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Abstract 
 

The use of high performance computing (HPC) has 

been generating influential scientific breakthroughs 

since the twentieth century. Yet there have been few 

studies of the complex socio-technical systems formed 

by these supercomputers and the humans who operate 

and use them. In this paper, we describe the first 

complex adaptive systems (CAS) analysis of the 

dynamics of HPC ecosystems. We conducted an 18-

month ethnographic study that included scientific 

collaborations that use an HPC research center and 

examined the processes in HPC socio-technical 

systems via CAS theory to devise organizational 

designs and strategies that take advantage of system 

complexity. We uncovered several significant 

mismatches in the variation and adaptation processes 

within subsystems and conclude with three potential 

design directions for management and organization of 

HPC socio-technical ecosystems. 
 

1. Introduction  
 

Computational science has been producing significant 

scientific breakthroughs since the twentieth century. 

Numerous fields [1-3] rely on advanced computing 

technologies to understand and solve complex 

problems. High performance computing (HPC), or 

supercomputers, play an important role in scientific 

discovery. Incorporating thousands of nodes linked by 

powerful networks to support inter-node 

communication, HPC systems are capable of running 

extremely large-scale simulations and analyses in 

parallel. Along with traditional computational science, 

data intensive discovery, recently termed the “fourth 

paradigm” of scientific discovery [4], is projected to 

continue to gain influence as the amount of data in the 

world expands exponentially. The necessity of 

processing vast and expanding amounts of scientific 

data with HPC systems has also been predicted to 

expand. However, barriers to HPC efficiency go 

beyond computational benchmarks and involve human 

interaction, human efficiency, and human-scale time 

[5]. Therefore, studies of HPC operators and users 

interacting with their supercomputers are critically 

needed. Such studies, however, need to take into 

account the complexity of the underlying socio-

technical systems comprising multiple large machines 

and the interactions of hundreds or thousands of 

humans; a reductionist view focused on a single factor 

such as efficiency or usability may miss important 

details. 

HPC machines form a part of a large “socio-

technical ecosystem” where people (e.g. scientists, 

engineers, staff) collaboratively interact with the 

machines, and structures within the hardware, 

software, and the human organization impact how 

people, processes, and machines influence each other. 

We define the cross-disciplinary term "socio-technical 

ecosystem" based on terminology from multiple fields, 

originating from “socio-technical system” [6, 7] and 

“technological system” [8]. Here we view an 

ecosystem as comprising the complex interactions 

between people, machines, and their environments. 

The term "ecosystem" emphasizes the organic nature 

of system components, with a focus on how they 

constantly change and evolve. The analogy of a natural 

ecosystem has been used in multiple fields, e.g. 

business ecosystems and software ecosystems, to 

describe how member organisms interact and co-

evolve in their environment [9].  

The HPC socio-technical ecosystem (hereafter, 

HPC ecosystem) involves complex social and technical 

interactions among its participants. For example, 

scientific users are focused on their research output. On 

the other hand, HPC staff are responsible for the 

effective and efficient utilization, maintenance and 

evolution of the supercomputing systems that serve 

diverse scientific communities, with sometimes 

conflicting requirements. Computer engineers work 

closely with both these groups to develop software that 

serves the needs of the users, while also focusing on 

performance gains. Since the HPC ecosystem is an 

open ecosystem where people can enter and leave the 

ecosystem, the decision-making process and hence, co-

evolution of these parts of the ecosystems, are complex 

and dependent on a number of internal and external 

factors. As all components in the HPC ecosystem are 

highly interdependent, it is not easy to parse and 

explain the individual interactions and phenomena.  
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Complex adaptive system (CAS) theory, an 

approach that focuses on relationships, patterns, and 

processes within a dynamic system, provides a means 

to unpack some of the intricacy and interdependency 

within the HPC ecosystem.  

In this paper, we present the results from an 18-

month ethnographic study that included scientific 

collaborations that used HPC resources in the United 

States, and develop a framework to examine the HPC 

ecosystem from a CAS point of view. We highlight 

sets of agents, patterns and interactions we observed in 

our field study. Drawing upon the results, we present 

potential design directions for the management and 

organization of HPC socio-technical ecosystems.  
 

2. Background  
 

2.1. Complex adaptive systems 
 

Complex adaptive system (CAS) theory takes an 

evolutionary perspective to the study of systems [10-

12]. Due to the interdependencies and constant changes 

in this type of system, a CAS may be difficult to 

comprehend and predict. According to Axelrod and 

Cohen [13], a CAS “consists of parts which interact in 

ways that heavily influence the probabilities of later 

events.” The goal of CAS theory is to harness 

complexity, not to eliminate it—to provide a 

framework to consider the design of organizations and 

strategies that takes advantage of this complexity 

without needing to fully understand and control each 

detail in the entire system. 

