters for the proposed adaptively thresholded estimator amount to appropriate
choices of constants c1 and c2. A common strategy is to use cross validation
(C.V.) over a grid of possible values of c1 and c2. We refer the interested reader
to Zhou (2010) for additional details on connections between c1 and c2 and
constants that are defined based on the conditions of the problem. For selection
consistency of the estimate, we require c1 ≥ 2

√
1 + θ for some constant θ > 0

and c2 = 4c1. The quantity θ controls the rate at which the estimator performs
consistent variable selection as reflected in Theorem 1. In Sections 3 and 4, we
provide additional guidelines on practical choices of tuning parameters for the
data examples considered.

We begin the discussion of asymptotic properties by providing additional
notations and statements of the main assumptions.

Denote by X = [X 1,X 2, . . . ,X T−1] the n × p(T − 1) matrix of “past”
observations, and define:

Λmin(m) := min
ν 6=0,‖ν‖0≤m

‖Xν‖22
n‖ν‖22

> 0

Denote by Et = {(i, j) : Atij 6= 0} the edge set of the adjacency matrix at
time lag t = 1, . . . , d and let E = {(i, j) : ∃1 ≤ t ≤ d : Atij 6= 0} be the set of
all edges in the GGC model.

Let s = maxi |pai| be the maximum number of parents of each node in the
GGC model, and define

a0 = min
1≤t≤d

min
1≤i,j≤p,Aij 6=0

|Atij |

The asymptotic analysis for the thresholded lasso in Zhou (2010) incorpo-
rates the framework of Bickel et al (2009), based on the restricted eigenvalue
condition RE(X ), which states that for some integer 1 ≤ s ≤ (T − 1)p and a
number k, and for all ν 6= 0 we have

1

K(s, k)
:= min

J⊂V,|J|≤s
min

‖νJc‖1≤k‖νJ‖1

‖Xν‖2
n1/2‖νJ‖2

> 0

In this case, we say that RE(X ) holds with K(s, k). Based on these assump-
tions, we have the following result on the consistency of network estimation
and order selection.
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Theorem 1 (Consistency of Adaptively Thresholded Lasso) In VAR(d)
model of (6) with independent Gaussian noise with variance σ2, suppose RE(X )
holds with K(s, 3), and that λn ≥ 2σ

√
1 + θλ0 for some θ > 0. Also, assume

a0 > cλn
√
s, for some constant c depending on Λmin(2s) and K(s, 3). Finally,

assume |E| = ζ p2(T − 1)1 for some 0 < ζ < 1.

Then for b = 3K2(s, 3)/4 and for any β > (T−1) b s
p , with probability at

least 1− p(
√
π log(T − 1)p[(T − 1)p]θ)−1, the following hold for the adaptively

thresholded lasso estimator with thresholding parameter β:

(i) Control of Type-I error: FPR ≤ b s
(T−1) p (1−ζ)

(ii) Control of Type-II error: if there exists δ > 0 such that minAt 6=0 ‖At‖0 >
γp2 and β is chosen such that β < δ/(T − 1), then FNR = 0, otherwise,
FNR ≤ β

(T−1) ζ

(iii) Order selection consistency: under the condition in (ii), d̂ = d

Proof The proof here builds on the results in Zhou (2010) (in particular The-
orems 1.1 and 3.1), with modifications to account for adaptive thresholding,
control of FPR and FNR, and the time series structure. For simplicity, de-
note by FP and FN , the total number of false positives and false negatives.
Also, let P ≡ |E| = ζ (T − 1)p2 be total number of positives (i.e. total number
of edges) and N ≡ (T − 1)p2 − |E| = (T − 1)p2 (1− ζ) denote the number of
zeros in the true adjacency matrix.

First, note that from the decomposition of likelihood in Shojaie and Michai-
lidis (2010b) it follows that the adaptively thresholded estimator is found by
solving p regular lasso regression problems according to (7), followed by the
thresholding step according to (10).

Next note that, by definition of s and the RE condition, each of the p
regressions satisfies the RE(X ) holds with K(s, 3). Therefore, for β = 0 results
of Zhou (2010) apply to each individual regression.

