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ABSTRACT

Networks are often used to represent the interactions among genes and proteins. These

interactions are known to play an important role in vital cell functions and should be

included in the analysis of genes that are differentially expressed. Methods of gene set

analysis take advantage of external biological information and analyze a priori defined sets

of genes. These methods can potentially preserve the correlation among genes; however,

they do not directly incorporate the information about the gene network. In this paper,

we propose a latent variable model that directly incorporates the network information. We

then use the theory of mixed linear models to present a general inference framework for

the problem of testing the significance of subnetworks. Several possible test procedures are

introduced and a network based method for testing the changes in expression levels of

genes as well as the structure of the network is presented. The performance of the proposed

method is compared with methods of gene set analysis using both simulation studies, as

well as real data on genes related to the galactose utilization pathway in yeast.
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1. INTRODUCTION

IN STANDARD ANALYSIS OF DIFFERENTIAL EXPRESSION, statistical significance of each gene is

assessed independently, and some method of multiple testing correction is then used to adjust the

estimated p-values. Such methods are usually less sensitive in detecting genes that have smaller differences

in mRNA abundance between different experimental conditions and may therefore be less powerful than

desired. Furthermore, analyzing individual genes (single-gene analysis) often generates results that are

not reproducible and lack meaningful biological interpretations. The focus of current research has thus

shifted to analyzing a priori defined sets of genes (gene set analysis) and using external information to

strengthen the analysis of differential expression. Analysis of gene sets results in increased power compared

to single gene analysis. Furthermore, methods of gene set analysis can preserve the correlation among genes

which may lead to more reliable inference. These methods however, do not directly incorporate the external

information about the interactions among genes represented by the gene network. In this paper, we develop

a model that directly incorporates the network information, and propose a general inference framework for

testing the significance of genetic pathways.
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1.1. A motivating example

In an interesting approach, Ideker et al. (2001) integrated gene expression and protein level data to study

significant signaling and metabolic pathways in yeast Saccharomyces cerevisiae. They reported interactions

among genes and proteins in different pathways along with information on the estimated correlation

among genes in the network. The authors also grouped the genes into subnetworks (pathways) based on

their biological functions. Figure 1, which was originally presented in Ideker et al. (2001), illustrates the

network of genes under consideration. We also update the network of Ideker et al. (2001) based on newly

FIG. 1. Yeast galactose utilization pathway published in Ideker et al. (2001). (Printed with permission from Science

and the American Association for the Advancement of Science.)

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.0081&iName=master.img-001.jpg&w=431&h=493
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TABLE 1. ANALYSIS OF IDEKER 2001 DATA USING GSEA

Pathway Size

NOM

p-val

FDR

q-val

FWER

p-val

Involved

in gal (C=�)

Galactose utilization 12 0.0020 0.00114 0.003 C

Amino acid synthesis 30 0.1853 0.21562 0.676 C

rProtein synthesis 28 0.5261 0.44938 0.972 C

Stress 12 0.02004 0.19283 0.108 �

Vesicular transport 19 0.07243 0.54138 0.489 �

Glycogen metabolism 12 0.1321 0.41115 0.538 �

Respiration 9 0.1878 0.39508 0.637 �

O2 stress 13 0.2384 0.6601 0.906 �

Fatty acid oxidation 7 0.4694 0.82373 0.963 �

Mating, cell cycle 58 0.3583 0.71842 0.968 �

Sugar transport 2 0.7358 1 0.993 �

Metal uptake 4 0.8374 1 0.997 �

Gluconeogenesis 7 0.8455 0.98853 0.997 �

RNA processing 75 0.9879 1 1 �

Glycolytic enzymes 16 0.9683 0.98189 1 �

The first two columns illustrate the pathway considered and the number of genes in the pathway. For each

gene set, the Nominal p-value, FDR q-value, and FWER p-value are reported along with the involvement

of the pathway in galC/gal� conditions.

defined interactions among genes reported in Bader et al. (2004). This results in a network of 343 genes

with 419 interactions for which estimates of correlations among genes are also available (this data is

referred to as the Ideker data henceforth).

The mRNA expression levels of genes in the Ideker data are measured in 9 different perturbations of

GAL genes along with the wild type yeast. For each perturbation, two samples of data are available. The

first set of samples represents the expression levels of genes in cells grown in presence of galactose (galC),

while the second set includes expression levels for cells grown in absence of galactose (gal�), where the

main source of carbon is raffinose. Our primary goal is to determine the pathways that are involved (either

induced or suppressed) in cell growth in galC compared to gal� environments. In other words, we would

like to test whether each of 15 gene sets defined by yeast pathways in the network of Ideker et al. (2001)

is differentially expressed in galC compared to gal� medium.

In this section, we analyze the Ideker data using methods of gene set analysis. More specifically, we

apply the Gene Set Enrichment Analysis (GSEA) method of Subramanian et al. (2005). This method uses

a permutation-based test (permuting the class labels) to determine whether genes in a priori defined gene

sets have non-random associations with the phenotype. To that end, we first normalize the data so that

the expression levels only represent the effect of the growth environment.1 The results of the analysis are

displayed in Table 1.

The first line of the table presents an expected outcome; the expression levels of genes in the Galac-

tose Utilization pathway is expected to change in response to perturbations of GAL genes in the galC

environment. On the other hand, although some of the pathways seem to have differential expression

when cells lack galactose (e.g., Stress and Vesicular Transport), no other pathway appears significant after

adjusting for multiple testing using the False Discovery Rate (FDR) controlling procedure of Benjamini

and Hochberg (1995) with a q-value of 0.05. In Section 5, we revisit the analysis of the Ideker data based

on the method proposed in this paper, which directly incorporates the network information represented by

the gene network in Figure 1.

1The mean expression levels of the two samples corresponding to each perturbation is subtracted from the two

columns of data.
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1.2. Background

Recent research on gene set analysis can be broadly classified into permutation-based methods motivated

by the GSEA paper and model-based approaches that make specific distributional assumptions about the

gene expression data. The literature can be further categorized on whether direct or indirect external

information on the gene network is employed. Tian et al. (2005) considered the problem of gene set

analysis and described two hypotheses that should be considered when studying the significance of

sets of genes. One of these hypotheses, which is the same as the hypothesis considered in GSEA,

focuses on non-random association of genes in the gene set with the phenotype. The other hypothesis,

considers non-random correlations between genes in a gene set. The test method proposed for the first

hypothesis is based on permuting the class labels (column permutation) and the second hypothesis is

tested by permuting genes (row permutation). Efron and Tibshirani (2007) formalized the idea of gene

set analysis in a coherent statistical framework and examined the hypotheses presented in Tian et al.

