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Abstract6

We consider traveling waves on a surface of an ideal fluid of finite depth. The7

equation describing Stokes waves in conformal variables formulation are referred8

to as the Babenko equation. We use a Newton-Conjugate-Gradient method to9

compute Stokes waves for a range of conformal depths from deep to shallow10

water. In deep water, we compute eigenvalues of the linearized Babenko equation11

with Fourier-Floquet-Hill method. The secondary bifurcation points that corre-12

spond to double period bifurcations of the Stokes waves are identified on the13

family of waves. In shallow water, we find solutions that have broad troughs and14

sharp crests, and which resemble cnoidal or soliton-like solution profiles of the15

Korteweg-de Vries equation. Regardless of depth, we find that these solutions16

form a 2π/3 angle at the crest in the limit of large steepness.17
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1 Introduction19

We consider the 2D potential flow of an ideal fluid with a free surface and a flat bottom.20

Periodic surface waves of permanent form which travel with a constant velocity are21

referred to as Stokes waves, originally described in the works of [1, 2]. It was shown22

that Stokes waves can be expanded in a small amplitude series and the convergence23

of such series were established for an infinite depth fluid in [3], [4]. Furthermore, the24

convergence of such series in the case of a finite depth fluid was shown in [5]. The25

existence of large amplitude waves was demonstrated for the case of a flat bottom26

in [6] and for the case of a undulating bottom in [7]. It was conjectured by Stokes27

that these surface waves attain their maximum possible height with an angle of 2π/328

forming at the crest. The Stokes waves bifurcate from flat water and form a family of29
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waves which extends from small amplitude to the wave of greatest height which has a30

2π/3 angle at its wave-crest, as shown by [8], [9], [10], and [11].31

Several formulations have been used to study Stokes waves in both finite depth32

and infinitely deep water. Notably, [12] used the one given in [13] to demonstrate33

the existence of the steepest wave as well as a number of its properties. We instead34

focus on the approach offered by the conformal transformation described in [14]. This35

reformulation has been used by many authors to compute special solutions in the case36

of an infinite depth fluid flow with a free boundary, e.g. traveling–standing waves [15],37

quasi-periodic waves [16], or traveling waves [17]. We use this approach to numerically38

study traveling waves in a finite depth fluid, in particular high-amplitude waves. Stokes39

waves of moderate amplitude in a finite depth fluid have been studied numerically for40

example in [18], [19], [20], [21], [22], [23] as well as in other works.41

2 Formulation of the Problem42

Fig. 1 The region in w plane ((u, v) ∈ [−π, π]× [−h, 0]) is mapped into the domain occupied by the
fluid in the (x, y)−plane

(
(x, y) ∈ [π, π]× [−h̄, η(x, t)]

)
. The lines v = 0 and v = −h are mapped onto

the free-surface and bottom of the fluid respectively.

We consider an ideal 2D fluid bounded between a finite flat bottom and a free43

surface. The free surface is a 1D curve y = η(x, t) where −∞ < x < ∞ and y = −h̄44

is the fluid bottom. The fluid flow is potential with the velocity of the fluid given by45

v = ∇φ and the velocity potential given by φ(x, y, t). We seek periodic traveling wave46

solutions propagating on the free surface of the fluid, and we impose 2π-periodicity in47

the x-direction on η and Φ.48

The incompressibility condition implies that φ is a harmonic function and satisfies49

the Laplace equation inside the fluid domain D = {(x, y)| − π < x < π,−h̄ < y <50

η(x, t)}. The system of partial differential equations imposed on the free surface and51

potential are given by,52

∆φ = 0 in D, (1)

∂η

∂t
= −∂φ

∂x

∂η

∂x
+
∂φ

∂y
at y = η(x, t), (2)
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∂φ

∂t
+

1

2
(∇φ)2 + gη = 0 at y = η(x, t), (3)

∂φ

∂y
= 0 at y = −h̄, (4)

where g is the free-fall acceleration. The potential on the free surface is denoted to be53

ψ(x, t) = φ(x, y, t)|y=η(x,t).54

The nonlinear system of equations in (2)–(4) define the fluid domain together with55

the boundary conditions for ψ. The coupling of Dirichlet and Neumann boundary data56

for Laplace equation in D is challenging, and requires special treatment. Among many57

techniques, one should note the Zakharov-Craig-Sulem approach [24, 25], the nonlocal58

