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Abstract. Computing affects how scientific knowledge is constructed, verified, and validated. Rapid
changes in hardware capability, and software flexibility, are coupled with a volatile tool and skill set,
particularly in the interdisciplinary scientific contexts of oceanography. Existing research considers the
role of scientists as both users and producers of code. We focus on how an intentional, individually-
initiated but socially-situated, process of uptake influences code written by scientists. We present an 18-
month interview and observation study of four oceanography teams, with a focus on ethnographic
shadowing of individuals undertaking code work. Through qualitative analysis, we developed a
framework of deliberate individual change, which builds upon prior work on programming practices
in science through the lens of sociotechnical infrastructures. We use qualitative vignettes to illustrate
how our theoretical framework helps to understand changing programming practices. Our findings
suggest that scientists use and produce software in a way that deliberately mitigates the potential pitfalls
of their programming practice. In particular, the object and method of visualization is subject to restraint
intended to prevent accidental misuse.

Keywords: Scientific software, Programming practice, Data science, Oceanography, Qualitative
analysis, Sociotechnical infrastructure, Software engineering

1. Introduction

Higher-resolution, greater-coverage data increasingly becomes available for scien-
tific research. Programming tools and skills enable scientists to make use of datasets
that exceed by orders of magnitude what had previously been available. Newly
available data, enabled by hardware improvements, is made useable and useful by a
corresponding shift in coding practices. Software is one of many activities that
scientists undertake driven by knowledge acquisition needs (Kelly 2015). Code is
co-produced with data, as a coupled articulation of scientific expectations and
assumptions (Paine and Lee 2014). Doing the work of making software a re-usable
resource is a secondary, socially-motivated concern (Trainer et al. 2015). Increased
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use of programming in ecology, where established practice involves laboratory or
fieldwork, corresponds to vocational and identity shifts (Jackson and Barbrow 2013).
We contribute a framework to understand the temporal, sociotechnical process of
uptake at the level of small, daily choices of individual oceanographers who code. A
simplifying framework is necessitated by the diversity of the object of our research,
and arose from iterative qualitative analysis of interview and observational data.

Programming in science is in “permanent beta” (Kelly 2015), and subject to
internal and external temporal processes (Chen et al. 2016; Steinhardt 2016). The
past is connected through data integration and compatibility with existing systems, or
with collaborators’ infrastructures. The future is connected by way of promising new
research group members, and new scientific areas to contend with. Scientists who
code (cf., Figure 1) must constantly re-evaluate which of a growing set of available
technologies is worth investigating. Then, they must determine which is worth the
integration and collaboration costs involved in subsequent uptake. Scientific pro-
gramming may be relatively more “risk-averse” due to long lifetimes of code in
science and the perceived “cradle-to-grave” responsibility of maintenance (Kelly
2015). Carver et al. (2007) also describe risk-averse behavior among scientific
programmers with respect to the use of external components, which may have a
short expected lifespan. Although new technologies are not quickly or easily
adopted, uptake and adaptation are commonplace processes over time in activities
related to code. Such activities include collaborative software development, writing
ephemeral scripts, and using complex software. All these activities demand, or at
least benefit from, an increased familiarity with the machine. By uptake, we refer to
the process of increasing familiarity through concept learning, skills development in
existing technology, and active choice to adopt different tools over time.

Approaching programming in science through the sociotechnical infrastructure
lens enables the study of a variety of coders doing a variety of code work. Suchman
(2002) shifts from the divisions of “user” and “designer” roles instead toward “an
extended field of alliances.” This supports the “view of systems development as
entry into the networks of working relations ... that make technical systems
possible” (Suchman 2002). Pipek and Wulf (2009) highlight the flexibility of
software, and the reflexive capacity of working environments to be re-constituted
over time. This, in turn, allows for small and large software alike to constitute a
technical element of a sociotechnical infrastructure (Pipek and Wulf 2009).

We focus on oceanography, which is affected in a particularly interesting way by
hardware advances and corresponding methodological shifts in computational prac-
tice. The study of the ocean and its processes spans a variety of disciplines,
approaches, questions, applications, geographic areas, and periods of time (Kunzig
2000). It is also rich in both new and established programming practice applied to
many research questions across many temporal and spatial scales (ibid.). In the study
of the ocean, methods in general - not just those involving coding - are varied and
“radically unstandardized” (Steinhardt and Jackson 2015). Modeling
oceanographers draw on a long tradition of computational practice which poses
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The distinctions between these
groups, or communities of
practice, are blurred by
collaborations and diverse

backgrounds
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Figure 1. Who does code work in science?. We focus primarily on scientists who code. Prior
work has focused on scientific developers (e.g., Kelly 2015; Heaton and Carver 2015) and
computer scientists working in collaboration with scientists (e.g., Ribes and Finholt 2009; Howe
et al. 2008). Recent increasing abundance of data, due to hardware improvement, has resulted in
scientists not formally trained to program, and not occupying a formal programming post, to
undertake code work (e.g., vocational shifts in oceanography - Jackson and Barbrow 2013).

significant legacy and integration challenges (Edwards 2010). Observational ocean-
ographers, like ecologists, face a shifting vocational landscape, where daily work
moves from the field to the computer screen (Jackson and Barbrow 2013).

Shifting coding practices in oceanography contribute to bridging the historical
divide between the modeling and the observational oceanographers. This divide, in
turn, affects uptake of programming practices. Numerical and computer modelling of
the oceans has been a major part of knowledge production in the field for nearly half
a century. Scientists integrate fieldwork and observational data into the development
and parameterization of models as well as interpretation of their results (Edwards
2010). Data standardization and integration have long been a focus of study and
engineering, in service of scientific research and collaboration. In oceanography, internal
cultivation and application of programming skills is the norm (Kunzig 2000; Edwards
2010). Researchers adopt and adapt aspects of professionalized software engineering
terms of art, tools, and best practices (e.g., Mislan et al. 2016; Wilson et al. 2014; Sletholt
et al. 2011; Hannay et al. 2009). The cultivation process includes debate, reflection,
piecewise adoption, and adaptation of ideas from the methods discipline. Uptake, the
object of our study, is an observable outcome of constructive internal critique.

The visual representation of data and concepts is central in oceanography (Gilbert
2005). An oceanography lecture typically features an array of diagrams,
photographs, and figures using familiar metaphors to express the context and
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outcome of study. In their daily work, oceanographers create and contemplate many
image representations, produced computationally as well as on whiteboards or with
pencil and paper. Visualization also plays an interesting role in uptake and mediation
of code work. Easterbrook and Johns (2009) describe ways in which climate
scientists use visualization as a form of continuous integration. “Continuous
integration” refers, here, to a software engineering term applied by Easterbrook
and Johns to actions of the oceanographers they studied. In particular, they found
that the scientists routinely tested the entire experiment code as a whole (ibid.). In a
literature survey of software engineering research claims about scientific program-
ming process, Heaton and Carver find that design, debugging, and testing are not
distinguishable processes with respect to the code itself, which is may result in code
more difficult to debug and maintain (Heaton and Carver 2015). The processing and
transformation of data to make visual representation and comparison possible is
a major, unsolved, research and design challenge (e.g., Howe et al. 2008;
Young and Lutters 2015). An understanding of uptake and code work must
account for the privileged role of visual artifacts. Can such an understanding
also provide some predictions of how visual practice in oceanography might be
expected to mediate uptake?