(2005). They also proposed an alternative test statistic with superior power properties and analyzed the

effects of row and column permutations. Goeman and Bühlmann (2007) reviewed different methods

proposed for testing significance of gene sets and highlighted important issues in selecting appropriate

methods.

Although the above permutation-based methods are computationally intensive, they include minimum

assumptions about the underlying biological model and are therefore more robust to model misspecification.

An alternative approach is based on model-based tests procedures, where specific distributions for the

expression data are assumed. In one such approach, Jiang and Gentleman (2007) extended the idea of gene

set analysis by adapting a linear model approach and adjusting for other covariates. They presented the

gene sets in the form of an index matrix and offered a heuristic argument for using a normal approximation

for testing per gene set sums. One major difficulty regarding model-based methods is the large number

of variables (genes) compared to the small number of samples—the large p, small n problem (West,

2000). In such situations, estimation of model parameters becomes a challenging task and may result

in unstable outcomes. However, additional sources of information besides the expression levels of genes

could be used to make the estimation more accurate. One such source of external information is the

underlying relationship between genes which itself is of independent interest. It is known that genes

interact with each other through their protein products and form gene regulatory networks. Also, the

protein products of groups of genes are involved in controlling specific functions in cells through genetic

pathways. Increasing amount of information about these relationships is becoming available in public

repositories, like the KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and Goto, 2000) and

the Gene Ontology (GO) (Ashburner et al., 2000), and can be used to improve the estimates of model

parameters.

A number of researchers have recently used external information about gene networks to improve the

analysis of gene sets. Rahnenführer et al. (2004) demonstrated that the sensitivity of detecting relevant

pathways can be improved by integrating information about pathway topology. Barry et al. (2005) presented

a permutation based procedure, called SAFE, that considers the underlying network structure. More recently,

Wei and Li (2007) have proposed a Markov random field model to incorporate the information on the gene

network in the analysis. In a related approach, Wei and Pan (2008) have modeled the network information

via latent variables into a spatially correlated mixture model. Both of these methods, consider the problem

of analysis of single genes on the network.

The above methods either assume that the underlying network does not change as the experimental

conditions change or they do not incorporate this change directly into the model. However, changes in

the underlying network structure can amplify the change in expression patterns and should be included in

the analysis. For instance, Li (2002) demonstrated that the correlation patterns among ARG2 and other

members of the urea-cycle pathway can change drastically as the expression level of ARG2 changes.

Another concern in analyzing network data is to decorrelate subnetworks from the effects of other nodes

in the network and to deal with nodes that belong to multiple networks. Alexa et al. (2006) present one

such method which is an attempt to decorrelate GO graph structures. Their method focuses on decorrelating

nodes at lower levels (children) from upper level nodes (parents).

In this paper, we propose a latent variable model to directly incorporate the underlying gene network and

present test statistics for testing the significance of arbitrary sub-networks based on the theory of mixed

linear models. One major advantage of the method proposed in this paper is that not only does it consider
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the change in the expression levels of the genes in different conditions, but also reflects the change in

network structures and correlations among genes. We also present a systematic approach that decorelates

each subnetwork from the other nodes while maintaining the interactions among genes in the subnetwork.

The rest of the paper is organized as follows. In the next section, the proposed latent variable model is

introduced and some basic graph theoretical properties related to this model are discussed. In Section 3,

we represent the latent variable model using the framework of mixed linear models and propose a general

testing scheme based on the theory of mixed linear models. Section 3 ends with a result that is used to

test the pure effect of each subnetwork. This result prevents tests of significance of subnetworks to be

confounded with the effects of other subnetworks and also allows testing the effect of genes that belong to

multiple networks. Section 4 includes three simulation studies for evaluating the performance of the new

model under different testing conditions as well as studying the effect of noise in the network information

on the proposed inference procedure. In Section 5, we revisit the Ideker data, introduced in Section 1.1, and

test the significance of pathways using the proposed model. Section 6 includes a discussion on limitations

of the proposed model and future extensions.

2. THE LATENT VARIABLE MODEL

Consider gene expression data D organized as a p � n matrix comprised of the expression levels of p

genes for n samples, and let Y be the kth sample in the expression data (kth column of D).

To model the correlation structure caused by the gene network, we represent the network as a directed

graph G D .V; E/ with vertex set V , and edge set E , where E is represented by the p � p adjacency

matrix A. Each nonzero element of the adjacency matrix, Aij , represents a directed edge in the network.

Elements of the adjacency matrix correspond to the strength of association among genes in the graph and

are real values in .�1; 1/.

Consider the simple network of Figure 2: Suppose Y D X C ", where X represents the signal and

" � Np.0; �2
" Ip/ the noise. Consider two adjacent genes i and j , where i affects j . One can represent

the relationship between i and j using a simple linear model Xj D �ij Xi . However, to account for

unknown associations among genes and/or errors in the association weights, �ij , we also add latent variables


j � Np.�j ; �2

 / to represent the baseline expression level of gene j . For instance, 
2 represents the

expression level of gene 2 without the effect from gene 1. Thus, for the simple gene network of Figure 2,

we obtain

FIG. 2. A simple gene network.

X1 D 
1

X2 D �12X1 C 
2 D �12
1 C 
2

X3 D �23X2 C 
3 D �23�12
1 C �23
2 C 
3

These equations can be summarized in vector notation as:

Y D ƒ
 C "; 
 � Np.�; �2

 Ip/; " � Np.0; �2

" Ip/ (1)

where ƒ is called the influence matrix of the graph. In the simple example above, we have

ƒ D

0

B

B

@

1 0 0

�12 1 0

�12�23 �23 1

1

C

C

A
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Under such a model, Y is a normal random variable with mean EŒY � D ƒ� and variance Var.Yi / D

�2

 ƒƒ0 C �2

" Ip , where ƒ0 denotes the transpose of matrix ƒ.

