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Abstract

Cellular functions of living organisms are carried out through complex systems of interacting
components. Including such interactions in the analysis, and considering sub-systems defined by
biological pathways instead of individual components (e.g. genes), can lead to new findings about
complex biological mechanisms. Networks are often used to capture such interactions and can
be incorporated in models to improve the efficiency in estimation and inference. In this paper,
we propose a model for incorporating external information about interactions among genes (pro-
teins/metabolites) in differential analysis of gene sets. We exploit the framework of mixed linear
models and propose a flexible inference procedure for analysis of changes in biological path-
ways. The proposed method facilitates the analysis of complex experiments, including multiple
experimental conditions and temporal correlations among observations. We propose an efficient
iterative algorithm for estimation of the model parameters and show that the proposed framework
is asymptotically robust to the presence of noise in the network information. The performance of
the proposed model is illustrated through the analysis of gene expression data for environmental
stress response (ESR) in yeast, as well as simulated data sets.
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1 Introduction
Recent advances in high throughput technologies have facilitated the simultaneous
study of components of complex biological systems. Microarray technologies pro-
vide information about the expression levels of virtually all genes in the genome
of a given specie; the patterns of changes in these expressions over large groups of
genes can determine how living organisms respond to their environment. However,
genes interact with each other in an orchestrated fashion and analysis of individual
genes without taking into account their interactions (single gene analysis) may re-
sult in reduced efficiency and bias. We provide next an overview of two classes of
methods that aim to overcome this shortcoming and discuss advantages and disad-
vantages of each of the methods.

1.1 Background
Two classes of models have been investigated by researchers in order to account
for interactions among components of biological systems in the differential analy-
sis of genes (proteins/metabolites). The first approach, known as gene set analysis,
is to consider the joint effect of biologically related groups of genes. By perform-
ing gene set analysis, one hopes that the interactions among genes are preserved
through considering the combined effect of genes in each set, and hence the result-
ing inference procedure implicitly includes such interactions. In addition, while
individual genes may not show important changes of expression, the combined ef-
fect of changes in expressions of genes in a set (e.g. a genetic pathway) could unveil
important changes in the state of the system. Hence, methods of gene set analysis
offer improvements in both power, as well as interpretability of inference proce-
dures. Examples of methods for gene set analysis include the Gene Set Enrichment
Analysis (GSEA) of Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette,
Paulovich, Pomeroy, Golub, Lander et al. (2005) and its variants (Tian, Greenberg,
Kong, Altschuler, Kohane, and Park, 2005, Efron and Tibshirani, 2007), which use
a permutation-based procedure in order to evaluate the significance of gene sets.

The second class of methods aims to directly incorporate available informa-
tion about interactions among genes and proteins into differential analysis. Gene
networks are efficient tools to represent and model interactions among genes (Rah-
nenführer, Domingues, Maydt, and Lengauer, 2004) and have been used to im-
prove the performance of differential analysis methods. Ideker, Thorsson, Ranish,
Christmas, Buhler, Eng, Bumgarner, Goodlett, Aebersold, and Hood (2001) used
integrated genomic and proteomic analysis of perturbed networks to discover in-
teractions among genes. This was followed by proposing a method to test the
significance of subnetworks through a permutation-based method (Ideker, Ozier,
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Schwikowski, and Siegel, 2002). Recently, Wei and Li (2007) and Wei and Pan
(2008) have proposed Markov random field models to incorporate the network in-
formation in the differential analysis of genes. In these methods, connected genes
in the networks are assumed to have “similar” expression levels and a Bayesian
framework is developed using mixture models to evaluate whether each gene is
differentially expressed.

A number of methods have recently been developed to combine the advan-
tages of incorporating network information with strengths of enrichment analy-
sis. Sanguinetti, Noirel, and Wright (2008) considered a mixture model on graphs
(MMG) to account for network information in proteomic data and used a simple
percolation algorithm to search for subnetworks of significant components. Sho-
jaie and Michailidis (2009) discussed a method that incorporates network informa-
tion through a latent variable model and used the framework of mixed linear mod-
els (MLM) to test whether a priori defined gene sets are differentially expressed.
They considered two special classes of networks, namely directed acyclic graphs
(DAGs), as well as sub-stochastic graphs and proposed a test statistic for the two-
class inference problem (e.g. treatment and control).

The above models can all be viewed as attempts to incorporate the spatial cor-
relation caused by the gene network into the analysis of differentially expressed
genes. Another important aspect of gene expression is the dynamic behavior of
genes in response to environmental conditions (Gasch, Spellman, Kao, Carmel-
Harel, Eisen, Storz, Botstein, and Brown, 2000, Gasch and Werner-Washburne,
2002). The changes in gene expression levels over time may reveal unique fea-
tures of biological systems that are not evident from studying gene expressions at
a single time point. The temporal correlation among gene expressions can also be
utilized to improve the efficiency of finding differentially expressed genes. Exam-
ples of models for time course gene expression data include Hong and Li (2006)
and Yoneya and Mamitsuka (2007). Spatio-temporal models for gene expression
analysis combine the advantages of both models. Wei and Li (2008) recently pro-
posed a hidden spatio-temporal Markov random field model to account for both
temporal correlation among expression levels, as well as spatial correlation among
genes represented by the gene networks.

1.2 Outline
Currently available methods, reviewed above, focus either on incorporating net-
work information for performing single gene analysis, or on gene set enrichment
analysis for simple experimental conditions; e.g. treatment and control. Since
methods of enrichment analysis are based on permutations tests (e.g. Ideker et al.,
2002, Subramanian et al., 2005, Tian et al., 2005, Efron and Tibshirani, 2007), their
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extension to complex experimental settings, including the presence of temporal cor-
relation among observations, is not straightforward.

In this paper, we generalize the framework of Shojaie and Michailidis (2009) in
order to develop a flexible framework for analysis of gene sets in complex experi-
mental conditions, while incorporating the known network information. In partic-
ular, we

(a) propose a generalization of the network influence to analyze arbitrary net-
works with both directed, and undirected edges,

(b) exploit the flexibility of mixed linear models to develop a general inference
procedure that can be used to analyze changes in biological pathways in com-
plex experiments, including experiments with multiple factors together with
time course data, and

(c) describe an inference framework for simultaneous tests of multiple hypothe-
ses for analysis of pathways in complex experiments.

In addition, in order to estimate the parameters of the resulting mixed linear
model in real-world applications, we propose an iterative algorithm based on the
block-relaxation technique (de Leeuw, 1994). Finally, we study the effect of noise
in the underlying network information, e.g. when interactions among genes or the
associated weights are estimated, and establish conditions under which the pro-
posed inference procedure is asymptotically insensitive to such noise. Through
analysis of simulated, as well as real, data examples, we illustrate the small sample
properties of the proposed inference procedure and show that the model performs
well in the presence of limited samples (the application discussed in Section 4 has
a single sample per experimental condition and time point, and includes 3 time
points) and also exhibits good performance in the analysis of small gene sets.

The remainder of the paper is organized as follows: in Section 2, the mod-
eling framework is introduced and the mixed linear model representation is pre-
sented. The material in Sections 2.1 and 2.2 generalize the framework of Shojaie
and Michailidis (2009) to analysis of general networks in complex experiments.
Estimation and inference issues are discussed in Sections 2.3 and 2.4, respectively,
and the asymptotic analysis of performance under noisy network information is
presented in Section 2.5. The performance of the model is evaluated through simu-
lation studies in Section 3. In particular, it is shown that while the performance of
enrichment methods deteriorates in presence of temporal correlation, the proposed
model can effectively handle the additional correlation. Finally, in Section 4, data
from yeast environmental stress response (ESR) experiment of Gasch et al. (2000)
are used to discover pathways that are differentially expressed in response to these
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stress factors. Section 5 summarizes the main findings and discusses some future
research directions.

