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ABSTRACT
Collaborative qualitative coding often involves coders assign-
ing different labels to the same instance, leading to ambiguity.
We refer to such an instance of ambiguity as disagreement in
coding. Analyzing reasons for such a disagreement is essential–
both for purposes of bolstering user understanding gained from
coding and reinterpreting the data collaboratively, and for ne-
gotiating user-assigned labels for building effective machine
learning models. We propose a conceptual definition of col-
lective disagreement using diversity and divergence within
the coding distributions. This perspective of disagreement
translates to diverse coding contexts and groups of coders irre-
spective of discipline. We introduce two tree-based ranking
metrics as standardized ways of comparing disagreements in
how data instances have been coded. We empirically validate
that, of the two tree-based metrics, coders’ perceptions of dis-
agreement match more closely with the n-ary tree metric than
with the post-traversal tree metric.
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INTRODUCTION
Qualitative researchers work to capture rich insights from hu-
man data, but as we generate ever-increasing quantities of
data, focusing researchers’ efforts on the most interesting or
significant information comprises a major challenge. Often
the most interesting information may be subtle, ambiguous,
or raise disagreement among coders. Consider a case where
researchers want to analyze perceptions about political views
based on a data set of tweets. They want to apply five mutually
exclusive codes to each tweet: support, rejection, neutral, un-
related, and uncodable. Given the enormous data set and time
taken for manual coding, it is likely that the researchers may
have some partially coded tweets. They will also have dis-
agreements on many of these tweets, too many to spend time
discussing face-to-face in a group. How can we sort all the
ambigious tweets from most ambiguous to least ambigious?
Such a sorting technique will allow qualitative researchers
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who may not be computer scientists to focus on data instances
that are most challenging or confusing to code.

Exploring potential disagreements in more depth is often nec-
essary in qualitative coding, but it poses many challenges.
First, it is difficult to reach absolute agreement since qualita-
tive coding relies on subjective judgments. Second, mapping
or estimating degree of disagreement along a numeric scale
requires shared understandings about the nature or dimensions
of disagreement in a specific context. The variety of possible
contexts and project values present a challenge to developing
a metric that is applicable across disparate qualitative coding
schemes. In order to appropriately rank collective disagree-
ment in collaborative qualitative coding, we consider the di-
versity of conflicting codes and the divergence or “strength” of
a disagreement as indicated by number of coders who applied
differing codes. In this work, we:

• Offer a conceptual definition of collective disagreement that
translates to diverse coding contexts and groups of coders
irrespective of discipline.

• Contribute two standardized metrics for ranking disagree-
ment.

• Evaluate how well these metrics align with the intuitions of
qualitative coders who consider disagreement as one factor
in their effort to be more conscious about how codes are
applied.

In the following sections, we (1) provide background on the
contexts for disagreement through two case studies, (2) intro-
duce related research about the articulation and representation
of disagreement, (3) explain our conceptual framework of
tree-based ranking metrics, and (4) present findings from our
empirical validation of the metrics and a visual representation
of them. Finally, we discuss the significance of our findings
with respect to disagreement in qualitative coding and other
disciplines, and we outline directions for further exploration.

BACKGROUND
Qualitative researchers may have a variety of diverse objec-
tives in qualitatively coding data. While some researchers aim
to improve coding consistency for building accurate models,
other researchers focus not on seeking consensus, but rather on
building deep understanding through consideration of different
perspectives. Programmatic analysis of qualitative coding is
further complicated for researchers by the exploratory goal of
qualitative research, fundamental differences between quanti-
tative and qualitative research methods, low accuracy of quali-
tative coding, and unfamiliarity of qualitative researchers with
machine learning (ML) techniques [10]. Although ML has
thrived in the past decades, there are only limited applications



in qualitative analysis to facilitate the coding process for label-
ing large datasets using fully or semi-automatic methods [30].
Moreover, the inherently subjective nature of qualitative cod-
ing results in inconsistencies among different coders, further
impacting the quality of coding.

It is common for different qualitative coders to disagree about
the appropriateness of a code used to label a data instance.
When several collaborative qualitative coders differ from each
other in their codes, their disagreement may ambiguate the
group’s overall understanding of that data instance. Disagree-
ment may also increase complexity for building a ground truth
dataset and training strong ML models for qualitative cod-
ing. Therefore, it is essential that we address disagreement
and focus on identifying points of probable inconsistency in
the context of qualitative analysis. Foundations of disagree-
ment may include unclear code definitions or particular data
points that collaborators need to negotiate or clarify. Alter-
natively, disagreement amongst qualitative coders may draw
from their diverse experiences, priorities, and ways of commu-
nicating [4]. While it may be challenging to explore and build
understanding around disagreements, the process often yields
unanticipated insights from the data. Improving methods for
dealing with disagreements can therefore improve consistency
and collective understanding in coding while retaining the rich
perspectives of diverse coders.

To illustrate some of the ways in which qualitative coding
might be improved through better processes for recognizing
and addressing disagreement, we present insights from two
case studies in the following sections.

Case Study I
In order to better understand the role disagreement plays in
qualitative coding, we organized an open-ended discussion
with a qualitative researcher in order to understand all aspects
of the coding process and how they could be improved. While
describing one of her ongoing projects, the researcher men-
tioned the use of disambiguation techniques in her research,
which primarily consisted of discussion among coders to de-
rive a consensus and the use of an impartial arbitrator when
coders could not discuss to consensus. The researcher, who
often acted as the arbitrator in her work, also expressed con-
cern whether her own seniority subjected coders to agree with
her views or biased coders’ decisions.