In the remainder of this section, we study the relationship between the influence matrix, ƒ, and the

adjacency matrix of the graph, A. We provide a general result for the relationship between ƒ and A as

well as a compact expression that can be used to efficiently evaluate ƒ for specific classes of graphs. We

also discuss conditions under which the matrix ƒ has full rank, which will be used in the analysis of the

proposed inference procedure in Section 3.

Lemma 2.1. For any graph G D .V; A/ we have ƒ D A0 C A1 C A2 C � � � D
P1

rD0 Ar (here A0 is

defined to be the identity matrix).

Proof. From the matrix representation of the latent variable model in (1)

Yi D

p
X

j D0

ƒij 
j C "i ; i D 1; : : : ; p

where ƒi i D 1 and ƒij ¤ 0 only if there is a path (of some length) on the graph from node i to node j .

But for any graph G, the number of paths of length r (r 2 N) from vi to vj is given by the .i; j / element

of Ar (Diestel, 2006). Therefore, ƒij ¤ 0 whenever there exists r such that ŒAr �ij > 0. Hence, all possible

paths from i to j are given by Œ
P1

rD0 Ar �ij . This implies that ƒ D
P1

rD0 Ar .

Corollary 2.2. For any Directed Acyclic Graph (DAG), ƒ D A0 C A1 C A2 C � � � C Ap .

Proof. This follows immediately from Lemma 2.1 by noting that since there are no loops in DAGs,

the maximum length of paths equals p.

The following results provide sufficient conditions for the matrix ƒ to be of full rank. Although this

guarantees validity of the model for at least some classes of directed graphs, it does not provide a necessary

condition. Based on experiments with randomly generated adjacency matrices, there are in fact larger classes

of graphs satisfying this property.

Lemma 2.3. For any Directed Acyclic Graph (DAG), the matrix ƒ has full rank.

Proof. The full rankness of ƒ is proved by showing that ƒ can be re-arranged into a lower triangular

matrix with 1’s on the diagonal.

First observe that ƒij � ƒj i D 0, since otherwise there will be a cycle in the graph. Also, from 2.1 we

have ƒi i D 1.

Consider a reordering of rows (and correspondingly of columns) of the matrix in decreasing number of

zeros. Every DAG has at least one root (a node that is not affected by any other node). This means that

there is at least one row with ƒkk D 1 and ƒkj D 0 for all j . Permute ƒ so that row k is the first row of

the matrix and continue in the same way. Denote the number of zero elements of row i by �i and number

of zeros in column j as �Cj . Then by the above observation, �Ri � p � �C i (here p � �C i is the number

of nonzero elements in column i ).

To complete the proof, we need to show that the rearranged matrix ƒ can be further permuted to result

in a lower diagonal matrix. Suppose there exists j > i such that ƒij > 0 and therefore ƒj i D 0. If

�Rj D �Ri switch i and j to get a lower triangular matrix. However, if �Rj < �Ri (i.e., if i is affected

by a row with less number of zeros) there exists l such that ƒjl > 0 but ƒi l D 0. However, ƒjl > 0

means there exists a path from l to j and ƒij > 0 means that there exists a path from j to i . Thus there

exists a path from l to i , i.e. ƒi l > 0, a contradiction. Therefore ƒ must be a lower triangular matrix with

ƒi i D 1.
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Lemma 2.4. Consider a graph G = (V,A) with influence matrix ƒ

a) If G is a Directed Acyclic Graph (DAG), then A D I � ƒ�1.

b) If the sum of absolute values of weights of edges ending at every node of the graph G is less than 1

(i.e. A is sub-stochastic), then A D I � ƒ�1 and ƒ has full rank.

Proof. a) From Corollary 2.2, ƒ D
Pp

rD0 Ar and hence

Aƒ D

p
X

rD0

ArC1 D ƒ C ApC1 � I

But when G is a DAG, ApC1 D 0 hence Aƒ D ƒ � I . By full rankness of ƒ, A D I � ƒ�1.

b) The condition in (b) implies that the sum of the absolute values of off-diagonal elements of A is less

than 1. Let si be the sum of absolute values of off-diagonal elements of the i th row of A. Since the diagonal

elements of A are 0, by the Gershgorin’s Ring Theorem (Friedberg et al., 1996) if � is an eigenvalue of

A, we have j�j � si � 1. Now let ƒm D
Pm

rD0 Ar . Then ƒ D limm!1 ƒm and using an argument similar

to part (a),

Aƒm D ƒm � I C AmC1

Since eigenvalues of A are less than 1 in magnitude, limm!1 ƒm exists (Friedberg et al., 1996) and by

the eigen-decomposition of A, AmC1 ! 0 as m ! 1. Hence, taking the limit, we get Aƒ D ƒ � I C A.

On the other hand, the established bound on the eigenvalues of A implies that all eigenvalues of I � A are

nonzero, which means that I � A and therefore, ƒ are full rank. Thus A D I � ƒ�1.

Lemma 2.4 establishes an alternative relationship between ƒ and A and determines two classes of

graphs for which such a relationship is valid. As noted before, conditions presented in this result are only

sufficient. For the general graph G D .V; A/, if the spectral radius of A is less than 1, ƒ has full rank

and the relationship between A and ƒ established in Lemma 2.4 holds. On the other hand, in special

cases where ƒ is not of full rank, it may be possible to modify the graph and therefore apply the model

presented here. For instance, one large class of graphs where ƒ is not full rank consists of cyclic graphs.

The cycles in biological networks are often representatives of feedback loops which are common features

of cell cycle related networks. However, the feedback is usually effective after a time delay and therefore,

when time series data is used to study these networks, the cycles can be broken down by distinguishing

between nodes at the beginning and end of each cycle. Undirected edges (e.g., protein-protein interactions)

can also be transformed into two directed edges using a common latent variable affecting both nodes. More

generally, it is often possible to transform the graph by introducing dummy nodes and can hence apply

the model presented here.