2 Model and Methods
Consider p genes (proteins/metabolites) whose expression data D is organized in
a p×n matrix, where each column of D represents a realization of the expression
levels of genes in the study. In general, assume that there are K different experi-
mental conditions and each of conditions are studied for Jk time points. Further,
assume that for each combination of experimental condition and time, there exists
n jk samples. Let n = ∑

K
k=1 ∑

Jk
j=1 n jk and denote by Y an arbitrary column of the

expression matrix D . In other words, Y consists of the expression levels of genes
in the study for a given time point of a specific experimental condition.

2.1 The Latent Variable Model
In order to incorporate the network structure into the model, we represent the gene
network by a directed graph G = (V,E) with vertex set V , and edge set E. The
edge set is captured in the p× p weighted adjacency matrix of the graph A, with
positive and negative entries. Each nonzero element in the adjacency matrix, Ai j,
represents a directed edge whose weight corresponds to the strength of association
between the two vertices i and j. Undirected graphs correspond to a special case,
where Ai j = A ji.

For any column of the gene expression matrix, suppose Y = X + ε , where X
represents the signal and ε the measurement noise. It is assumed that the underlying
expression level of each gene Xi is a combination of its own individual effect and
the influence of other genes. To that end, we define latent variables γi that capture
the individual gene contributions and assume that the signal for i consists of γi and
the weighted sum of the expression levels of genes in the network that influence
i. Finally, it is assumed that γ and ε are independent and normally distributed;
specifically, γ ∼ Np(β ,σ2

γ Ip) and ε ∼ Np(0,R), where Ip denotes the p-identity
matrix and R is the covariance matrix of noise, which can account for other sources
of dependence in the data, e.g. temporal correlation.

Figure 1: Illustration of the latent variable model for gene networks
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To illustrate this model, consider the simple graph of Figure 1, for which we
can write:

X1 = γ1,

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2,

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 +ρ23γ2 + γ3.

More generally, these equations can be summarized in vector notation as:

Y = Λγ + ε, γ ∼ Np(β ,σ2
γ Ip), ε ∼ Np(0,R), (2.1)

where Λ is called the Influence Matrix of the graph and in the simple example of
Figure 1 is given by:

Λ =

 1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1

 .

For the above model, we have E(Y ) = Λβ and Var(Y ) = σ2
γ ΛΛ′+ R, where Λ′ is

the transpose of matrix Λ.
In most applications, the available network information comes in the form of

the adjacency matrix, which determines the association between each gene and its
immediate neighbors in the graph. On the other hand, the influence matrix repre-
sents the effect of each gene on all the other genes in the network and is given by
Λ = ∑

∞
r=0 Ar, where A0 = Ip. In the case of a directed acyclic graph (as in the toy

example of Figure 1), Shojaie and Michailidis (2009) show that the relationship
between Λ and A is given by Λ = (I−A)−1. They also show that if the adjacency
matrix of the network is sub-stochastic, i.e. its eigenvalues are smaller than 1 in
magnitude, the above relationship between A and Λ still holds. This approach can
also be adapted to define a latent variable model for chain graphs, where the net-
work consists of undirected subgraphs that are connected by directed edges having
no directed cycles (see e.g. Lauritzen, 1996). However, general gene networks,
with both directed and undirected edges, may not satisfy the requirements of any of
the above special classes of graphs. Therefore, an alternative approach is required
to define the influence of the network for general graphs.

We start by normalizing the adjacency matrix A, by dividing its entries Ai j by
the corresponding row sum of the absolute values ∑

p
j=1 |Ai j|. Formally, let

L (ζ )i j =
Ai j

(∑p
j=1 |Ai j|)+ζ

, for some ζ > 0. (2.2)

Then by Gershgorin’s Disk Theorem (see e.g. Friedberg, Insel, and Spence, 1996),
the matrix L is sub-stochastic, and therefore, using the results of Shojaie and
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Michailidis (2009), for each ζ > 0 we get Λ = (I−L (ζ ))−1. Taking the limit,
we get

Λ = lim
ζ→0

(I−L (ζ ))−1.

This implies that, for general networks, the influence matrix of the graph can be
defined as Λ = (I−L )+, where L represents the normalized adjacency matrix
with ζ = 0 and (I−L )+ denotes the Moore-Penrose pseudo-inverse of I−L .

The normalization in (2.2) is motivated by the definition of the covariance ma-
trix in Markov random fields (see e.g. Rue and Held, 2005). For undirected graphs
with only positive weights in A, the matrix I−L also corresponds to a version of
the Laplacian matrix of the graph (see e.g. Chung, 1997). Simulation studies show
that small values of ζ (e.g. ζ ≈ 0.01) do not affect the outcome of the analysis, and
Λ = (I−L (ζ ))−1 can be used to define the influence matrix.

2.2 Mixed Linear Model Representation
Consider the gene expression matrix of the previous section with K experimental
conditions, Jk,k = 1 · · ·K time points and n jk observations at each combination of
condition and time point. Let Y, γ and ε represent the rearrangement of vectors Y ,
γ and ε into np× 1 column vectors. Then, using the framework of mixed linear
models, we can write

Y = Ψβ +Πγ + ε

ε ∼ Nnp(0,R), R = diag(R) (2.3)

γ ∼ Nnp(0,G), G = σ
2
γ Inp

Here β and γ are fixed and random effect parameters, and Ψ and Π are the corre-
sponding design matrices of dimensions np×K p and np×np, respectively.

The precise form of these matrices depends on whether the influence matrix
Λ can change over time or over different experimental conditions (see Harbison,
Gordon, Lee, Rinaldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo et al.
(2004) for examples of changes in regulatory networks in different experimental
conditions). To account for such changes in interactions among genes, let Λ( jk) de-
note the influence matrix of the network in condition k at time point j. The changes
in network influence over time or in different experimental conditions can then be
directly incorporated in the model by replacing the matrix Λ by the corresponding
matrix Λ( jk) in design matrices Ψ and Π, for fixed and random effect components
in the mixed linear model of equation (2.3). Using this notation, Π is a block diag-
onal matrix with Λ( jk) on the diagonal, while Ψ is defined based on the setting of
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the experiment. More specifically, suppose χ is the design matrix of the linear re-
gression model for a single gene, corresponding to K experimental conditions and
J time points. The matrix Ψ is then defined by replacing each χ jk with χ jkΛ( jk). In
the special case of Λ( jk) = Λ, the matrices Ψ and Π are defined as

Ψ = χ⊗Λ

Π = In⊗Λ (2.4)

where⊗ denotes the Kronecker product of two matrices. Examples of the use of the
mixed linear model for different experimental conditions are provided in Sections
3 and 4.

This model provides a general framework for evaluating changes in gene ex-
pressions in different experimental conditions over time. The structure of the ex-
periment may be fairly complex, corresponding to a factorial design or a block
design (Kerr and Churchill, 2001b,a, Yang and Speed, 2002). Examples of such
designs arise in the experiments of Gasch et al. (2000), Causton, Ren, Koh, Harbi-
son, Kanin, Jennings, Lee, True, Lander, and Young (2001) and Gasch and Werner-
Washburne (2002). Further, the model facilitates the specification of correlations
caused by both the gene network, as well as temporal dependence among gene
expressions. In fact, using the covariance matrices R and G, a variety of corre-
lation structures can be modeled (in Section 4, we provide detailed definition of
design and covariance matrices for the analysis of yeast ESR data). In addition, the
proposed model allows researchers to investigate the patterns of changes of expres-
sions in different experimental conditions, and to study the expression profiles of
gene sets over time, which could provide additional cues to the behavior of biolog-
ical systems. Such experiments are hard to analyze using the permutation-based
enrichment analysis methods.