While CAS is not a single theory, there are a few 

characteristics that are fundamental: First, CAS focuses 

on complex systems involving highly interdependent 

components, or subsystems, with dynamic connections, 

in contrast to simple systems that consist purely of the 

sums of their components. Changes within such a 

system may also be non-linear and cannot be easily 

decomposed. Second, CAS emphasizes the 

evolutionary processes of system elements. Third, a 

CAS will contain self-organizing and emergent 

behavior, involving no direct or central control of its 

processes, but the appearance of collectively emergent 

order and patterns within the ecosystem. 

We define the elements and processes of CAS as 

follows, largely based on Axelrod and Cohen [13]: A 

CAS consists of multiple subsystems or components 

(e.g., [14, 15]). Each subsystem contains agents, or 

processes, that create or interact with artifacts. These 

agents may be grouped into types possessing shared 

properties. 

Evolutionary processes of variation, interaction, 

and selection are constantly occurring in the 

subsystems. Variation can be either exploitative or 

explorative. Exploitation refers to a variation that 

requires minimal process changes to achieve certain 

goals, such as adopting a well-known solution in a 

community. Exploration, on the other hand, is a 

variation which can be very different from the original 

state, and usually has no existing example as reference. 

Variations may arise from interaction between 

agents (e.g., one agent copies a strategy from another 

agent and modifies it), and variations may also create 

new possibilities of interaction. The selection process 

comes with a set of success criteria to measure and 

ultimately change the frequency of types. According to 

Axelrod and Cohen [13], when a selection process 

leads “to improvement according to some measure of 

success,” it is called adaptation. 

Agents in one subsystem may interact with agents 

in another subsystem, or may also interact with 

artifacts created from still another subsystem. 

Therefore, a CAS heavily relies on and is impacted by 

the co-evolution of subsystems: Each subsystem 

evolves not only on its own, but also adapts to changes 

in other subsystems. In other words, the variations, 

interactions, and selection processes of one subsystem 

may be influenced by another system’s processes. 

 

2.1.1. Literature of complex adaptive systems. CAS 

theory has been applied successfully across widely 

divergent domains, such as healthcare [16, 17], nursing 

[5, 31], ecology [18-20], supply networks [10, 21], 

languages [22, 23], markets [24, 25], organization 

management [11, 26, 27], and software development 

[28]. CAS theory has been shown effective across 

multiple domains in describing system behavior when 

study targets are more than fixed mechanistic and 

predictable systems. Namely, agents in the system have 

autonomy and are self-organized. Patterns in the 

system emerge and are not the result of central 

controls. Moreover, these systems evolve to adapt to 

constant changes in their environments, or adapt to 

change in other agents. 

For example, in the healthcare domain, Rouse 

pointed out that hierarchical decompositions of 

healthcare systems, i.e., describing them as linear and 

hierarchical compositions of parts, is ineffective [29]. 

One key reason is that healthcare systems possess no 

single authority or central control. Each stakeholder 

behaves according to their own potential interests and 

risks. 

Like healthcare systems, HPC ecosystems cannot 

be completely controlled and centrally determined. The 

design of the machines themselves involve complex 

trade-offs, and no single authority ends up in charge of 

everything about the supercomputer. When a facility 

purchases an HPC system, the procurement process 

itself involves an intricate set of social and financial 



interactions. HPC machines are designed by vendors 

based on a set of facility requirements. The vendors 

then issue proposals, which are evaluated by a 

committee within a lengthy procurement process 

involving multiple trade-offs, regulations, and 

considerations. The needs of the users are but one 

factor in the final design, purchase, and deployment. 

When the supercomputer is eventually deployed, the 

conflicting and ever-changing needs of its users add to 

the complexity of its operation. Clearly, HPC 

ecosystems fall into the complex systems category and 

cannot be modeled by a simple linear system. 