We conducted an empirical, descriptive study of programming practices in four
oceanography teams over 18 months. We focused on scientists who code (see
Figure 1), interviewing and observing individual undertaking many small uptake
actions throughout daily work routines. The inclusion criterion was willingness to
build familiarity with the machine, as a means to achieve scientific goals. A total of
46 informants were involved in various social events studied. Of these, 21 individ-
uals were actively incorporating new mechanisms into their scientific practice. These
individuals were post-doctoral researchers, PhD students, research scientists and
scientific programmers (see Figure 1). The data were analyzed qualitatively using
iterative memos (Miles et al. 2013), to answer the following:

Research question. How does the intentional, individually-initiated but socially-
situated, process of uptake influence code written by scientists?

This paper is structured as follows. The Background section provides a theoretical
basis for the framework and reviews related work on research on software and
programming in science. The Methods section describes the site and the informant
population, and the qualitative data collection and analysis methods employed. In the
Findings & Framework section, we present the components of the analytic frame-
work. The findings are reported using “qualitative vignettes” (Barter and Renold
2000) which are listed in Table 1. The framework enables a comparable description
of incremental change through many daily opportunities, influenced by subjective
evaluations of mechanisms in the working environment relative to a vision of a
“perfect world”. In the Discussion section, we apply the framework to understand
restraint in visualization object and method as it impacts programming practice
uptake. Both the Findings & Framework section and the Discussion section make
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Table 1. Overview of vignettes in this paper. The framework introduced in this article is demonstrated,
applied, and used to derive insights in the following qualitative vignettes. Each can be found in the
indicated section in this paper.

Topic TSection
Vignette 1 Version control concepts Findings Mechanisms, Working Environment
Vignette 2 Switching between set-ups Evaluation of Mechanisms Relative
Vignette 3 The moving target to the Perfect World
Vignette 4 Recovery from setbacks Applying the Framework
Vignette 5 “Just” a visualization Discussion Object of Visualization
Vignette 6 “Real” enough to look at
Vignette 7 Uptake without adoption Means of Visualization

use of vignettes, but in different ways. The former set of vignettes were selected to
introduce the elements of the framework. The latter set, on the other hand, are
complex examples to which the framework was applied to understand visualization
during code work. While the Findings section presents and justifies the framework
and its components, the Discussion section explores these through additional vi-
gnettes. We outline our findings and offer some future directions in the Conclusions
and Future Work section.

2. Background

Programming practice is subject to individual and social assessments in relation to
time availability. Chen et al. (2016) identify differences in human and technical time
in a high-performance computing context, particularly in terms of human interven-
tion needs or costs. Button and Sharrock (1994) identify temporal influence as
constraint that results in “postponing” better process. Although this would produce
better software, it is foregone “in recognition of overriding organizational realities”
(ibid., p.221). Steinhardt and Jackson (2015) conducted an ethnographic study of a
large-scale cyberinfrastructure project involving oceanography. They identify
“anticipation work” as “the mundane, local, and sometimes highly personal accom-
modations to the future" (ibid.). Programming in science is in “permanent beta”
(Kelly 2015) while being strongly situated in context-specific technical heritage.
Climatologists in the 1950s used many heterogeneous mechanisms to cope with
an “explosion of data” (Edwards 2010). The computational approaches of decades-
old data practices affect contemporary attempts to build integrative analytic systems.
This subject is explored by Young and Lutters (2015) in the process of designing of a
tool that supports synthetizing datasets in Land Change Science. Steinhardt (2016)
further describes the “care work of breaking down,” and identifies how interpersonal
relationships are built up during this breakdown process. In the wake of breakdown,
or “frustration” of otherwise “seamless” work, human agents undertake subtle acts
of repair work (Jackson 2014). Lee et al. (2006) identify “human infrastructure of
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cyberinfrastructure” as “multimorphous” and “dynamic,” changing more rapidly
than physical infrastructure.

We interpret code and code work through the sociotechnical infrastructures lens to
capture both relative fluidity and interdependence of technical artifacts. Star and
Ruhleder (1996) identify eight aspects of sociotechnical infrastructure. One of these
aspects concerns having an installed base. In other words, dependence on existing
technical and social structures, previous infrastructures, and systems of support,
funding, training, and expertise. Pipek and Wulf (2009) build up the notion of
infrastructuring and work environment that can be either collective or individual.
This allows for infrastructure objects at different scales: "the concept of infrastructure
remains useful regardless of the artifact’s sheer size" (ibid.). Suchman (2002)
describes a “dense and differentiated layering of people, activities and things,
each operating within a limited sphere of knowing and acting that includes
variously crude or sophisticated conceptualizations of the others.” Orlikowski’s
(2006) concept of scaffolding can help articulate how technological mecha-
nisms can act simultaneously as constraints and resources. Scaffolds are both
dangerous (“as temporary, emergent, and rapidly constructed assemblages, they
are vulnerable to breakdown and failure”) and generative (“serve as a basis of
other (creative) work”), as well as emergent (“erected over time and changing
in form and function” (ibid.).

Pipek and Wulf (2009) identify actors “involved in these processes [of work
infrastructure] to ... perform deliberate, creative activity directed toward what
they consider a lasting improvement.” One friction that arises during the
process of developing innovative cyberinfrastructure involves a mismatch in
vision. Scientific users are unable to articulate realistic, yet still novel, needs
(Ribes and Finholt 2009). Button and Sharrock (1994) distinguish “how things
were” from “how they were to be” (p.225), in the context of evaluating (or
strategically postponing) preferable, in favor of practical, programming pro-
cesses. This is consistent with Suchman’s argument for recognizing “reality of
partial translation in place of claims for universality” (2002).

Furthermore, Suchman (2002) challenges the “the vision of a single technology
that subsumes all others” with the idea of a “continued existence of hybrid systems
composed of heterogeneous devices.” Deliberate, explicit adoption of practices from
software engineering can be partial, patchwork hybrids. Sletholt et al. (2011) found
partial adoption in a set of case studies evaluating the use of Agile programming
practices as reported in scientific articles. Piecewise adoption is not unique to
scientific code work. Truex et al. (2000) articulate two extreme narratives of
“amethodical” and “methodical” systems development, which are each present to
an extent in real-world software engineering groups. Social mechanisms (Trainer
etal. 2015) and personal taste and aesthetics (Leach et al. 2009) motivate production
and inform prioritization.

Scientists who program have been characterized as professional end-user devel-
opers (Segal 2007). They do not self-identify as “real” programmers (Kelly 2015).
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End-user development is defined as the “set of methods, techniques, and tools that
allow users of software systems, who are acting as non-professional software
developers, at some point to create, modify or extend a software artefact”
(Lieberman et al. 2006). Because of the extent to which scientists “create, modity,
or extend the software artefact,” some studies have considered scientists as devel-
opers. Programming practices in scientific contexts recombine or partially adopt
software engineering practices (Heaton and Carver 2015). Some such adaptations
may inhibit effective production of high-quality code, because they diverse from
software engineering best practices (ibid.). Others have argued that scientific pro-
gramming is systematic, but in a way distinct from software engineering industry
contexts (Kelly 2015; Easterbrook and Johns 2009).