2.3 Parameter Estimation
It is easy to see that for the mixed linear model of equation 2.3 W ≡ Var(Y) =
σ2

γ ΠΠ
′+R and the maximum likelihood estimate of β is given by (Searle, 1971):

β̂ = (Ψ′Ŵ−1
Ψ)
−1

Ψ
′Ŵ−1Y (2.5)

These estimates depend on estimates of the variance components, σ2
γ and R,

which are usually estimated via Restricted Maximum Likelihood (REML).
Lindstrom and Bates (1988) provide details of the Newton-Raphson and EM

algorithms for estimation of parameters of MLM and presented evidence in favor
of the former method. They also present a method of reducing the dimension of
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Algorithm 1 Block-Relaxation Algorithm for MLM Parameters

1. Find an initial estimate of β̂
(0)

(e.g. using OLS)
2. Repeat until convergence m = 1,2, · · ·

2.1. e := e(m+1) = Y−Ψβ̂
(m)

2.2. θ̂
(m+1)

= argmaxθ −1
2

{
logdet(W(θ))+ e′W−1(θ)e

}
2.3. β̂

(m+1)
= (Ψ′W−1(θ̂

(m+1)
)Ψ)

−1
Ψ
′W−1(θ̂

(m+1)
)Y

the matrices involved in the calculation by breaking down the matrices Ψ and Π

into smaller sub-matrices in case of repeated measures data. In dealing with spe-
cific problems, it may be possible to further reduce the dimension of these matrices
by taking advantage of their structure and sparsity patterns. However, the size of
the parameter vector and dimensions of the matrices involved in the calculations
increase with the number of genes p. As a result, traditional methods available
for estimation of parameters of MLM prove inefficient in mixed linear models for
large gene networks. Therefore, estimation of MLM parameters in (2.3) requires
efficient estimation procedures. Algorithm 1, which is a block-relaxation type algo-
rithm (de Leeuw, 1994), makes the estimation of parameters tractable by partition-
ing the parameter space into smaller subspaces. To simplify the notation, we denote
by θ = (θ ε ,θ γ) the vector of all variance parameters used do define R and G i.e.
R = R(θ ε) and G = G(θ γ). Oberhofer and Kmenta (1974) proved the convergence
of this algorithm under certain assumption on the estimates of the variance com-
ponents. In fact, using the strict convexity of the negative log-likelihood function
for mixed linear models, and the general theory of iterative algorithms (de Leeuw,
1994), it can be shown that this algorithm converges to the maximum likelihood
estimates of the MLM parameters, provided the estimates of the covariance com-
ponents result in a positive definite covariance matrix, and Ψ has full column rank.
For the model presented here, this is achieved if the variance components are esti-
mated using the REML estimation criterion.

To further speed up the estimation process, one can also partition the estimation
further over the subnetworks, which results in partitioning over both parameter,
as well as observation spaces. It can be shown that, under specific conditions,
estimates from such partitioning converge to the maximum likelihood estimates of
the model parameters, however this is beyond the scope of the current paper.
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2.4 Inference
A variety of hypotheses about fixed effect parameters of mixed linear models can
be tested by considering tests of the form:

H0 : lβ = 0 vs. H1 : lβ 6= 0 (2.6)

Here l is in general any linear combination of β ’s which meets the estimability re-
quirement of Searle (1971). An example of such vectors is a contrast vector, which
satisfies the constraint 1′l = 0. In the following discussion, any linear combination
of β ’s satisfying the estimability requirement is referred to as a contrast vector. In
the setting of multiple experimental conditions, this inference framework allows
tests of hypotheses of significance of parameters for each experimental condition,
as well as tests of significant changes in responses of gene sets over time. More
generally, different combinations of parameters can be tested using this framework,
which allow researchers to fully investigate the behavior of gene sets of particular
interest.

It was shown in Shojaie and Michailidis (2009), that for any given 1× p indi-
cator vector b determining a specific subnetwork or gene set, the vector (bΛ ·b)β
includes the effects of all the nodes in b on each other, but it is not affected by any
node outside the set of nodes indexed by b (here · denotes the Hadamard or compo-
nentwise product of two vectors). In words, bΛ introduces the influence of genes
indexed by b on each other, while the componentwise product with b excludes the
effects of nodes not in b. To illustrate this, consider again the simple network of
Figure 2, where the subnetwork of interest consists of X2 and X3 i.e. b = (0,1,1).

Figure 2: Illustration of the network contrast vector

It is then easy to see that

(bΛ) = (ρ12 +ρ12ρ23,1+ρ23,1)

includes all the interactions among nodes connected to the subnetwork, while the
proposed network contrast vector

(bΛ ·b) = (0,1+ρ23,1)

corresponds to the desired interactions. The change in Λ in response to different
experimental conditions or over time can be incorporated into this contrast vector
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by substituting Λ by the influence matrix of the specific time and experimental
conditions, Λ( jk). Hence, the contrast vector l is formed by replacing in the general
formula the influence matrix of the network under the specific conditions. As an
example, suppose Λ( j) represents the influence matrix of the network at time j, j =
1, · · · ,J and β = (β (1)′, · · · ,β (J)′)′. Then, the change in the expression levels of
genes in the subnetwork indexed by b from time j to j +1 can be tested using

l = (0, · · · ,0,−bΛ
( j) ·b, bΛ

( j+1) ·b,0, · · · ,0)

Letting C = (Ψ′W−1Ψ)−1, the significance of individual contrast vectors in
(2.6) can be tested using the following Wald test statistic:

T =
lβ̂√
lĈl′

(2.7)

Under the null hypothesis, T follows approximately a t-distribution whose de-
grees of freedom ν can be estimated using the Satterthwaite approximation method
(McLean and Sanders, 1988)

ν =
2(lĈl′)2

τ ′V τ

where τ = ∂

∂θ
lCl′, and V is the empirical covariance matrix of θ .

When analyzing complex experiments, often multiple contrast vectors of inter-
est are considered for a specific subnetwork. In such situations, (2.7) can be used
to test the significance of the contrast vector corresponding to each hypothesis of
interest. The resulting p-values should then be adjusted for the total number of
hypotheses tested amongst different subnetworks. Alternatively, one can combine
these contrast vectors into a contrast matrix L, where each row of L includes one
of the contrast vectors. The significance of the subnetwork can then be tested using
the following test statistic:

F =
β̂
′
L′(LĈL′)−1Lβ̂

q
(2.8)

where q is the rank of L. Under the null hypothesis of Lβ = 0, F has an F-
distribution with q and η degrees of freedom. To estimate η using the Satterth-
waite approximation method, one first needs to find matrices P and D such that
LCL′ = PDP′ (the eigen-decomposition of LCL′). Then, denoting the mth row of L
by lm, η is calculated using:

η =
{ 2E

E−q E > q
0 o.w.

10

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 22

http://www.bepress.com/sagmb/vol9/iss1/art22
DOI: 10.2202/1544-6115.1483



where

E =
q

∑
m=1

νm

νm−2
I{νm>2}, νm =

2D2
m

τ ′mKτm
.

The proposed F-test for the analysis of complex experiments reduces the num-
ber of hypotheses tested and offers a hierarchical testing approach. In particular,
although some subnetworks may not show significant change with regard to indi-
vidual hypotheses, the combined significance of the subnetwork due to multiple
sources of differential expression may result in overall significance of the subnet-
work. It is then possible to test the significance of individual hypotheses, in case
the overall F-test for the subnetwork is significant. We illustrate this hierarchical
testing procedure in Sections 3 and 4.

2.5 Uncertainty in Network Information
The method for network-based analysis of gene sets proposed here requires knowl-
edge of interactions among genes (proteins/metabolites), as well as the correspond-
ing association weights. In addition, to fully exploit the strength of the proposed
methodology in testing the changes in the network structure, as well as the ex-
pression levels of genes, the adjacency matrix of the network should be available
for different experimental conditions and time points. However, available network
information may be noisy, and available resources often only determine the pres-
ence of interactions among genes, and do not provide information on the strength
of associations. Therefore, it may be necessary to estimate the network informa-
tion. Estimation of gene networks from high throughput observations is an impor-
tant problem in systems biology and of independent interest (see e.g. Shojaie and
Michailidis, 2010, for a review). It is important to note that since the network in-
formation is used in both estimation of parameters, as well as inference, to prevent
unidentifiability and bias, the observations used for estimation of the underlying
network should be independent from those used for analysis of differential expres-
sion.

In this section, we analyze the effect of uncertainty in the network information,
by studying the asymptotic properties of the proposed test statistic. Our main result
concerns the general case of error in network information in the case of a two-
population test, described in Shojaie and Michailidis (2009). We also discuss the
special case of estimating association weights, when the structure of the network is
known.