Other research has focused on the co-evolution of 

agents and/or subsystems: Kim and Kaplan combine 

CAS and actor-network theory [30] to study university 

timetables and demonstrate the co-evolution of 

different subsystems. Briscoe finds that the language 

and language acquisition devices (i.e., brains) co-

evolve [23]. Rammel et al. discuss the occurrence of 

co-evolutionary processes in the subsystems of natural 

resource networks, which include the resource base, 

social institutions, and individual agents [31]. Cherry 

examines economic sectors and finds that 

policymaking systems are involved in “a 

coevolutionary dance with other complex adaptive 

systems in society, including business and economic 

systems [32].” In this paper, we also focus on co-

evolutionary processes among research, engineering, 

and facilities subsystems. Furthermore, we discuss the 

challenges of co-evolution, which occurs between the 

gaps of these subsystems. CAS theory has been widely 

applied across various domains, including 

organizational IT, although it has received less 

attention in the HPC field. Kaplan and Seebeck [12] 

adopted CAS to study 35 years of IT systems in a 

university, and drew parallels with computer-supported 

cooperative work design as a type of complex adaptive 

systems design. They then constructed a taxonomy of 

CAS terms as applied to IT. 

To our knowledge, our work constitutes the first in-

depth ethnographic study at an HPC research center 

that utilizes the CAS model to deliver insights into the 

complex human-machine collaboration that 

characterizes HPC ecosystems. 
 

2.2. Research site, data collection and analysis 
Our ethnographic study was conducted from 

September 2014 to March 2016 in the United States 

and included scientific collaborations that used 

supercomputers available at the National Energy 

Research Scientific Computing Center (NERSC). We 

interviewed 24 people from both the scientific 

collaborations and NERSC. The interviewees included 

9 scientists, 8 engineers, and 7 HPC staff members. 22 

interviewees were male and two were female. 

All interviews were transcribed, cleaned, and coded 

by the first author. The coding process consisted of 

multiple steps. The first author read through the 

transcripts in Word, cleaned them up based on the 

audio recordings, extracted quotes considered 

informative and left comments to highlight or 

summarize significant paragraphs. Second, key CAS 

terms from Kaplan & Seeback’s taxonomy [12], which 

were based on Axelrod and Cohen’s [13], were used to 

construct the basic codebook. Then all the quotes and 

comments were extracted from Word files to an Excel 

spreadsheet, and an existing code from the basic 

codebook was applied to each quote or a new code was 

created. All quotes ended up with zero to four codes. 

Next, we identified the three subsystems in the HPC 

ecosystem. Thus, we arranged quotes and listed key 

CAS elements of each subsystem and put emphasis on 

co-evolution. Finally, we organized the quotes into 

themes regarding the challenges and gaps between co-

evolutionary processes of the three subsystems. 
 

2.3. NERSC machines  
 

NERSC currently operates two major HPC 

systems: Edison and Cori. NERSC serves about 6,000 

users and hundreds of projects. Every few years, 

NERSC starts a new procurement process for 

purchasing the next generation HPC system. NERSC 

generates a list of intended features, and vendors who 

design and sell HPC systems will submit proposals for 

NERSC to consider. After a proposal has been chosen, 

it will take a few years to construct, deliver, and deploy 

the machine and for NERSC staff and users to prepare 

for the new system to come online. 
 

2.4. Roles and workflows in the HPC ecosystem 
 

In this section, we provide a brief overview of the 

roles and workflows in the HPC ecosystem we studied. 

There are three primary roles: scientists who do 

research, engineers who develop software and help 

scientists with code development, and HPC staff 

members who maintain HPC systems and support 

machine-related issues. 

A scientist’s key expertise lies in a particular 

domain that they were trained in (e.g., material science, 

climate science, physics), and they usually work in 

groups under research projects, that are funded through 

grants. Engineers or computer scientists are highly 

skilled in areas of high performance computing, 

software development or other areas of computer 

science and usually work on multiple research projects 

across scientific domains to support the computing 

needs of scientists Their jobs can range from 

developing an independent software package to 

helping scientists debug software (“codes”). Some 



HPC staff members maintain machines, and some are 

responsible for supporting users, such as helping users 

to set up jobs and install software package 

dependencies. Large science projects often consist of 

scientists, engineers and sometimes HPC staff 

members who build tools and technologies towards a 

common goal. Not all scientists in a project may use 

HPC systems. 

 Allocations of computational time and/or storage 

resources at NERSC are awarded to scientists on a 

project basis. Scientists wrap their codes into jobs, 

specify their requested resource amount, and submit 

their jobs to NERSC systems. Once the jobs are 

submitted, they are placed in a queue (multiple queues 

have different priorities and CPU hour charges) to wait 

for execution. As each job arrives at the front of the 

queue, the system allocates the resources the user 

requested and executes the job. 