The use of an arbitrator to resolve conflicts amongst qualitative
coders is a standard norm that utilizes the authority of an indi-
vidual coder over others involved in the process. We argue that
the coding process would often benefit from distributed au-
thority for arbitration, rather than privileging one researcher’s
perspectives over others. Rather than rely on a single individ-
ual’s judgment, we propose that a better authority might be a
method or process that includes thoughtful consideration of
disagreements and values a multiplicity of perspectives.

Case Study II
Disagreements grow more complex as the number of coders
increases. In consideration of this elevated complexity, we
present another research study in which 3-8 coders coded each

data instance [22]. In this work, researchers contributed vi-
sual analytics tools to provide overviews of codes applied to
very large datasets. For a dataset of 485,045 text instances,
coders were able to code around 5% in eight weeks. Visual-
ization is well-suited to human pattern-finding tasks in large
datasets, but may still be challenging to interpret in cases of
very large datasets or large numbers of coders. The introduc-
tion of metrics that automatically sort ambiguous instances
of coded data from most ambiguous to least ambiguous will
enable researchers to build better visualizations. By empow-
ering coders with the ability to sort by coder disagreement,
such metrics will also be useful in reducing human efforts of
disambiguation as in this case study.

Diversity & Divergence in Conceptualizing Disagreement
Disagreement can be characterized through many dimensions.
In the scope of our research, we discuss two dimensions—
diversity and divergence. Diversity refers to the variation
of codes, or labels, used by different coders, where a larger
distribution indicates greater disagreement (e.g., if four coders
use four different labels, there is high diversity). Divergence,
on the other hand, refers to clusters of coders agreeing on
different labels and thus diverging from each other (e.g. if two
coders choose label 1 and another two coders choose label 2,
there is high divergence). Diversity and divergence are not
mutually exclusive; high diversity is not devoid of divergence,
although low divergence may be seen as a less important
or secondary factor when compared to a situation of high
diversity. In the remainder of this work, we explore shades of
disagreement through the lenses of diversity and divergence
in order to determine which metric(s) for disagreement might
be most useful for qualitative research.

RELATED WORK
Qualitative coding may be viewed as a set of methodologies to
impose structure on unstructured data through the application
of “codes,” or analytical labels to related instances of data [28,
24]. Given the lack of intrinsic structure in the data, the quality
of coding may significantly impact researchers’ analysis of the
coding scheme [29]. In this section, we provide an overview
of prior work evaluating qualitative coding methods, and offer
discuss in detail the role that understanding disagreement has
played in qualitative coding.

Inter-Rater Reliability and Disagreement
The “quality” of coding is subjective and may signify different
types and levels of validation in various contexts, but one com-
monly applied measure to assess coding consistency between
multiple coders is inter-rater reliability (IRR), frequently cal-
culated using Cohen’s Kappa [6]. Calculating IRR is a form
of quantitative analysis, but has been shown to impact coding
quality in a number of cases [16, 20, 3].

IRR is the measurement of the extent to which coders assign
similar scores to the same variable) [25]. The IRR, i.e., de-
gree of agreement amongst different coders may be used to
ensure that the reported data is an actual representation of the
variables that are measured. To overcome the occasionally
unexpected results yielded by pi (π) and kappa (κ) statistics,
which are most widely used for testing the degree of agreement



between raters, researchers have devised alternate agreement
statistics to account for the role randomness plays in agree-
ment between coders [18]. Even given meticulous coding on
the part of all coders, discerning the significance of various
states and degrees of disagreement may be challenging. IRR
metrics such as Cohen’s Kappa, Cronbach’s Alpha, and others
evaluate inter-rater agreement over a set of data, which may
be most useful for evaluating consistency of coding at a grand
scale. In contrast, our metrics rank the degree of disagreement
on particular data instances, which allows for consideration of
disagreement at an instance-level. We provide more discussion
about the significance of forms and degrees of disagreement
in later sections.

Consensus
One of the most common techniques for addressing disagree-
ment in qualitative coding is to negotiate toward consensus.
In other words, individuals make estimations and negotiate
their response before reporting the final answer [12]. Prior
attempts to realize consensus include use of interaction and
visualization features like distributed design discussions for
bringing consensus strategies to unmoderated settings [13].
Armstrong et al. have demonstrated through empirical qualita-
tive techniques that while researchers indicate close agreement
upon basic themes, they may report different understandings
from those similar themes [1]. These findings align with the
results of our expert evaluation where participants indicated
different processes (either prioritizing diversity or divergence)
to infer the same ranking of disagreement.

Diversity and Divergence in Coding and Annotation
When it comes to examining variance in qualitative coding,
most observational research only assesses agreement, while
reliability is assumed given sufficient agreement. Measuring
agreement can: (i) indicate the trustworthiness of observations
in the data, and (ii) provide feedback to calibrate observers
against each other or against baseline observations. If one
assumes the baseline to be ‘true’, then observer agreement
can be used to assess reliability. As we described above, a
commonplace statistic to assess observer agreement, Cohen’s
Kappa [6], evaluates consistency of coding at a grand scale.
For instance-level analysis, we now discuss techniques that
learn from coder variation and harness the diversity of opinions
for improving coding results.

