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Abstract

Network models are widely used to capture interactions among component of
complex systems, such as social and biological. To understand their behavior, it
is often necessary to analyze functionally related components of the system, cor-
responding to subsystems. Therefore, the analysis of subnetworks may provide
additional insight into the behavior of the system, not evident from individual
components. We propose a novel approach for incorporating available network
information into the analysis of arbitrary subnetworks. The proposed method of-
fers an efficient dimension reduction strategy using Laplacian eigenmaps with
Neumann boundary conditions, and provides a flexible inference framework for
analysis of subnetworks, based on a group-penalized principal component regres-
sion model on graphs. Asymptotic properties of the proposed inference method,
as well as the choice of the tuning parameter for control of the false positive rate
are discussed in high dimensional settings. The performance of the proposed
methodology is illustrated using simulated and real data examples from biology.

1 Introduction

Simultaneous analysis of groups of system components with similar functions, or subsystems, has
recently received considerable attention. This problem is of particular interest in high dimensional
biological applications, where changes in individual components may not reveal the underlying
biological phenomenon, whereas the combined effect of functionally related components could im-
prove the efficiency and interpretability of results. This idea has motivated the method of gene set
enrichment analysis (GSEA), along with a number of related methods [1, 2]. The main premise
of this method is that by assessing the significance of sets rather than individual components (i.e.
genes), interactions among them can be preserved, and more efficient inference methods can be
developed. A different class of models (see e.g. [3, 4] and references therein) has focused on di-
rectly incorporating the network information in order to achieve better efficiency in assessing the
significance of individual components.

These ideas have been combined in [5, 6], by introducing a model for incorporating the regulatory
gene network, and developing an inference framework for analysis of subnetworks defined by bio-
logical pathways. In this frameworks, called NetGSA, a global model is introduced with parameters
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for individual genes/proteins, and the parameters are then combined appropriately in order to assess
the significance of biological pathways. However, the main challenge in applying NetGSA in real-
world biological applications is the extensive computational time. In addition, the total number of
parameters allowed in the model are limited by the available sample size n (see Section 5).

In this paper, we propose a dimension reduction technique for networks, based on Laplacian eigen-
maps, with the goal of providing an optimal low-dimensional projection for the space of random
variables in each subnetwork. We also propose a general inference framework for analysis of sub-
networks by reformulating the inference problem as a penalized principal regression problem on the
graph. In Section 2, we review the Laplacian eigenmaps and establish their connection to principal
component analysis (PCA) for random variables on a graph. Inference for significance of subnet-
works is discussed in Section 3, where we introduce Laplacian eigenmaps with Neumann boundary
conditions and present the group-penalized principal component regression framework for analysis
of arbitrary subnetworks. Results of applying the new methodology to simulated, as well as real
data examples are presented in Section 4, and a summary and directions for future research are
given in Section 5.

2 Laplacian Eigenmaps

Consider p random variables Xi, i = 1, . . . , p (e.g. expression values of genes) defined on nodes of
an undirected (weighted) graph G = (V,E). Here V is the set of nodes of G and E ⊆V ×V its edge
set. Throughout this paper, we represent the edge set and the strength of associations among nodes
through the adjacency matrix of the graph A. Specifically, Ai j ≥ 0 and i and j are adjacent if the Ai j
(and hence A ji) is non-zero. In this case we write i ∼ j. Finally, we denote the observed values of
the random variables by the n× p data matrix X .

The subnetworks of interest are defined based on additional knowledge about their attributes and
functions. In biological applications, these subnetworks are defined by common biological function,
co-regulation or chromosomal location. The objective of the current paper is to develop dimension
reduction methods on networks, in order to assess the significance of a priori defined subnetworks
(e.g. biological pathways) with minimal information loss.

2.1 Graph Laplacian and Eigenmaps

Laplacian eigenmaps are defined using the eigenfunctions of the graph Laplacian, which is com-
monly used in spectral graph theory, computer science and image processing. Applications based
on Laplacian eigenmaps include image segmentation and the normalized cut algorithm of (author?)
[7], spectral clustering [8, 9] and collaborative filtering [10].