Following Zhou (2010) we consider, for each θ ≥ 0, the set

Tθ,i =

{
εTi :

∥∥∥∥ 1

n
X T εTi

∥∥∥∥
∞
≤ λσ,θ,p, where λσ,θ,p = σ

√
1 + θλ0

}
for which P(Tθ,i) ≥ 1 − (

√
πlog(T − 1)p((T − 1)p)θ)−1. It then follows from

Theorem 1.1 of Zhou (2010) that for β = 0, on the set Tθ =

p∏
i=1

Tθ,i, we have,

for all i = 1, . . . p, pai ⊆ p̂ai. This implies that for all t = 1, . . . , d, on the set
Tθ, we have

Et ⊆ Êt

To obtain the upper bound on FPR, we follow the proof of theorem 3.1 in Zhou
(2010) for each of the p regressions separately. First note that from the results
of Bickel et al (2009) it follows that on the set Tθ,i, for ṽi = vec(Ã1:T

i: −A1:T
i: ),

‖ṽi,pai‖2 ≤ B0λn
√
s and ‖ṽi,paci ‖1 ≤ B1λn s (12)

1 This assumption is made for simplicity of representation. The proof can be written in
terms of |E|, without making any explicit assumptions on the number of true edges.
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where B0 = 4K2(s, 3) and B1 = 3K2(s, 3). If we threshold the lasso estimate
by 4λn, then it readily follows from (12) that (see Zhou (2010) for more details)
on Tθ,i

|p̂ai\pai| ≤
‖ṽi,paci

‖1
4λn

≤ B1 s

4
(13)

Hence |p̂ai\pai| ≤ B1 s/4, for all i = 1, . . . p, on Tθ. This implies FP ≤ pbs
where b = 3K2(s, 3)/4.It then follows that on Tθ for β = 0, we have FNR = 0
and

FPR = FP/N ≤ b s

(T − 1) p (1− ζ)
.

To complete the proof, it suffices to show that for β > (T−1) b s
p , FPR does

not increase (or is improved) and FNR ≤ β/(T − 1) ζ. The fact that adaptive
thresholding does not increase FPR follows immediately from the definition
of the estimator, as the thresholding coefficient for the adaptively thresholded
procedure is at least as large as the procedure of Zhou (2010).

Now suppose At 6= 0 for some 1 ≤ t ≤ T − 1. It follows from E ⊂ Ê

that ‖Ât‖0 ≥ ‖At‖0 and hence, if ‖Ât‖0 < β p2

T−1 , At must satisfy the same

inequality. Now, if there exists δ > 0 such that minAt 6=0 ‖At‖0 > γp2 and β is
chosen such that β < δ/(T −1), then ‖At‖0 < δ p2, which implies that At ≡ 0,
and hence FNR = 0. On the other hand, if the condition in (ii) is not satisfied,
FN could be at most βp2, which implies that

FNR ≤ (βp2)/|E| = β

(T − 1)ζ
.

Finally, to show that d̂ = d, note that when At 6= 0, the condition in (ii)
guarantees that Ât 6= 0. On the other hand, if At = 0, ‖Ât‖0/p2 ≤ b s

p and

hence when β ≥ (T−1) b s
p , Ât ≡ 0, which completes the proof. ut

Before investigating the small sample performance of the proposed estima-
tor in Section 3, we offer some remarks regarding asymptotic properties of the
estimator.

1. Consider the asymptotic regime with n→∞, p = O(na), for some a > 0,
and s = o(p). Assume the constant K(s, 3) is uniformly bounded above
(see the remark below on the validity of this assumption). Then theorem
1 says that with probability tending to 1, FPR → 0 as long as ζ stays
away from 1, i.e., the network is truly sparse. On the other hand, even if
no constant δ exists to satisfy the condition in part (ii) of the Theorem,

the lower bound on β, given by (T−1) b s
p , converges to zero, indicating that

we can make FNR arbitrarily small as long as ζ stays away from zero, i.e.,
the network is not extremely sparse. The conditions on β are set to achieve
a tradeoff between FPR and FNR.
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2. The false positive rate in the above theorem can be improved by consid-
ering a multi-step thresholding procedure where at the second step the
estimate of d is used to restrict the number of time points considered in
the estimation. It can be shown that the numerator of the upper bound of
FPR can be improved from b s to b

√
s (refer to Zhou (2010) for more de-

tails on the multi-step thresholding). However, this requires an additional
assumption on the number of parents of each node in the graph, and is
hence not pursued here.