AFM formulation [26], and the conformal variables approach [27–29]. In this paper59

we follow the conformal variables approach and use an exact Dirichlet-to-Neumann60

operator which is readily available by virtue of the conformal mapping technique.61

We seek a time-dependent conformal transformation, z(w, t) = x(w, t) + iy(w, t),62

that maps the rectangle w = u + iv ∈ [−π, π] × [−h, 0] in the conformal plane into63

the fluid domain (x, y) ∈ [−π, π] × [−h̄, η] as shown in figure 1. The lines v = 0 and64

v = −h in the w plane are mapped into the fluid surface y = η and bottom y = −h̄65

in physical domain respectively.66

The shape of the free surface is defined parametrically as z(u, t) = [u+ x̃(u, t)] +67

iy(u, t) where y(u, t) and x̃(u, t) are 2π-periodic functions of the variable u. The com-68

plex potential Φ(w, t) = ψ(z(w, t), t)+iθ(z(w, t), t) and the potential at the free surface69

ψ(u, t) = Re(Φ(u, t)) are both 2π-periodic functions of u as well.70

The equations describing the fluid motion are derived by extremizing the action71

given in [14]. This action is associated with the Hamiltonian of this problem that we72

presented in conformal variables,73

H = −1

2

∫ π

−π

ψR̂ψudu+
g

2

∫ π

−π

y2xudu. (5)

The resulting implicit equations are posed on the real line w = u and have the following74

form,75

yt (1 + x̃u)− x̃tyu = −R̂ψu, (6)

ψtyu − ψuyt + gyyu + R̂ (ψtxu − ψuxt + gyxu) = 0. (7)

The first equation encodes the kinematic boundary condition (2), and the second the76

dynamic boundary condition (3). The operator R̂ is defined by77

R̂f(u) =
1

2h
P.V.

∫ ∞

−∞

f(u
′
)

sinh π(u′−u)
2h

du
′
, (8)

where P.V. stands for Cauchy’s principal value. The operator R̂ is diagonal in Fourier78

space with the Fourier symbol i tanh(kh) and is invertible on zero-mean 2π-periodic79
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functions. Its inverse is given by T̂ , such that R̂T̂ = T̂ R̂ = 1. Thus, these operators80

act on the Fourier basis through81

T̂ eiku = −i coth (kh) eiku and R̂ eiku = i tanh (kh) eiku. (9)

The real and imaginary parts of the analytic function z̃(u, t) = x̃(u, t) + iy(u, t) are82

related via the operators R̂ and T̂ ,83

yu = R̂x̃u and x̃u = T̂ yu, (10)

see for example [30, 31] for justification.84

3 Stokes Wave Equation and Numerical Method85

A nonlinear periodic traveling wave on the free surface v = 0 of constant shape and86

speed is referred to as a Stokes wave. The ratio of the height H (distance from crest87

to trough) over the wavelength L = 2π of a Stokes wave is defined to be its steepness88

s = H/L. A base wavenumber is k0 = 2π/L. These waves are found by considering a89

traveling wave solution to the equations (6)-(7) in the form z̃(u, t) = z̃(u−ct), ψ(u, t) =90

ψ(u− ct) (for more details see [14].) This results in equation (11),91

−c2yu + gyyu + gR̂ [y (1 + x̃u)] = 0, (11)

where c is the speed of the wave. Applying the traveling wave ansatz to equation 692

yields the relation R̂ψu = cyu, which connects the surface potential ψ to the vertical93

displacement y in a traveling wave. By applying the operator T̂ to equation (11) one94

finds an analog of the so-called Babenko equation [32],95

(
c2t̂− g

)
y − g

(
1

2
t̂
[
y2
]
+ yt̂y

)
= 0. (12)

Here t̂ ≡ ∂uT̂ and in Fourier space it corresponds to multiplication by t̂k = k coth kh96

(see also equation (44) in [33]). We refer to the left-hand side of the equation (12) as97