Orlikowski develops the notion of scaffolding to describe temporary sociomaterial
structuring in knowledge production (Orlikowski 2006). We relate the notion of
scaffolding to apply to temporary, or intermediate, visualizations. Code may be in the
process of being socially vetted through visual intermediaries. Visualization mediates
code work in oceanography as a means for testing and validation (Easterbrook and
Johns 2009). Planning and visual artifacts make breakdowns in software visible.
Ronkko et al. (2005) build on the concepts of articulation work and due process in
the study of software plans. They define a mediating role of Implementation Plans
in software production, which make breakdown visible (ibid.). De Souza et al.
(2005) develop a visual artifact to identify the social and socio-technical
dependencies in code, using a social-call graph. Based on interviews with
biologists, Yeh and Klemmer (2004) find patterns of using physical notebooks
that encode relationships to code comprehension: “whereas handwritten data is
unprocessed, needing to be transcribed for further analysis, printed data may
contain fully ‘debugged’ lab procedures that have been used with success.”
These notebooks contain, in addition to printouts, lists, and sketches blank
spaces “pre-allocated for future work™ (ibid.).

In Kelly’s (2015) knowledge acquisition model, software production is driven by
scientific knowledge acquisition needs. Desire for more, not less visibility is reported
in in the Land Change Science data synthesis system (Young and Lutters 2015).
Chen et al. also found this preference toward transparency in their study of a high-
performance computing process management system (2016). Easterbrook and Johns
describe a “continuous integration testing” process (2009) neither uses an established
Agile method, nor is recognized as such by the scientists. Rather, it is “part of the
business of ‘doing science’ [to] continually experiment with the software itself to
improve their understanding” (ibid.). Expertise and familiarity with the machine
arises in connections between moral judgments about better process and mate-
rial judgments about better outcome (Leach et al. 2009). On the other hand,
unfamiliarity results in under-utilization in absence of familiarity of
“capabilities and how to exploit them” (Suchman 2002). Computational skills
among scientists are subject to change with respect to professional trends and
scientific utility (Steinhardt and Jackson 2015).
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3. Methods

Data collection was conducted over the course of 18 months from April 2014 to
December 2015. Our study design accommodated many types of software adoption
and adaptation, as well as individual and interpersonal narratives of code-related
decisions. Initial interviews with Software Carpentry workshop participants in-
formed the recruitment and study of 4 specific oceanography teams, which are
summarized in Table 2. Semi-structured interview protocols and observation ap-
proach were informed by prior research and data from a similar site. Multi-year
interview data gathered by Charlotte P. Lee’s group regarding an oceanographic
collaboration was used to create initial study materials.

Recruitment took place at a variety of events, including workshops, skill-shares,
and group meetings. Initial observation also took place at some of these events.
Access to two of the four oceanography teams occurred through some members of
those groups participating in SWC events attended or observed. The key inclusion
criterion for this study was a group’s interest in improving their coding skills for
scientific work. This willingness was not tied to a specific research agenda or
computational tool stack. Therefore, our findings concern tools of varied degree of
complexity and abstraction. Groups’ interest did not necessarily stem from an
appreciation of intrinsic qualities of computational approaches. Neither did it stem
from a desire to pursue an expansion of capabilities. Instead, by “interest” and

Table 2. Summary of interest in code work among oceanography participant population, categorized
by group. In addition to participant count (total and in the study-focus group), this table provides a
summary of the scientific challenges that the teams have in mind as they explore various interests in
programming. The name of each group highlights its distinguishing characteristic relative to the other
groups. These distinctions may not reflect precisely the way the groups would position themselves in
their scientific contexts.

Group Label BioGeoChem CustomInstr. Omics RegionalNowcast
Model/Lab? Model Lab Lab Model
Number of Participants, esp. Scientists who code
Total 11 15 9 11
Focus 7 4 4
(of total)
Interest in Programming: Scientific Challenges to be Addressed through Code
Analysis Transformation, Faster Effective More features
comparison analysis, automation
more data
Visualization Interactivity Real-time & Sequencing Daily
in analysis archive website big data forecast website
Big Data Access Storage Handling Access
Additional personnel influencing code work
Programmers 1 1 0 1

Collaborators 1 5 1 1
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“willingness” we refer to a collective sense of a changing methodological landscape
in oceanography.

Not all informants were unequivocally enthusiastic about the increasing amount
of programming competence expected or required for professional success. Some
expressed enthusiasm about computing methods for their own sake, citing greater
computational capability. Some described experiencing a satisfaction with solving
the many mundane puzzles of programming, or with engaging with elegant code.
Even in the cases of great enthusiasm about programming for its own sake, science
was unequivocally the primary endeavor. The time spent programming, therefore,
was pulled in pieces out of busy schedules. Initial exploration, or prior experience,
was a prerequisite to forming a practical vision for the application of the tool. Both
exploration and the maintenance of experience demanded time, as do the immediate
needs of defects or experimental requirements. “Willingness” refers also the pur-
poseful and sustained prioritization of non-urgent tasks in scientific programming
over the more urgent ones.

Our findings are based on observation of individual scientists doing code work,
and semi-structured and unstructured interviews. Observation of workshops and
meetings helped to situate individual work in its social and scientific context. All
data were recorded in the form of interview transcripts or typed notes, which were
then analyzed using iterative coding and memo-writing. The first author performed
data collection and preparation of anonymized vignettes. The other authors were
engaged in the discussion of these vignettes, their relationships, and connections to
literature, as part of analysis. In the following sections, we describe the research site
and groups, and the data collection and analysis methods.

3.1. Site description

Four different oceanography groups were studied. To protect the anonymity of these
groups, only a minimal relevant background is provided about their work. Each
group or lab was led by a Principal Investigator (PI), and included graduate students
and post-doctoral researchers. Some of the groups had additional positions. Both
modeling groups had a scientific programmer position, occupied by an experienced
programmer who had been with the group longer than most other members. The
groups with labs also had lab-specific positions, such as a lab manager, and research
scientists who worked on enabling computational methods.

The groups studied dynamics, processes, and small particles and micro-organisms
in the ocean. Ecology, genomics, biogeochemistry, physics, biology, and biochem-
istry research questions were represented across the four groups. Common aspects of
analysis involved changes of concentration of nutrients over time and the movement
of organisms and particles as affected by eddies and currents. Similarity in data
processing and presentation operations placed comparable demands on software
functionality and transparency. Many diverse projects could be characterized as
study of changing quantities over time while accounting for complex mobility
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processes. Temperature and salinity were common, and variations between night and
day, or across seasons, were typically taken into account both in observational and
modelling contexts.

All groups worked in different sets of offices, through two were situated on
different floors of the same building. Despite not spending much time with water
samples or the ocean, both modelling groups were personally connected to their
surrounding environments. The physicists in our study expressed enthusiasm about
and closeness to the outdoors in general. This contrasts the high-energy particle
physicists whose research location was purposely at odds with its environment
(Traweek 2009). Parts of this may have reflected the outdoors ethos of the Pacific
Northwest at large. Both modelling groups had at least one member who had never
been to sea, who was interested in the experience. The Omics-Lab, like
CustomInstrument-Lab, had a laboratory space in addition to computer workstations,
where members of each spent considerable uninterruptible time. During routine
group meetings, certain members were occasionally justifiably absent and “under
the hood” (referring to a fume hood in a chemical lab). Computer work was done in
shared offices or labs, and short interruptions to ask colleagues for ideas or help were
commonplace. Two members of the CustomInstrument-Lab reflected on how their
facilities reflected the changing role of computation. The space had been refurbished
less than a decade ago. The preferred side of the building which had a good view was
occupied by the laboratory space, to purposely accommodate the expected typical
workspace. However, in practice, members this group faced data challenges that
required extensive computer time. Therefore, the set of offices on the side opposite to
the view received more use than expected.