Each scientific domain is accustomed to their own 

set of software packages. Some of these packages are 

generic, such as NumPy and SciPy in Python, whereas 

some simulation packages or visualization tools are 

domain-specific. In order to utilize HPC systems, 

scientists may need to parallelize their codes, where 

parallelization might include language-dependent 

complexities. For example, for C and Fortran users, 

libraries like OpenMP [33] support parallelization well. 

However, for Python, since the native Python 

interpreter is not thread-safe (may produce consistency 

errors in shared data structures during parallel 

operation), users must use MPI4Py [34] or OpenMP 

together with Cython (an optimizing static complier to 

enable C-extension in Python) [35], which can bring 

extra complexity into workflows of scientists who use 

Python. 

 

3. High performance computing ecosystem 

as a complex adaptive system 
 

In this section, we identify three essential 

subsystems of the HPC ecosystem: the research, 

engineering, and facilities subsystems, each of which 

has its own CAS elements and separate processes, but 

can also interact with and rely on other subsystems. As 

a result, the subsystems not only evolve individually, 

but also co-evolve and adapt to the changes of other 

subsystems. We highlight important elements of the 

subsystems and their interactions in Figure 1. 
 

3.1. Research subsystem 
 

The research subsystem includes agents in the HPC 

ecosystem whose primary focus is to use 

supercomputers for scientific research. Most of these  

agents are research scientists, postdocs, and graduate 

  

 

 

Figure 1. Summary diagram of the 
subsystems. The research subsystem 
consists of scientists and the artifacts they 
create or use. The engineering subsystem 
comprises engineers and the codes and 
packages they develop. The facilities 
subsystem includes the HPC staff and the 
machines. All subsystems interact with each 
other and may lead to variations. For example, 
a scientist can learn how to write more 
efficient codes from engineers.  

students (all hereafter referred to as scientists). In 

addition to agents, the research subsystem contains 

various artifacts such as the research itself, source code  

and software packages, HPC machines, as well as the 

scientists’ local machines (e.g., laptops and Linux 

workstations). 

The research subsystem constantly cycles through 

the evolutionary processes of variation, interaction, and 

selection. The nature of scientific inquiry drives 

variation towards innovative research contributions. 

This includes both exploitation and exploration. For 

example, incremental research can be considered a 

case of exploitation of prior work, whereas 

introduction of a new technique (e.g., parallel 

programming) to a research area for the first time is a 

case of exploration. These cases can lead to the 

creation of new types of scientists (e.g., scientists who 

know parallel programming evolve to be called 

computational scientists and often have primary 

appointments in computational divisions), strategies 

(e.g., ways to deal with data), as well as artifacts (e.g., 

new software packages or hardware).  



Taking another view, variation in this subsystem 

occurs through interaction within the subsystem as well 

as between subsystems. For instance, scientists in the 

same research project may form new strategies to 

divide work, or a discussion with other scientists may 

prompt a new research idea. Scientists may also 

improve their research through peer reviews (i.e., 

feedback from other scientists). In addition, a scientist 

may learn new programming techniques from 

engineers, or learn how to better utilize HPC machines 

from the HPC staff.  For example, scientists may pick 

up computer science skills critical to their subsystem, 

as when we witnessed a scientist describing how to 

make his Python code accessible to people who use R, 

and his longtime engineer collaborator commented, 

“You [the scientist] are speaking my language right 

now.” 

Although numerous cases of variation may occur, 

the selection process can limit or even eliminate 

variations based on success criteria. In the research 

subsystem, the most important success criterion is 

scientific discovery, which itself can be measured by 

various criteria, such as the quantity and impact of 

research publications. Toward this end, scientists may 

prioritize research directions based on the possibility of 

influential outcomes. 

Another common success criterion relies on 

resource utilization. Namely, scientists usually have 

limited resources, whether human (e.g., working hours, 

collaborator availability) or computational (e.g., CPU 

hours, memory, storage space). Thus, variation that 

exceeds a scientist’s resources is unlikely to be 

sustained or even to appear. 
 

3.2. Engineering subsystem 
 

In the engineering subsystem, engineers, whose 

primary job is to develop software to support scientists, 

are the key agents. As with the research subsystem, the 

engineering subsystem also contains many artifacts, 

but among the most essential are source code and 

software packages.  

