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Abstract

I derive and implement a sufficient statistics formula for how well financial prices

aggregate dispersed information. The key inputs to the formula are closely related to

the outputs of the price-dividend predictability literature. The formula follows from

market-clearing. Empirical implementation suggests a low level of aggregation, viz.,

the information of a single representative investor is much more informative than the

information conveyed by the price. I further derive formulae for the value of a repre-

sentative investor’s information (empirical implementation suggests the value is small);

and for the information-implied demand elasticity (empirical implementation yields a

highly inelastic value consistent with Gabaix and Koijen 2023’s estimate).
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1 Introduction

It is commonplace to talk of financial markets as aggregating the information observed by

dispersed investors. Canonical models in financial economics qualitatively capture the mech-

anism.1 Separately, existing research estimates market efficiency, in the sense of how well

prices forecast future cash flows.2 What is missing, however, is a quantitative examination

of the extent to which prices aggregate dispersed information.

The current paper seeks to fill this gap. Specifically, I derive a sufficient statistics formula

that answers the question: For what value of N does observing the price but no dispersed

information have the same information content as observing the information of N dispersed

investors but no price? Implementation of the formula for the case of the aggregate US stock

market suggests that the extent of information aggregation is low, and yields an estimate of

N ≈ .06. That is: Directly observing the information of even just a single typical investor

(but no price) would be much more informative than observing the price.

Quantifying the extent of information aggregation requires estimates of the information

content of market prices and the information held by dispersed investors. The former is

readily estimated; as noted, a significant literature has done so in a variety contexts. As

such, the innovation here is a sufficient statistics formula for the amount of information held

by a representative investor.

I further derive a sufficient statistics formula for the value of a representative investor’s

information. That is: how different are the expected returns of investors who trade with

and without the representative investor’s information? Implementation of my formulae sug-

gests both that the representative investor possesses significant information, in the sense of

reducing the conditional variance of future cash flows by approximately 20%; but possession

of this information yields only a small expected return advantage of approximately 3-4 basis

points. The reconciliation of this pair of estimates is that most return variance is driven

by discount rate innovations, and so superior information about cash flow innovations yields

only a small trading advantage.

Finally, the estimates in this paper deliver an estimate for the price elasticity of demand

for a financial asset. That is: the impact of a change in price on the quantity of an asset

demanded stems from a combination of (i) the change in quantity demanded holding expec-

tations about future cash flows and prices fixed, and (ii) the change in quantity demanded

stemming from a shift in expected future prices and cash flows caused by the price change.

My estimates of the information possessed by a representative investor and of the information

1See Grossman and Stiglitz (1980), Hellwig (1980), and Diamond and Verrecchia (1981).
2See, for example, Bai, Philippon and Savov (2016), Kacperczyk, Sundaresan and Wang (2021), Farboodi

et al (2022), and Dávila and Parlatore (2025).
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contained in asset prices imply an upper bound for the (absolute value of) demand elasticity

for the market asset of .14. By way of comparison, Gabaix and Koijen (2023) estimate a

price elasticity of ≈ 1
5
, which they describe as “surprisingly inelastic.” As such, my estimates

suggest that the inelasticity identified by Gabaix and Koijen can be entirely accounted for

by the information conveyed by prices, and specifically, by the fact that an increase in asset

prices signals an increase in expected future cash flows and prices, partially offsetting the

direct negative effect of an increase in today’s price.

The key formula for the information advantage of the representative investor relative to

the econometrician is (see Proposition 1)

1−

∂[econometrician’s expected return]
∂[price]

∂[price]
∂[future dividend innovation]

∂[future return]
∂[future dividend innovation]

. (1)

In particular, all three terms can be estimated from data on prices and dividends. The

economic underpinning of (1) is as follows. The formula measures how much more in-

formation a representative investor has about future dividend innovations than does the

econometrician. Some of this information is aggregated into the price, as reflected in the

term ∂[price]
∂[future dividend innovation]

. The price-dividend predictability literature has found that high

ratios predict low returns; that is, ∂[econometrician’s expected return]
∂[price]

< 0. But for market clearing

to hold, innovations to future dividends cannot reduce the representative investor’s demand

for an asset; and hence cannot affect the representative investor’s return expectation. In-

tuitively, the gap between an innovation to future dividends affecting the econometrician’s

expected return but not the typical investor’s expected return reveals a typical investor’s

information advantage relative to the econometrician about future dividends. Formalizing

this argument yields (1).

Formula (1) gives the combined information advantage about future dividends of a typical

investor relative to the econometrician. Part of this information advantage stems from signals

that are directly informative about future dividends; it is exactly the information content of

such signals that I wish to estimate. But part of the investor’s information advantage derives

instead from a typical investor potentially having knowledge of discount rate innovations

beyond that possessed by the econometrician, and this information in turn being useful

in interpreting what the market price implies about future dividends. The two sources of

information advantage are challenging to fully disentangle. But by imposing the condition

that each investor’s demand curve is downwards sloping, I obtain bounds the contribution

of each source.