3.2. Data collection and analysis

The data gathered spanned transcribed interviews and extensive notes from obser-
vation of group meetings, other social events, and, primarily, shadowing individuals
doing routine code work. Of the 46 individuals in the four oceanography teams, 21
had been shadowed and interviewed during some process of change. The others
either did not use computational tools, did not undertake any related changes, or were
too busy to participate in the study further. Most of the 300+ hours of observations
involved shadowing each of the core informants. A shadowing session lasted
between several hours and multiple days during negotiated times. This allowed
access to moments throughout the day relevant to the research question.
Shadowing was supplemented by unstructured and semi-structured interviews in
order to build an understanding of daily work.

Unstructured and semi-structured interview tactics were embedded in a
shadowing activity. The semi-structured approach relied on asking deeper follow-
up questions about meaning and process based on answers to more specific ques-
tions. Some formal interviews were used: scheduled, private, audio-recorded meet-
ings in order to get reflections on some particular event or dynamic. Most of the
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reflection and quotes came from countless more unstructured interview opportuni-
ties. Interview probes followed particular moments of natural pause in code work.
For example, leaning back in the chair and sighing, or expressing a moment of
victory. These moments provided opportunity to ask about the challenge and the
solution, as well as the current scientific interpretation.

Toward the end of the study, the follow-up questions asked became purposely
more speculative. For example, during one brown-bag lunch break, a discussion of a
recently-encountered bug took place among two post-docs and the observer. The
observer asked the informants to critique an idea for interactive visualization for
debugging that built on prior observations. Such probes were able to broach in a
concrete way the broader topics of interest, like trust and code comprehension. As in
the prior approach of follow-up questions, the goal was to ask about salient topics
concretely first, and then abstractly. The probe regarding a visualization for
debugging led the informants to describe a prior attempt in the group to make
something similar. That attempt had been abandoned, because visual cues seemed
too precise, and created an impression of certainty which was dangerously mislead-
ing. The exchange revealed an attitude of reluctance which, upon further investiga-
tion, resulted in the synthesis presented in the Discussion section.

The analysis was carried out by all authors throughout the study, iterated and
pooled together by the first author. Subsets of the authors participated in discussions
of particular anonymized case study write-ups and preliminary theoretical framings
throughout the theory development process (Miles et al. 2013). Three of the authors,
including the first author, have a computer science and software engineering back-
ground. This enabled our technical focus and interpretation. The data collection and
analysis were carried out by the first author, who was able to ask technical follow-up
questions.

The outcome of the analysis was the framework, which is presented here. It was
developed to reflect a diversity in attitudes towards the introduction of new compu-
tational tools. The phrasing and framing remain close to the terms and meanings of
the informants. While our framework constitutes an etic form of knowledge, the
language and concepts are emic, derived from the world of the participants them-
selves. For example, the “ideal” or “perfect world” as an explicit articulation of the
direction of desired progress. Evaluation, or normative framing arises in native
descriptions of standards or norms: the “shoulds” of their work. These descriptions
arise in internal discourse and rhetoric, as arguments or suggestions: “we should
really use version control.”

3.3. Limitations

Our study was limited to a particular set of individuals, pursuing specific research in
oceanography, and is not necessarily representative of other scientific contexts. Our
inclusion criterion necessitated an attitude of willingness toward uptake of new
technologies. Participant recruitment began at sites of expression of this willingness:



Kuksenok Kateryna et al.

local workshops and tutorials on code in science. As a result of the inclusion
criterion, study spanned a wide range of programming background, motivations,
interests, and tools adopted (and abandoned). Willingness did not necessarily imply
enthusiasm, so reluctance and mistrust could also be captured. This diversity limited
the extent to which we could compare software practices.

Furthermore, all Principal Investigators (PIs) in our study encouraged group
members to invest time and energy in exploring new technologies. All the groups
were successful constituents of high-profile departments. We did not include those
oceanographers not holding the view that their scientific landscape of was undergo-
ing a significant computational methods shift. We cannot claim any generalization of
our findings to groups more reluctant to changing methodologies. Likewise, these
findings may be overshadowed by financial constraints in a less professionally secure
or supportive environment. We only conducted the study for 18 months, which
allowed us a detailed view on small-scale deliberate change but not on longer-scale
changes and drift.

4. Findings & framework

In this section, we focus on defining the framework that emerged from this study. The
terminology used in this framework is selected to mirror the terminology of the
participants, as described in the Methods section. The structure of this framework
builds on the related and background work. This section presents qualitative vi-
gnettes of increasing complexity using concepts form the framework, and addressing
our question: how does the intentional, individually-initiated but socially-situated,
process of uptake influence code written by scientists?

4.1. Mechanisms in the working environment

Thus far, we have described a study site characterized by heterogeneity of technology
and its uses (Suchman 2002; Steinhardt and Jackson 2015). In this section, we build
up the definition of a working environment comprised of mechanisms. Both concepts
include not only the technological function of a mechanism, but also social and
personal. The technical function of a mechanism is connected to “getting set up” for
new contributors to a joint scientific project that has a coding component. A
mechanism can act as a social resource by supporting communication, decision-
making, goal-setting, and reflection with respect to a project. Lastly, the dimension of
personal skill and knowledge can enable an unused resource to have influence.
Consider Vignette 1, which provides an overview of different roles that GitHub, as
a mechanism, can play from the perspective of an individual.

We consider GitHub a mechanism, despite the variety the roles it plays, capabil-
ities it entails, and interpretations it inspires. Scientist express their willingness to
build familiarity with the machine to achieve scientific goals. One such means for
expression is attending Software Carpentry (SWC), an international organization and
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movement to teach basic computing skills to researchers. There are other
workshops of this type, but SWC workshops have been offered since 1998
and have been in increasing demand in recent years. GitHub is one of the
four components of the two-day curriculum, and the subject of lectures
advocating for better programming practices in science. These workshops
and lectures are delivered not only by external advocates but by members of
the domain discipline. In Vignette 1, we highlight also how miscommunica-
tion about the nature of GitHub impacts uptake.

Personal
Technical
Social

______________

Vignette 1: Version Control Concepts

GitHub (GH) is a web-based service for hosting code version-controlled
through git, a command-line tool that keeps track of changes to code over
time to make recovery easier and more clearly show collaborative
contributions. Version control with GitHub is a core part of the Software
Carpentry (SWC) curriculum and other introductory resources.
How do scientists understand GitHub after participating in SWC?

Specific technical tools and operations: “merge,” “branch,” “clone.” The use
of these terms suggest familiarity with the technology.

However, familiarity does not imply active use. Not using GitHub is not
experienced as a problem, but as a context-specific decision.

An alternative to GH may be a shared directory on a common server, or in a
file-sharing application like Dropbox. If an individual’s colleagues use the
shared directory, the individual need not apply her familiarity with GH.

An individual need not be familiar with or use GH to benefit from it as a
social resource: his other colleagues can set up helpful email notifications of
updates.

GH is tied to a broader professional and scientific discourse: “accountability
and transparency,” “open source software” “standards in my new lab,”
“collaboration with other institutions,” “online professional portfolio.” These
are not tied to the technical utility of GH in managing code. This association
helps SWC motivate the inclusion of GH in its curriculum.

o«

This can lead to confusion, however. Of 10 SWC attendees interviewed after
participation regarding uptake, 3 reported that they did not want to use
version control because they did not want their code to be public. This
prevents the tool from being useful on the basis of a miscommunication.
Version control tools, git hosted on GH included, do not necessitate public
access.