Variation in the engineering subsystem is largely 

driven by scientists’ needs and facility changes. For 

example, engineers who develop a software package 

may receive new feature requests from scientists, or 

engineers may have to help scientists parallelize their 

code. In such cases, variations are usually exploitative, 

adding changes incrementally following software 

development practices. However, in some cases, 

variations can also be explorative. For instance, 

engineers may develop a new software package from 

scratch. They may even completely refactor a software 

package to increase the performance and 

maintainability of the package. Furthermore, when 

HPC facilities change, engineers must modify their 

software or upgrade its dependencies to ensure it 

continues to function. 

Through interaction with scientists, engineers learn 

their goals and habits in order to provide better 

support. They may also develop different methods of 

interaction to better meet scientist needs. One engineer 

we interviewed said his group interacted with scientists 

on a weekly basis to ensure that new software features 

would meet scientists’ immediate needs. Another 

engineer pointed out that pair programming (i.e., 

sitting with a scientist to debug code) was routine 

practice. In addition to interacting with scientists, 

engineers also interact with other engineers, or work 

with HPC staff to ensure packages they develop are 

compatible with the newest machines. 

There are multiple success criteria in this 

subsystem. How well engineers support scientists to 

enable them to harness scientific discoveries, which 

may not be explicitly defined, is one key success 

criterion. Often, engineers need to support more than 

one group of scientists, and they may be responsible 

for both developing software packages and facilitating 

scientists’ code-writing processes. Therefore, this 

success criterion may be approximated through the 

quantity of issues engineers help a specific group of 

scientists to resolve. As a result, engineers may 

prioritize feature requests from one group over another. 

A second success criterion of the engineering 

subsystem is the quality of the engineering work, as 

defined by recommended engineering practices, for 

example code modularization. Hence, engineers may 

pursue variations that completely change a software 

package’s structure but offer no new features. 

Although software quality is important, in the HPC 

ecosystem the improvement of scientific quality has 

greater weight. One engineer pointed out that 

refactoring code to increase the engineering quality 

without adding new features does not usually count as 

a contribution of engineering work. Thus, the 

evolutionary direction of engineering favors better 

support of science. 
 

3.3. Facilities subsystem 
 

The facilities subsystem is centered on the HPC 

machines themselves. The key agents in this subsystem 

include HPC staff, such as people who interact with 

supercomputer users, those who maintain HPC 

software and hardware, those who interact with HPC 

vendors (i.e. procurement), and those who analyze 

machine utilization and define policies (for simplicity, 

we refer to all these sub-categories as HPC staff).  

The variation process in the facilities subsystem 

relies not only on the advance of HPC technology, but 



also on the needs of scientists in the research 

subsystem. For example, HPC staff may install a new 

software package due to requests from scientists. 

However, due to the extremely high cost of equipment 

purchase and operation, the success criteria of the 

facilities subsystem must be based on more than the 

satisfaction of user needs. Among others, system 

utilization, security, cost, and energy consumption are 

also important success criteria. Benchmarks are often 

used to measure the computational performance of an 

HPC system. NERSC evaluates many aspects such as 

computational benchmarks and application 

performance, cost, and power consumption. HPC staff 

must also balance how much they expect users to 

change in order to use the machine efficiently versus 

increased performance gains from hardware upgrades. 

There are trade-offs between doubling the memory 

or I/O bandwidth versus having users modify their 

codes.  It’s about understanding the cost-benefit of 

your actions as well as just the pure cost, too, 

which again goes back to analyzing the 

application to understand what it is that they 

really need. Can you push and budget in roughly 

the right way amongst the different components in 

the machine? [HPC staff member 3] 

During our field study, a new HPC system, Cori, was 

introduced. Cori possesses a few new features that 

differ significantly from its past two generations. One 

critical difference is that Cori’s compute nodes are split 

into two partitions: data and HPC. The data partition 

aims to serve people who need high data throughput 

(i.e., heavy I/O), whereas the HPC partition consists of 

the traditional compute machines. NERSC staff had to 

find a way to serve its diverse users and balance budget 

and energy. However, the goal of reducing power 

consumption led to each CPU core containing less 

memory and instead supporting threading. To take 

advantage of the new design, users were expected to 

increase parallelism in their code. Thus, evolution in 

the facilities subsystem favored user support as well as 

innovation in hardware technology within cost 

constraints. 
 