Systematic divergence
Kairam and Heer introduce “crowd parting,” a technique that
clusters sub-groups of crowd workers whose annotations sys-
tematically diverge from those of other sub-groups [21]. They
applied this technique to crowd-worker annotations, and iden-
tified several themes that may lead to systematically different,
yet equally valid, coding strategies: conservative vs. liberal
annotators, label concept overlap, and entities as modifiers.
Sub-groups identified by crowd parting have internally con-
sistent coding behavior though their coding decisions diverge
from the plurality of annotators at least for some subsets of
the data.

Disagreement is signal not noise
Disagreement has long been viewed as an hinderance to the
practice of qualitative coding. However, researchers recently
have challenged this view. Through their experimental work
on human annotation, Aroyo et al. have debunked multiple
“myths” including the ideas that one valid interpretation, or
a single ground truth, should exist and that disagreement be-
tween coders indicates a problem in coding [2]. Their research
points out that disagreement can signal ambiguity; systematic
disagreements between individuals may also indicate multiple
reasonable perspectives. Lasecki et al.’s work demonstrates the
value of both measuring the signal of disagreement, and rank-
ing it among coders [23]. In their tool Glance, they measure
coder disagreement using inter-rater reliability and variance
between coders labels to facilitate rapid and interactive ex-
ploration of labeled data, and to help identify problematic or
ambiguous analysis queries. Our metrics provide an alternate
method to sort and filter disagreements, taking into account
the potential significance of a variety of different states of
disagreement.

Probing disagreement and ambiguity
Several efforts have attempted to utilize the diversity of opin-
ions for further improving the coding results. The MicroTalk
system successfully exploits crowd diversity by presenting
counterarguments to crowdworkers to improve the overall
quality of coding [9]. Another example of such a system is Re-
volt, a platform that allows crowdworkers to provide requesters
with a conceptual explanation for ambiguity when disagree-
ments between coders occurred. Chang et al. demonstrate
that meaningful disagreements are likely to exist regardless
of the clarity or specificity provided in coding guidelines, and
that probing these disagreements can yield useful insights
as to ambiguity within data instances, coding guidelines or
both [5]. While investigating the scope of using disagreement
between annotators as a signal to collect semantic annotation,
researchers have confirmed the need and potential to define
metrics that capture disagreement [11]. This illustrates the
value of characterizing and probing disagreements among qual-
itative coders. Our approach is built upon the same premise,
but our metrics are based on distributions of codes and place
value on different dimensions of disagreement: diversity and
divergence.

TREE-BASED RANKING METRICS FOR DISAGREEMENT
As more coders assign labels to a data instance, their responses
can either match or conflict with labels assigned by other
coders. We refer to the distribution of labels at any stage of
coding as a state of agreement. Each new coder labeling the
data instance generates a new state of agreement. For exam-
ple, if all coders assign the same labels to a data instance, it
generates a state of complete agreement, i.e., no disagreement.
Each additional coder either strengthens the state of complete
agreement (by supporting the same label) or weakens it (by
choosing a different label). Therefore, a data instance will
enter a new state of agreement with each additional label,
regardless of whether the label matched or conflicted with
existing labels.



Given m mutually exclusive labels and n coders, we define
a metric for ranking agreement between coders. A tuple of
length m represents the distribution of codes assigned by n
coders across the m labels. For example, a tuple {310} repre-
sents the distribution of 4 codes from 4 coders across 3 labels.
In this scheme,

1. Each element of the tuple represents the number of coders
agreeing upon a unique label. For example, a tuple {310}
represents 3 coders agreeing on one label, 1 coder assigning
second label, while no coder assigned the third label.

2. The tuple is ordered such that labels upon which more
coders agree are sorted left and labels for which there is
less agreement are sorted to the right. This means that the
label chosen by the highest number of coders will always
be the first element of the tuple, and the label chosen by the
least number of coders will always be the last element of
the tuple, e.g., {310}.

3. Since our approach depends entirely on the distributions of
agreed-upon codes, the order of the tuple is not relevant for
ranking, but provides clarity in explaining the metric.

Next, we present a brief overview of the fundamental princi-
ples behind our two tree-based metrics proposed for ranking
disagreement. We describe them in detail in a later section.

1. The post-traversal tree ranking (Figure 1): This tree metric
focuses on identifying a coder-group of the maximum pos-
sible size which collectively opposes another label chosen
by a majority of coders. We utilize dynamic programming
techniques to structure the nodes such that all states of agree-
ment involving a group of maximum possible size forms the
left sub-tree, while remaining states of agreement are orga-
nized under the right sub-tree. A simple postorder traversal
(or post-traversal) ranks the disagreement nodes from less
to more agreement.

2. The n-ary tree ranking (Figure 2): This tree metric ex-
tends upon a previous state of agreement by considering all
the possible labels which a coder can choose. Thus, each
connected child-node represents different possibilities for
coding that data instance as chosen by the next coder. While
some of the states clearly suggest more agreement amongst
the coders, a few states suggest ambiguity between two
states of disagreement. Our ranking algorithm identifies
such instances of ambiguous degrees of disagreement and
ranks them based on number of coders who have labeled
the instance.