Ŝy, or the modified Babenko operator. Note that the integral of (12) over one period98

gives the zero mean level condition,
∫ π

−π
yxudu =

∫ π

−π
ydx = 0.99

It is important to note that the relation between the physical depth h̄ and the100

conformal depth h is given by101

h̄ = h− ŷ0[h], (13)

where ŷ0 is the zero Fourier mode of y(u). We emphasize that ŷ0 depends on h through102

the operator t̂ in Babenko equation (12). This property makes it inconvenient to103

compute families of Stokes waves while holding h̄ constant. As such, we hold h fixed104

and let the wave-speed c vary along the bifurcation branch. We leave the computation105

of Stokes waves of a fixed h̄ to future work where we develop a method that allows106

us to keep the physical depth constant. Figure 2 shows h̄ for waves computed in107

conformal depths h = 1.5 (Left Panel) and h = 0.16 (Right Panel) as a function of108
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Fig. 2 Plots of the physical depth h̄ as a function of steepness s in the fixed conformal depths h = 1.5
(Left Panel) and h = 0.16 (Right Panel). Insets on the left plot shows a zoom into the oscillations
of the physical depth as a function of steepness. This is qualitatively similar to the oscillations of
the speed and energy of Stokes waves with increasing amplitude, and the maximum physical depths
attained appear to be h̄ = 0.1623 in conformal depth h = 0.16 and h̄ = 1.5548 in conformal depth
h = 1.5.

wave steepness. The difference between h̄ and h is below 4% as shown in figure 2,109

and oscillates as a function of steepness. The values of h̄(s) oscillate as steepness of110

waves increases. We conjecture that h̄(s) approaches limiting values (for h = 1.5 and111

h = 0.16) as steepness of waves increases.112

A Stokes wave is found by numerically solving the modified Babenko equation (12).113

We follow the traditional approach and use a Newton-Conjugate-Gradient method as114

described in [34, 35]. To find a Stokes wave, we employ a continuation method in the115

wave speed parameter, c. We begin by supplying an initial approximation to the wave,116

y(0), which can be obtained either from the Stokes expansion (near flat water) or a117

numerically computed wave with a different value of the speed parameter c.118

Let y be the unknown exact solution of the modified Babenko equation. Given119

an approximate solution y(n) we may write y = y(n) + δy. Here δy is the correction120

to be determined. The Babenko operator applied to the exact solution can then be121

expressed as follows,122

0 = Ŝy = Ŝ
(
y(n) + δy

)
= Ŝy(n) + Ŝ1

[
y(n)

]
δy + h.o.t., (14)

where h.o.t. denotes terms that are higher order in δy, and Ŝ1

[
y(n)

]
refers to the123

linearization of the modified Babenko operator at the approximate solution, y(n). This124

is given by125

Ŝ1[y
(n)]δy =

(
c2t̂− g

)
δy − g

(
δy t̂y(n) + y(n) t̂ δy + t̂

(
y(n)δy

))
. (15)

We ignore the higher order terms by assuming that δy is small and solve the resulting126

linear equation,127

Ŝ1[y
(n)]δy = −Ŝy(n), (16)
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by means of the Conjugate-Gradient method. One should note that the linear operator128

Ŝ1[y
(n)] is self-adjoint and indefinite. Due to this property we often switch to the129

MINRES (minimal residual) method to retain guaranteed convergence.130

Once the correction δy has been determined to a sufficient accuracy, we accept the131

numerical solution and update the Newton step by132

y(n+1) = y(n) + δy. (17)

The steps are then repeated until the desired accuracy is attained. Here the accuracy is133

measured by the L∞ norm of Ŝy(n+1). In the numerical results reported the tolerance134

is set to 10−11 and the numerical solution y(n+1) is accepted if its accuracy is below135

the tolerance.136

The function y(u) is represented by the Fourier series,137

y(u) =

N/2−1∑
k=−N/2

yke
iku. (18)

y(u) is an even function where we assumed the wave-crest to be at u = 0, and thus,138

y−k = yk. The number of Fourier modes N is chosen so that yN/2 is of the order 10−16
139

to fully resolve a Stokes wave.140

It is important to note that, while in this work we only consider two fixed finite141

depths, our method is able to compute solutions efficiently and accurately in a fluid142

of any conformal depth due to the fact that we solve equation 12 using a matrix-free,143

pseudo-spectral method instead of a method reliant on the convergence of a Pade144

expansion in [18, 19], or limited in the number of Fourier modes we can consider by145

the formation of the operator matrix [36, 37].146

It is also worth noting that our computations become increasingly expensive as147

the steepest wave is approached in order to maintain spectral accuracy; this process148

is only accelerated in shallower fluids. Compounding this issue is the fact that we149

compute our waves using a continuation method, computing each subsequent wave150

using a wave with a slightly larger conformal depth or smaller amplitude as an initial151