4. Challenges of co-evolution of subsystems 
 

As briefly described in the previous section, the 

HPC ecosystem’s three subsystems influence each 

other’s directions of evolution, or more accurately, co-

evolve. Nevertheless, co-evolution is not always a 

smooth process and conflicts can arise to hinder 

collectively emergent orders. Adaptation in co-

evolution requires variation, and selection processes in 

subsystems all yield improvements. Nevertheless, in 

many cases, we found that when one subsystem 

evolves, it may be difficult for other subsystems to 

adapt. Highlighting such challenges are like 

pinpointing reverse salient [36, 37] in technological 

systems where reverse salient refers to a slowly 

developed component in the system that prevents the 

whole system from achieving its goal. This analytical 

approach surfaces the limits of the current system. In 

this section, we layout several key challenges of co-

evolution and obstacles to adaptation to highlight 

current issues in the HPC ecosystem 
 

4.1. One subsystem must remain in an older 

state 
 

Adapting to changes of other subsystems requires 

variations in a subsystem, but sometimes one 

subsystem must remain in its current state and thus 

cannot follow the changes of other subsystems. For 

example, when the facilities subsystem deploys a new 

generation HPC machine that includes fundamental 

differences from previous generations, it requires the 

research and engineering subsystems to prepare source 

code and software packages that are compatible with 

the new machine. Similarly, changes in the codes can 

also come from within the subsystem – e.g., bug fixes. 

A group of scientists may continue to use an older 

version of their simulation models due to a variety of 

reasons. It may be due to compatibility with other 

subsystems that are outside of the HPC subsystem, or it 

may be to ensure fairness in comparisons.  

What I would be worried about in terms of 

different model versions is what the model 

developers do if they bring in a different ... if they 

somehow change, which might be including fixing 

a bug, the algorithm for figuring <an intermediate 

variable> out and if they changed out at a bit. 

That can do some rather dramatic things <to the 

model results>. The value difference may seem to 

be small, but when go over the historical time 

period, that matters a lot. [Scientist 2] 

Additionally, scientists write papers for submission 

to journals and conferences, but the review process can 

be lengthy, so much so that the engineering subsystem 

may have evolved (e.g., a software package they use 

may have a newer version) before they receive 

reviews. When they receive comments from reviewers 

asking for more analysis, they must run their code 

under the same environment again:  

It happens a lot when they have some papers 

submitted for review, and then the review comes 

three or four months later. They want to be able to 

run the exact same script at that exact same time. 

[Engineer 6] 

As a result, even though new versions of software 

packages constitute a preferred variation based on the 



engineering subsystem success criteria, the research 

subsystem may not agree with the variations, let alone 

change to adapt to them. Thus, there is a need to evolve 

yet maintain strong provenance records that also 

capture the connections between the subsystems. 
 

4.2. Subsystems have mismatched evolution 

directions  
 

In some cases, two subsystems may evolve in 

mismatched directions, forcing people to use 

workarounds to connect them. For instance, in the 

research subsystem, the programming language Python 

is increasingly used for scientific data analysis. 

Packages such as NumPy and SciPy provide powerful 

utilization functions for scientific data analysis. 

However, Python’s modularization design does not fit 

well with multicore systems like NERSC machines, 

causing issues in the facilities subsystem. For example, 

each Python process running on the HPC machines 

reads its dependent packages. For a job using 40,000 

cores, the dependencies must be loaded 40,000 times, 

amounting to excessive I/O overhead. 
Another blocking factor was that the compute 

nodes, for the sake of flexibility, were designed to 

require users to give them all dependent packages; 

hence code with no dynamic importing was preferable. 

However, Python is designed to dynamically import 

packages. 

To handle this mismatch, people used various 

workarounds, such as wrapping all dependencies into a 

.tar file and submitting the “tarball” with the job. One 

scientist wrote a tool to cache package locations each 

job needed on individual nodes and include this 

information along with the job. However, the scientist 

told us that when Cori came online, his workaround 

did not function with the new job queuing system on 

Cori. This involved significant time fixing the 

workaround.  

Thus, subsystems do not always co-evolve in 

aligned directions. Oftentimes, workarounds are 

created to compensate for mismatches, but these can 

then be vulnerable to changes in either subsystem. 
 

4.3. Limited time and resources block 

adaptation 
 

Even if one subsystem were to follow the evolution 

of other subsystems, limited time and resources can 

block them from creating variations for adaptation. In 

the case of the simulation models, for example, the 

scientists ran the older version of the models for over 

two years, generating more than 3.1 PB of output data 

from more than 1,000 simulation runs. If scientists 

were to use the latest version of the model with the 

same number of simulations, they would need to run 

the models for another two years. 

On the other hand, the cost of enabling the older 

version to run on Cori also exceeded the amount of 

time and resources available in the engineering 

subsystem. The simulation models were developed 

much earlier in older generation machines with 

different architectures, and the code was not expected 

to run with so many instances at the same time. 