Post-Traversal Tree Metric of Disagreement
A top-down view of disagreement can be formulated by consid-
ering how a majority agreement about coding a data instance
can be challenged by another group of coders. In other words,
given an agreement between n coders about labeling a data
instance, we sequentially explore the possibility of different
n,n−1,n−2...2,1 coders offering an alternate label for the
same instance. When expressed thus, the problem of comput-
ing the different combinations is reducible to the coin change
dynamic programming problem 1. The set of all possible
1https://en.wikipedia.org/wiki/Change-making_problem

Figure 1. The ranking metric as conceptualized by the post-traversal
tree. The 4-length tuples represent the different states of agreement,
while the encircled numbers alongside indicate the rank of disagree-
ment based on a simple postorder traversal. The lower the rank, the
lower the agreement within that state of agreement. NOTE: The met-
ric only consists of a ranking (low to high agreement) between several
coding distributions as input by a participant, e.g., order of agreement
...{3111}< {3110}< {3100}..., and so on. The tree visualization only of-
fers a conceptual understanding into how the metric is operationalized.

group sizes in which coders can collectively agree amongst
themselves correspond to the set of available coins, while the
number of coders yet to assign labels corresponds to the total
amount of change required.

We use the notation (C,n), where C is the number of coders
yet to assign labels and n is the maximum number of coders
who can agree on the same label, to refer to the number of
different states of agreement. The notation (C− n,n) then
corresponds to the possibilities that n coders agreed to use
the same label for coding a data instance at least once. The
remaining possibilities include all states of agreement where
no n−1 coders agreed on a label, i.e., C coders need to assign
a label where no more than n− 1 coders agree. Thus, the
possible disagreements represented by (C,n) can be broken
down into (C−n,n) and (C,n−1).

Figure 1 gives a glance into some of the different states of
coding agreements that can be reached when 7 coders try to
assign any of the available labels to a data instance, given the
limit that a maximum of 3 coders can agree on any single
label. The different states of agreement can then be ranked
from low to high agreement using a post-order traversal as



follows: {3310}< {3300}< {3220}< {3211}< {3210}<
{3200}< {3111}< {3110}< {3100}< {3000}.
We use a tuple of length equal to the number of total available
labels to represent a state of agreement, where we assign one
digit for each of the labels to represent the coding. Let tuple
{1000} represent a state where one user assigned a label (out
of 4 label choices), while other coders have yet to assign
any code. Every time the maximum permissible number of
coders agree to use the same label, we record the new state of
agreement as a coding tuple.

Thus, we record a tuple {3300} in Figure 1 to indicate that 2
groups of 3 coders have agreed on 2 distinct labels. Each tuple
represents a state of agreement. Ranking these different tuples
is reduced to a simple post-order traversal of the tree with the
leftmost tuple indicating lowest agreement. Algorithm 1 gives
the pseudo-code to recursively compute the rank using this
approach for any disagreement. Although this approach does
not uncover any more coding combinations than those in the
n-ary tree approach introduced in a later section, it supports
absolute ranking unlike the n-ary tree based ranking that does
not force-rank ambiguous instances.

The dynamic programming based post-traversal tree (Figure 1)
is built in a top-down manner. Therefore, this tree prioritizes
the maximum size of group that can oppose any existing major-
ity agreement amongst coders over the choice of a label. This
chain of thought aligns with high divergence and low diversity.
We revisit this thought when we discuss our qualitative study
with experts.

Algorithm 1 Postorder traversal based ranking algorithm
1: C← #Coders
2: n← #RequiredLabels
3: o f f set← 0
4: function RANK(C,n,o f f set) . We begin with C = n
5: L← Rank(C−n,n,o f f set)
6: R← Rank(C,n−1,L)
7: return L+R+1

The N-ary Tree Metric for Disagreement
Consider the case of five qualitative coders labeling a data

instance using four labels (A, B, C, & D). Let tuple {1000}
represent a state of agreement where one user assigned a code
A to an instance, while other coders have yet to assign any
code. There are only two possible outcomes that a second
coder could generate because they will either agree with the
previous coder or disagree, assigning a new label. Thus, two
possible tuples are available: {1100} or {2000}. The n-ary
tree presents the possible coding outcomes as more coders are
added. Each tuple is also accompanied by an index i and depth
d as (i,d). The index begins at 0 for {1000} and increases if
agreement is added or decreases if disagreement is added. The
depth also begins at 1 and increases by 1 for every new coder,
as new coders create new levels of the tree.

With each new coder assigning a label, the n-ary tree (Figure 2)
extends a level down and exhausts all the possible states of
agreements that could be reached. By considering all the

possibilities, n-ary tree ensures it does not bias or favor towards
diversity or divergence, but rather preseves the complexity of
qualitative coding. We revisit this thought when we discuss
our qualitative study with experts.

Algorithm
Our algorithm recursively defines an n-ary tree metric for
disagreement, in which the depth of the tree represents the
number of coders who labeled a particular data instance. The
root of the tree represents one coder, with descending levels
adding one coder per level. As such, level d includes all possi-
ble distributions of codes that could be chosen by d coders.

The ranking metric is achieved through a branching system
that offers up to three choices from each node t at level i−1
in the tree:

1. add agreement, representing the ith coder choosing the high-
est ranked code in node t

2. add disagreement, representing the ith coder choosing a
code that had not been chosen in node t; and

3. add both agreement and disagreement, representing the ith
coder choosing a code that has been chosen but which is
not the highest ranked code in t

Figure 2 illustrates the nodes as recursively assigned coordi-
nates based on these three branch choices. Based on these co-
ordinates, Algorithm 2 describes a pseudo-code to decide the
order of agreement. Thus, we demonstrate that it is possible to
provide a simple, standardized technique to rank disagreement.
In Section 5, we show that our ranking system aligns with
participants’ intuitive understandings of disagreement.