Sometimes, GH — a hosting service — may be down, or git — a command line
tool — may struggle with merging two colleagues’ work on the same file. In
the event of a temporary technical breakdown, the individual can leverage
their personal skill’knowledge and social resources (colleagues and
StackExchange) to address the breakdown while potentially strengthening
those resources by doing so.
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The landscape of technology occupies many different scales. A single
software “tool” might be seen as a collection of distinct programs, or as a
component of a larger system. Our concept of the mechanism discretizes the
technological landscape on the basis of emic narratives expressed by study
informants. Despite the broad definition, GitHub is a mechanism and not a
working environment. We define the working environment as a personal,
contextualized collection of mechanisms and supports technical work activity
in its entirety.

4.2. Evaluation of mechanisms relative to the perfect world

A working environment is subject to reflexive change (Pipek and Wulf 2009). This
section provides the definition and justification for our model of how individuals
enact change. The evaluation of a mechanism in the working environment is
subjective, and roots the mechanism in the scientific use case. In the “perfect world,”
tools are (1) understandable, (2) perform the necessary task, and (3) persist over time.
As Figure 2 illustrates, these properties interact with the limitations and bottlenecks
in the personal, social, or technical resources of a mechanism. Even if no one
particular mechanism taken alone is difficult to evaluate, understand, use, or improve,
the combination of mechanisms over time exacerbates integration and compatibility
challenges. Our framework enables a specificity and comparability in revealing these
challenges.

The relevance of these three properties (functionality, understandability, sustain-
ability) is revealed through internal discourse and critique of technology. During
almost every explanation of the current working environment, the primary scientific
programmer in the BioGeoChem-Model group called it “not ideal” while providing
a historic or domain-specific reason for it being so. Another scientific programmer in
the CustomInstrument-Lab team noted a shortcoming in the data collection: “in a
perfect world, there would be a satellite for data transfer during cruise, but this is not
that world, so data is transferred once [on shore].” Another member in the
BioGeoChem-Model team described the difference between two major programs:
both are large and have many constituent packages, but one is more “conservative”
in terms of including new packages, which makes it generally more “reliable.”
Furthermore, neither is especially “user-friendly” because the “programmers don’t
want people to get too complacent.” The barrier to the perfect world is described as
not currently surmountable: historical constraints in a large codebase; procedural or
technical constraints in cruises; and the potential complacency of users.

Our model of change centers prioritization, and one important embodiment
of prioritization rests in the role of the software advisor. We identify this role
in our data based on whether non-professional developer scientists consistently
sought, and acted on, the advice of particular individuals. Formal positions
enable individuals to undertake this role, but are not a pre-requisite. Table 2
lists these for each group studied as “additional personnel influencing code
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Individual: Alice Sample Progression of Events Individual: Bob
= —_ g —
.8 - s . . g - s
= s ‘E’ _. After using script S1, authored by 5 s E _
= 2 < & Bob, both Bob and Alice switch = 2 5 &
& S 2 32 to using S2. How & why? A L2 32

Alice uses S1. Bob wrote it and
continues to improve it.

Bob’s improvements undermine
Alice’s understanding of S1.

D&O

S1 breaks; Bob knows how to fix _

it but has no time. Alice cannot Q% S1

use S1, and instead begins to T
work on a temporary solution S2.

Bob, relieved to hear that Alice is P ETEETTEEEEE ‘
working on S2, which sounds O% : S1 :

promising, stops working on S1. (S% """""""
Alice finishes, uses S2, but does
not share it because it is ugly.

After some more time, Alice
“ improves, documents, and shares .% S2

S2, which Bob can now also use.

Key for mechanisms in the
working environment and @
their evaluations:

Functional: mechanism
performs task

d} Understandable: individual
S1 Mechanism understands mechanism

o ' Breakdown, Q(% Sustainable: inajividual
: Limitation expects future function and

extensibility

Figure 2. Notation for the deliberate individual change framework, demonstrated in context of
a fictional narrative. Evaluations are not always aligned between the individuals, even when
they use the same mechanism. The combination of mechanism breakdown in part of the
working environment, and its evaluation, informs action. Individuals strive to recover from
breakdown in the direction of what they experience to be functional, understandable, and
sustainable mechanisms. The qualitative notation highlights tensions and work completed at
cross purposes by reducing complex variables 6 dimensions. The notation for evaluation
relative to the perfect world is binary (presence/absence) with respect to 3 properties. The
notation for how a mechanism fits into the working environment is ternary (presence/absence/
breakdown) with respect to 3 resources. These subjective properties are justified in the Findings
and Framework section.

work.” The role of the software advisor is sustained by others’ actions toward
them. Colleagues’ requests are filtered through desire for sustainability in the
working environment.
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Vignette 2: The Set-Ups

When does the evaluation of a mechanism deteriorate?

Erin was a post-doctoral fellow in the RegionalNowcast-Model
group who worked with both observational data and models. She
had two different “set-ups” for tasks in these historically distinct
areas in oceanography.

é% New U. The “set-ups” were distinct enough in her mind that, in one

observation session, she accidentally re-implemented a small
utility (New U.) because she forgot that it already existed in the
other, inactive environment.

The diagram to the left highlights this new mechanism, which is
evaluated to be overall acceptable.

Evaluation
Personal
Technical
Social

—‘ When Erin began to explain to the observer what she had been
New U. . s . . .
working on, the similarity of this utility to an existing one
‘ (Existing U.) occur to her. Duplication of code, and lack of code
reuse, was a violation of the "best practices" which she
considered important.
The evaluation of New U. now excludes “sustainability,” which
is undermined by duplication of the existing, shared functionality
in Existing U.; meanwhile, Existing U. does not have the desired
functionality “out of the box” and needs additional action, even
though it is preferable overall.

O lo

Existing U.

Key: (%Functional: the mechanism performs the task
Understandable: the individual understands it
&)Sustainable: the individual expects it to work in the future

Mechanism

Scientists chose which problems warranted the attention of the software advisor.
For one informant, the approach of having a specialized tool for every case is an
impractical ideal: “well, it would be wonderful to have the exact right custom
solution for every problem! But that is not the reality.” This kind of customization
and maintenance would place overwhelming demands on the limited time on
Andrew, an in-house software advisor in the CustomInstrument-Lab group. Two
oceanography post-docs (including Mallory, cf. Vignette 4) were cognizant of
Andrew’s limited time and self-censored which problems to bring to him:
“we can’t [meaning, should not] be walking down the hall asking [Andrew]
to do things all the time,” despite the sense that “well, he can just [solve any
problem] in the best way.” Minor shortcomings and setbacks were routine, and
many more than could be addressed by the software advisor. Study participants
did most of their code work on the assumption of being personally responsible
for maintenance and communication.
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The need to understand is a pre-requisite for using a software tool or code for a
scientific task. For example, the software advisor for the RegionalNowscast-Model
described the experience of providing technical explanation to the domain scientists he
works with: “I can see when their eyes glaze over. [The PI] is really good at pushing me
on it: ‘do I - as a scientist - really need to know this?”” However, what a scientist might
“really need to know” varied widely depending on the scientific and social context. One
researcher in the CustomInstrument-Lab group expressed frustration over the efforts of a
programmer to make a tool too user-friendly. The effort backfired: the mechanism was
not clear to the users, as one post-doctoral fellow remarked: “We are scientists! Looking
inside and figuring it out is what we do!” A member of the BioGeoChem-Model team
also joked about how sometimes it was difficult to get the software advisor to explain his
actions: “he doesn't like talking, just fixes all our problems super-fast.”

Vignette 3: The Moving Target

Evaluation from the perspective of a software advisor.