3. INFERENCE

3.1. Preliminaries

In this section, we study the inference procedure for the proposed model. Although this method can

be used to test a variety of hypotheses, in order to simplify the presentation, we focus on testing the

equality of means of two experimental conditions. The extension to more complicated settings is discussed

at the end of the section. As before, let Y be a given sample in the expression data (kth column of

data matrix D) and let Y C and Y T represent control and treatment conditions, with n1 columns of D

corresponding to control samples and n2 D .n � n1/ columns to treatment samples. Also let two sets

of parameters .�C ; ƒC / and .�T ; ƒT / represent mean vectors and influence matrices under control and

treatment conditions, respectively.

Let b be an indicator vector determining genes that belong to a specific gene set (pathway). In other

words, bj D 1 if gene j is in gene set and 0 otherwise. We can test the significance of the gene sets by

defining the test statistic V D bY T � bY C and testing:

H0 W EŒV� D 0 vs. H1 W EŒV� ¤ 0 (2)
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Then under H0:

E0ŒV� D 0

and

Var0.V/ D .1=n2/Œn2.bƒT /.bƒT /0 C n1.bƒC /.bƒC /0�

Although the hypothesis in (2) can be tested using a generalized likelihood ratio test, it turns out that

the latent variable model of Section 2 can be represented as a Mixed Linear Model (MLM). Using this

framework, we can study a variety of spatio-temporal models and consider more general hypothesis testing

problems.

3.2. Mixed linear model representation

Let Y, 
 and " represent the rearrangement of vectors Y , 
 , and " into np � 1 column vectors. Then

Y D ‰ˇ C …
 C " where:

ˇ D .�C
1 ; : : : ; �C

p ; �T
1 ; : : : ; �T

p /0

‰ D

 

ƒC � � � ƒC 0 � � � 0

0 � � � 0 ƒT � � � ƒT

!0

… D diag.ƒC ; : : : ; ƒC ; ƒT ; : : : ; ƒT /0

In this model, 
 is the vector of (unknown) random effects and 
 and " are normally distributed random

vectors with:

E

"




"

#

D

"

0

0

#

and

Var

"




"

#

D

"

†
 0

0 †"

#

For the latent variable model presented in the previous section, †
 D �2

 I and †" D �2

" I and the variance

of Y j ; j 2 fC; T g is given by �2

 ƒj .ƒj /

0
C �2

" I .

The estimate of ˇ in the mixed linear model is given by (Searle, 1971):

Ǒ D .‰ 0 OW�1‰/
�1

‰ 0 OW�1Y

W D .�2

 ……0 C �2

" Inp /. The estimate of ˇ depends on estimates of �2

 and �2

" which can be estimated

via Restricted Maximum Likelihood procedure (REML).

The framework of mixed linear models allows us to test a variety of hypotheses about ˇ by considering

tests of the form:

H0 W lˇ D 0 vs. H1 W lˇ ¤ 0 (3)

Here l is in general any estimable linear combination of ˇ’s (Searle, 1971). An example of such a vector is

a contrast vector, which satisfies the constraint 10l D 0. In the ensuing discussion, any linear combination

of ˇ’s satisfying the estimability requirement is referred to as a contrast vector.

Based on the theory of mixed linear models, we can test (3) using the test statistic:

T D
l Ǒ

p

l OCl 0
(4)

where C D .‰ 0W�1‰/
�1

.
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Under the null hypothesis in (3), T has approximately a t distribution with � degrees of freedom, where

the degrees of freedom is estimated using the Satterthwaite approximation method (McLean and Sanders,

1988):

� D
2.l OCl 0/

2

� 0K�

with � D . @
@� 2



lC l 0; @

@� 2
"
lC l 0/0 and K is the empirical covariance matrix of .�2


 ; �2
" /0 .

3.3. Computational issues and the use of the mixed linear model

The mixed linear model facilitates the representation of the latent variable introduced in Section 2.

However, estimation and inference in this framework involves forming the matrices ‰ and …, and

performing operations involving products and inverses of these matrices. In the context of analysis of

genetic data, the dimensions of these matrices (np � 2p and np � np) can cause serious difficulties in

terms of computation time, memory requirement and numerical stability of the estimation algorithms. It

is therefore necessary to derive alternative methods for estimation of parameters in the model. It turns out

that due to the special structure of the model presented in Section 2, and the sparsity pattern of matrices

‰ and …, the formulas presented in the previous section can be substantially simplified. More specifically,

for the problem stated in Section 3.2 we have:

Ǒ D

 

ǑC

ǑT

!

D

 

NY C

NY T

!

and

C D

2

6

6

6

4

1

n1

.�2

 Ip C �2

" .ƒC 0
ƒC // 0

0
1

n2

.�2

 Ip C �2

" .ƒT 0
ƒT //

3

7

7

7

5

In the particular case considered here, the REML estimates of the variance components can be directly

computed as the maximizers of the REML equation without any need for iterative methods. However,

profiling out one of the variance components may result in more stable solutions.

3.4. Role of the contrast vector

The estimates of ˇ based on the mixed linear model represent the individual expression level of each

gene in the network. Thus, in order to evaluate the combined effect of each gene set using the test statistic

T , the choice of contrast vector l proves fairly crucial. More specifically, the choice of l determines the

null and alternative hypotheses of the test in (3), which in turn affects its significance level and power. In

this section, we present different choices of contrast vectors and study their properties and effects on the

power of tests.

A simple choice for the contrast vector l is to use the indicator vector of the gene set. In other words,

l .1/ D .�b; b/ (5)

This simple choice of l corresponds to testing the following hypothesis:

H
.1/

0 W b.�T � �C / D 0 vs. H
.1/

1 W b.�T � �C / ¤ 0 (6)

which for each gene set g is equivalent to

H
.1/
0 W

X

i2g

�T
i � �C

i D 0 vs. H
.1/
1 W

X

i2g

�T
i � �C

i ¤ 0 (7)
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Such a contrast vector however, only considers the mean expression levels of genes and does not reflect

the combined effect of the set of genes in b, which is affected by interactions among genes in the network.

When the underlying network structure and therefore the correlation among genes is known, a natural

alternative to l .1/ is to also include the influence matrices ƒC and ƒT . This leads to the following choice

of contrast vector:

l .2/ D .�bƒC ; bƒT / (8)

which corresponds to testing the following hypotheses:

H
.2/

0 W b.ƒT �T � ƒC �C / D 0 vs. H
.2/

1 W b.ƒT �T � ƒC �C / ¤ 0 (9)

The null hypothesis presented in (9) may first seem less intuitive and the choice of l .2/ rather arbitrary.

