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Abstract 

To adequately simulate the physics and control of a complex 
accelerator requires a substantial number of programs which 
must present a uniform interface to both the user and the in- 
ternal representation of the accelerator. If these programs are 
to be truly modular, so that their use can be orchestrated as 
needed, the specification of both their graphical and data inter- 
faces must be carefully designed. We describe the state of such 
SSC simulation software, with emphasis on addressing these uni- 
form interface needs by using a standardized data set format and 
object-oriented approaches to graphics and modeling. 

Introduction 

For the SSC to work requires thorough simulation of different 
designs and operational procedures“] . Without detailed un- 
derstanding of the machine’s physics and how to deal with its 
various sources of error, it will prove impossible to effectively 
operate the accelerator. We are therefore developing a large 
software system to simulate the machine. 

The goals of the simulation are three-fold: (1) to study the 
physics of different designs of the accelerator, (2) to develop 
high-level operational experience of controlling the machine in 
the face of anticipated errors. and (3) to build the simulation 
in such a way that it can later be used with the real accelera- 
tor, transcending pure simulation. For the SSC, the programs 
embodying the physics for the simulation span a large range of 
different types of models of the accelerator, different input and 
output formats, and different hardware. In addition, the simula- 
tions include highly graphical interfaces to enable the physicist 
using them to visualize aspects of the machine’s behavior and 
thereby build intuition. The more effective these interfaces, the 
more effective the simulation. 

When trying to develop a large, unified body of simulation 
software such as this, a number of software engineering issues 
arise: 

How do the different parts of the simulation talk to one 
another? Different modeling programs written by different 
people will have different input and output formats. Large 
quantities of data must be somehow coherently managed 
and accessible across heterogeneous networks. How does 
one deal with this without being overwhelmed with un- 

simply build a general high-level graphics library and ex- 
pect to then quickly piece together whole interfaces from 
it. Effective user-interfaces tend to be similar to one an- 
other but not identical, making pre-canned solutions such 
as libraries inadequate. Often one winds up copying code 
from existing interfaces and then modifying it somewhat 
to suit the task at hand, leading to the horrific problems 
of maintaining a mass of almost-but-not-quite-duplicated 
code. 

How to design the simulation so that in the future it can 
operate on different models of the accelerator? What hope 
can one have of truly “plugging in” to the real machine, 
and turning the simulation into high-level control? Unless 
one begins early with these goals in mind, the simulation 
programs run a great danger of having wired into their in- 
nards all the global variables of the one modeling program 
currently at hand. 

The body of this paper expands on the following approaches 
to addressing these issues: 

To deal with the problem of interconnecting disparate pro- 
grams and transparently moving distributed data across hetero- 
geneous networks, we have developed a standard data format in 
which data objects are “self-describing,’’ i.e., contain informa- 
tion about their structure as well as the actual data. Coupled 
with a distributed database[21 , this will provide the backbone of 
a software bus-a common, machine-independent protocol which 
different programs can be plugged into to talk to one another. 

The problem of being able to rapidly create new user-interfaces 
by specifying differences between them and existing ones, and 
to sustain a uniform user-interface across the entire host of sim- 
ulation software, is especially amenable to object-oriented ap- 
proaches. Rather than building a graphics subroutine library, 
we are developing a hierarchy of graphics classes, which can be 
readily extended and modified without duplicating code. 

Finally, the general problem of developing model-independent 
simulations is also very well-suited to an object-oriented ap- 
proach. By using classes to abstract the components of the 
accelerator simulation, we can build a system which will, with- 
out change, work with today’s modeling program, tomorrow’s 
modeling program, and, eventually, the real accelerator. 

Taken together, these building blocks can provide the basis for 
a highly effective and flexible simulation system. 

wieldy ASCII files, cryptic command sequences, and error- 
prone drudgery? Standardized Data Sets 
How to avoid spending all one’s time trying to write ef- 
fective interactive graphics for the simulation? How to 
sustain a uniform user-interface across the different sim- 
ulations? The benefits of being able to visualize and di- 
rectly manipulate the simulation’s workings are enormous, 
but the software investment can be very large. One can’t 

An integral part of our software system architecture is a uni- 
form way to represent and communicate data. The solution must 
address several needs: 

data must be self-describing. That is, it must contain an 
internal description of its format, both low-level (“array 

* Lawrence Berkeley Laboratory. Work supported in part by the United 
States Department of Energy under Contract Number DEAC03-76SF00098 
** Operated by the Universities Research Association, Inc. for the U .  S. 
Department of Energy. 