condition. Regardless, it is the size of our parameter space that limits our explorations152

rather than our method, and we have computed waves of steepness exceeding that of153

the first extremizer of the energy and speed in a fluid with a ratio of conformal depth154

to wavelength as small as 1/1000, greatly extending the capabilities demonstrated in155

previous works [18, 19, 36].156

4 Eigenvalues of the linearized Babenko operator157

In this section, we discuss the linearization of the Babenko operator Ŝ1 and its158

eigenvalue spectrum for a finite-depth fluid,159

Ŝ1[y
(c,k0h)]f = λ(c, k0h)f, (19)
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where y(c,k0h) is a Stokes wave with speed c and dimensionless conformal depth k0h,160

and λ is an eigenvalue of Ŝ1 with f being its associated eigenfunction. The significance161

of eigenvalues of Ŝ1 is twofold: they indicate the conditioning of the numerical solutions162

of the Babenko equation and, more importantly, allow us to track the secondary163

bifurcations from Stokes waves, see also [38, 39]. As one traverses the family of Stokes164

waves as a function of parameter c, the eigenvalues λ = λ(c, k0h) are observed to165

be continuous functions of the wave speed and dimensionless conformal depth, k0h.166

Furthermore, the appearance of a zero eigenvalue indicates a singular operator for167

the linear system, Ŝ1δy = −Ŝy(n). A singular operator implies a bifurcation at the168

parameters (c∗, k0h∗) as well as a new solution branch originating at the bifurcation169

point. A complete study of bifurcation points of the linearized Babenko operator is170

beyond the scope of this paper. The trivial bifurcation points occur at flat water and171

can be computed explicitly.172

Remark: Bifurcations from flat water173

In flat water the operator, Ŝ1, reduces to a Fourier multiplier with the symbol174

Ŝ1[0]e
iku =

(
c2k coth kh− g

)
eiku. (20)

The eigenfunctions are then simply e±iku and the associated eigenvalues are given by,175

λ(c, kh) = c2k coth kh− g. (21)

A simple calculation, λ(c∗, k0h) = 0, shows that a Stokes wave with base wavenumber176

k0 bifurcates from flat water at the speed177

c2∗ =
g tanh k0h

k0
. (22)

The choice of sign will determine the direction in which the Stokes wave propagates.178

For k ̸= 0 each eigenvalue has algebraic and geometric multiplicity two as well as an179

eigenspace spanned by e±iku, or equivalently sin ku and cos ku. The eigenvalue for the180

constant eigenfunction, k = 0, is a simple one.181

An asymptotic theory could be developed for small amplitude waves. It is instead182

more practical to seek the eigenvalues of the operator Ŝ1 numerically and track the183

smallest eigenvalues in magnitude to determine secondary bifurcations.184

To determine the eigenvalues of Ŝ1 we employ an Arnoldi-based package which is185

built around the shift–and–invert method, see [40]. In essence, we build a sequence of186

approximations to the eigenfunction f of Ŝ1 corresponding to the eigenvalue nearest187

to σ through the recursion,188

f (n) =
(
Ŝ1 − σI

)
f (n+1), (23)
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Fig. 3 (Left Panel) We plot profiles of waves with increasing steepnesses s =
0.0847, 0.0970, 0.1089, 0.1255 for the fixed conformal depth k0h = 1.5. A corner of 120 degrees
appears at the crest as the waves approach limiting Stokes wave. (Right Panel) A zoom into the
crest region shows that these solutions remain smooth while a corner develops at the crest.

where σ is a real parameter called the shift. The minimum residual (MINRES) method189

is used to solve equation (23), and the solution is normalized to unit norm in L2 during190

each step of the recursion.191

The quasi-periodic eigenfunctions of Ŝ1 can studied using the Fourier-Floquet-Hill192

method [41]. In the equation (19), we consider quasi-periodic eigenfunctions,193

f(u) = f̃(u)eiµu, (24)

similarly to [38]. Here, f̃(u) is a 2π periodic function and µ is the Floquet parameter,194

µ ∈ (−0.5, 0.5]. The linearized Babenko operator is modified as follows,195

Ŝ1,µf̃ =
(
c2t̂µ − g

)
f̃ − g

(
f̃ t̂y + y t̂µ f̃ + t̂µ

(
yf̃

))
, (25)

where t̂µe
iku = (k + µ) coth [(k + µ)h] eiku.196

The eigenvalues of Ŝ1 are shown for Stokes waves of a fixed conformal depth k0h =197