3. The RE condition has been shown to hold for many non-trivial classes
of Gaussian design matrices (see for example van de Geer and Bühlmann
(2009), Raskutti et al (2010)). In particular Raskutti et al (2010) shows
that RE(X ) holds with high probability if the sample size n is sufficiently
large (∼ O(klogp)) and RE(Σ1/2) holds, where the rows of X ∼ N(0, Σ).
Hence it is sufficient to ensure that λmin(Σ) is bounded away from zero
as n, p → ∞, which is not very restrictive since every node of the GGC
network is a noisy observation with i.i.d innovation of variance σ2. For
the special case of stationary vector autoregressive processes, Basu et al
(2011) use spectral density representation of time series to show a station-
ary VAR(d) process satisfies this condition if the spectral matrix operator
has continuous eigenvalues and eigenvectors and the adjacency matrices
for t = 1, . . . T are bounded above in spectral norm.

4. The results in Theorem 1 are non-asymptotic and are derived in the regime
n, p → ∞ and p � n, without any restrictions on the length of the time
series T . However, it can be seen that if T → ∞, then FPR and FNR
converge to 0. In addition, the increase in T also improves the probability
of the events under study.

3 Numerical Studies

In this section, we evaluate the performance of the proposed thresholded lasso
penalty in reconstructing temporal Granger causal effects, and compare it with
the performances of (adaptive) lasso and truncating (adaptive) lasso penalties.
To this end, we first present the estimated adjacency matrices of two small
networks with p = 20 and different sparsity patterns to better understand the
properties of the thresholded lasso penalty. We then evaluate the phase transi-
tion behavior of the competing estimators as the sample size n and the signal
to noise ratio (SNR) is varied. To compare the performances of different esti-
mators, we consider three different criteria: (1) the False Positive Rate (FPR),
(2) the True Positive Rate (TPR) and (3) the F1 measure. The F1 measure is
the harmonic mean of precision(P ) and recall(R) (i.e. F1 = 2PR/(P + R))
for the estimated graphs. The value of this summary measure ranges between
0 and 1, with higher values corresponding to better estimates.
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Fig. 1: True and estimated adjacency matrices of graphical Granger model
(a) with T=10, d=2, p=20, n=30, SNR=2.4, the gray-scale images of the
estimates represent the percentage of times an edge has been detected in the
50 iterations.

3.1 Illustrative Examples

To illustrate the effect of the proposed estimator, we begin with a simple
VAR model that satisfies the decay assumption of S-M. Here T = 20, d =
2, p = 20 and s ' min{0.025p2, n}, and every edge has an effect of ρ =
±0.6. We simulate n = 30 independent and identically distributed observations
according to the VAR(d) model in (6), with σ = 0.3. The values of α and β
are set to 0.1 each.

To obtain comparable results, we set the tuning parameter λ for all estima-
tors to λ = 0.6λe, where λe is defined in (11). The thresholding parameter τ
in the second stage of the thresholded lasso penalty is chosen to be 0.7λσ. The
results over 50 replications of the above simulation and estimation procedure
are presented in Figure 1 and Table 12.

As expected, the truncating lasso estimator outperforms the lasso and
thresholded lasso estimators, and provides a consistent estimate of the or-
der d. On the other hand, the thresholded lasso estimator offers additional
improvements over its non-thresholded counterpart.

2 Here we present the results of simulation for adaptive versions of lasso and truncating
lasso estimators; the behavior of the regular versions of these estimators were similar and
were excluded to save space
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Fig. 2: True and estimated adjacency matrices of graphical Granger model
(b) with T=10, d=3, p=20, n=30, SNR=2.4, the gray-scale images of the
estimates represent the percentage of times an edge has been detected in the
50 iterations.