CH2669-0/89/0000-0082$01 .WO1989 IEEE 



of 512 doubles”) and high-level (“aggregate named ‘Twiss 
parameters’, consisting of . . .”); 
the format must impose minimal overhead. Reading large 
data sets should be as fast or nearly as fast as directly 
reading binary data. The data must retain maximum pre- 
cision; 

data must be readily transportable across heterogeneous 
networks, and in a transparent fashion (no explicit data 
conversions or network manipulations necessary); 

the data format must not be specific to disk files, but al- 
low for alternate representations such as database entities, 
shared memory, and distributed access. 

this end we have developed an initial design and imple- ~. 
mentation of a Self-describing Data Standard (SDSL3’ ), which 
meets the above needs. The SDS library is callable from C, FOR- 
TRAN, and C++ programs, and currently supports Vax, 68000, 
and SPARC binary data formats. The first part of an SDS de- 
scribes the byte-ordering, data types, and records in the data 
set. The remainder holds binary data, which is not converted to 
a “generic” format but remains in its native representation along 
with enough information to convert it to other representations. 

To date SDS has been used: to take turn-by-turn data on 
the Tevatron for analysis on Sun workstations; to take magnet 
quench data on Vax computers running VMS, also for analysis 
on Suns (running Unix); and to represent the SSC lattice op- 
tics and multipole errors for communication between the thin- 
element Teapot [41 modeling program and the differential-algebra 
XMAP[51 modeling program. The data sets can reside on disk 
or tape, in the distributed database, in shared memory. or in 
process memory. Tools exist to list the contents of data sets. 
movc them from one representation (e.g., disk) to another (e.g., 
shared memory). perform data transformations (e.g.. FFT),  pro- 
vide graphical representations (various forms of plots), and to 
automatically generate data sets from a list of FORTRAN com- 
mon blocks. 

Our use of SDS will grow dramatically in the near future. iVe 
plan for it to become the medium of choice for all our data 
communication, thus providing a uniform way for disparate pro- 
grams to communicate with one another. More SDS-related 
tools will be developed, such as a browser for exploring the 
high-level structure of a data set, filters for selecting parts of 
data sets and/or combining data sets, and additional transfor- 
mation and analysis tools. Further work is also needed for mak- 
ing SDS-access fully transparent with respect to representation 
and networking. 

A n  Object-Oriented Approach to Graphics 

Having developed three generations of graphical interfaces for 
accelerator [‘I , we have come to appreciate how much 
effort one can spend writing and maintaining effective inter- 
faces and how difficult it can be to directly reuse or build on 
large portions of existing ones. The last of these generations 
endeavoured to facilitate reuse by building a hierarchy of graph- 
ical “packages,” each level of which supported the operations 
of lower levels plus additional functionality. For example, the 
window package implemented a simple window with an integer 
coordinate system and some line and text drawing functions. 
These windows had concepts of alignment with other windows, 

font sizes, colors, and mouse-clicks. The next level in the hi- 
erarchy, world window, was a “window” plus the concept of 
a world (floating-point) coordinate system. Similarly, split 
world window extended these to have a wrap-around point in 
the coordinate system, useful for representing objects such as 
accelerator rings where the beginning and end are at the same 
point. With this hierarchical approach, simple concepts such 
as “window” could branch out into different types of refinement, 
each of which could support the same basic functions (like “draw 
a line”). When writing new interfaces, one would select the nec- 
essary set of packages and then write the code to interconnect 
them. 

We learned that trying to build such a hierarchy without sup- 
port for it directly in the language (we were using C) is very diffi- 
cult. One either winds up with a tangle of similar-sounding-but- 
different routine names (window-draw-line() ; uorld-window- 
draw-line(); split-world-window-draw-line() . . .),or pack- 
ages which are second-class citizens-they don’t support all the 
functionality of the package on which they’re built, making in- 
terconnecting different packages very painful. 

These problems cry out for object-oriented solutions. In an 
object-oriented language, the analog for a package is a class. 
Classes encapsulate both data associated with a concept (such 
as the coordinate system of a window) and functions (such as 
“draw a line”). An instance of a class is an object; one oper- 
ates on objects by sending them messages telling them which 
function to perform on themselves, altering their internal state. 
Given some concept represented by a class, one can refine the 
concept by deravzng a subclass from the original. Derived classes 
inherit all of their parent’s functionality and state, plus they 
can introduce additional functionality. These extended classes 
are full-fledged citizens; any operation which can be performed 
on the base class can be performed on the extension. Further- 
more, they can change how functions defined in the parent work 
for themselves. For example, a world window class can specify 
that zts “draw a line’’ function means ‘kame as for window ex- 
cept use the floating point coordinate system”, overriding the 
previous definition. Then any routine written to deal with uin- 
dow‘s can be handed world window’s as well. When the routine 
tells the object to draw a line, the correct version of the func- 
tion is automatically used. Thus we gain two enormously useful 
advantages: 

a New concepts can be created simply by specifying the dzf- 
ferences between them and an existing concept; and, 

Routines can be written which will automatrcally work 
with future, unforeseen extensions to current classes, with- 
out requiring modification. 