Algorithm 2 N-ary tree based ranking algorithm
1: function RANK(A,B) . A and B are tuples
2: a← getIndex(A) . Returns tree coordinates of node
3: b← getIndex(B) . In Fig 2, getIndex(1000) = (0,1)
4: if a.col > b.col then . If a← (1,2),a.col = 1
5: RankA > RankB
6: else if a.col < b.col then
7: RankA < RankB
8: else
9: if abs|a.depth−b.depth| 6 1 then

10: RankA = RankB
11: else if a.depth > b.depth then
12: RankA > RankB
13: else
14: RankA < RankB

MTURK USER STUDY

Study Design
We conducted a user study to validate that the ranking of
agreement as proposed by our post-traversal tree and n-ary
tree metric aligns with people’s perception of disagreement.
Rather than measuring disagreement in the study, we measure
perceptions of agreement to avoid negative questions. One of
the techniques important for assessing inter-rater reliability



Figure 2. The ranking metric as conceptualized by the n-ary tree. Each node represents a state of agreement, and each depth level d represents all
the possibilities of coding an instance with d coders. NOTE: The metric only consists of a ranking (low to high agreement) between several coding
distributions as input by a participant, e.g., (in order of agreement) ...{4000} < {5000} < {6000}..., and so on. The tree visualization only offers a
conceptual understanding into how the metric is operationalized.

involves using the right design for assigning coders to sub-
jects that allows the use of regular statistical methods [19].
Likewise, we use a fully crossed design for displaying the
data to our participants in the user study [27]. We offer par-
ticipants two different representations—(1) a table and (2) a
visualization with horizontal stacked bar-charts—to inform
the participants how different instances of data are labeled by
different coders. The two different types of information rep-
resentation constitute our independent measure. Participants
self-reported their perceived ranking of agreement (i.e., the de-
pendent measure) of data instances that coders had labeled in
a dataset. Our study used a between-subjects counterbalanced
measures designed to adjust the order effect of learning from
one of the representations.

Participants
We recruited 50 participants through the Amazon Mechani-
cal Turk (MTurk) platform and paid each person $2.25 for
completing the task. This compensation reflected a minimum
wage payment. All participants were at least 18 years of age,
had minimal experience with qualitative coding, and provided
consent prior to beginning the first task.

Stimuli
We displayed information about how seven coders had labeled
five data instances using four different labels in one dataset,
with a total of four such datasets. Each dataset was pseudo-
randomized to contain both data instances which we expected
would contain low agreement and high agreement as ranked by
the post-traversal and n-ary tree algorithms. Participants saw

Figure 3. A facsimile of the data representation in the user study indi-
cating 5 data instances coded by 7 coders using 4 different codes. The
empty cells indicate that the corresponding coder chose not to code that
instance.

Figure 4. The visualization from user study with horizontally stacked
bar-charts representing the state of agreement across the 5 data in-
stances amongst 7 different coders. Each color represents a unique code.



this information using two representations - a table (Figure 3)
and a stacked-bars visualization (Figure 4). Empty cells in
the table indicated that the corresponding coder chose not to
label that instance. Similarly, a length shorter than 7 in any of
the stacked-bars indicated that one or more coders neglected
to assign a label to that particular instance. We referred to
our data instances, which were described simply as text to
participants, as T1-T5. The labels A,B,C,D were used as
agnostic codes to focus solely on perceived agreement without
context and to remove potential bias from label names.

Tasks
1. Relative ranking on a common linear scale of agreement:

Participants viewed a dataset of five data instances either
in a table or a visualization and ranked them on a verti-
cal linear scale based on their perceived amount of coding
agreement. They clicked and dragged instances above or be-
low another instance to increase or decrease the rank of the
clicked instance. Rankings were numbered 1−5 without
any overlapping ranks. The rank 1 represented most agree-
ment while 5 represented least agreement. We informed
the participants that order of ranking would be immaterial
between instances which they believed would have similar
agreement amongst coders.

2. Absolute ranking on separate linear scales of agreement:
Participants ranked the instances individually by dragging a
dot across a horizontal linear scale left or right to indicate
lower or higher agreement. They repeated the process five
times, once for each instance in the dataset. It allowed
us to confirm whether their suggested ranking in this task
matched their reported ranking in the previous task.

Procedure
Participants were informed that each dataset contained five
data instances which had each been coded by seven coders.
Each participant received four different datasets, one at a time,
and completed both ranking tasks for each set before seeing the
next set. Group 1 (25 MTurk participants) received the coding
information for first two data-sets A and B as a table (Figure 3),
and as a visualization for the latter two sets, C and D. (Figure
4). Group 2 (25 MTurk participants) viewed the same dataset
presented in reverse order, i.e., the first two datasets were
visualizations while the latter two were presented as tables.

Results
Aggregated Results
On average, each participant spent about 9 minutes and 20 sec-
onds completing the survey; minimum time was 3 minutes and
11 seconds, while maximum was 27 minutes. We recorded
the participant-reported ranks for the degree of agreement
within the 5 data instances in each of the 4 datasets used in
the study. Similarly, we recorded their reported percentage of
agreement using the slider scale. In order to compare whether
the post-traversal tree metric and n-ary tree metric ranking bet-
ter correlated with user perception of agreement, we averaged
participant-reported responses and computed their correlations
with those drawn from both the tree metrics. We ran a Spear-
man’s Rho correlation to establish the correlation between

ranks and used Pearson’s coefficient for computing the cor-
relation between the slider values and the tree-rankings. The
correlation results for each dataset, task type, and data pre-
sentation format are shown in Table 1 for the post-traversal
tree-based metric and in Table 2 for the n-ary tree-based met-
ric. We refer to these correlations of averages as aggregated
results. In general, we observed that the n-ary tree-based rank-
ings strongly correlated with the user perception of agreement.
More analysis of these results is in the Discussion Section.