Evaluation
Personal
Technical
Social

The part-time scientific programmer who was working with
members of the RegionalNowcast-Model team had explained in
the beginning of the study that many of the group’s Python

A script scripts use a large model code with many constituent packages
‘ and many diverse users internationally.

o

Model code The diagram to the left shows a combination of an ephemeral,
unsustainable script used in combination with a shared model
code.

po oo + Unsatisfied with this, he described a hypothetical program which
Run mngr '

_______ would initiate a run with a single command (Run mngr). It would
Model code carry out many mechanical but essential processes, like creating
symbolic links and adding jobs to the queue manager in the
computing resource, behind the scenes. Several months later, he
unveiled such an implementation to the four students and post-
docs who comprised its current users. His demo was filled with
mentions of the many ways in which the command would be
improved "ideally". These comments provided an equally
specific but different vision of a technology that would support
scientific work. Notably, the revised vision expanded no only to
include more features, but also to account for a wider and more
diverse audience. In the next iteration, it would also account for
as-yet-unspecified but expected and desired new additions to the
group. The diagram on the left is updated to reflect the better
sustainability of the run manager script, but highlighting its
limitation in supporting new group members.

PP

(SbFunctional: the mechanism performs the task
Understandable: the individual understands it

' Limitation C%Sustainable: the individual expects it to work in the future
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In Vignettes 2 and 3, we map an individual’s subjective experience. Over time, the
individual’s evaluation of the working environment degrades. Greater awareness or
self-initiated improvement highlights new shortcomings or limitations. These
form a perceived demand for action, or opportunity. The action then serves to
bring the mechanism closer to the “perfect world,” by recovering from the
shortcoming. Vignette 2 illustrates how the evaluation of a mechanism adjusts
on the basis of the broader working environment context. Vignette 3 describes
the moving target of the “perfect world” that adjusts to new limitations when
previous shortcomings are addressed. In both cases, the adjustment of evalua-
tion is internal in that it is initiated by the individual. It can also be seen as
external, however, in that it is triggered by social interaction, either with the
observer or with the colleagues. Furthermore, when the barriers are overcome
in the pursuit of a vision, the vision changes.

An individual’s imagination is informed in successive acts of trial and error,
and through interactions with the software advisor/advocate. The perfect world
is unattainable as long as there are resource constraints, and while external
resources and internal functionality changes over time. Action is targeted at the
adoption of an identifiable mechanism. A localized attempt to enact that change
can impact the arrangement and relationships of other components, even if the
mechanism is not ultimately adopted. In this way, it is possible for partial
adoption, or non-adoption, to nevertheless change working environment. Under
this framework, all changes are deliberately oriented toward the vision of a
perfect world.

Our framework identifies stages of change that include attitudinal stance rather
than uptake or adoption directly. In this way the framework accounts for the
connection between external influences and internal direction experienced by people.
The preconditions for action with respect to a mechanism are: (1) awareness; (2)
normative framing; and (3) opportunity. For example, a local free workshop on a
technology that has been in the normative framing stage provides an opportunity. In
the case of the Omics-Lab group, this is how they described their trigger to attend the
workshop. The normative framing stage involves the recognition of shortcoming in
the evaluation relative to the perfect world. Direct external influences can also help
establish initial awareness, such as through talks contributing to awareness of useful
mechanisms. Externally-triggered breakdowns can both contribute to evaluation
adjustment and provide opportunity for action.

4.3. Applying the framework

We introduced a model of incremental change through many daily opportunities,
influenced by subjective evaluations of mechanisms in the working environment
relative to a vision of a perfect world. Figure 2 provides a fictional example that
illustrates how the notation supports expressing a wide range of subjective evalua-
tions of mechanisms.
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In Vignette 4, we consider a post-doc, Mallory, recovering from two technological
setbacks. We use the framework to formulate hypotheses explaining why her
experience of the two technologically-similar setbacks is so different.

Mechanisms Vignette 4: Recovery from Setback
g —
2 = S Two different setbacks, occurring to the same person, require
°_§ g E = outdated scripts to be fixed and re-run. The individual
g 2 3 ’g experiences both setbacks, and their respective recovery
K ~ = « processes, differently. One is “devastating” and the other is a
“time investment.” Why?
POV: DB staff Mallory, a post-doc in the Customlnstrument-Lab, was using a
“ ‘ DB ‘ database (DB) maintained as part of a collaborative project. As

an experimental tool, working with it required close collaboration
_POV: Mallory with computing experts. This at times left Mallory wanting a

& ; : DB deeper understanding of the system.

A hard-write failure corrupted some of the data. The computing

researchers involved in the collaboration wiped the database

PP . clean, without affecting the original data. From their perspective
C& ‘ DB . : ‘ this was unfortunate, but unsurprising in an experimental context.
POV: Mallory Mallory commented that, “in a sense nothing is lost, but nothing

i is in a format I could do anything with.” She described the event
R as a “major set-back,” “devastating,” because she had “nothing to
show” for her scientific work.

s
d

A prior colleague who was most knowledgeable about how to get
the data into the system had recently left. Recovery from the
breakdown involved also retracing past actions, at times under-
documented, with new personnel. Meanwhile, her MATLAB
license had expired, forcing her to make a decision: pay for the
license, or re-implement her visualization code in Python.

Regarding the visualizations, she decided in favor of
reimplementation using open-source, free components, which
would be more sustainable. This involved a concerted effort to go
through tutorials and learn how to use a library that she had been
"meaning to" learn. Mallory viewed this activity as a "time
investment”. Regarding the database event, she continued to
work with the new DB staff, improving communication with the
possibility of future work. In the meantime, she was able to use
familiar, local tools on her machine (Python and Jupyter
Notebook) to run smaller-scale but still fruitful analyses.

Key: %Functional: the mechanism performs the task
Mechanism &)Understandable: the individual understands it

* Limitation ! &Sustainable: the individual expects it to work in the future
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One explanation would cite only the scale of the setback: the data loss
problem took longer to solve, at least in part because it was a bigger breakdown
and involved more people. Another explanation would distinguish the former
action as reinstating something previously-available and suddenly frustrated.
The latter action, of reimplementation, was enabling something new to the
working environment. Both variants distinguish the two situations through
individuals’ relationship to time. Using the concepts of our framework, we
can formulate more precise observations. In the case of the database, there were
two breakdowns, in the social and technical aspects of the working environ-
ment. These exacerbated the already-imperfect evaluation. Recovery action
required simultaneous maintenance of two alternative mechanisms, both with
shortcomings. In the case of the visualization, the setback was localized to ne
particular problem, and the recovery action addressed it well relative to all
relevant dimensions.

5. Discussion

At the end of the Background section we noted the importance of visualization in
supporting both code work and scientific work, and mediating code use in oceanog-
raphy (e.g., Easterbrook and Johns 2009). In this section, we provide one answer to
the question, how does the intentional, individually-initiated but socially-situated,
process of uptake influence code written by scientists? The process of answering this
question is aided by the framework introduced previously, which is applied to more
complex vignettes and related to existing scholarship. The answer that is produced is
intended to shed light on the question, as well as to offer a discussion of how our
framework can be used to gain insight. This answer returns to the centrality of
visualization, specifically to restraint in scientific code work (cf., risk-averse pro-
gramming practice, Kelly 2015). We consider the object and means of visualization
as targets of intentional restraint. This restraint is intended to prevent accidental
misuse or complacent carelessness.

Creating and considering visual representations of data constitutes a set of com-
mon activities that cross-cut personal, social, and technical resources of each indi-
vidual’s working environment. The practice of interpreting visualization is both a
personal and a social resource. The individual capacity to interpret data using
consistent visual metaphors is cultivated socially. Technical steps that lead to a
visual representation of data are triggered by intuiting something “weird” or
“interesting” enough to investigate. The outcome arrives, through iterative
subsequent visualization, at either an error or a finding. This discourse interro-
gates the visualization and its scientific implications. It supports the social
construction of visualization literacy. It also structures, and is structured by,
further technical exploration and uptake.