The Laplacian matrix and its eigenvectors have also been used in biological applications. For exam-
ple, in (author?) [11], the Laplacian matrix has been used to define a network-penalty for variable
selection on graphs, and the interpretation of Laplacian eigenmaps as a Fourier basis was exploited
in (author?) [12] to propose supervised and unsupervised classification methods.

Different definitions and representations have been proposed for the spectrum of a graph, and the
results may vary depending on the definition of the Laplacian matrix (see [13] for a review). Here,
we follow the notation in (author?) [13], and consider the normalized Laplacian matrix of the
graph. To that end, let D denote the diagonal degree matrix for A, i.e. Dii = ∑ j Ai j ≡ di, and define
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the Laplacian matrix of the graph by L = D−1/2(D−A)D−1/2, or alternatively

Li j =


1− A j j

d j
j = i,d j 6= 0

− Ai j√
did j

j ∼ i

0 o.w.

It can be shown that [13] L is positive semidefinite with eigenvalues 0 = λ0 ≤ λ1 ≤ . . .≤ λp−1 ≤ 2.
Its eigenfunctions are known as the spectrum of G , and optimize the Rayleigh quotient

〈g,L g〉
〈g,g〉

=
∑i∼ j ( f (i)− f ( j))2

∑ j f ( j)2d j
, (1)

It can be seen from (1), that the 0-eigenvalue of L is g = D1/21, corresponding to the average over
the graph G . The first non-zero eigenvalue of L , λ1 is the harmonic eigenfunction of L and is
given by

λ1 = inf
f⊥D1

∑ j∼i ( f (i)− f ( j))2

∑ j f ( j)2d j

The first eigenfunction, corresponding to λ1, is related to the Laplace-Beltrami operator on Reiman-
nian manifolds. More generally,

λk = inf
f⊥DCk−1

∑ j∼i ( f (i)− f ( j))2

∑ j f ( j)2d j

where Ck−1 is the projection to the subspace corresponding to the first k−1 eigenvalues.

2.2 Principal Component Analysis on Graphs

Previous applications of the graph Laplacian and its spectrum often focus on the properties of the
graph; however, the connection to the probability distribution of the random variables on nodes of
the graph has not been strongly emphasized. In graphical models, the undirected graph G among
random variables corresponds naturally to a Markov random field (author?) [14]. The following
result establishes the relationship between the Laplacian eigenmaps and the principal components
of the random variables defined on the nodes of the graph, in case of Gaussian observations.
Lemma 1. Let X = (X1, . . . ,Xp) be random variables defined on the nodes of graph G = (V,E)
and denote by L and L + the Laplacian matrix of G and its Moore-Penrose generalized inverse.
If X ∼ N(0,Σ), then L and L + correspond to Ω and Σ, respectively (Ω ≡ Σ−1). In addition, let
ν0, . . . ,νp−1 denote the eigenfunctions corresponding to eigenvalues of L . Then ν0, . . . ,νp−1 are
the principal components of X, with ν0 corresponding to the leading principal component.

Proof. For Gaussian random variables, the inverse covariance (or precision) matrix has the same
non-zero pattern as the adjacency matrix of the graph, i.e. for i 6= j, Ωi j = 0 iff Ai j = 0. Moreover,
Ωii = τ

−2
i , where τ2

i is the partial variance of Xi (see e.g. [15]). However, using the conditional
autoregression (CAR) representation of Gaussian Markov random fields (author?) [16], we can
write

E(Xi|X−i) = ∑
j∼i

ci jX j (2)

where −i ≡ {1 . . . p}\i and C = [ci j] has the same non-zero pattern as the adjacency matrix of
the graph A, and amounts to a proper probability distribution for X . In particular, by Brook’s
Lemma (author?) [16] it follows from (2) that fX (x) ∝ exp

{
−1/2xT(0,T−1(Ip−C))x

}
, where

T = diag[τ2
i ]. Therefore, Ω = T−1(Ip−C) and hence (Ip−C) should be PD.
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Figure 1: Left: A simple subnetwork of interest, marked with the dotted circle. Right: Illustration
of the Neumann random walk, the dotted curve indicates the boundary of the subnetwork.