In the following, we denote the available adjacency matrix of the network by
Ã and use the notation ‖A‖ and ‖A‖F to represent the matrix norm and Frobenius
norm of A, respectively. Also, let dA

i denote the weighted in-degree of node i based
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on the adjacency matrix A: dA
i = ∑ j |Ai j|.

Theorem 2.1. Suppose Ã = A+∆A, where ‖∆A‖= oP(1), and assume that mini dÃ
i ≥

1.1 Then, (2.7) is an asymptotically most powerful unbiased test for (2.6).

Proof. We consider here the special case where ΛC = ΛT = Λ and only one gene
set; i.e. the whole network is tested. This implies that b = 1′ and the proposed
network contrast vector bΛ · b reduces to bΛ (the general case of ΛC 6= ΛT and
b 6= 1′ follows from a similar argument).

First, recall that for directed acyclic graphs (DAGs), Λ = ∑
∞
r=0 Ar, and for gen-

eral graphs, Λ = ∑
∞
r=0 L r, where L = D−1

A A and DA = diag(dA
i ). Then Ã = A+∆A

implies that for DAGs

Λ̃ =
∞

∑
r=0

Ãr =
∞

∑
r=0

Ar +
∞

∑
r=0

∞

∑
s=1

Ar
∆

s
A ≡ Λ+∆Λ, ‖∆Λ‖= oP(1). (2.9)

Similarly, for general graphs, we have

L̃ = D−1
Ã

Ã = D−1
Ã

(A+∆A)≡L +∆L

where
‖∆L ‖ ≤ ‖D−1

Ã
‖‖∆A‖= 1/(min

i
dÃ

i )‖∆A‖= oP(1)

ex hypothesis. An argument similar to (2.9) implies that the following expression
also holds for general graphs

Λ̃ = Λ+∆Λ, ‖∆Λ‖= oP(1) (2.10)

Now, using the results in Shojaie and Michailidis (2009), the test statistic in (2.7)
can be written as

T =
b(Ȳ T − ȲC)√

b(n−1
1 +n−1

2 )(σ̂2
γ Λ̃Λ̃′+ σ̂2

ε Ip)b′
(2.11)

where Ȳ T and ȲC represent the average expression of genes in the two experimental
conditions and n1 and n2 represent the corresponding sample sizes. The test statistic
in (2.11) represents the likelihood ratio test for testing the null hypothesis in (2.6),
which is asymptotically most powerful unbiased, provided correct network infor-
mation is given. Therefore, to establish the result, it suffices to show that the effect

1Note that mini dÃ
i ≥ 1 implies that the network is connected. However, the case of disconnected

networks is a straightforward extension, as the networks can be analyzed separately.
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of error in the network information is asymptotically negligible. However, since
the numerator of the test in (2.11) does not depend on the network information, it
suffices to show that the denominator is a consistent estimator.

To establish the consistency of estimates of the variance components, note that
the negative log-likelihood function (up to a constant) for the two-population prob-
lem is given by

`(θ) = n−1
n

∑
i=1

logdet(Wi)+n−1
n

∑
i=1

r′iW
−1
i ri, (2.12)

where ri = Yi− ȲC, i = 1, . . . ,n1, ri = Yi− Ȳ T , i = n1 + 1, . . . ,n and θ is the vector
of variance components. Then, using the fact that for the two-class problem with
constant, but noisy network information Wi = Var(Yi) = σ2

γ Λ̃Λ̃′+σ2
ε Ip, we get

`(θ ; Λ̃) = logdet(σ2
γ Λ̃Λ̃

′+σ
2
ε Ip)+n−1

n

∑
i=1

r′i(σ
2
γ Λ̃Λ̃

′+σ
2
ε Ip)

−1
ri. (2.13)

Using (2.10) we can then approximate `(θ ; Λ̃) with its one-term Taylor expansion
around Λ

`(θ ; Λ̃) = `(θ ;Λ)+‖∆Λ‖ trace
[
(∇Λ`(θ ;Λ))′∆Λ/‖∆Λ‖

]
+o(‖∆Λ‖2) (2.14)

where ∇Λ`(θ ;Λ) is the gradient of ` with respect to Λ (see e.g. Dattorro (2005)-
Appendix D for details on directional derivatives and approximations for functions
of matrices).

But, for square positive definite matrices we have ∇ logdet(X) = X−1∇X and
∇X−1 = −X−1∇XX−1. Hence, noting that ∇ΛΛΛ′ = (Λ′+ Λ), by the chain rule
and after some algebra, we can write

∇Λ`(θ ;Λ) = σ
2
γ (σ2

γ ΛΛ
′+σ

2
ε Ip)−1(Λ′+Λ)

−n−1
σ

2
γ

n

∑
i=1

r′i(σ
2
γ ΛΛ

′+σ
2
ε Ip)

−1
(Λ′+Λ)(σ2

γ ΛΛ
′+σ

2
ε Ip)

−1
ri.

Let τ2 = σ2
ε /σ2

γ and Γ = ∆Λ/‖∆Λ‖, and denote

g(θ) ≡ trace
[
Γ
′(ΛΛ

′+ τ
2Ip)−1(Λ′+Λ)

]
(2.15)

−n−1
σ
−2
γ

n

∑
i=1

r′i(ΛΛ
′+ τ

2Ip)
−1

Γ
′(Λ′+Λ)(ΛΛ

′+ τ
2Ip)

−1
ri.

Replacing (2.15) in (2.14) then gives

`(θ ; Λ̃) = `(θ ;Λ)+‖∆Λ‖g(θ)+o(‖∆Λ‖2).
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However,

|g(θ)| ≤ | trace
(
Γ
′(ΛΛ

′+ τ
2Ip)−1(Λ′+Λ)

)
|

+n−1
σ
−2
γ

n

∑
i=1

r′i(ΛΛ
′+ τ

2Ip)
−1

Γ
′(Λ′+Λ)(ΛΛ

′+ τ
2Ip)

−1
ri

≡ I + II.

Using von Neumann’s inequality for the matrix trace (see e.g. Mirsky, 1975), and
the relationship between singular values and matrix norms, we get

I ≤
p

∑
j=1

κ[ j]([Λ
′+Λ]Γ′)κ[ j]([ΛΛ

′+ τ
2Ip]−1)

≤ pκ[1]([Λ
′+Λ]Γ′)κ[1]([ΛΛ

′+ τ
2Ip]−1)

≤ pκ[1](Λ
′+Λ)κ[1](Γ)κ[1]([ΛΛ

′+ τ
2Ip]−1)

where κ[ j](A) denotes the j-th largest singular value of A. But, by definition,
κ[1](Γ) = 1. Moreover, by construction, κ[1](Λ′+ Λ) is bounded by say M, and
κ[1]([ΛΛ′+ τ2Ip]−1) = 1/(λ[p](ΛΛ′)+ τ2), where λ[p](ΛΛ′) is the smallest eigen-
value of ΛΛ′ and hence is positive (by definition of Λ). This implies that I <
2pM/τ2.

On the other hand,

II ≤ σ
−2
γ ‖(ΛΛ

′+ τ
2Ip)

−1
Γ
′(Λ′+Λ)(ΛΛ

′+ τ
2Ip)

−1‖n−1
n

∑
i=1

r′iri

≤ σ
−2
γ ‖(ΛΛ

′+ τ
2Ip)

−1‖2‖Γ′‖‖(Λ′+Λ)‖‖n−1
n

∑
i=1

r′iri

< σ
−2
γ 2τ

−4Mn−1
n

∑
i=1

r′iri = 2τ
−2

σ
−2
ε ME(‖ri‖2) w.p.1,

where the last step follows from the strong law of large numbers. This implies
that provided the variance components are non-zero, with probability one g(θ)
is bounded, and hence ‖∆Λ‖g(θ) = oP(1). This in turn implies that `(θ ; Λ̃) =
`(θ ;Λ)+oP(1).