Therefore, it was not written in a way that would easily 

fit multicore architectures. Furthermore, the models 

required specific versions of software dependencies 

which were not available on Cori or Edison. 

One of the engineers tackled the issue of the 

models only to find there were already too many layers 

of previous fixes in the code. Since the models had 

existed for many years, various people worked on the 

software, sometimes adding code to ensure the models 

fit new needs or previous environment changes. A 

change in one part would break other workarounds. He 

referred to this difficulty as “technical debt,” 

explaining that when people resort to hacks to make 

technology work without sufficient planning, these 

hacks become debts later on, making it increasingly 

difficult to make any modifications at all: 

The first thing I try to do will be completely buried 

in technical debt. I can’t change this because this 

and this and this were workarounds that were 

designed to work around debts and if I change 

that, they all become bad, they all stop working 

and there’s just layers and layers of this stuff. 

[Engineer 2] 

This is an example of where a previous evolution of 

one subsystem (research) occurred independently of 

other subsystems but caused challenges for future co-

evolution. Such cases are not rare in the HPC 

ecosystem. For example, when a new storage 

architecture was introduced at NERSC, a scientist 

mentioned that it would not be possible for them to 

change their software to utilize it because the code was 

written in the ‘80s or ‘90s, and it was unlikely that the 

code could be updated.  

Because a lot of these codes that were written, 

they started themselves in the '80s or '90s or 

something. There are a couple of ones that started 

in the more modern era, but most of them are 

fossils. … Maybe some of those fossil codes will be 

able to update themselves for this type of 

architecture, but I think it is unlikely to happen. 

[Scientist 5] 

Since rewrites or changes to code are not 

recognized in the reward system, it can be too costly in 

terms of time and resources to make changes to the 

code to adapt to the new facilities subsystem. 



4.4. Conflicts between success criteria of 

subsystems 
 

Obstacles to adaptation may come from conflicts 

between the success criteria of different subsystems. 

For instance, the research subsystem values research 

contributions (i.e., publications and scientific results). 

As a result, scientists are less likely to spend time on 

efforts like enhancing the quality of their code. Often, 

scientists want code that runs and prefer not to spend a 

lot of time tuning performance. If it takes a long time 

to receive results, they manually submit jobs to the 

HPC systems and switch to other tasks (e.g., writing 

papers). An engineer pointed out that people do not 

spend the time to automate their workflows until 

manually setting up jobs and waiting becomes too 

difficult. 
However, to the facility subsystem, utilization of 

the HPC machines is an important success criterion, 

which can be challenging whenever a new 

supercomputer is deployed. For example, utilizing Cori 

required better-parallelized code. Such constraints may 

block scientists from producing research. This tension 

could be reduced by improving the usability of existing 

software tools and providing tools to help scientists 

update their codes more efficiently.  

Another conflict happens when the engineering and 

facilities subsystems introduce a new version of 

software packages or upgrade the operating systems 

(OS) of the HPC systems. As mentioned earlier, 

scientists may find it difficult to switch to the updated 

version. Nevertheless, from the perspective of HPC 

staff, keeping software and system OS up-to-date 

reduces bugs and improves the security of the systems, 

important success criteria for the facilities subsystem. 

In the engineering subsystem, engineers may need 

to refactor a package to follow better software 

engineering practices, or simply to support new 

architectures, both of which are part of their success 

criteria and necessary but may not be a consideration 

for the scientists. For instance, one scientist told us that 

a module in a visualization package he used should not 

be rewritten because it had been tested for 20 years and 

they trusted the quality of the software: 

I've been arguing about this with the guys in the 

software development group. You don't want to 

rewrite this stuff <the module>. This is tested. It's 

20 something years old now and bulletproof. It's 

good software. [Scientist 4] 

 

5. Discussion: Potential design directions 

for HPC ecosystem management and 

organization 
 

Although complex adaptive systems cannot be fully 

controlled and designed, CAS theory provides a 

concrete framework that can provide guiding principles 

to promote policies, strategies, and interactions to 

shape evolutionary processes [13]. In this section, we 

outline three potential design directions for the HPC 

ecosystem that we hypothesize will encourage positive 

co-evolution and adaptation between subsystems for 

emergent order. Further research is needed to test these 

directions. 
 