However, since L = Ip−D−1/2AD−1/2 is PSD, we can set C =D−1/2AD−1/2−ζ I for any ζ > 0. In
other words, (Ip−C) =L +ζ Ip, which implies that L̃ ≡L +ζ Ip = T Ω, and hence L̃ −1 = ΣT−1.
Taking limit as ζ → 0, it follows that L and L + correspond to Ω and Σ, respectively.

The second part follows directly from the above connection between L̃ −1 and Σ. In particular,
suppose, without loss of generality, that τ2

i = 1. Then, it is easily seen that the principal components
of X are given by eigenfunctions of L̃ −1, which are in turn equal to the eigenfunctions of L̃ with
the ordering of the eigenvalues reversed. However, since eigenfunctions of L + ζ Ip and L are
equal, the principal components of X are obtained from eigenfunctions of L .

Remark 2. An alternative justification for the above result, for general probability distributions
defined on graphs, can be given by assuming that the graph represents “similarities” among random
variables and using an optimal embedding of graph G in a lower dimensional Euclidean space1.
In the case of one dimensional embedding, the goal is to find an embedding v = (v1, . . . ,vp)

T that
preserves the distances among the nodes of the graph. The objective function of the embedding
problem is then given by Q = ∑i, j (vi− v j)

2Ai j, or alternatively Q = 2vT(D−A)v (author?) [17].
Thus, the optimal embedding is found by solving argminvTDv=1 vT(D−A)v. Setting u = D1/2v, this
is solved by finding the eigenvector corresponding to the smallest eigenvalue of L .

Lemma 1 provides an efficient dimension reduction framework that summarizes the information in
the entire network into few feature vectors. Although the resulting dimension reduction method
can be used efficiently in classification (as in [12]), the eigenfunctions of G do not provide any
information about significance of arbitrary subnetworks, and therefore cannot be used to analyze
the changes in subnetworks. In the next section, we introduce a restricted version of Laplacian
eigenmaps, and discuss the problem of analysis of subnetworks.

3 Analysis of Subnetworks and PCR on Graph (GPCR)

3.1 Analysis of Subnetworks

In (author?) [5], the authors argue that to analyze the effect of subnetworks, the test statistic needs
to represent the pure effect of the subnetwork, without being influenced by external nodes, and
propose an inference procedure based on mixed linear models to achieve this goal. However, in
order to achieve dimension reduction, we need a method that only incorporates local information at
the level of each subnetwork, and possibly its neighbors (see the left panel of Figure 1).

Using the connection of the Laplace operator in Reimannian manifolds to heat flow (see e.g. [17]),
the problem of analysis of arbitrary subnetworks can be reformulated as a heat equation with bound-
ary conditions. It then follows that in order to assess the “effect” of each subnetwork, the appropriate
boundary conditions should block the flow of heat at the boundary of the set. This corresponds to

1For unweighted graphs, this justification was given by (author?) [17], using the unnormlized Laplacian
matrix.
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insulating the boundary, also known as the Neumann boundary condition. For the general heat
equation τ(v,x), this boundary condition is given by ∂τ

∂v (x) = 0 at each boundary point x, where v is
the normal direction orthogonal to the tangent hyperplane at x.

The eigenvalues of subgraphs with boundary conditions are studied in (author?) [13]. In particular,
let S be any (connected) subnetwork of G , and denote by δS the boundary of S in G . The Neumann
boundary condition states that for every x ∈ δS, ∑y:{x,y}∈δS ( f (x)− f (y)) = 0.

The Neumann eigenfunctions of S are then the optimizers of the restricted Rayleigh quotient

λS,i = inf
f

sup
g∈Ci−1

∑{t,u}∈S∪δS ( f (t)− f (u))2

∑t∈S ( f (t)−g(t))2 dt

where Ci−1 is the projection to the space of previous eigenfunctions.