1.5 in section 5.1. Two cases, µ = 0 and µ = 0.5, are considered. A complete study of198

the eigenvalues of (25) for all values of µ is left for future work.199

5 Numerical Results200

In the following sections, we describe some of the results of the numerical method201

when applied to traveling waves over various depths. In the subsection 5.1 we pick202

a conformal depth k0h = 1.5 which corresponds to waves over substantially deep203

water. We note that the value of the operator T̂ = −i coth(1.5k) ≈ −1.1048i for204

k = 1 differs from the Hilbert operator −Ĥ = −isign(k) = −i for the infinite depth205

problem by 10.5%. We compute the bifurcation curve c(s) at the conformal depth206

k0h = 1.5 for waves of increasing steepness, stopping when it becomes necessary to use207

a prohibitively large number of Fourier modes (about 8 million) to resolve the Stokes208

wave.209

In the section 5.2, we depart from the conformal depth k0h = 1.5 and use con-210

tinuation in both the c and k0h parameters to reach shallow water limit and observe211

the “soliton-like” Stokes waves shown in figure 6. We reach very shallow water with212
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Fig. 4 (Left Panel) We show the first two local extrema of the velocity as a function of steepness,
with the last wave shown requiring 106 Fourier modes. (Right Panel) We show the first three extrema
of the Hamiltonian as a function of steepness s (both panels show results for the case of fixed depth
k0h = 1.5).

depth k0h = 0.072, where the finite depth operator T̂ is drastically different from the213

Hilbert transform, since T̂ = coth kh = 1
kh +O(kh) for the first few Fourier modes k.214

Afterwards, we fix the conformal depth at, k0h = 0.16, and compute the bifurcation215

diagram of wave velocity versus wave steepness. In this depth coth (k0h)− (k0h)
−1 ≈216

0.05. The Stokes waves at this depth share qualitative features with solitons (being217

strongly localized), while angle formation at the crest becomes evident in taller waves.218

The crest angle approaches 2π/3.219

5.1 Waves in depth k0h = 1.5220

We fix the conformal depth at k0h = 1.5 and compute solutions of the Babenko221

equation ranging from flat water to an almost limiting wave.

Steepness, s Values Description
sc1 = 0.123352... c = 1.046755... first maximum in velocity
sc2 = 0.125467... c = 1.047091... second minimum in velocity
sH1 = 0.121338... H = 0.358205... first maximum in Hamiltonian
sH2 = 0.125353... H = 0.352087... second minimum in Hamiltonian

Table 1 Steepness of waves at the first 2 turning points of velocity and
Hamiltonian and their values.

222

In figure 3, we show that as the limiting wave is approached a 2π/3 angle forms223

at the crest. The wave profiles are qualitatively similar to the waves at infinite depth.224

Similar to the infinite depth case, the velocity of Stokes waves oscillates as function225

of steepness as can be seen in figure 4 and was originally predicted by [42]. We com-226

puted waves up to the third extremum in velocity which required about 8 million227

Fourier modes to resolve the wave. At the second maximum, the tolerance for the228

Newton Conjugate-Gradient method was reduced to 10−7. In order to compute past229

the third extremum and observe more oscillations, a more elaborate nonuniform grid230

in u-variable must be used. The values of velocity c and Hamiltonian H at the first 2231

extrema and corresponding steepnesses are presented in the table 1.232

In figure 5, we show how the eigenvalues λ of (25) with Floquet parameters µ = 0233

(Top Panel) and µ = 0.5 (Bottom Panel) vary along the bifurcation curve as a function234
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Fig. 5 The eigenvalues of the Babenko operator Ŝ computed at fixed conformal depth kh = 1.5
with Floquet parameter µ = 0 (Top Panel) and µ = 0.5 (Bottom Panel) as a function of steepness,
s. At s = 0 the eigenvalues are given by the equation (21) with k = 0 (blue), k = ±1 (green), k = ±2
(purple), k = ±3 (red) and k = ±4 (gold) in the Top Panel; in the Bottom Panel µ = 0.5 and
k+µ = ±0.5 (blue), k+µ = ±1.5 (green), k+µ = ±2.5 (purple), k+µ = ±3.5 (red) and k+µ = ±4.5
(gold). The solid lines mark eigenvalues with odd eigenfunctions, and dashed lines correspond to
even ones. We conjecture that solid lines never cross the zero axis. (Right Top Panel) Zoom-in to the
region of larger steepnesses from 0.122 to 0.1255. Purple and red circles are zero eigenvalue appearing
at the first two extremizers of velocity c(s). (Right Bottom Panel) Zoom-in to the rectangular region
at larger steepness from 0.1155 to 0.1255. A zero eigenvalue is marked by green and purple triangle
corresponds to a secondary bifurcation to 4π-periodic Stokes waves.