5.1. Defining success criteria for adaptation 

between subsystems  
 

Conflicts between success criteria among different 

subsystems are a key issue blocking adaptation and 

coordination across subsystems. Therefore, we 

hypothesize that it is critical to define success criteria 

that take into consideration all subsystems. For 

instance, currently the research subsystem does not 

value time spent on parallelizing codes or improving 

software, yet it is an important task to better utilize 

HPC machines and ultimately enhance scientific 

output. Data and software are increasingly vital to 

scientific discoveries, the code often containing 

significant intellectual content including highly 

specialized scientific knowledge. As such, the 

intellectual content of software needs to be recognized 

and valued. One way to do this is to stop defining 

success metrics for each subsystem separately and 

consider the entire ecosystem as a whole. Similarly, 

HPC facilities are largely judged by performance 

benchmarks. However, in a previous study, Chen et al. 

pointed out the importance of collective time in HPC 

design [5]. They argued that HPC designers should not 

only consider machine time, but also human time 

required to set up and use HPC machines. Thus, if ease 

of parallelization and usability were to be explicitly 

valued across all subsystems, it may encourage 

scientists to better parallelize their codes, leading to 

more efficient software, less technical debt, and more 

human time for scientific insight. Further research into 

metrics that take into account the interaction between 

subsystems will be needed.  
 

5.2. Managing mismatches and workarounds  
 

There will inevitably be conflict between 

subsystem success criteria. If mismatches appear and 

people need to create workarounds to connect gaps and 

mitigate related issues, it is important to clearly 

identify those mismatches and visibly manage 

workarounds. 

Besides their vulnerability to changes in associated 

software, workarounds also have the potential to 

evolve into long-term solutions. For example, the 



workaround one scientist created to wrap dependencies 

into a .tar file to accompany jobs became a package 

that is now available to his group. Increasing the 

visibility of this type of process may be helpful to other 

groups as well. Therefore, we hypothesize that 

identifying mismatches and managing workarounds in 

the HPC ecosystem may not only help prevent severe 

breakdowns, but also help increase chances of 

adaptation. For example, one way to manage 

workarounds might be to enable a community 

repository that allows other subsystems to contribute 

patches, scripts that can then be reviewed and approved 

for more general use. 
 

5.3. Supporting cross-subsystem 

communication and increasing interactions  
 

Support for cross-subsystem communication may 

lead to significant amelioration of subsystems’ 

conflicting goals and assumptions. For example, 

scientists may have very good reasons why they don’t 

want to upgrade to the latest software version, while 

HPC staff may have conflicting but equally valid 

reasons to upgrade. Lowering the barrier to interaction 

between agents in both subsystems by providing a 

means for lightweight, short-timeframe communication 

could provide significant mutual benefit by enabling 

more frequent interaction and negotiation. Today, 

communication between the subsystems occurs 

through structured mechanisms (e.g., occasional 

requirements workshops), semi-structured (e.g., help 

desk) and ad-hoc (e.g., through previously established 

relationships). These mechanisms either operate over a 

long timeframe or contain sufficient friction to impede 

optimal interaction. The HPC facility subsystem should 

consider increasing communication of other significant 

events (e.g., major system upgrades) and solicit 

regular, frequent input from other subsystems; this 

could substantially improve the management of 

mismatches and workarounds. 

We hypothesize that developing affordances to 

lower the social barriers that may currently impede 

interaction and negotiation could facilitate 

communication between subsystems. Previous work 

has demonstrated that technological affordances can be 

created to achieve this goal [38]. For example, a 

communication interface that allows visualization of 

both human and machine effectiveness could be 

utilized to enable negotiation. This could also increase 

people’s situational awareness of their actions and their 

effects on other groups. 

The end result could lead to better quality 

workarounds and more negotiation around mismatches, 

with the potential for greater machine efficiency, 

increased human satisfaction, and overall improved 

effectiveness of the entire HPC ecosystem. 
 

6. Conclusion 
 

This paper presented the first use of CAS to explore 

the HPC ecosystem via an in-depth ethnographic study. 

The CAS framework enabled us to surface mismatches 

and breakdowns that exist in the current variation and 

adaptation processes within subsystems. Based on 

these insights, we presented three potential design 

directions for HPC ecosystems which may provide 

important guidelines to participants and stakeholders. 

Future work should focus on testing these hypotheses 

and developing metrics that take into account 

interactions between subsystems, design to mitigate 

mismatches via improved affordances for lightweight 

and frequent communication, and the reevaluation of 

cross-system success criteria. The goal is to help 

reduce barriers to variation and enable seamless 

adoption of new directions in HPC environments, and 

ultimately lead to the acceleration of scientific 

discovery across all domains utilizing high 

performance computing. 
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