Finer-Grained Results
Given the very strong correlation of our n-ary ranking metric
with aggregated rankings and slider values, we were inter-
ested in exploring finer-grained correlations with individual
participants’ rankings and slider values for disagreement. Ac-
cordingly, we computed correlations for each participant’s
rankings and slider values with the n-ary tree ranking metric,
and then determined the average correlations. We tested the
ranking task data with Pearson’s R. In order to capture the
magnitude values represented in the slider data, we correlated
slider values with the n-ary tree metric using Spearman’s Rho.
We then applied the Fisher Transformation [7, 17, 14, 15] to
stabilize the variance of the correlation coefficients. Since the
Fisher Transformation is undefined for the values of -1 and 1,
we represented correlations of -1 as -0.9999 and 1 as 0.9999.
The resulting correlation coefficient (R) and 95% confidence
interval for each combination of dataset, task type, and data
presentation format are shown in Table 3. The same table also
reports the summary of correlation statistics for all datasets
by task type and data presentation format using the same tech-
niques. We discuss these results along with the aggregated
results from before in a later section.

QUALITATIVE USER STUDY WITH EXPERT CODERS
To test whether qualitative researchers understand qualitatively
coded data with the same proposed strategies as described by
n-ary and post-traversal tree metrics, we invited 8 expert
qualitative coders (4 female) to complete the same survey used
in the MTurk study. Six experts were PhD students and two
were undergraduate research assistants supervised by a PhD
student. They all frequently engaged in qualitative research,
including conducting, coding, or analyzing qualitative studies.

Procedure
Expert participants P1-P4 saw the same four sets of data as the
participants from Group 1 on MTurk, where datasets A and
B were displayed as tables and the latter two, C and D, were
displayed as visualizations. P5-P8 saw the same sets of data as
Group 2, where sets A and B were displayed as visualizations
and sets C and D were displayed as tables. Upon survey
completion, we asked each expert to answer a set of post-
survey questions in a brief interview. The total time for each
expert amounted to no more than 30 minutes, with an average
time of 23 minutes. Each expert participant was compensated
with a reward value of $5.00.

Interviews with experts focused on each person’s thought pro-
cess and strategy for deciding ranks and identifying agreement
for each data instance. From the interviews, we found that
experts mainly used two strategies to identify agreement: 1)



Table Visualization Overall

Ranking

R P value R P value R P value
Set A 1 0 0.9 0.037 1 0
Set B 1 0 1 0 0.9 0.037
Set C 0.975 0.005 0.9 0.037 0.9 0.037
Set D 0.7 0.188 0.9 0.037 0.9 0.037
All Sets 0.88 <0.00001 0.902 <0.00001 0.905 <0.00001

Sliders

Set A -0.9829 0.002654 -0.9748 0.004727 -0.9867 0.001776
Set B -0.875 0.052046 -0.8572 0.063503 -0.8764 0.05143
Set C -0.9652 0.007819 -0.9605 0.009191 -0.9641 0.008155
Set D -0.6326 0.251679 -0.9147 0.029366 -0.842 0.073578
All Sets -0.851 0 -0.901 0 -0.903 0

Table 1. Aggregated correlation results for each combination of dataset, task type, and data presentation format using the post-order traversal tree
metric. Overall results by dataset and task type are also shown. Each dataset was pseudo-randomized to contain both data instances with low agreement
and high agreement.

Table Visualization Overall

Ranking

R P value R P value R P value
Set A 1 0 0.9 0.037 1 0
Set B 0.975 0.005 0.975 0.05 0.975 0.005
Set C 1 0 0.975 0.005 0.975 0.005
Set D 0.82 0.088 0.975 0.005 0.975 0.005
All Sets 0.933 <0.00001 0.948 <0.00001 0.959 <0.00001

Sliders

Set A -0.9829 0.002654 -0.9748 0.004727 -0.9867 0.004727
Set B -0.9979 0.000107 -0.9674 0.00716 -0.9954 0.00716
Set C -0.9833 0.002654 -0.9861 0.001984 -0.9867 0.001984
Set D -0.7693 0.12855 -0.9773 0.004173 -0.9341 0.004173
All Sets -0.913 0.00001 -0.945 0 -0.958 0

Table 2. Aggregated correlation results for each combination of dataset, task type, and data presentation format using the n-ary tree metric. Overall
results by dataset and task type are also shown. Each dataset was pseudo-randomized to contain both data instances with low agreement and high
agreement.

counting the number of different labels used, and 2) counting
the frequency a label was used, especially when presented
as a visualization. These two main strategies align with our
proposed strategies of using diversity (n-ary tree metric) and
divergence (post-traversal metric) as a means of distinguishing
varying levels of agreement.

Strategies to Understand Data in Tables & Visualizations
Experts generally believed that looking for agreement was a
"process of divergence and diversity" (P4). Although only P4
explicitly used this terminology, other experts supported the
point when discussing their strategies for ranking agreement.