of the wave steepness s. The steepness s = 0 corresponds to flat water, and the235

associated eigenvalues are given by the formula (21). For µ = 0, as soon as we bifurcate236

from flat water, each eigenvalue becomes simple, breaking the symmetry between even237

and odd eigenfunctions originating from cos ku and sin ku respectively. The eigenvalues238

associated with even eigenfunctions (dashed lines) cross the horizontal axis and become239

negative, whereas the eigenvalues associated with odd eigenfunctions (solid lines) do240

not change sign. We also observe that a zero eigenvalue occurs at each extremizer of241

the velocity c for µ = 0, marked by circles in the top right panel.242

For µ = 0.5, a zero eigenvalue is marked by triangles and correspond to double243

period bifurcation points. At these points, traveling waves of period 4π bifurcate from244

the family of 2π periodic Stokes waves. One of these negative eigenvalues grows and245

approaches zero from below which is in stark contrast to the µ = 0 case. We also note246

that in the case µ = 0.5, all eigenvalues have multiplicity 2 for flat water, and the only247

negative eigenvalue for flat water splits into two simple eigenvalues (solid blue lines)248

as steeper waves are considered (bottom left panel).249

5.2 Varying Depth250

For these simulations, our goal was to compute shallow water waves by applying251

continuation in the dimensionless conformal depth k0h. As Stokes waves propagate252
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slower in shallow water, one should decrease the velocity simultaneously in order to253

compute non-trivial solutions. By gradually decreasing velocity and depth we arrived254

at the Stokes waves in very shallow water as shown in figure 6.
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Fig. 6 (Left Panel) Stokes waves profiles computed at various decreasing conformal depths k0h =
1.14 (purple), k0h = 0.75 (green), k0h = 0.43 (blue), and k0h = 0.22 (gold). The crests of the
solutions become narrower and the troughs broader, as depth decreases. (Right Panel) Stokes waves
with depths k0h = 0.165 (purple), k0h = 0.12 (green), k0h = 0.095 (blue), and k0h = 0.072 (gold).
As we keep decreasing the depth and velocity, the waves start to resemble soliton-like (or cnoidal)
solutions rather than deep-water Stokes waves.

255

The profiles of these solutions are shown in figure 6, and as c and k0h are decreased,256

the profiles begin to resemble solitary (or cnoidal) waves, having a broad flat trough257

and a strongly localized narrow peak, see also [21]. We fit the numerical solution for258

k0h = 0.16 with s = 0.011616 and c = 0.46 to the soliton and cnoidal wave solutions259

of the Korteweg-de Vries equation given by,260

ηsol(x) = A sech2 [Bx] + C,

ηcn(x) = a cn2
[
K(m)

π
x,m

]
+ c.

Here A, B and C are the parameters of the hyperbolic secant fit, and a, m, and c are261

the parameters of the Jacobi-cn fit where K(m) is the complete Jacobi-elliptic integral262

of the first kind. We show the free surface and the numerical fits in figure 7. We find263

fits to be qualitatively matching to solution with L∞ norm below 0.0025.264
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Fig. 7 (Left Panel) The dotted line is the solution of the equation (12) with s = 0.011616 and c =
0.46 at the depth k0h = 0.16. It is compared to two numerical fits, a soliton (blue line) and a cnoidal
wave (green line) which appear indistinguishable. (Right Panel) Zoom to the interval x ∈ [−1, 1].
These fits qualitatively match the solution, and mainly diverge from it in the crest region.
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Fig. 8 (Left Panel) Plot of solutions with increasing steepness s = 0.008, 0.0116, 0.0174, 0.0204 for
the fixed conformal depth k0h = 0.16 starting from a soliton-like solution. (Right Panel) Zoom into
the crest region showing the formation of a 120 degrees corner at the crest for sufficiently steep waves.