In (author?) [13], a connection between the Neumann boundary conditions and a reflected random
walk on the graph is established, and it is shown that the Neumann eigenvectors can be alternatively
calculated from the eigenvectors of the transition probability matrix of this reflected random walk,
also known as the Neumann random walk (see [13] for additional details). Here, we generalize this
idea to weighted adjacency matrices.

Let P̃ and P denote the transition probability matrix of the reflected random walk, and the original
random walk defined on G , respectively. Noting that P = D−1A, we can extend the results in
(author?) [13] as follows. For the general case of weighted graphs, define the transition probability
matrix of the reflected random walk by

P̃i j =


Pi j j ∼ i, i, j ∈ S
Pi j +

AikAk j
did′k

j ∼ k ∼ i,k /∈ S
0 o.w.

(3)

where d′k = ∑i∼k,i∈S Aki denotes the degree of the node k in S. Then, the Neumann eigenvalues are
given by λi = 1−κi, where κi is the ith eigenvalue of P̃.
Remark 3. The connection with the Neumann random walk also sheds light into the effect of the
proposed boundary condition on the joint probability distribution of the random variables on the
graph. To illustrate this, consider the simple graph in the right panel of Figure 1. For the moment,
suppose that the random variables X1,X2,X3 are Gaussian, and the edges from X1 and X2 to X3 are
directed. As discussed in (author?) [5], the joint probability distribution of the random variables
on the graph is then given by linear structural equation models:

X1 = γ1

X2 = γ2

X3 = ρ1X1 +ρ1X2

⇒ Y = Λγ, Λ =

( 1 0 0
0 1 0
ρ1 ρ2 1

)

Then, the conditional probability distribution of X1 and X2 given X3, is Gaussian, with the inverse
covariance matrix given by (

1+ρ2
1 ρ1ρ2

ρ1ρ2 1+ρ2
2

)
(4)

A comparison between (3) and (4) then reveals that the proposed Neumann random walk corre-
sponds to conditioning on the boundary variables, if the edges going from the set S to its boundary
are directed. The reflected random walk, for the original problem, therefore corresponds to first
setting all the influences from other nodes in the graph to nodes in the set S to zero (resulting in
directed edges) and then conditioning on the boundary variables. Therefore, the proposed method
offers a compromise compared to the full model of (author?) [5], based on local information at the
level of each subnetwork.

5



3.2 Group-Penalized PCR on Graph

Using the Neumann eigenvectors of subnetworks, we now define a principal component regression
on graphs, which can be used to analyze the significance of subnetworks. Let N j denote the |S j|×
m j matrix of the m j smallest Neumann eigenfunctions for subgraph S j. Also, let X ( j) be the n×|S j|
matrix of observations for the j-th subnetwork. An m j-dimensional projection of the original data
matrix X ( j) is then given by X̃ ( j) = X ( j)N j. Different methods can be used in order to determine
the number of eigenfunctions m j for each subnetwork. A simple procedure determines a predefined
threshold for the proportion of variance explained by each eigenfunction. These proportions can be
determined by considering the reciprocal of Neumann eigenvalues (ignoring the 0-eigenvalue). To
simplify the presentation, here we assume m j = m,∀ j.

The significance of subnetwork S j is a function of the combined effect of all the nodes, captured
by the transformed data matrix X̃ ( j). This can be evaluated by forming a multivariate ANOVA
(MANOVA) model. Formally, let y be the mn× 1 vector of observations obtained by stacking all
the transformed data matrices X̃ ( j). Also, let X be the mn×Jmr design matrix corresponding to the
experimental settings, where r is the number of parameters used to model experimental conditions,
and β be the vector of regression coefficients. For simplicity, here we focus on the case of a two-
class inference problem (e.g. treatment vs. control). Extensions to more general experimental
settings follow naturally and are discussed in Section 5.