Denote by E the event [`(θ ; Λ̃) = `(θ ;Λ)]. Then conditioning on E , the es-
timates of the variance components are found by minimizing the negative log-
likelihood function with true network information, which is a convex function
of variance components. M-estimation results in Haberman (1989) imply that
P(θ̂ = θ |E ) = 1 and hence, θ̂ →P θ as Ã→P A. However, this further implies
that as Ã→P A, the denominator of the test statistic in (2.7) converges to the true
value, and the result follows.
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Remark 2.2. In the general case of complex experiments, the estimates of the fixed
effects are also dependent on the network information. A similar result will then
follow upon deriving the asymptotic distribution of the numerator of the test statis-
tic in (2.7). In Section 3.3, we provide empirical evidence in support of the in-
sensitivity of the proposed inference framework to the presence of noisy network
information.

The above theorem guarantees that as long as the error is small in magnitude,
the network-based inference procedure correctly determines the significance of the
gene sets. In other words, a necessary condition for the proposed method to work in
presence of noise in the network information is that ‖∆A‖ = oP(1). As mentioned
earlier, the problem of estimation of network structure for directed, as well as undi-
rected, networks is an important problem in multivariate statistics and researchers
have studied asymptotic properties of network estimation for different classes of
problems. Here, we consider a special case of the problem of estimating high di-
mensional networks, where the structure of the network is known, and the problem
is reduced to estimating association weights among genes. The following corollary
shows that the proposed network-based gene set analysis procedure is not sensitive
to the estimation noise in this setting. It is important to note that the conditions of
this result only limit the degree of nodes in the graph and no constraint is required
on the total number of nodes in the graph. In the following, di represents the un-
weighted in-degree of node i: the number of neighbors of i in undirected graphs
and the number of parents of i in directed graphs.

Corollary 2.3. Let G be a DAG or an undirected graph, with p nodes and adja-
cency matrix A. Assume that maxi(di) = nb for some 0 < b < 1 and ∑i∈G (di) = na

for some a > 0. Further, assume that the structure (or skeleton) of the network
is known, but the network information is obtained by estimating the association
weights from an independent sample of size n. Then, the test statistics in (2.7) is an
asymptotically unbiased most powerful test for (2.6).

Proof. By Theorem 2.1, it suffices to show that ‖Â−A‖ = oP(1). First, assume
that G is a DAG. Then, by the results in Shojaie and Michailidis (2010), to find
the association weights one needs to regress each node on the set of the parents of
that node. Since maxi(di) = o(n), without loss of generality, we can assume that
maxi(di) < n, and therefore regular regression can be used to estimate the weights.
The asymptotic normality of regression estimators then implies that each non-zero
entry of the adjacency matrix converges with an exponential rate to the true value.
Bonferroni’s inequality and the fact that the total number of edges in the graph is a
polynomial function of the sample size imply that ‖Â−A‖= oP(1).

For undirected graphs, we note that partial correlations between each node i and
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its neighbors nei can be recursively estimated using the following formula:

ρi, j|nei =
ρi, j|nei\h−ρi,h|nei\hρ j,h|nei\h√
(1−ρ2

i,h|nei\h)(1−ρ2
j,h|nei\h)

However, Corollary 1 of Kalisch and Bühlmann (2007) implies that if maxi(di) <
n−4 estimated partial correlations converge to true values with an exponential rate.
An argument similar to the case of DAGs then implies that ‖Â−A‖ = oP(1) and
the result follows.

3 Performance Analysis
In this section, we evaluate the small sample properties of the proposed inference
procedure, through several simulation studies. In all settings, data are generated
from a mixed linear model, where the Gaussian noise has an AR(1) correlation
structure. We consider different combinations of mean and network information,
and investigate the effects of temporal correlation, as well as noise in the network
information.

3.1 Multiple Experimental Conditions
The first simulation depicts the real data example of Section 4, which corresponds
to analysis of responses of yeast cells to environmental stress factors. The network
consists of a directed graph with 7 subnetworks and a total of 220 nodes. Each
subnetwork in turn consists of a 4-level binary tree and a “hub” node. There are
also 3 gateway genes that connect the subnetworks together. The adjacency matrix
of the graph is considered to remain constant in different experimental conditions
and different time points. The model includes changes in gene expressions under
different experimental conditions and different time points. Specifically,

EY11 = Λµ

EY1k = Λ(µ +δk), k = 2,3 (3.1)
EYjk = Λ(µ +α j +δk), j,k = 2,3

The settings of parameters in the first simulation are given in Table 1. Table 2
includes the estimated powers of the t-tests for different mean parameters, as well
as powers of the F-test, for the overall significance of the subnetwork, estimated
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Table 1: Parameter settings for the first simulation study.
Subnetwork Non-zero Mean Parameters

1 –
2 α2 = 2
3 α2 = 1, δ2 = 1
4 α2 = 1, α3 = 1
5 α2 = 1, δ3 = 1
6 α2 = 1, α3 = 1, δ2 = 1
7 α2 = 1, α3 = 1, δ2 = 1, δ3 = 1

from 100 replications 2 with n = 1 observations at each combination of experimen-
tal condition and time point. To prevent redundancy, the contrast matrix L (see
Section 2.4) consists only of contrast vectors used for the main effects (the param-
eters in the first 4 columns of the Table 2).

It can be seen from these results that when the model is correctly specified, the
proposed inference procedure offers high power for detecting non-zero parameters,
while maintaining close to nominal significance levels for non-significant parame-
ters.

Table 2: Estimated powers of t-test and F-test for the first simulation study. The
first four columns of the table represent the powers for testing the significance of the
mean parameters (α2, δ2, α3 and δ3 respectively). The powers for testing equality
of main effects (α2 = α3 and δ2 = δ3) are given in the next two columns of the
table. Entries in bold represent result of potential interest.

Individual Parameters (t-test) Subnetwork
Subnetwork α2 δ2 α3 δ3 α2−α3 δ2−δ3 (F-test)

1 0.006 0.06 0.03 0.14 0.01 0.10 0.12
2 1.00 0.10 0.02 0.09 1.00 0.13 1.00
3 0.99 1.00 0.03 0.05 0.99 1.00 1.00
4 0.98 0.09 1.00 0.07 0.02 0.08 1.00
5 0.99 0.08 0.02 1.00 0.99 1.00 1.00
6 0.99 1.00 1.00 0.05 0.01 1.00 1.00
7 1.00 0.99 1.00 1.00 0.00 0.01 1.00

2Simulation replicates are obtained by generating data sets according to the same model with
different realizations of the random vectors ε and γ .
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3.2 Effect of Temporal Correlation
The second simulation setting aims to illustrate the effects of temporal correlation,
as well as changes in the network structure, in different experimental conditions.
Since gene set enrichment analysis methods do not directly incorporate complex
experiments, we consider a simple experimental design, including two experimen-
tal conditions. However, to illustrate the effect of temporal correlation, we consider
the case where data are generated over 5 time points with no replicates. The tem-
poral correlation among observations is generated using an AR(1) process with au-
tocorrelation parameter φ . We consider a network consisting of 4 non-overlapping
subnetworks (as described in the first simulation) regulated by 3 hub genes. The
correlation among genes in each subnetwork is controlled by a single parameter
ρ , with different values in distinct subnetworks and experimental conditions. The
parameter settings for this simulation are given in Table 3.

Table 3: Parameter settings for the second simulation study. αi and ρi, i = 1,2
correspond to the ith experimental condition.

Subnet Mean Parameters Correlation Parameters
1 α1 = α2 = 1 ρ1 = ρ2 = 0.2
2 α1 = 1,α2 = 2 ρ1 = ρ2 = 0.2
3 α1 = α2 = 1 ρ1 = 0.2,ρ2 = 0.7
4 α1 = 1,α2 = 2 ρ1 = 0.2,ρ2 = 0.7

Given the true values of the parameters, the test statistic in (2.7) has a normal
distribution, with means 0 and lβ under the null and alternative hypotheses, respec-
tively. Hence, it is possible to calculate the true asymptotic powers of rejecting the
null hypotheses for each of the subnetworks in this simple setting. Figure 3 includes
the estimated powers of tests using GSEA and the proposed network-based method
(NetGSA), based on 100 replications, along with the true asymptotic powers of the
corresponding tests. It can be seen that when the parameters are clearly insignifi-
cant or demonstrate strong significance (Subnetworks 1 and 4), both methods cor-
rectly determine the significance of the test. However, in less extreme scenarios
(e.g. Subnetworks 2 and 3), the presence of temporal correlation along with the
small sample size (n = 1) prevent GSEA from correctly determining the statistical
significance of subnetworks. On the other hand, by accounting for the temporal
correlation, NetGSA offers considerable improvement over GSEA.