However, the rationale behind the latter choice of contrast vector becomes clearer when we examine the

test statistics corresponding to each one of the two null hypotheses in (6) and (9). In the case of the two-

population test considered here, the above choices of contrast vectors lead to (after some algebra) the

following test statistics:
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and
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From the above two equations it becomes clear than choosing l .2/ as the contrast vector leads to a very

familiar test statistic. The numerator of test statistic T2 considers the difference in average observed values

of expression levels and its denominator represents the variance of NY T � NY C based on the mixed linear

model.

It is also important to study the effect of the contrast vector on the power of tests. The two null hypotheses

presented in (6) and (9) are different and therefore the usual power analysis cannot be applied to choose

the right test. However, when ƒC D ƒT D ƒ, the hypothesis presented in (6) is a special case of (9)

(assuming that ƒ has full rank) and it is possible to compare the powers of the two tests in this special

case. When ƒC D ƒT D ƒ, the null and alternative hypotheses are given in (6) and the test statistics T1

and T2 have the following simplified forms:
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From these equations we can see that when no underlying network structure is taken into account,

(ƒ D I ) the two test statistics are the same. However, if there is an underlying network structure (ƒ ¤ I ),

the test statistic in (13) represents the likelihood ratio test for testing the null hypothesis in (6), which is

asymptotically most powerful. On the other hand, as kƒT � ƒC k increases, the test presented by l .1/ will

no longer be appropriate and we could expect l .2/ to have a better performance.

In the more general case, where ƒC ¤ ƒT , it is desirable for the test statistic to account for all of the

interactions between genes in the specific subnetwork and to not include any effects from genes outside the
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FIG. 3. Illustration of the Network contrast vector on a simple network; dashed line indicates the interactions that

are included in the contrast vector.

subnetwork. Consider again the simple gene network in Figure 2 and let b D .0; 1; 1/. It is then desirable

for the test statistic to include the interaction between genes 2 and 3, while excluding the effect of gene 1

(Fig. 3). The following result describes a choice of a contrast vector that achieves this goal.

Lemma 3.1. Consider a 1 � p indicator vector b and let x � y represent the element-wise product of

x and y.

Then .bƒ � b/
 includes the effects of all the nodes in b on each other, but it is not affected by any node

outside of the set of nodes indexed by b.

Proof. Let Ib D fi W bi D 1g. Based on the latent variable model, the j th column of ƒ includes the

influences of node j on all other nodes in the network. Therefore, .bƒ/j is the influence of the j th node

on all nodes in b. Also, note that ƒi i D 1 for all i and ƒj i is non-zero only if there is a path from j to i .

Thus,

.bƒ/j D

8

ˆ

ˆ

ˆ

ˆ
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ˆ

ˆ
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ˆ
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X
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But .bƒ � b/j is non-zero only if j 2 Ib and therefore

.bƒ � b/
 D
X

j 2Ib


j C
X

j 2Ib

X

i2Ib;i¤j

ƒj i 
j

which means that .bƒ � b/
 only includes the effects of elements of b on each other.

The estimated ˇ’s in the latent variable model reflect the individual effect of each gene and therefore,

can be thought of as the “pure signals.” Based on Lemma 3.1, in order to include interactions among genes

in each subnetwork and prevent any confounding effects, we define the network contrast vector by

l .N/ D .�b � bƒC ; b � bƒT /

3.5. Comparison with other gene set analysis techniques

In this section, we discuss the main differences between the approach proposed in this paper and the

idea of gene set enrichment analysis (GSEA) presented in Subramanian et al. (2005) and generalized by

Efron and Tibshirani (2007).

Permutation based methods of gene set analysis, including GSEA, first compute an association measure

relating the expression levels of each gene in the list to the phenotype (e.g., the p-value from the two

sample t-test). The individual association measures are then combined into an enrichment score for each

gene set (GSEA uses a version of Kolmogorov-Smirnov test statistic, while a maxmin function is used

in GSA). The main strength of the GSEA method, that is also inherited by its extensions, is that the

correlation structure of genes in the gene set is preserved, and the permutation based distribution of

the enrichment score also represents the correlation among genes. However, these methods compute the

individual association measures of each gene separately and do not directly include the correlation among

genes when calculating the enrichment score.
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Alternatively, if efficient estimation of the covariance matrix is possible, parametric test statistics may

be used to test the difference between the expression levels of the two treatment groups. This is not usually

possible since in most microarray analysis applications the number of parameters needed to be estimated

is considerably larger than the number of samples available (n � p). However, the external information

about the underlying gene network can make this estimation problem tractable. For instance, in the mixed

linear model proposed in this paper, the covariance matrix is modeled as a function of few parameters

which can be efficiently estimated from the data. Thus, it is possible to test the significance of each gene

set using tests that include the expression levels of all genes in the gene set and also directly incorporates

the covariance structure of the genes in each subnetwork. An example of such a test statistic is the T2 test

statistic discussed in Section 3.4, which is a version of the two-sample t-test. If the model is correctly

specified, one could expect such a test statistic to be sensitive to changes in both the expression levels

and also in the covariance structure. However, in the absence of external information about the network,

estimation of the covariance matrix may be impractical and non-parametric methods like GSEA, may offer

better inference properties.

In the next section, we carry out simulation studies to illustrate the difference between the proposed

model and the GSEA method. We will also examine the effect of the choice of the contrast vector on the

performance of the proposed test statistic.

4. PERFORMANCE ANALYSIS

Three sets of simulation studies are considered in this section. In the first simulation, we study different

choices of contrast vectors and compare their performance with GSEA in a simple network. The second

simulation study is designed to analyze the combined effect of change in mean and covariance between

control and treatment conditions. In the last simulation, we evaluate the sensitivity of the proposed inference

procedure to the presence of noise in the association weights. Note that in simulation studies of this section,

it is assumed that the effect of the gene network is appropriately modeled using the latent variable model

of Section 2 and that the the topology of the network is correctly specified.

4.1. Simulation 1: Different choices of contrast vector

In the first setting, a simple network structure consisting of an eight-level binary tree with 255 nodes

is used. It is assumed that there are no interactions in the network under the control condition (ƒC D I ).