Next, we consider a more complicated structure, where the decay assump-
tion is not satisfied. In particular, we construct a network with the same pa-
rameters as before except with d = 3 in such a way that there is no edge in
the adjacency matrix from lag 2 (i.e., A2 = 0). True and estimated adjacency
matrices for this simulation setting are shown in Figure 2. The performances
of the estimators in terms of TPR, FPR, and F1 are given in Table 2.

It can be seen that the truncating lasso penalty incorrectly estimates the
order of VAR as d̂ = 1, resulting in increased false positive and false nega-
tive errors. On the other hand, the (adaptive) lasso estimate includes many
edges in later time lags, while failing to include some of the edges in the first
time lag. This simulation illustrates the logic and advantages of the proposed
thresholded lasso estimator.

Alasso TAlasso Thlasso
TPR 0.3341 (0.0311) 0.4083 (0.0375) 0.3485 (0.0339)

FPR (×1000) 0.9843 (0.494) 0.8155 (0.4068) 0.4593 (0.2712)
F1 0.4725 (0.0405) 0.5534 (0.0433) 0.5024 (0.0405)

Table 1: F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso
and thresholded lasso. Numbers in the table show mean and standard devia-
tions (in parentheses) over 50 replication.
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Fig. 3: Phase transition of F1, FPR and TPR with increase in sample size

3.2 Study of Phase Transition Behavior

In this section, we study the phase transition of three performance metrics as
the values of (a) sample size (n) and (b) signal-to-noise ratio (SNR = ρ/σ) is
varied for different combinations of n, p, ρ and σ. The results showing phase
transitions for sample size are based on p = 100, ρ = 0.9, σ = 0.3, while those
for phase transitions for SNR use p = 150, n = 120, σ = 0.3. Similar results
were obtained for other choices of these parameters.

Figure 3 summarizes the phase transition results for sample size n. It can be
seen that the phase transition occurs at a much smaller sample size for thresh-
olded lasso compared to (adaptive) lasso and truncating (adaptive) lasso. How-
ever, the performances of thresholded lasso and regular lasso are almost simi-
lar when n is almost as large as p. For smaller sample sizes, thresholded lasso
slightly affects the number of false positives, but greatly improves on the false
negatives, resulting in a better F1 than regular lasso.

Results of phase transition for SNR presented in Figure 4 also indicate
that phase transition occurs at a smaller SNR for thresholded lasso compared
to (adaptive) lasso and truncating (adaptive) lasso. As in the previous case,
the performance of thresholded lasso and regular lasso become more similar
as SNR increases. Also, it can be seen that for smaller SNR, thresholded lasso
slightly affects the number of false positives while greatly improves the false
negatives, which results in significant gain in the overall performance of the
proposed estimator in terms of the F1 measure.

Alasso TAlasso Thlasso
TPR 0.3462 (0.0529) 0.3077 (0.0558) 0.6288 (0.0698)

FPR (×1000) 0.8254 (0.3454) 0.7694 (0.3729) 0.7415 (0.2611)
F1 0.4729 (0.0591) 0.4338 (0.0654) 0.7251 (0.0581)

Table 2: F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso
and thresholded lasso. Numbers in the table show mean and standard devia-
tions (in parentheses) over 50 replication.
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Fig. 4: Phase transition of F1, FPR and TPR with increase in SNR

Comparison of phase transition behaviors of lasso, truncating lasso and the
adaptively thresholded lasso procedures indicates that the proposed estimator
provides a better estimate of Granger causal effects over the range of values of
n and SNR. In addition, this advantage becomes more significant in problems
with smaller sample size and/or signal to noise ratio.

4 Analysis of T-Cell Activation

We illustrate the application of GGC models in reconstructing gene regulatory
networks using the time course gene expression data of Rangel et al (2004) on
T-cell activation. Activated T-cells are involved in regulation of effector cells
(e.g. B-cells) and play a central role in mediating immune response. The data
set comprises of n = 44 gene expression samples of p = 58 genes involved in
activation of T-cells, measured over 10 time points. In this study, the activity
levels of genes are measured at t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after
stimulation of cells using a T-cell receptor independent activation mechanism.
Since changes in regulations often occur at early stages of activation, and to
simplify the analysis from the unbalanced experiments, we consider only the
earliest 5 time points.