To contextualize the discussion of visualization, we briefly describe the role of
visualization in daily oceanographic work. Printouts of charts can be physically
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arranged; a robust working environment may provide rapid, interactive exploration
of data. The observations of Easterbrook and Johns (2009) with regards to
oceanographic visualizations used for testing in code align with our own.
Gathering around a monitor was the most common social practice observed.
An interactive environment allowed the generation of new images on demand
as part of a process of rapid social exploratory analysis. Solitary generation of a
wide array of exploratory figures in an interactive environment, notably
MATLAB or Jupyter Notebook, was the most common visual practice overall.
An individual typically continued to be the only one physically interacting with
the workstation as one or more colleagues joined to discuss. This imposed no
requirements on the specific technologies used to produce a picture. Printing
and laying out the charts, or projecting during a group meeting, was robust to
major differences between individuals’ working environments. Print-outs have
the added affordance of being rearranged into pairs or sets, which was an
important capability for one post-doc in the BioGeoChem-Model group. Even
without physical printouts, it was rare for a single chart to be the subject of
attention. Multiple charts were discussed, either in context of making a com-
parison or in triangulating a process/feature of interest across multiple slices
through space or time.

5.1. The object of visualization: restraint toward representation

Visualization is central in sense-making and relies upon a common visual language
specific to the scientific community. In the below Vignettes 5 and 6, we explore
restraint towards representation. In both instances, a less experienced contributor
encounters a situation where a quantitative measure ought not to be embedded
visually. One interpretation is that an insufficiently “real” (e.g., Vignette 6) repre-
sentation may undermine an individual’s personal meaning-making process. Which
measure to plot from a list of available options is a technologically arbitrary decision
becomes socially meaningful. Vignette 5 exemplifies a breakdown resulting from
unawareness of this meaning.

Both vignettes illustrate how the realness of data intersects with its interpretability.
In the examples, the relationship of the data to the phenomenon studied was that of
systematic measurement bias. The PI of the BioGeochem-Model group explains that
models represent “different worlds.” The things that happen in models “are real,” but
how or whether they match the observed world remains to be articulated explicitly.
Ideally, they have an understandable relationship to the elements affecting the natural
phenomenon of interest.

The use of different bathymetry files in modelling research helps exemplify these
different, real worlds. The ocean, both in reality and in representation, is bounded by
both the surrounding land topography and underwater topography. Bathymetry is the
study of underwater topography. To run a model, the researcher needs - among other
things - a file that contains information about depths, or a “bathymetry file.” A post-
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doc in the RegionalNowcast-Model group compared several such files to determine
which was “best.” She looked for one that preserved the high-level patterns relevant
to claiming a link between the model and the observed world. Of these “real” worlds,
the most preferable one is not necessarily the most accurate in terms of depth. Rather,
it is one that produces more realistic results in the model relative to the dynamic
being studied. Visualization was the primary means for making this assessment.

Vignette 5. “Just” a Visualization. Melissa is a computer science student who at one point had
been part of the CustomInstrument-Lab collaborative project. Her involvement with the group had
wound down, and she was describing some not-too-promising attempts to make connections with
other groups. She had recently reached out to some researchers working with Argo floats'. She
expressed difficulty finding physical oceanographers to collaborate with: “I just hoped they would
be more excited, but they were getting caught up on things that I didn’t think were important.”
She had sent them a plot based on the data, and received in response an explanation for how a
particular column ought not be used for analysis, but only for quality control.

The column names in the standardized format (NetCDF) were not self-explanatory, so the
common format did not save an enthusiastic student from violating unstated assumptions. This
was frustrating for her, because her intention to demonstrate a visualization process had backfired
in a way that she perceived as disproportionate to the technical issue itself: “this is a database, we
can filter that out later! I was just plotting something!” Her working environment lacked the social
resources in the oceanographic domain, but she evaluated her visualization as understandable,
functional, and extensible. In particular, she understood how to extend the solution to include
other data to address functional needs. Those who received it, however, did not share this
interpretation.

Vignette 6: “Real” Enough to Look at. The amount of matter in a biochemical context can be
measured in several ways. Counting discrete instances, such as organisms, is another measure of
amount. Alternative to counting, weigh of a substance in grams may be used. A mole is a unit for
measuring the amount of a substance relative to its chemical makeup. A femtomole (finol) is 10-
15th of a mole. A mole is measure used in chemistry to reason about the quantities of molecules
as they react to form other molecules. In the equation 2H2 + O2 — 2H20, measuring in weight
directly would require further calculation, since weight is related to reactive amount via molecular
weights.

Colleen is a post-doctoral fellow whose doctoral work is from a neighboring discipline. She used
fimoles in a weekly group presentation. The PI stopped her mid-presentation in a welcome,
teaching, but uncompromising manner: “fmoles are not real.” The PI explained that the
distinction between counting and weight produces “totally different shapes” for two outputs that
are both “about amount”. The reference to “shapes” here refers to plots with the measure in
question on the Y-axis, and various substances along the X.

! “Part of the integrated global observation strategy,” a project that now offers 15 years of global floatdata. See
http://www.argo.ucsd.edu/
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Measurements depend on their context of use and influence on interpre-
tation. In the above example, one common, relatively direct measure of
quantity is less “real”. Realness refers less to representational capability than
to consistency of visual language in the scientific community. Other common
examples of the context of use affecting the interpretation of data include the
use of relative measures. Especially in the study of earth systems (Edwards
2010), model-laden data and data-laden models, dual interaction. In field data
collection, as the many discussions we observed revealed, many biases and
errors may influence an absolute measure. However, repeated measurement,
either in the model or the observational sense, may be used to produce
relative measures. For example, the count of the number of a certain kind of
organism is difficult to estimate. If the estimation is biased in the same way
at different time points, organism birth, death, or reproduction rates can
nevertheless be studied.

Restraint toward what is visually represented is of central importance to under-
standing code work in science. Visualizations are subject to a variety of social and
scientific requirements, with regard to consistency and to accurately representing a
wealth of heterogeneous data.

5.2. The Means of visualization: restraint toward affordance

The groups we studied shared an attitude of interest, or at least willingness, toward
adoption of new technologies and learning new technological concepts. However,
they were relatively reluctant when faced with specific tools or interventions.
Especially in the area of interactive visualization, which was a subject of potential
collaboration discussions for multiple groups. The perfect world involves improve-
ment, but not if it means sacrificing the flexibility and social precision of existing
practices.

Vignette 6 provides an example of scientists prioritizing measures prior to repre-
sentation, demonstrating care in the work of crafting what can be seen as inscription
devices (Latour and Woolgar 1979). The conversation from this vignette occurred in
a weekly meeting of the Omics-Lab group, in the context of exploring an interactive
exploratory visualization software. The story of uptake of this software is explored in
Vignette 7.

Viewing static images or animations side by side was one of the most common
activities throughout observation of individuals and groups. Common visual repre-
sentations are taught through instruction and practice to understand. They are crucial
in mitigating the many sources of error in such a wide-ranging discipline that
integrates may difficult sources of data. The uptake, pedagogy, rhetoric, and
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discourse of code work is subject to pervasive processes uptake, pedagogy, rhetoric,
and discourse of visual language.