Under the treatment condition, genes on the network are assumed to be positively correlated with different

association strengths: The association for the first three levels of the genes in the network (top seven genes

in the tree) is assumed to be 0.8, genes in the next three levels (56 genes) have association equal to 0.5

and the remainder of the genes are weakly associated with � D 0:2. Under control, the mean vector for

mRNA expression levels of genes is set to zero (�C D 0). Scenarios for mean expression levels under

treatment are presented in Table 2 and Gene sets considered in this simulation are given in Table 3. The

gene sets are chosen so that for each mean scenario there exists gene sets with highly expressed genes and

also gene sets that represent non-differentially expressed genes.

Table 4 presents the estimated powers of the GSEA method and tests based on the three contrast vectors,

l .1/, l .2/, and l .N/, introduced in Section 3.3 based on 1000 simulations. The powers are calculated based

on the FDR controlling procedure of Benjamini and Hochberg (1995) with a q-value of 0.05.

TABLE 2. MEAN SCENARIOS UNDER TREATMENT FOR THE FIRST SIMULATION STUDY

Scenario Mean parameters

1 �T D �C D 0

2 �T D 2 for top one-third levels of the tree, �T D �C D 0 for rest

3 �T D 2 for top two-third levels of the tree, �T D �C D 0 for rest

4 �T D 2 in the left branch of the tree (including the root node), �T D �C D 0 in the right branch
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TABLE 3. GENE SETS CONSIDERED IN THE FIRST

SIMULATION STUDYa

Gene set Genes considered

1 All genes in the network

2 Ttop one-third levels of the tree

3 First two-third levels of the tree

4 The last level of the tree

5 Left branch of the tree (including the root)

6 Right branch of the tree (excluding the root)

7 20% of genes in the network selected randomly

aGSEA method tests the significance of genes in the gene set against

other genes not included in the gene set. We have excluded the last gene

from gene set 1 to make this comparison possible, but this may not be an

appropriate gene set for GSEA.

The positive correlation structure of the network affects the significance of the subnetworks selected

for this comparison. When a specific gene in the network becomes differentially expressed, the other

genes in the network that are influenced by that gene will also have modified expression levels in the

same direction and the combined subnetwork becomes strongly significant. This propagation mechanism

explains the abundance of powers of 1 in the table. The first mean scenario in this study corresponds

to the case that ƒC �C D ƒT �T . All the methods have nominal significance level of 0.05 for this test.

On the other hand, there are some differences between the tests based on different contrast vectors and the

GSEA method. As one expects from the discussion in Section 3.4, the test based on l .2/ has higher power

than the test based on l .1/. It can also be seen that in all but one case, the power resulted from test based

on l .2/ is higher than the power for the GSEA method verifying the discussion of Section 3.5. There are

few cases that deserve special attention. The GSEA method indicates no power for testing all the genes

in the network under scenario 2. However, in this case the top 1/3 levels of the tree are significant and

therefore it is natural to expect significant differences in overall expression levels. The same pattern can

TABLE 4. RESULTS OF FIRST SIMULATION STUDY

Scenario Method All Top 1/3 Top 2/3 Last level Left branch Right branch Random

1 GSEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

l .1/ 0.024 0.015 0.014 0.014 0.019 0.022 0.018

l .2/ 0.023 0.020 0.015 0.012 0.011 0.023 0.019

l .N/ 0.022 0.021 0.015 0.010 0.011 0.021 0.018

2 GSEA 0.000 1.000 1.000 0.000 1.000 0.000 0.000

l .1/ 0.119 1.000 0.535 0.047 0.127 0.056 0.046

l .2/ 1.000 1.000 1.000 0.090 0.980 0.956 0.523

l .N/ 1.000 1.000 1.000 0.070 0.979 0.562 0.067

3 GSEA 1.000 0.000 1.000 0.000 1.000 1.000 1.000

l .1/ 1.000 1.000 1.000 0.089 1.000 1.000 0.999

l .2/ 1.000 1.000 1.000 0.568 1.000 1.000 1.000

l .N/ 1.000 1.000 1.000 0.089 1.000 1.000 1.000

4 GSEA 1.000 0.000 1.000 1.000 1.000 0.000 1.000

l .1/ 1.000 0.997 1.000 1.000 1.000 0.089 1.000

l .2/ 1.000 1.000 1.000 1.000 1.000 0.476 1.000

l .N/ 1.000 1.000 1.000 1.000 1.000 0.089 1.000

Powers of tests based on GSEA and three contrast vectors for different mean scenarios. Multiple testing adjustment is based on

FDR with q� D 0:05. Entries in italic indicate powers that are lower or higher than expected, and numbers in bold show powers

close to values expected from the simulation design.
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be observed when comparing the two methods for testing the right branch of the tree under the second

scenario and the top 1/3 of genes under the third scenario. On the other hand, the test based on l .2/

has a high false positive rate for testing the right branch of the tree in the situation where only the left

branch is up-regulated (scenario 4), while the GSEA method correctly shows no deviation from the null

hypothesis. The same phenomenon can be seen for the results of testing the last level of the tree in the

case where the top 2/3 levels of the tree are significant. The test based on l .2/ is not able to isolate the

significance of the genes under consideration from the effect of other genes in the network and can therefore

result in high false positive rates. As expected based on Lemma 3.1, the test based on l .N/ resolves these

shortcomings. The power of this test is close to the nominal significance level for testing the above two

cases while it offers a high power in cases where the GSEA method fails to distinguish the significance

of the subnetworks.

4.2. Simulation 2: Simultaneous changes in mean & covariance

The second simulation study is designed to evaluate simultaneous changes in expressions levels as well

as associations among genes. The network structure in this simulation consists of three root nodes and

seven five-level trees (220 genes total). The network consists of low and high association subnetworks

and also includes both positive and negative correlations. Three of the subnetworks are considered to be

differentially expressed (the level of expression increases in increments of 0.2) and the other subnetworks

have equal values of mean in treatment and control conditions. Figure 4 illustrates the setting of parameters

of this simulation study.