Diversity vs Divergence
All experts reported counting the number of labels used for
each data instance as a primary strategy when interpreting a
table. Furthermore, all experts also reported comparing the
number of different colors in each stacked bar graph of the
visualization. Both of these strategies demonstrate a trend of
approaching data by identifying the variety, or in other words,
the diversity of a data instance. Experts believed that more
labels used in the coding process conveyed more disagreement:

"The more choices there are, the more disagreement." - P5

"A 3-way split is better than a 4-way split [of colors]." - P4

Although all experts used diversity to help them decide agree-
ment in data instances, some experts prioritized divergence

over diversity. When experts consider the number of coders
who used a specific label before considering the amount of
variation in a data instance, they are prioritizing divergence. P1
notes, "Most agreement is like... the one that has the longest
bar of one color." This form of thinking correlates with the
post-traversal metric which prioritizes strength of disagree-
ment before identifying the amount of diversity.

In most cases, both strategies were used. P6 described his
use of diversity and divergence when explaining the rationale
behind his decisions for a visualization. "First thing I’m look-
ing at is, there should be less colors, right? Because then
there would be less labels attached. And then I’m looking at
if there’s a majority of a certain color." The initial search for
colors supports the idea behind diversity—he identified the
number of unique colors to determine the ways in which the
coders disagreed. The latter half of P6’s rationale checked for
divergence—he compared the amount of color there was for
each label to gauge the degree to which coders disagreed. P1
also followed the same process to decide rankings: "If it’s split
up three different ways, it’s obviously going to be the one that
has more towards one [color that has] the most inter-rater
reliability." Both of these cases demonstrated instances where
experts disambiguated agreement levels in data instances by
following the n-ary tree metric, which retains the complex-
ity of qualitative coding by considering both diversity and
divergence as the algorithm constructs each level of its tree.



Table Visualization Overall

Ranking

R Confidence Interval R Confidence Interval R Confidence Interval
Set A 0.965 (0.924, 0.984) 0.956 (0.905, 0.98) 0.961 (0.932, 0.977)
Set B 0.937 (0.865, 0.971) 0.829 (0.655, 0.919) 0.896 (0.824, 0.939)
Set C 0.841 (0.677, 0.925) 0.909 (0.807, 0.958) 0.879 (0.797, 0.929)
Set D 0.615 (0.306, 0.806) 0.925 (0.841, 0.966) 0.824 (0.712, 0.896)
All Sets 0.859 (0.766, 0.917) 0.896 (0.825, 0.939) 0.837 (0.731, 0.903)

Sliders

Set A -0.977 (-0.989, -0.948) -0.968 (-0.985, -0.93) -0.973 (-0.984, -0.953)
Set B -0.942 (-0.973, -0.875) -0.8 (-0.905, -0.604) -0.891 (-0.936, -0.817)
Set C -0.806 (-0.908, -0.614) -0.912 (-0.959, -0.814) -0.868 (-0.923, -0.78)
Set D -0.511 (-0.746, -0.162) -0.899 (-0.953, -0.788) -0.768 (-0.86, -0.626)
All Sets -0.725 (-0.833, -0.563) -0.753 (-0.851, -0.604) -0.754 (-0.852, -0.606)

Table 3. Fine-grained average correlation results for each combination of dataset, task type, and data presentation format using the n-ary tree metric.
Overall results by dataset and task type are also shown. Each dataset was pseudo-randomized to contain both data instances with low agreement and
high agreement.

DISCUSSION

Post-Traversal Tree Metric vs N-ary Tree Metric
We observe higher overall R coefficient values for the n-ary
tree metric in Table 2 than for the post-traversal tree metric in
Table 1 considering both participant-reported ranking (0.959
vs 0.905) and slider scores (−0.958 vs −0.903) across all
sets of data. The same trend is preserved across pairwise
comparison of R coefficient values across individual data sets,
suggesting that the n-ary tree metric better represents user
perception of disagreement than the post-traversal tree metric.

The diversity of conflicting labels (i.e., the different labels used
for coding) and the divergence or "strength" of a disagreement
(i.e., the number of coders who applied differing labels) are
important factors that help us appropriately rank collective
disagreement in collaborative qualitative coding. Both the
proposed rankings align with one of these two methods for
thinking through disagreement– one based on divergence, and
the other based on diversity. The post-traversal tree metric
prioritizes divergence over diversity as the reason for more
disagreement. On the other hand, the n-ary tree metric weighs
diversity of labels over divergence for deciding disagreement.

Analysis suggests that the majority of the MTurk participants
resonated with diversity as the stronger factor for deciding
disagreement. Most experts agreed, but some expert coders
verbally reasoned and associated more divergence with higher
disagreement. This became especially clear when they ranked
the coding distribution {3220} to have higher agreement than
{3310}. The experts who would have preferred not to rank
such ambiguous instances ranked {4111} higher than {3220},
which are ranked as equal using the n-ary tree metric. This
makes us thoughtful about the possibility of a finer metric
that balances divergence with diversity, and optimally ranks
several states of disagreement, which otherwise are ranked as
equal using the n-ary tree metric.

Portraying disagreement: Table vs. Visualization
When asked to compare personal preference and perceived
difficulty of judging disagreement using a table versus a visu-
alization, most expert coders sided with the visualization. Set
D also demonstrates that MTurk participants had better judg-
ment of resolving cases with similar degrees of disagreement

Figure 5. The normalized visualization allows easier comparison by cre-
ating equal length bars even for instances having an unequal numbers
of coders.

when looking at the visualization. Results show that partici-
pants understood disagreement much better in visualizations.
Most expert coders affirmed this, claiming that visualizations
were much easier to read and comprehend. However, there
were some experts who preferred tables over visualizations
because tables displayed which coder assigned which label.
In general, the results of the stacked-bars visualization reveal
rankings aligning much more closely to user perceptions of
disagreement than table-based rankings.