Table 4 includes the details of estimated and true powers of tests of significance
of subnetworks considered in Simulation 2. In order to investigate the effect of the
sample size n on the power of the tests, we also consider the case of 10 indepen-
dent samples for each experimental condition (n = 10). Powers of the tests with
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Figure 3: Estimated and true powers for tests of subnetworks in Simulation 2.

n = 10 are presented in Table 5. This table indicates that estimated powers of the
proposed NetGSA method are more consistent with the values of the true powers
for larger sample sizes. In addition, the presence of temporal correlation prevents
the GSEA method from distinguishing the significance of subnetwork 2 even with
larger sample sizes.

3.3 Uncertainty in Network Information
In Section 2.5, we showed that the proposed inference procedure is asymptoti-
cally insensitive to small noise in the network information, in case of the simple
two-class problems. We also argued that similar results can be expected in more
complex experiments. Here we provide empirical evidence for the robustness of
the proposed method to noise in the network information in presence of temporal
correlation, by considering the simulation settings of Section 3.2, with n = 1. The
settings of mean and correlation parameters are identical to those in Table 3. In
addition, the temporal correlation is fixed at φ = 0.4. In each case, the data are
generated according to the mixed linear model with the true network information,
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Table 4: Powers of second simulation study, n = 1. Entries in bold represent result
of potential interest.

φ

0 0.2 0.4 0.6
Subnetwork 1 GSEA 0.00 0.00 0.00 0.00

NetGSA 0.00 0.01 0.04 0.08
True Power 0.05 0.05 0.05 0.05

Subnetwork 2 GSEA 0.06 0.05 0.01 0.00
NetGSA 0.90 0.92 0.85 0.75
True Power 0.94 0.90 0.83 0.73

Subnetwork 3 GSEA 0.96 0.87 0.79 0.58
NetGSA 0.15 0.35 0.29 0.35
True Power 0.42 0.36 0.31 0.26

Subnetwork 4 GSEA 1.00 1.00 1.00 1.00
NetGSA 0.99 1.00 1.00 0.99
True Power 1.00 1.00 0.99 0.99

Table 5: Powers of second simulation study, n = 10. Entries in bold represent result
of potential interest.

φ

0 0.2 0.4 0.6
Subnetwork 1 GSEA 0.00 0.00 0.00 0.00

NetGSA 0.00 0.02 0.00 0.06
True Power 0.05 0.05 0.05 0.05

Subnetwork 2 GSEA 0.06 0.04 0.03 0.05
NetGSA 1.00 1.00 1.00 1.00
True Power 1.00 1.00 1.00 1.00

Subnetwork 3 GSEA 0.95 0.96 0.87 0.61
NetGSA 1.00 1.00 0.98 0.96
True Power 0.99 0.99 0.99 0.98

Subnetwork 4 GSEA 1.00 1.00 1.00 1.00
NetGSA 1.00 1.00 1.00 1.00
True Power 1.00 1.00 1.00 1.00

and estimation and inference is carried out using a perturbed version of the network
information. The network information is perturbed by adding an i.i.d. uniform ran-
dom variable U ∼ Uni[−ν ,ν ] to each non-zero entry of the adjacency matrix; ν is
hence the level of random noise in the network. Figure 4 illustrates the estimated
and the true powers for different levels of noise ν . It can be seen that even with
small sample sizes (n = 1), the estimated powers are similar to the expected ones,

20

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 22

http://www.bepress.com/sagmb/vol9/iss1/art22
DOI: 10.2202/1544-6115.1483



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

error

po
w

er

Subnetwork 1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

error

po
w

er

Subnetwork 2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

error

po
w

er

Subnetwork 3

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

error

po
w

er

Subnetwork 4

 

 

Estimated Power
True Power

Figure 4: Estimated and true powers for tests of subnetworks in Simulation 3 for
different values of random noise.

and the powers with noisy network information are similar to those obtained in the
absence of noise (ν = 0). The results of this simulation indicate that the proposed
method is robust to small levels of noise (e.g. up to ∼ 30%). In addition, the effect
of noise is mainly significant in the case of Subnetwork 3, where the difference in
the two populations is mainly due to the changes in the network information.

3.4 Changes in the Network in Complex Experiments
Our final simulation setting aims to further illustrate the effect of change in the
weighted adjacency matrix of the graph in complex experiments. We consider a
model with separate intercept and slope parameters, for each of the three treatment
conditions. In other words,

EYk j = Λ
(k)

αk +Λ
(k)

δkt j, j,k = 1,2,3, t = (5,15,30).

We consider the directed graph of the first simulation setting, but here we al-
low for changes in both the adjacency matrix of subnetworks, as well as the mean
parameters. For illustration purposes, the adjacency matrix of each subnetwork
(and hence its influence matrix) is considered to be a function of a single parameter
ρ with values in (−1,1), and entries of the adjacency matrix may attain differ-
ent values in each of the three treatment conditions. Based on the latent variable
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model, as ρ increases, genes in the network would have higher effects on their
neighbors. In this setting, subnetworks 2 and 6 only include changes in the fixed
effect parameters. Subnetworks 1 and 7 have moderate changes in the fixed effect
parameters coupled with changes in associations among genes. In subnetwork 3,
the association among genes is the only source of change. Finally, the parameters
of subnetwork 5 are designed so that the individual change in the parameters is not
significant; however, the combined effect of changes in intercept and slope param-
eters is expected to be significant. Table 6 shows the settings of the parameters for
this simulation.

Table 6: Significant parameters for the fourth simulation study (unlisted parame-
ters: αnull = 1, δnull = 0.02 and ρnull = 0.2).

Significant Parameters
Subnetwork Mean Influence Matrix

1 α3 = 2 ρ3 = 0.7
2 α3 = 3 –
3 – ρ3 = 0.7
4 – –
5 α3 = 1.5,δ3 = 0.04 –
6 δ3 = 0.10 –
7 δ3 = 0.06 ρ3 = 0.7

Table 7: Estimated powers of F-test and t-test for the fourth simulation setting.
Entries in bold represent results of potential interest.

Individual Parameters (t-test) Subnetwork
Subnetwork α1−α2 δ1−δ2 α1−α3 δ1−δ3 α2−α3 δ2−δ3 (F-test)

1 0.102 0.094 0.991 0.066 0.975 0.098 0.982
2 0.099 0.081 0.983 0.073 0.988 0.091 0.991
3 0.091 0.085 0.343 0.052 0.355 0.102 0.409
4 0.103 0.082 0.121 0.080 0.122 0.100 0.029
5 0.122 0.138 0.467 0.213 0.447 0.253 0.900
6 0.131 0.112 0.100 0.989 0.161 0.958 0.961
7 0.121 0.150 0.365 0.900 0.364 0.856 0.992

Table 7 includes the estimated powers of F and t-tests. It can be seen that powers
of tests are higher than the significance level of 0.05 in cases where no changes are
present. This may be attributed to the small sample size (n = 1). In such cases,
family-wise error rates could provide more conservative inference. It can also be
seen that the tests are sensitive to changes in the fixed effect parameters, as well as
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Table 8: Setting of parameters in the yeast ESR experiment
Experiment Time points
Mild Heat Shock (29C to 33C) 5, 15, 30 min after 33C
Mild Heat Shock with 1M sorbitol at 29C and 33C 5, 15, 30 min after 33C
Mild Heat Shock with 1M sorbitol at 29C 5, 15, 30 min after 33C

associations among genes, and the (positive) change in associations magnifies the
change in the fixed effect parameters. Estimated powers for subnetwork 5 indicate
that even if the individual effects are not strongly significant (low estimated powers
of t-test for intercept and slope), their combined effect, represented by the power of
the F-test, can be significant.