In figure 8, we present profiles of traveling waves of increasing steepness at the265

fixed conformal depth k0h = 0.16. These waves have much broader troughs compared266

to their crests. As the steepness increases the crests of these waves become narrower267

and a 2π/3 angle forms at the crest, as can be seen in the right panel of figure 8. As268

the steepness increases, there are also oscillations in the speed c and Hamiltonian H269

as functions of steepness.270

6 Conclusion271

We describe a numerical method for finding Stokes waves in a fixed conformal depth272

based on the works [29] and [17, 43]. This approach is based upon the fact that the273

linearized Babenko operator is self-adjoint which allows us to compute solutions of274

the equation (12) iteratively and without forming a matrix by efficiently employing a275

Newton-Conjugate-Gradient algorithm. We note that our method is pseudo-spectral,276

and hence it is not reliant on the convergence of a Pade expansion as in [18] and [19].277

The main limitation of the method is due to the formation of a corner at the crest of the278

limiting wave, which requires many Fourier modes to resolve the crest. Furthermore,279

since this is a matrix-free method, there is less restrictions on the number of Fourier280

modes due to the formation of the operator matrix compared to [36] and [37]. However,281

the implicit relation (13) between the conformal depth h and the Stokes wave makes it282

inconvenient to work in fixed physical depth. We study Stokes waves in two conformal283

depths h = 1.5 and h = 0.16, and the problem of finding families of Stokes waves at a284

physical depth held constant is left for future work. Variation of h̄ along each family285

of Stokes waves with conformal depths h = 1.5 and h = 0.16 is shown in figure 2. The286

function h̄(s) is observed to be bounded and oscillatory; h̄(s) approaches a limiting287

value as the steepness of the Stokes wave grows. In both depths, we see a corner of288

2π/3 degrees forming at the crest as the steepness of waves increases. Two extrema in289

speed and Hamiltonian of Stokes waves are shown for h = 1.5 in figure 4.290

As the conformal depth decreases, the solutions of the Babenko equation increas-291

ingly resemble the cnoidal waves of the Korteweg-de Vries equation, with troughs292

becoming broad while crests becoming narrow and peaked.293

The eigenvalues of the linearized Babenko operator for a family of Stokes waves294

with h = 1.5 are found. At each extremizer of the velocity one additional eigenvalue295

12



with Floquet exponent µ = 0 changes sign from positive to negative. For eigenvalues296

with µ = 0.5, a change in the sign corresponds to a bifurcation from the main branch297

of 2π periodic Stokes waves to a secondary branch with 4π periodic solutions. For298

finite-depth flat water the smallest eigenvalue λ is associated with the eigenfunctions299

e±0.5iu, and it splits into two simple eigenvalues as the steepness increases. One of300

these eigenvalues grows while the other one decreases.301

In the future work, we would like to use additional conformal mappings to improve302

the efficiency of our computations. Doing so would allow us to distribute points such303

that most points are located at the wave crest as it starts to form an angle and thus304

greatly improve numerical efficiency. Recently, the stability of extreme Stokes waves in305

an infinite depth fluid has been studied in [44], [45]. We plan to consider the stability306

of high amplitude nonlinear traveling waves by implementing and generalizing the307

numerical methods developed in [38, 46] to the finite depth case.308
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Applied Mathematics 137(4), 419–472 (2016)412

[44] Korotkevich, A.O., Lushnikov, P.M., Semenova, A., Dyachenko, S.A.: Super-413

harmonic instability of Stokes waves. Studies in Applied Mathematics 150(1),414

119–134 (2023)415

[45] Deconinck, B., Dyachenko, S.A., Lushnikov, P.M., Semenova, A.: The dominant416

instability of near-extreme Stokes waves. Proceedings of the National Academy417

of Sciences 120(32), 2308935120 (2023)418

[46] Dyachenko, S.A., Semenova, A.: Canonical conformal variables based method for419

stability of Stokes waves. Studies in Applied Mathematics 150(3), 705–715 (2023)420

https://doi.org/10.1111/sapm.12554421

[47] Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings422

of the IEEE 93(2), 216–231 (2005)423

16

https://doi.org/10.1111/sapm.12554

	Introduction
	Formulation of the Problem
	Stokes Wave Equation and Numerical Method
	Eigenvalues of the linearized Babenko operator
	Numerical Results
	 Waves in depth k0h=1.5
	Varying Depth

	Conclusion