Table 5 presents the estimates of powers for the GSEA method and the test based on l .N/ for testing

different trees with increasing expression levels in a simulation with 1000 repetitions. It can be seen

from the results that both of these methods reject the null hypothesis for tests related to trees with high

positive correlation (subtrees 1, 2, and 7 in Fig. 4). The GSEA method can only detect the significance

of subtree 3 for large values of increase in the expression level while the test based on l .N/, can detect

this change for smaller values of increase. Subtrees 4 and 5 correspond to cases where the correlation

among genes is minimal. Subtree 4 is affected by root genes 1 and 2 that are both up regulated but they

have opposite correlations with genes in subtree 4. As one would expect, the powers for subtree 4 are

similar to those of subtree 5, which suggests that the combined effect of genes 1 and 2 on subtree 4

is the same as the effect of gene 3 on subtree 5. Subtree 6 illustrates the fact that the test based on

l .N/ takes advantage of the known correlation structure even if the genes in the network are negatively

correlated while the GSEA method cannot detect the change in the correlation structure between control

and treatment conditions.

FIG. 4. Design of the second simulation study. Solid arrows and boxes represent high positive association (0.6 here),

dashed arrows and boxes represent high negative association (�0.6), and dotted arrows and boxes indicate low positive

association (0.1). The root genes 1 and 2 are upregulated, while the expression level for gene 3 does not change.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.0081&iName=master.img-049.jpg&w=269&h=143
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TABLE 5. RESULTS OF THE SECOND SIMULATION STUDY

Mean increase 0 0.2 0.4 0.6 0.8 1.0

Tree 1 GSEA 1.000 1.000 1.000 1.000 1.000 1.000

NetGSA 1.000 1.000 1.000 1.000 1.000 1.000

Tree 2 GSEA 1.000 1.000 1.000 1.000 1.000 1.000

NetGSA 1.000 1.000 1.000 1.000 1.000 1.000

Tree 3 GSEA 0.000 0.000 0.000 0.000 0.000 1.000

NetGSA 0.2500 0.9580 1.00 1.00 1.00 1.000

Tree 4 GSEA 0.000 0.000 0.000 0.000 0.000 0.000

NetGSA 0.263 0.277 0.298 0.278 0.298 0.295

Tree 5 GSEA 0.000 0.000 0.000 0.000 0.000 0.000

NetGSA 0.281 0.296 0.290 0.297 0.305 0.281

Tree 6 GSEA 0.000 0.000 0.000 0.000 0.000 0.000

NetGSA 0.982 0.984 0.986 0.980 0.978 0.976

Tree 7 GSEA 0.000 0.000 0.000 0.000 0.000 0.000

NetGSA 1.00 1.00 1.00 1.00 1.00 1.00

Estimated powers for the GSEA and the test based on l.N / for different mean scenarios and different subnetworks. In results for

each subnetwork, the first row represents the power for the GSEA method, and the second row displays the power for the test based

on l.N /. Settings of fonts and colors are similar to Table 4.

4.3. Simulation 3: Effect of noise in network information

In the last simulation, we evaluate the sensitivity of the proposed inference procedure to presence of

noise in association weights of the gene network. The network consists of four similar subnetworks, each

with 40 genes. Under control, genes have mean �C D 1 and the weights of the adjacency matrix are set

to 0.2. The settings of the parameters under treatment are given in Table 6. The estimated powers of tests

of significance of each subnetwork using a test based on l .N/ are plotted in Figures 5 and 6. Figure 5

represents the case where the errors are introduced at random, that is, each weight in the adjacency matrix

under treatment is perturbed by a uniform noise in the range [�e; e] where e is a value between 0 and 0.4.

On the other hand, Figure 6 represents the estimated powers of tests when a systematic bias is included

in the weights of the adjacency matrix under treatment. It can be seen that if the underlying model is

correctly specified, presence of random noise in weights of adjacency matrix will not significantly affect

the power of the test. However, presence of systematic bias in the estimated weights can introduce both

type I, as well as type II errors. This is illustrated by the increase of power of the test as the difference

between weights under treatment and control becomes more significant (Fig. 6). It is important to note

that the simulation considered here does not include errors in the topology of the network. These errors

become more critical if the topology of the network, as well as the association weights, are estimated from

expression data, which is beyond the scope of this article.

TABLE 6. SIGNIFICANT PARAMETERS OF THE THIRD

SIMULATION STUDY UNDER TREATMENT CONDITION

Subnetwork Mean Association weight

1 �T D 1:5 �T D 0:6

2 — �T D 0:6

3 — —

4 �T D 1:5 —

In all other cases, �T D �C D 1 and �T D �C D 0:2.
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FIG. 5. Estimated powers of test of significance of subnetworks of Table 6 with random noise in weights of the

adjacency matrix. Plots in gray represent the powers of subnetworks whose true adjacency matrices in control and

treatment are the same.

5. ANALYSIS OF YEAST GALACTOSE UTILIZATION PATHWAY DATA

In Section 1.1, we analyzed the yeast GAL pathway data (Ideker data) using the GSEA method, which

revealed that the Galactose Utilization pathway is significantly activated in galC condition. In that analysis,

the external information provided by the network was only used to determine the gene sets of interest.

As discussed in Section 1.1, the Ideker data also includes strength of gene interactions in the network.

Therefore, it is possible to directly incorporate the network information and use the proposed network-based

inference procedure. It is important to note that the Ideker data only includes one set of association weights

for both galC and gal� conditions. In other words, in this section we assume ƒT D ƒC D ƒ, and hence

the proposed inference procedure cannot test the change in the network structure. Assuming that the latent

variable model correctly represents the effect of the underlying network, the increased power of the network

based procedure is mainly due to directly incorporating the network information.