Although the visualization in Figure 4 offered granularity of
the represented data, many expert coders reported confusion
due to the uneven length of bars. Some experts explained
that having an uneven number of coders makes comparisons
across data instances much more difficult. To resolve this
issue, we suggest that future visualizations use normalized
bars, which distributes coders’ responses proportionally in a
data instance to fit the same total bar length in all data instances.
Figure 5 demonstrates a normalized view of the same data
represented in Figure 4. The normalized visualization should
help participants avoid the confusion of empty spaces.

Significance and applicability of proposed metric(s)
We revisit the two case studies described earlier to better un-
derstand the contribution after our user studies. Tree-based
ranking metrics provide a mechanism for exploring and valu-
ing different forms of disagreement. Rather than accepting the
perspective of one authority figure—a concern that arose in
Case Study I—similar types of disagreement can be identified
using these metrics. The metrics also support identification of



systematic disagreements, which have been shown to reveal
meaningful trends in data [2, 11, 21].

When coding a data set, researchers tend to disagree on several
instances, too many to spend time discussing face-to-face in
a group. For situations with massive amounts of data to be
coded—such as the research presented in Case Study II—the
tree-based metric reduces human effort in evaluating disagree-
ment consistently. It sorts all the ambiguous instances, so that
the most ambiguous could be shown to the coders first, then
gradually decreasing in ambiguity. That way if they run out of
time, they will have worked on the most challenging and/or
confusing tweets first. As any qualitative researcher knows,
one of the challenges in this type of work is dealing with
massive amounts of data, and in trying to figure out what is
most relevant to present in a memo or study. Although visual
analysis for identifying ambiguous instances [22] is useful,
our approach augments human capacity by making it easier to
identify contentious instances.

The tree-based metrics use coding distribution to evaluate
disagreement, and offer systematically different coder per-
spectives even for vastly different data. Our metric can be
valuable to qualitative researchers who are not computer sci-
entists when used within a tool like Aeonium [10]. Such an
offering is immensely useful to build more sophisticated tools
to aid qualitative researchers in the following ways:

1. To augment researcher-effort for sorting out a coding
scheme: Researchers use their own analytical skills for
sorting the overall coding (or its subset). This process is
extremely demanding of human efforts. Some of the re-
searchers often resort to the use of visualizations to aid their
efforts. The tree-based metric can be used to build more ef-
fective visualizations based upon its specific rank-ordering
of disagreement to highlight instances that need researcher
attention.

2. To learn across different coding patterns and datasets: At
times, the coding patterns across subsets in a dataset, or
across different datasets, are similar. However, a unique
dominant code in the subset, or use of non-identical codes
across datasets obscure the similarity. Our approach offers
researchers an opportunity to identify such similarity by
using a conceptual framework that is independent of the
coding schemes or the inherent meanings of the codes.

3. To capture researcher-specific meaning of disagreement:
Humans have subjective alignments when they disam-
biguate. Consider a case where one qualitative researcher is
not interested in a majority vote, but in the split across the
codes on a data point. At the same time, another researcher
may want to inspect the coding scheme through another
interpretation of what matters more (as illustrated in the
second user study). At present, we do not have standardized
metrics that allow a team to align their understanding of
what disagreement means to them. Our approach offers a
computational lens to disagreement—as understood by the
researcher—and supports the diverse perspectives.

The qualitative coding process often involves creating new
codes as researchers find fit. At present, our approach does not

support creation of codes as new exemplars arise. However,
our approach (with minor adjustments) can work well when
coders assign multiple labels per data instance. For example,
in the worst case scenario of n coders assigning all the m labels
to a data instance, a state of disagreement will be represented
using a tuple of length mXn.

The metric-suggested rankings of disagreement may not lie
along the dimensions that match any known theory of judg-
ment and decision-making. We believe that aligning our met-
rics within an existing theory of decision-making may not
necessarily be a good idea as these metrics have often been
based on the premise of modeling purely rational behavior,
which recent research in economics and psychology has shown
to be inaccurate [8]. In our paper, we have produced suffi-
cient empirical evidence in support of the metric. While our
approach does not promise a specific methodology to imme-
diately improve the qualitative coding process, we provide a
robust conceptual framework useful to devise several method-
ological processes to suit the personalized needs of qualitative
researchers.

CONCLUSION
Human intuition for comparing across different states of dis-
agreement can be severely challenged with increasing amounts
of data to be coded and limited available resources for coding
it. This is further complicated by coder bias when dealing
with the complexity of disagreement [26]. However, a state
of (dis)agreement is independent of the labels used for coding
data instances. The paper presents a conceptual understanding
of collaborative disagreement that remains indifferent to the
coding context and groups of coders irrespective of their disci-
pline. We use this conceptual formulation to offer tree-based
ranking metrics that allow coders to order different states of
coding disagreements to discern ambiguity. Our proposed
approach of dealing with disagreement treats all the labels
uniformly, and remains unchanged with new coding schemes
provided the number of unique labels is preserved. This agnos-
tic property offers qualitative coders an opportunity to easily
analyze disagreement, resolve minor disputes, single out ir-
regular instances, and help improve coding of the data. With
such properties, the metrics successfully represent ambigu-
ous instances such that they match the coder’s perceptions of
disagreement.
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