Vignette 7: Uptake without Adoption. Tableau is a desktop Graphical User Interface (rather than
a Command Line Interface) application for interactive visualization. Members of the Omics-Lab
group try it out. They do not adopt it, in the sense of reorganizing their working environments to
replace prior tooling (Excel) with the new tooling. However, the experience has an impact.

The PI was aware of Tableau through email announcements of trainings and collaboration
opportunities. She prioritized building awareness of available tools that may be useful in the
changing methodological landscape to prepare the lab members professionally. In this group, the
adoption of Tableau would impact parts of the working environment that were relying on Excel
and, in some cases, a Python script written by Lana, a graduate student. The opportunity to try out
Tableau was created inadvertently by the observer, who was asked whether she knew how to use
Tableau and responded in the affirmative. In the next shadowing observation session, Colleen, a
post-doc, commented that it was helpful to have a dedicated time to try it out, and someone to
provide some guidance. This interaction occurred prior to data analysis and theory development.
A great deal of initial excitement about Tableau dampened upon deeper contact: it was not the
solution to all problems, despite certain desirable features. Within a few weeks of the shadowing
session where Colleen tried out Tableau, an email thread preceded the weekly lab meeting,
demonstrating the excitement. The first email was sent by the PI asking if the meeting is necessary
and whether it should be rescheduled. Colleen replied with an excited message about having
Tableau charts to show, which roused the PI’s enthusiasm.

Several months after the Tableau meeting, a graduate student in the Omics-Lab group, Alice, used
Tableau to make some plots with an exciting set of data after a data-collection cruise. The
observer became aware of this having encountered the PI after a guest lecture, when the PI
expressed her excitement: “ask [Alice] about her beautiful chart! She made it in R!” Showing her
results, Alice explained that she tried out Tableau (which has a Graphical User Interface, as
previously noted), but ultimately chose to switch to R (which has a Command Line Interface)
because Tableau did not offer enough control over formatting and other visual aspects of the chart
that would be necessary for it to be a publication-ready visual artifact. In the final R chart,
differently-sized and differently-colored disks were arranged to follow the path of the cruise on a
map of the region of interest. A complementary figure featured a series of pie-charts arranged in a
table varying by size and composition. Both used visual vocabulary native to Tableau but
uncommon in oceanography talks, so the observer asked the inspiration behind the choice of
visual mapping, and Alice confirmed that she had re-implemented the Tableau variant in R. In an
indirect way, it had an impact. However, even if it did not, it needed to be tried in order to be
rejected for offering insufficient control over output relative to professional needs.

An affordance of an object refers to the subjective interpretation of possible action
made possible by this object. Vignette 6 reports on a discussion about which measure
should or should not be plotted. This occurrence was in context of trying out an
interactive visualization software that made it very easy to make potentially mis-
leading charts. The technical object affords this action; the PI of the group can be said
to be concerned about the accidental misuse of the affordance. Restraint toward
affordance can also be seen in how Caleb, a post-doctoral fellow in the
BioGeoChem-Model team, described the difference between two major programs.
Both are large and have many constituent packages, but one is more “conservative”
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in terms of including new packages, which makes it generally more “reliable.”
Neither is especially “user-friendly” because the “programmers don’t want people
to get too complacent.”

We take “complacency” to refer to accidental or careless execution of actions that
a mechanism affords, but which are undesirable in the scientific context. This
interacts with the three qualities of the perfect world, especially sustainability.
Post-docs in the CustomInstrument-Lab and the RegionalNowcast-Model teams
would sometimes avoid external libraries. This anticipated of hypothetical future
colleagues working with the code and being unable to use or maintain it correctly.
Re-use of some code was replaced by re-implementation, or more localized re-use.
Lack of re-use is problematized in software engineering accounts of scientific
programming practice, as well as in internal critique that adapts software engineering
rhetoric. Our framework serves to provide a reason for this action that is not related to
lack of interest, willingness, or awareness. Instead, motivated scientists enthusiastic
about best practices choose to adapt them to safeguard the scientific usefulness of the
code they work on.

6. Conclusions and future work

We studied code work practices, building on existing work in CSCW and Software
Engineering research. The first contribution of this article is an analysis of an 18-
month qualitative study in the uniquely illustrative scientific code context of inter-
disciplinary oceanographic research. We asked the following question: How does the
intentional, individually-initiated but socially-situated, process of uptake influence
code written by scientists? We argued that restraint with respect to the object and
means of visualization is intended to reduce potential misuse and misunderstanding.
This argument made use of the deliberate individual change framework, which we
introduce as a second contribution.

Prior scholarship has considered scientific code through a sociotechnical lens
(Pipek and Wulf 2009) and as situated in time (Chen et al. 2016; Steinhardt 2016).
Risk-averse behavior among scientific programmers, regarding uptake, has also been
explored (Carver et al. 2007; Kelly 2015). Our framework allows for additional
technical detail in analyzing risk-averse uptake situated in time. This framework can
be used in future studies by structuring interview design and observation. Our
work, like many studies of computing in science, is motivated by an experience
of change. The current collective understanding is based on in-depth analyses
of groups or projects (e.g., Steinhardt 2016), or broad snapshots (e.g., our
study). Quantifying states and transitions in this process would help study
change in both breadth and depth.

The framework we presented (1) focuses on the individual, (2) highlights
sociotechnical mechanisms that have a discursive or rhetorical basis meaningful to
that individual, and (3) enables articulating subjective evaluations of those mecha-
nisms in the current working environment relative to an imagination of the perfect
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world. The working environment is the set of mechanisms available to an individual,
composed of technical, social, and personal resources. Personal resources refer to
skills, knowledge, and awareness, through which an individual can inform her
current work by the experience gained from previous work.

Each mechanism (identifiable tool or protocol) is subject to evaluation and change
relative to an imagination of the perfect world. Deliberate change, informed by this
evaluation, is possible throughout many small daily opportunities for prioritization of
one activity over another. In the scientific context, access to experts in both compu-
tational methods and domain-specific application is scarce. Scientists who code
therefore prioritize not only their work, but the work with which they appeal to such
experts, which we refer to as software advisors. For an individual to choose to pursue
a change in the working environment, it is necessary to have awareness of a
mechanism. Then, the individual evaluates the future possibility as being closer to
the imagined perfect world. Finally, the individual can be moved to action through an
opportunity affording a clear course of action. Triggers for change arise from the
social and scientific context.

This framework was developed in a grounded, iterative manner from our quali-
tative data, and refined through discussion and connections to existing theory. In
addition to providing examples from our data, we presented a qualitative notation
(see Figure 2) that may help to condense complex accounts and compare subjective
experiences over time.

We reviewed related work spanning CSCW and Software Engineering (SE)
research on scientific programming practice. CSCW research focuses on human
activity and human relationships around the code or mediated by the code.
Meanwhile, SE research is chiefly concerned with applying a critical technical lens
to induce improvement through the development of tools or advocacy of practices
(e.g., Wilson et al. 2014; Heaton and Carver 2015). The goal of CSCW is aligned
with the improvement mandate some of the time, but focuses more on the interper-
sonal or contextual barriers to uptake than on technological correctness or advocacy.
Our aim has been to provide an initial understanding of the internal technical
criticism undertaken within a scientific domain which impacts uptake. This has not
been recently investigated in either, because it necessitates a critical technical lens,
but without the improvement imperative.

Future work can extend the understanding of change in scientific programming
practice. This framework can be applied in qualitative and quantitative study con-
texts. In a perfect world, future work would improve and condense this framework.
Ideally, it would become an understandable, functional, and sustainable mechanism
for a variety of scholars and engineers.
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