Table 7 compares results of analyzing the Ideker data using the GSEA method and the network

based method presented in this paper (using l .N/). This table also includes results of analyzing this

FIG. 6. Estimated powers of test of significance of subnetworks of Table 6 with systematic bias in weights of the

adjacency matrix. Plots in gray represent the powers of subnetworks whose true adjacency matrices in control and

treatment are the same.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.0081&iName=master.img-056.jpg&w=266&h=180
http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.0081&iName=master.img-057.jpg&w=333&h=168
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TABLE 7. ANALYSIS OF IDEKER 2001 DATA USING GSEA, GSA, AND THE PROPOSED METHOD

BASED ON THE UNDERLYING GENE NETWORK USING THE l .N/ CONTRAST VECTOR

GSEA GSA NetGSA

Pathway Size

NOM

p-val

FDR

signif

NOM

p-val

FDR

signif

NOM

p-val

FDR

signif

rProtein synthesis 28 0.5261 0.278 0.0038 3

Glycolytic enzymes 16 0.9683 0.357 0.2825

RNA processing 75 0.9879 0.386 0.479

Fatty acid oxidation 7 0.4694 0.299 0.0068 3

O2 stress 13 0.2384 0.285 0.4448

Mating, cell cycle 58 0.3583 0.417 0.4317

Vesicular transport 19 0.07243 0.156 0.3693

Sugar transport 2 0.7358 0.458 0.3319

Glycogen metabolism 12 0.1321 0.034 0.3057

Stress 12 0.02004 0.007 0.0000 3

Metal uptake 4 0.8374 0.326 0.0802

Respiration 9 0.1878 0.091 0.0001 3

Gluconeogenesis 7 0.8455 0.475 0.0383

Galactose utilization 12 0.002045 3 0.001 3 0.0000 3

Amino acid synthesis 30 0.1853 0.054 0.0665

For each method, the nominal p-value and whether the pathway is significant based on the FDR with q� D 0:05 is reported.

data using the GSA method of Efron and Tibshirani (2007).2 As one may expect, all three methods

find the Galactose Utilization pathway to be statistically significant. Although the GSEA and the GSA

methods agree on the significance of other subnetworks, it can be seen from Table 7 and Figure 7, that

including the underlying network structure in the analysis, reveals four additional significant pathways.

Although additional experiments are needed to verify the result of Table 7, the biology of yeast cells

may offer some insight to significance of newly detected pathways. These pathways can be categorized

into two groups: Galactose Utilization and rProtein Synthesis pathways are involved in cell growth in

galC environment, while genes in the Stress, Respiration and Fatty Acid Oxidation pathways are induced

in gal� environment. The Stress pathway has a low nominal p-value in both GSEA and GSA results;

however, these methods do not consider this pathway significant. The significance of the Stress pathway

is not surprising and can be explained by the fact that galactose is a more efficient source of carbon than

raffinose. Thus, in absence of galactose (gal�), the genes in the Environmental Stress Response (ESR)

are induced (Gasch et al., 2000; Gasch and Werner-Washburne, 2002). The Fatty Acid Oxidation and

Respiration pathways are also upregulated in gal� environment. The genes in the Respiration pathway are

among the genes that are induced in the ESR.

Many of the stress defense mechanisms consume ATP, and therefore, cellular stress could lead to the

induced expression of respiration genes (Hohmann and Mager, 2003). Also, many genes involved in

importing and exporting fatty acids are induced in ESR and the induction of these genes can increase

the local concentration of fatty acids, which in turn may induce the expression of genes in Fatty Acid

Oxidation pathway (Hohmann and Mager, 2003). The induction of Fatty Acid Oxidation and Respiration

genes can be further explained by the coregulation of genes in these pathways. It should be noted that two

of the genes in the Respiration pathway are directly affected by genes in GAL pathway (GAL4 regulates

CYC1 and HAP4 is regulated by MIG1), and our proposed model can exploit such relationship in order

to gain more statistical power. Finally, the significance of the rProtein Synthesis genes can be explained

by growth dependent expression of these genes and the fact that ESR represses the expression of many

protein synthesis genes (Hohmann and Mager, 2003).

2The minmax criteria is used as the enrichment function in the GSA method.



424 SHOJAIE AND MICHAILIDIS

FIG. 7. Yeast gene network indicating the significant pathways; significant pathways have been marked with ovals.

6. DISCUSSION

Finding significant subnetworks and pathways that are involved in certain biological phenomena has been

the focus of many new studies. The main challenge is to formulate the null and alternative hypotheses

that consider the change in the expression levels of the genes as well as the change in the network

structure in response to environmental factors. In this paper, we proposed a model-based approach for

testing the significance of biological pathways using the underlying gene network and studied graph

theoretic properties of the model. Our approach uses external information available about the underlying

network and it hence depends on availability and quality of such data. The method proposed in this paper,

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.0081&iName=master.img-065.jpg&w=432&h=493
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incorporates the weighted adjacency matrix of the network through a latent variable model and uses a

flexible mixed linear representation. We discussed that the inference based on this method depends on the

choice of the contrast vector and proposed a choice that offers improvement in power of the test compared

to the GSEA method of Subramanian et al. (2005). The simulation studies and the analysis of the yeast

galactose utilization pathway reveal the ability of the proposed method in identifying significant pathways

that are otherwise difficult to distinguish. Although the focus of this paper was on testing the significance of

subnetworks in the two population inference problem, the proposed method provides a general framework

for studying a variety of phenotypes including analysis of time series mRNA data and the change in the

network over time. More generally, different correlation structures among observations can be implemented

in the mixed linear model and therefore, different types of data can be modeled using this framework.

Considering parameters for environment factors and gene-gene and gene-environment interactions is also

a straight forward extension of the proposed model.

The model presented in this paper relies on two main assumptions: (a) The relationship between

the expression levels of genes in the network can be represented linearly using the influence matrix

of the network and (b) that the data follows a normal distribution. Although the first assumption is a

crucial part of this analysis, the second assumption can be relaxed using the Generalized Mixed Linear

Model (GMLM) framework. However, this would make the computational aspects of the problem more

challenging.

The growth of information available on the underlying biological networks calls for effective methods

that can utilize such information efficiently and requires extensions of statistical methods appropriate for

studying of network structures. The model presented in this paper requires external information on the

weighted adjacency matrix of the network. Although more data is becoming available on gene and protein

networks, many available network data only include the binary association among genes (network topology)

and do not include information about the strength or direction of associations among genes. The problem of

estimating the weighted adjacency matrix of the network, which is related to estimation of the covariance

matrix, is of separate interest and is beyond the scope of this paper. Chaudhuri et al. (2007) propose an

efficient algorithm for estimating the association among genes when the topology of the network is known.

The method proposed in this paper can also be extended to the cases where only partial information about

the network is available.
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