Estimated networks of T-cell activation using the adaptive lasso, the trun-
cating adaptive lasso and the thresholded lasso estimators are shown in Figure
5. The tuning parameters for different estimators are determined as in Section
3, where the value of σ is estimated using the standard pooled estimate. Lasso
and truncating lasso estimates provided similar estimates to their adaptive
counterparts and considering the advantages of the adaptive estimators over
the regular estimators are not presented. The networks in Figure 5 are ob-
tained by drawing an edge between gene i and gene j whenever there is an
nonzero element in one of the adjacency matrices Âtij , T − d̂ ≤ t ≤ T − 1.
Comparison of the estimated networks reveals a significant overlap between
the adaptive lasso and thresholded lasso estimates, whereas the truncating
adaptive lasso estimate seems to give a different estimate. This is highlighted
by the summary measures in Table 3, where the total number of edges in each
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Fig. 5: Estimated Gene Regulatory Networks of B-cell activation. Edges indi-
cate nonzero entries in the estimated adjacency matrix in at least one time
lag.

network, along with the structural Hamming distance (SHD) between pairs
of two networks, defined as the number of edges different between each two
networks, are given.

The striking difference between the estimated regulatory networks using
the truncating lasso estimate raises the question of whether the decay condition
necessary for the performance of the truncating lasso estimator is satisfied.
Although the true regulatory mechanism in this biological system is unknown,
the gray-scale images of the estimated adjacency matrices in Figure 6 suggest
that in this case the decay condition may be indeed violated. This example
underscores the advantage of our newly proposed estimator in cases where the
conditions required for the truncating lasso estimate of S-M are not met.

5 Discussion

Time course gene expression data provide a valuable source of information for
the study of biological systems. Simultaneous analysis of changes in expres-
sions of thousands of genes over time reveals important cues to the dynamic
behavior of the organism and provides a unique window for discovering regula-
tory interactions among genes. A main challenge in applying statistical models

Alasso TAlasso Thlasso
Alasso (96) – –
TAlasso 99 (101) –
Thlasso 35 102 (79)

Table 3: Structural Hamming Distance between different estimates of the T-cell
regulatory network. Diagonal numbers in parentheses show the total number
of edges in each network.
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Fig. 6: Adjacency Matrices of Estimated B-Cells Networks.

for inferring regulatory networks from time course gene expression data stems
from the unknown order of the time series. Simplified methods that ignore
effects of genes from time points farther in the past may suffer from loss of in-
formation, and could fail to include significant regulatory interactions that are
manifested after a long time lag. In contrast, methods that incorporate all of
the past information may suffer from an unnecessary curse of dimensionality,
and could result in inferior inference especially when the sample size is small.

To overcome this challenge, we proposed a new penalized estimation method
for inferring gene regulatory networks from time series observations, based
on adaptive thresholding of lasso estimates. The proposed estimator builds
upon the previously proposed truncating lasso estimator Shojaie and Michai-
lidis (2010a). Both of these estimators attempt to simultaneously estimate the
order of the VAR model and the structure of the network, under two differ-
ent structural assumptions. While the truncating lasso estimate is based on
the assumption that the effects of genes on each other decay over time, the
newly proposed adaptively thresholded lasso estimator relies on a less strin-
gent structural assumption that sets a lower bound on the number of edges in
the adjacency matrix of the GGC at each time point (see Section 2.2.2 for a
formal statement of this assumption). The relaxation of the decay assumption
allows the new estimator to correctly estimate the order of the time series in
a broader class of models. However, while the truncating lasso penalty may
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fail in situations where the decay assumption is violated, it offers advantages
in favorable settings.

A natural question therefore arises on the choice of the appropriate penalty
for simultaneous estimation of the order of the time series and the structure
of the GGC model. The truncating lasso penalty can be advantageous if its
underlying assumption is satisfied, but its performance degrades markedly if
it does not hold. In absence a formal methodology for determining which of
the two assumptions may be more appropriate, the regular (adaptive) lasso
estimate can guide the user: if the estimate from the (adaptive) lasso clearly
supports the decay assumption, then one could apply the truncating lasso
penalty, otherwise, the thresholded lasso penalty provides a more reliable es-
timate of the GGC.
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