To evaluate the combined effect of each subnetwork, we impose a group penalty on the coefficient
of the regression of y on the design matrix X . In particular, using the group lasso penalty (author?)
[18], we estimate the significance of the subnetwork by solving the following optimization problem2

argmin
β

{
n−1‖y−

J

∑
j=1

X ( j)
β
( j)‖2

2 + γ

J

∑
j=1
‖β ( j)‖2

}
(5)

where J is the total number of subnetworks considered and X ( j) and β ( j) denote the columns of
X , and entries of β corresponding to the subnetwork j, respectively.

In equation (5), γ is the tuning parameter and is usually determined by performing k-fold cross
validation or evaluation on independent data sets. However, since the goal of our analysis is to
determine the significance of subnetworks, γ should be determined so that the probability of false
positives is controlled at a given significance level α . Here we adapt the approach in (author?)
[20] and determine the optimal value of γ so that the family-wise error rate (FWER) in repeated
sampling with replacement (bootstrap) is controlled at the level α . Specifically, let qi

γ be the total
number of subnetworks considered significant based on the value of γ in the ith bootstrap sample.
Let π be the threshold for selection of variables as significant. In other words, if P( j)

i is the prob-
ability of selecting the coefficients corresponding to subnetwork j in the ith bootstrap sample, the
subnetwork j is considered significant if maxγ P( j)

i ≥ π . Using this method, we select γ such that
qi

γ =
√
(2π−1)α p.3

The following result shows that the proposed methodology correctly selects the significant subnet-
works, while controlling FWER at level α . We begin by introducing some additional notations and
assumptions. We assume the columns of design matrix X are normalized so that n−1Xi

TXi = 1,
Throughout this paper, we consider the case where the total number of nodes in the graph p, and the
number of design parameters r are allowed to diverge (the p� n setting). In addition, let s be the
total number of non-zero elements in the true regression vector β .

2The problem in (5) can be solved using the R-package grplasso [19].
3Additional details for this method are given in (author?) [20], but are excluded here due to space limita-

tions.

6



Theorem 4. Suppose that m,n ≥ 1 and there exists η ≥ 1 and t ≥ s ≥ 1 such that n−1X TXi j ≤
(7ηt)−1 for all i 6= j. Also suppose that for j 6= k, the transformed random variables X̃ ( j) and X̃ (k)

are independent. If the tuning parameter γ is selected such that such that qγ =
√
(2π−1)αrp,

(i) there exists ζ = ζ (n, p) > 0 such that ζ → 0 as n→ ∞ and with probability at least 1−ζ the
significant subnetworks are correctly selected with high probability,

(ii) the family-wise error rate is controlled at the level α .

Outline of the Proof. First note that the MANOVA model presented above can be reformulated as
a multi-task learning problem [21]. Upon establishing the fact that for the proposed tuning pa-
rameter γ ∼

√
log p/(nm3/2), it follows from the results in (author?) [22] that for each bootstrap

sample, there exists ε = ε(n) > 0 such that with probability at least 1− (rp)−ε the significant
subnetworks are correctly selected. Thus if π ≤ 1− (rp)−ε , the coefficients for significant subnet-
works are included in the final model with hight probability. In particular, it can be shown that
ζ = Φ{

√
B(1− (rp)−ε −π)/2}, where B is the number of bootstrap samples and Φ is the cumula-

tive normal distribution. This proves the first claim.

Next, note that the normality assumption, and the fact that the eigenfunctions within each sub-
network are orthogonal, imply that for each j, X̃ ( j)

i , i = 1, . . . ,m are independent. Moreover, the
assumption of independence of X̃ ( j) and X̃ (k) for j 6= k implies that the values of y are independent
realizations of i.i.d standard normal random variables. On the other hand, the KarushKuhnTucker
conditions for the optimization problem in (5) imply that β ( j) 6= 0 iff (nm)(−1)〈(y−X β ),X ( j)〉=
sgn(β̂ ( j))γ , where 〈x,y〉 denotes their inner product. It is hence clear that 1[β ( j) 6=0] are exchangeable.
Combining this with the first part of the theorem, the claim follows from Theorem 1 of (author?)
[20].