Passing messages around and automatically figuring out the 
right routines to call sounds potentially very inefficient. Fortu- 
nately there are object-oriented languages which are designed to 
maximize efficiency. One of these, C++[’] , is upwardly compat- 
ible with C and delivers the same high performance. Better still 
for our purposes, a graphical toolkit written in C++ is available 
for use under X Windows[101 (and possibly other platforms in 
the future), which gives immediate portability advantages‘”] . 
Called InterViews[121 , the toolkit provides roughly 75 classes 
for writing user interfaces. The classes are all highly extensi- 
ble (as one would hope!). We are now redesigning the graphical 
interfaces to all our accelerator simulation software to use In- 
terviews. By using one common toolkit we can ensure uniform 
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user interfaces throughout the entire body of graphics software. 
To date classes have been written for interactive data plots, in- 
cluding zooming, panning, selection of points of interest, differ- 
ent styles of plotting, and fitting curves to data points; and for 
simple ways to create buttons, menus, cursors, dialog boxes, and 
text messages (all derived from more general Interviews classes). 
Using these classes we have developed interfaces for interactive 
chromaticity plotting and correction; decoupling; beta, eta, and 
closed-orbit plots; and viewing turn-by-turn plots, phase space 
plots, and smear plots of tracking data. (See elsewhere in these 
proceedings[11 for examples.) Already our collection of classes 
enables us to rapidly construct interfaces. As the class library 
grows we anticipate being able to create more and more elabo- 
rate interfaces just as easily. 

An Object-Oriented Approach to Simulation 

One of the boons of using object-oriented graphics is that in 
the process it becomes apparent how well-suited the approach 
is to other software problems. In particular, the ability to de- 
fine a concept as a class and then refine the concept in different 
ways meshes extremely well with the goal of creating flexible 
simulation software. We are presently developing a set of “Ma- 
chine” classes which abstract the models used to simulate the 
accelerator. So far, classes representing tracking data have been 
developed, and the beginning of a class encapsulating the gen- 
eral functionality of the modeling programs (such as “compute 
tune”, “get/set multipole strength”, etc.) is underway. The 
former have been used to develop programs to compute smear 
and graphical interfaces for exploring turn-by-turn data; the lat- 
ter now replace explicit calls to modeling program routines in 
simulation programs. 

Once all simulations are written in terms of the modeling pro- 
gram class, we will be able to transparently “plug” different 
modeling programs into the entire simulation, and, ultimately, 
the database and control system of the actual accelerator. With 
this approach, we can develop simulation software for immedi- 
ate use which will also be directly applicable to the subsequent 
high-level control of the real machine. 

Summary 

We are now developing a large body of software to simulate 
the physics and high-level operation of the SSC. If this software 
is to form a unified and flexible whole, we must solve a num- 
ber of software engineering problems that will otherwise render 
the system so bulky as to become effectively useless. To this 
end, we envision (1) the Self-describing Data Standard as pro- 
viding a “software bus” on which programs can be plugged in to 
talk with one another and data transparently moved across het- 
erogeneous networks; (2) a library of Interviews-based graphics 
classes to provide a way to rapidly create new interfaces and to 
ensure uniformity across all our interfaces; and (3) a library of 
model/machine classes to enable us to generalize our simulation 
to a variety of models of the accelerator, and, ultimately, to the 
actual machine. 

We have a vision of how a truly effective accelerator simulation 
and high-level control system might look. In it, the user orches- 
trates a suite ‘of interactive simulation programs, calling forth 
those relevant to the task currently at hand. With each such 

view, the user can select an object, be it low-level such as an in- 
dividual magnet or high-level such as a non-linear chromaticity 
curve, and then summon a list of relevant operations, or query 
the object regarding its status, its history, and its meaning, fol- 
lowing cross-ties to related objects. The user can attach objects 
to “clip-boards’’ for later reference, or move them between views 
to see them from different simulation perspectives (for example, 
select the working point achieved by a modeling program using a 
linear model of the machine, send it to a different program which 
includes nonlinearities to see if it can also achieve it; take the 
results from both, drop them into the Twiss parameters view to 
see how the optics are effected; or drop them into the Tracking 
view and, once tracked, into the FFT view to see what the ac- 
tual tunes are). The goal would be to liberate the user from the 
drudgery that makes mixing simulation programs tedious and 
error-prone, and to give the user different visual perspectives of 
the simulation, that they might synthesize the different mod- 
els of the machine and build better intuition as to the overall 
picture. 

On the surface this vision seems far-fetched, perhaps over- 
whelmingly expensive to implement. But given a software bus, 
an approach for developing extensible, uniform interfaces, and 
a way to abstract modeling programs to render simulation soft- 
ware independent of them, the cornerstones are all in place. On 
this foundation such a unified system can truly be built and 
turned into reality. 
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