4 Yeast Environmental Stress Response (ESR)
The ability to respond to environmental changes is important for competitive fit-
ness and survival of living organisms; understanding the response of cells to envi-
ronmental changes can provide clues to molecular mechanisms that regulate gene
expression in response to these changes (Causton et al., 2001). Cells respond to
environmental stress factors through a complicated process that is often observ-
able at the expression levels of a large class of genes. Gasch et al. (2000) studied
the response of yeast Saccharomyces cerevisiae to a wide range of environmental
stress factors, and observed the expression levels of genes in the yeast genome over
different time intervals. Experimental settings included responses to temperature
shocks, toxic chemicals and osmotic changes.

To illustrate the proposed network-based model, we selected a subset of the
data available from Gasch et al. (2000). This particular set of experiments studies
the response of yeast cells to mild heat shock at different levels of osmolarities
(different amounts of sorbitol in the environment). The gene expressions were
obtained at three different time points after the cells were resuspended at the final
temperature. Table 8 provides the detailed settings of the experiment.

In order to apply our proposed network-based method, we need external infor-
mation on the weighted adjacency matrix of the underlying gene network. YeastNet
is a publicly available database, which includes genes whose functional interac-
tions are verified by integrating a large number of available genomic and proteomic
data sets (Lee, Li, and Marcotte, 2007). The result of this integration is a network
of ∼ 102,000 interactions among ∼ 5,900 genes, covering 95% of known yeast
genes. However, YeastNet only provides information on the topology of the net-
work (connections between genes) and does not include the strengths of association

23

Shojaie and Michailidis: Network Enrichment Analysis in Complex Experiments

Published by The Berkeley Electronic Press, 2010



of gene interactions. Different methods can be used to efficiently calculate associa-
tion strengths of gene interactions, when the topology of the network is known (see
e.g. Chaudhuri, Drton, and Richardson, 2007). The gene expression data provided
in Gasch et al. (2000) includes additional experiments independent of those studied
in this section, which can be used to derive association weights. Following connec-
tions to graphical models, we estimate the association weight of each edge by the
partial correlation coefficient of the corresponding pair of genes (after correcting
for time dependence). However, since the additional data do not reflect the same
experimental settings, it is not possible to estimate separate influence matrices for
different combinations of time and experimental conditions, and hence we ignore
this variability. Using additional samples, one could calculate the influence matrix
of the network for each of the 9 combinations of experimental conditions and time
points, and incorporate these matrices in the design matrices for fixed and random
effect parameters.

We are interested in determining pathways that are perturbed in response to
the combinations of heat shock and variable osmolarities, as well as those whose
expression profiles exhibit significant changes over time. To determine biologically
relevant pathways, we use information on gene functions provided in the data set
from Gasch et al. (2000), derived from the Gene Ontology (Ashburner, Ball, Blake,
Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig et al., 2000). We define
genetic pathways of interest by combining genes with similar functions into gene
sets. Pathways with at least 5 genes are considered, and a total of 73 pathways and
2784 genes (p = 2784) with known functions are included in our analysis.

Since there are no replicates available in this data set, it is not possible to include
any interaction terms in the model. Hence, we use the model in (4.1) to analyze
the variations in gene expressions over time, and in response to different levels of
sorbitol in the environment.

EY11 = Λµ

EY1k = Λ(µ +δk), k = 2,3 (4.1)
EYjk = Λ(µ +α j +δk), j,k = 2,3

Here α j and δk represent the change from the baseline condition for jth time and
kth experimental conditions and the temporal correlation among gene expressions
is taken into account via an AR(1) model.3

The design matrices Ψ and Π are 9p× 5p and 9p× 9p matrices and the co-
variance matrix of Y is also 9p× 9p. In particular, denoting by φ be the AR(1)

3The model in (4.1) is a simplification of EYjk = Λ(α j + δk), j,k = 1,2,3, where to reduce the
number of parameters, the baseline case of j = k = 1 is represented with a single parameter µ .
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parameter and by σ2
ε and σ2

γ the variance components for ε and γ , the vector of
variance parameters is θ = (σ2

γ ,σ2
ε ,φ). Then using the notation of Section 2.2,

G = σ2
γ I9p, Π = In⊗Λ, and R = σ2

ε I3⊗R, where

R =

 I φ I φ 2I
φ I I φ I
φ 2I φ I I

 .

Finally, the design matrix for the fixed effect parameters is set up using (2.4)
with χ the design matrix for a single gene according to the model in (4.1). Specifi-
cally,

Ψ = χ⊗Λ =



Λ

Λ Λ

Λ Λ

Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ

Λ Λ Λ

Λ Λ Λ


.

Using the FDR controlling procedure of Benjamini and Hochberg (1995) with
q∗ = 0.05, 47 pathways show significant changes in response to the experimental
conditions and/or over time. Figures 5 and 6 depict the gene network of yeast
and some of the significant pathways, respectively. Figure 5 provides a general
overview of the whole network where the edges between the nodes are removed and
the genes are classified into significant and nonsignificant in order to illustrate the
pattern of differential expression throughout the network (clusters of significant and
nonsignificant genes point to the corresponding pathways). Figure 6 looks more
closely at some of the significant pathways with different degrees of connectivity,
and both positive and negative associations among genes. Genes that appear to be
isolated are in fact connected to the pathway through other genes that have been
omitted when displaying each subnetwork separately.

Gasch et al. (2000) reported that about 900 genes showed significant changes
of expression in response to environmental stress factors (over all experimental
settings). They also classified the expression levels of these genes into two dom-
inant patterns of expressions. The first set included about 600 genes, which were
repressed in ESR, while the rest of genes were induced in ESR. Based on this anal-
ysis, genes repressed in ESR are involved in growth-related processes, various as-
pects of RNA metabolism, nucleotide biosynthesis, secretion, as well as the genes
encoding ribosomal proteins. On the other hand, many genes induced in ESR are
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Figure 5: Network of yeast genes considered in the analysis of ESR. Red solid
diamonds and empty circles represent genes in significant and nonsignificant path-
ways, respectively. The plot is drawn using cytoscape 2.6 (www.cytoscape.org).

considered to offer cellular protection during stressful conditions, such as heat and
osmotic shocks which were considered in our analysis. Some of these processes
include Carbohydrate Metabolism, Cell Wall Modifications, Protein Folding And
Degradation, DNA Damage Repair, Fatty Acid Metabolism, Metabolite Transport
and Intracellular Signalling (see Gasch et al. (2000) for more details on the func-
tions of genes repressed and induced in ESR).

Classification of genes by their functions is facilitated through our network-
based enrichment analysis approach, and many of the processes reported in Gasch
et al. (2000) are also found significant based on our proposed method. Moreover,
examination of the estimated fixed effects allows us to study the pattern of expres-
sion of the significant pathways over time and under different levels of sorbitol.

Tables 9 includes the list of significant pathways in analysis of yeast ESR data,
along with the p-values from the corresponding F-test. Table 10 provides a list
of pathways that show changes of expression over time, as well as pathways that
have different expression patterns in different experimental conditions (sorbitol lev-
els). In this table, 24 pathways show significant changes of expression over time,
29 pathways correspond to the change in sorbitol level, and 12 pathways provide
evidence for both type of changes. This analysis reveals new features of environ-
mental stress response, by determining which pathways are activated in response
to different changes in the cell’s environment. Pathways whose expression levels
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a) Cell Cycle

b) Secretion

c) Signaling

d) Respiration

Figure 6: Selected significant pathways considered in analysis of yeast ESR. Solid
orange edges indicate positive interactions and dashed blue edges represent nega-
tive associations among genes. Plots are drawn using cytoscape 2.6.

do not change in response to sorbitol levels, are only activated in response to heat
shock, an obvious example of such pathways being the Heat Shock Response. On
the other hand, pathways that only demonstrate significant changes in response to
sorbitol level are activated when the osmolarity level of the cell’s environment is
perturbed. Pathways that demonstrate changes in response to both types of changes
include both induced and repressed pathways under ESR. Secretion, DNA Replica-
tion, rRNA Processing and Amino Acid Metabolism are examples of pathways that
are repressed in the ESR, while different carbohydrate and fatty acid metabolism
pathways as well as Oxidative Stress Response are induced under ESR.