Remark 5. The main assumption of Theorem 4 is the independence of the variables in different sub-
networks. Although this is not satisfied in general problems, it may be satisfied by the conditioning
argument of Remark 3. It is possible to further relax this assumption using an argument similar to
Theorem 2 of (author?) [20], but we do not pursue this here.

4 Experiments

We illustrate the performance of the proposed method using simulated data motivated by biological
applications, as well as a real data application based on gene expression analysis. In the simulation,
we generate a small network of 80 nodes (genes), with 8 subnetworks. The random variables (ex-
pression levels of genes) are generated according to a normal distribution with mean µ . Under the
null hypothesis, µnull = 1 and the association weight ρ for all edges of the network is set to 0.2. The
setting of parameters under the alternative hypothesis are given in Table 1, where µalt = 3. These
settings are illustrated in the left panel of Figure 2. Table 1 also includes the estimated powers of
the tests for subnetworks based on 200 simulations with n = 50 observations. It can be seen that the
proposed GPCR method offers improvements over GSEA (author?) [1], especially in case of sub-
networks 3 and 6. However, it results in a less accurate inference compared to NetGSA (author?)
[5].

In (author?) [5], the pathways involved in Galactose utilization in yeast were analyzed based on the
data from (author?) [23], and the performances of the NetGSA and GSEA methods were compared.
The interactions among genes, along with significance of individual genes (based on single gene
analysis) are given in the right panel of Figure 2, and the results of significance analysis based on
NetGSA, GSEA and the proposed GPCR are given in Table 2. As in the simulated example, the
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Figure 2: Left: Setting of the simulation parameters under the alternative hypothesis. Right: Net-
work of yeast genes involved in Galactose utilization.

results of this analysis indicate that GPCR results in improved efficiency over GSEA, while failing
to detect the significance of some of the pathways detected by NetGSA.

5 Conclusion

We proposed a principal component regression method for graphs, called GPCR, using Laplacian
eigenmaps with Neumann boundary conditions. The proposed method offers a systematic approach
for dimension reduction in networks, with a priori defined subnetworks of interest. It can also incor-
porate both weighted and unweighted adjacency matrices and can be easily extended to analyzing
complex experimental conditions through the framework of linear models. This method can also be
used in longitudinal and time-course studies.

Our simulation studies, and the real data example indicate that the proposed GPCR method offers
significant improvements over the methods of gene set enrichment analysis (GSEA). However, it
does not achieve optimal powers in comparison to NetGSA. This difference in power may be at-
tributable to the mechanism of incorporating the network information in the two methods: while
NetGSA incorporates the full network information, GPCR only account for local network informa-
tion, at the level of each subnetwork, and restricts the interactions with the rest of the network based
on the Neumann boundary condition. However, the most computationally involved step in Net-
GSA requires O(p3) operation, whereas the computational cost of GPCR is O(m3). It is clear that
since m� p in most applications, GPCR could result in significant improvement in terms of com-
putational time and memory requirements for analysis of high dimensional networks. In addition,
NetGSA requires that r < n, whilst the dimension reduction and the penalization of the proposed

Table 1: Parameter settings under the alternative and estimated powers for the simulation study.
Parameter Setting Estimated Powers Parameter Setting Estimated Powers

Subnet % µalt ρ NetGSA GPCR GSEA Subnet % µalt ρ NetGSA GPCR GSEA
1 0.05 0.2 0.02 0.08 0.01 5 0.05 0.6 0.94 0.41 0.12
2 0.20 0.2 0.03 0.21 0.02 6 0.20 0.6 1.00 0.61 0.15
3 0.50 0.2 1.00 0.65 0.27 7 0.50 0.6 1.00 0.99 0.97
4 0.80 0.2 1.00 0.81 0.90 8 0.80 0.6 1.00 0.99 1.00
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GPCR removes the need for any such restriction and facilitates the analysis of complex experiments
in the settings with small sample sizes.
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