Figure 7 provides an alternative view of the changes of expressions in response
to environmental stress. In this plot, the average standardized expression levels of
pathways, based on the value of the test statistics for each of the significant path-
ways, is displayed. The pathways are divided into induced and suppressed, based
on their value of test statistic at time t = 5. As observed in Gasch et al. (2000), it
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Table 9: Significant pathways in the analysis of yeast environmental stress response
(ESR) data.

Pathway Name P-Value (F-test) Pathway Size
1 PROTEIN SYNTHESIS 0 286
2 TRANSPORT 0 143
3 SECRETION 0 126
4 CELL CYCLE 0 97
5 CYTOSKELETON 0 83
6 LIPID METABOLISM 0 63
7 AMINO ACID BIOSYNTHESIS 0 60
8 DNA REPAIR 0 58
9 DNA REPLICATION 0 57

10 MEIOSIS 0 52
11 PROTEIN GLYCOSYLATION 0 51
12 PROTEIN FOLDING 0 40
13 RRNA PROCESSING 0 38
14 VACUOLAR PROTEIN TARGETING 0 38
15 GLYCOLYSIS 0 36
16 MATING 0 34
17 SUGAR METABOLISM 0 27
18 SPORULATION 0 22
19 AMINO ACID METABOLISM 0 21
20 AMINO ACID BIOSYNTHESIS 0 19
21 PYRIMIDINE BIOSYNTHESIS 0 12
22 STRESS RESPONSE 0 12
23 METHIONINE BIOSYNTHESIS 0 11
24 SALT TOLERANCE 0 8
25 GLYCEROL METABOLISM 0 6
26 HEAT SHOCK RESPONSE 0 6
27 TREHALOSE METABOLISM 0 6
28 AMINO ACID METABOLISM 0 5
29 B-VITAMIN BIOSYNTHESIS 0 5
30 HIGH OSMOLARITY 0 5
31 RESPIRATION 0.0001 30
32 PHOSPHOLIPID METABOLISM 0.0001 22
33 SPHINGOLIPID METABOLISM 0.0001 9
34 CHROMATIN STRUCTURE 0.0003 47
35 OXIDATIVE STRESS RESPONSE 0.0003 14
36 PURINE BIOSYNTHESIS 0.0006 18
37 CELL ORGANIZATION 0.0016 76
38 MRNA EXPORT 0.0028 9
39 RNA PROCESSING 0.0035 9
40 TRNA PROCESSING 0.0042 35
41 PYRIMIDINE METABOLISM 0.005 8
42 SIGNALING 0.0075 58
43 DRUG RESISTANCE 0.0078 11
44 TOXIN RESISTANCE 0.0122 26
45 ENDOCYTOSIS 0.0152 18
46 ATP SYNTHESIS 0.0163 20
47 PROTEIN TARGETING 0.017 66

can be seen that the change in the expression levels in response to environmental
stress factors is transient. The average expression levels of experiments that include
change in sorbitol level (k = 2,3) are similar. However, these levels are different
from the first experimental setting, where no sorbitol is present. Repressed path-
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Table 10: Analysis of ESR data: Pathways with significant changes over time and
in response to sorbitol

Change over time Change in response to sorbitol
Pathway Pathway

Pathway Name Size Pathway Name Size
1 PROTEIN SYNTHESIS 286 1 TRANSPORT 143
2 TRANSPORT 143 2 SECRETION 126
3 SECRETION 126 3 CELL CYCLE 97
4 LIPID METABOLISM 63 4 CELL ORGANIZATION 76
5 DNA REPAIR 58 5 LIPID METABOLISM 63
6 DNA REPLICATION 57 6 AMINO ACID BIOSYNTHESIS 60
7 RRNA PROCESSING 38 7 DNA REPLICATION 57
8 GLYCOLYSIS 36 8 MEIOSIS 52
9 MATING 34 9 PROTEIN GLYCOSYLATION 51
10 SUGAR METABOLISM 27 10 PROTEIN FOLDING 40
11 PHOSPHOLIPID METABOLISM 22 11 RRNA PROCESSING 38
12 AMINO ACID METABOLISM 21 12 GLYCOLYSIS 36
13 ATP SYNTHESIS 20 13 TRNA PROCESSING 35
14 ENDOCYTOSIS 18 14 RESPIRATION 30
15 PURINE BIOSYNTHESIS 18 15 SUGAR METABOLISM 27
16 OXIDATIVE STRESS RESPONSE 14 16 TOXIN RESISTANCE 26
17 STRESS RESPONSE 12 17 PHOSPHOLIPID METABOLISM 22
18 METHIONINE BIOSYNTHESIS 11 18 SPORULATION 22
19 PYRIMIDINE METABOLISM 8 19 AMINO ACID BIOSYNTHESIS 19
20 SALT TOLERANCE 8 20 PURINE BIOSYNTHESIS 18
21 GLYCEROL METABOLISM 6 21 OXIDATIVE STRESS RESPONSE 14
22 HEAT SHOCK RESPONSE 6 22 DRUG RESISTANCE 11
23 TREHALOSE METABOLISM 6 23 MRNA EXPORT 9
24 AMINO ACID METABOLISM 5 24 RNA PROCESSING 9

25 SPHINGOLIPID METABOLISM 9
26 GLYCEROL METABOLISM 6
27 TREHALOSE METABOLISM 6
28 AMINO ACID METABOLISM 5
29 HIGH OSMOLARITY 5

ways demonstrate a slight delay in the decline in transcription level. Gasch et al.
(2000) characterized this as a feature of the second group of genes repressed in the
ESR. Figure 7 also reveals that presence of sorbitol further reduces the expression
level of genes. This is true for both induced and repressed pathways. It is important
to note that, should the experiment included additional samples, more interesting
analyses about interactions among heat shock and change of osmolarity would also
be possible.

5 Conclusion
In this paper, we introduced a modeling framework for incorporating external net-
work information into the analysis of gene sets in complex experiments, including
multiple factors and time course data. The framework utilizes mixed linear models
and can handle changes in the network structure. Further, it can also be adapted to
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Figure 7: Average expression profile of significant pathways. Red and blue lines
represent induced and suppressed pathways, respectively (positive and negative val-
ues at the first observation time), and solid, dashed and dotted lines indicate the first,
second and third experimental conditions.

handle non-Gaussian data, using the framework of generalized mixed linear models
(GLMM).

One of the challenges in analyzing gene expression data using the proposed
model is the computational burden of the estimation process. Standard packages for
solving mixed linear models cannot handle problems with large vectors/matrices of
observations and parameters, without determining a specific independence struc-
ture. In this paper, we proposed an iterative algorithm based on block-relaxation
for estimating the parameters of the model. This algorithm can be extended to fur-
ther partition the parameter space and to also partition the set of observations over
subnetworks (estimation over subnetworks).

The proposed methodology provides a flexible framework that can be used for
studying changes in genetic pathways and allows for systematic inference on such
changes as the experimental conditions vary. This model requires external infor-
mation about the underlying gene network, as well as information on the strength
of association between genes. An increasing number of publicly available data sets
offer information about the structure of the gene network (the 0-1 adjacency ma-
trix) with different degrees of reliability. However, less information is available
about the strength and direction of these connections. An attractive feature of the
proposed network-based gene set analysis framework is that it is not sensitive to
small noise in the network information. However, bias in the network information
can result in significant deviations from the true powers. The problem of estima-
tion of (directed and undirected) gene networks is an important problem in systems
biology, and of independent interest. It is however important to note that bias may
result from using the same set of gene expression data in order to both estimate the
underlying network, and test the significance of pathways.
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Availability
Matlab codes for the proposed network-based gene set analysis (NetGSA) in the
case of two-class inference problem are available at the first author’s website
(http://www.stat.lsa.umich.edu/∼shojaie/). An R-package (netGSA) for
the general problem is currently being developed and will be made available through
R-CRAN upon completion.
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