In this paper I focus on the case of the aggregate stock market. In this case, and as (1)
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shows, the inputs for the sufficient statistics formulae that I derive are closely related to the

literature that studies the predictability of market returns and dividends using the price-

dividend ratio. I operationalize the formulae using the estimates of Binsbergen and Koijen

(2010). The formulae I derive make clear the relevance of conditioning on the history of

prices and dividends when forming expectations, and a distinguishing feature of Binsbergen

and Koijen (2010) is to present a tractable method of doing exactly this. Closely related

to these authors’ approach, see the survey of Koijen and Van Nieuwerburgh (2011), and

Cochrane (2011).

The key ingredient in the analysis is an exploitation of the market clearing condition. In

addition, I focus on the first two moments of all relevant distributions; as such, the formulae

derived should be viewed as approximations. The formulae hold in a framework general

enough to nest standard models in which potentially heterogeneous investors trade for a mix

of informational motives and responses to liquidity shocks, discount rate shocks, hedging

needs, etc.

Related literature:

This paper is related to the large literature on price-dividend predictability. That lit-

erature adopts the (typically implicit) view that investors are symmetrically informed, and

possess information unobservable to the econometrician. A separate and primarily theo-

retical literature has studied the process by which prices come to contain information, and

emphasizes the idea that investors observe independent and noisy signals of economic funda-

mentals, which are aggregated into the price (classical references are Hayek 1945, Grossman

1976, Hellwig 1980). I link these literatures by showing how estimates from the price-dividend

predictability literature can be used to infer how much information dispersed investors have.

Related, a significant literature quantifies the information content of prices; see references

in footnote 2. In this paper I use estimates of the information content of prices to infer the

information possessed by individual investors. My estimate of the information content of

aggregate prices is in (62). Separately, there is a relation between the inputs required for the

sufficient statistics formulae that I derive and Dávila and Parlatore (2025); see section 8.2.2.

The framework used to derive sufficient statistics formulae is related to Watanabe (2008)

and Biais et al (2010). These papers note that uninformed investors will (rationally) experi-

ence below-market returns, because they increase their holdings when future returns are low.

Glode (2011) and Savov (2014) use related observations to rationalize investment in active

mutual funds with negative alphas, along with providing some evidence. The same economic

force operates in this paper. Nonetheless, my estimates suggest that the “underperformance”

of an uninformed investor is quantitively small.

A key step in my analysis it to characterize the weighted-average amount of information
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possessed by investors. This aspect of my analysis is complementary to Kadan and Manela

(2019) and Farboodi et al (2025), who quantify the value to an investor of a given signal, for

example, a macroeconomic employment report or quarterly earnings forecasts. Instead, in

this paper I use observed correlations between prices and subsequent returns and dividends

to infer how much information the representative investor possesses. Similarly, this aspect

of my analysis is complementary to Egan, MacKay, and Yang (2022), who apply revealed-

preference arguments to a cross-section of index funds in order to infer the expectations

of investors who buy such funds. Relative to Egan, MacKay, and Yang, this paper has the

advantage of shedding light on the average information of all investors in the market, via the

use of market-clearing identities; but the disadvantage of saying nothing about heterogeneity

among investors. I note that the evaluation of the extent of information aggregation by prices

uses the average information of all investors.

The Probability of Informed Trade (PIN; Easley, Kiefer, and O’Hara 1996) quantifies the

fraction of trade stemming from informed traders, and as such measures the extensive margin

of information. In contrast, the measure in this paper captures both intensive and extensive

margins. The measure in the current paper is also constructed entirely from pricing and

dividend data, and does not require the use of order flow information, and as such is robust

to changes in trading patterns (such as the proliferation of trading venues and the increasing

prevalence of high-frequency traders). Also related, Kyle’s lambda (Kyle 1985) is frequently

estimated, and used as a proxy for the prevalence of informed trade; but it is challenging to

relate the estimated value to a cardinal measure of the amount of informed trade.

Kurlat (2019) derives and implements a sufficient statistics formula for the ratio of private

to social value of information in what is essentially the origination part of financial markets.

This paper instead examines the amount and private value of information in a secondary

financial market. Bond and García (2021) theoretically characterize the social value of private

information in a related setting.

2 Framework

I derive sufficient statistics formulae using a general framework in which investors trade both

because of differing expectations about returns, and because of shocks to desired holdings

that resemble discount rate shocks. The framework is closely related to the canonical models

of Grossman and Stiglitz (1980), Hellwig (1980), and especially Diamond and Verrecchia

(1981). Following these papers, all random variables below are normal. As such, all results

should be interpreted as approximations based on the first two moments of distributions.

The framework features a single risky asset. In the empirical implementation I will
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consider the S&P 500 index. I conjecture that many of the insights of the paper can be

extended to multi-asset models.

A unit continuum of investors, indexed by i, trade a risky asset and a risk-free asset. The

gross return of the risk-free asset is Rt, and the price of the risky asset at date t is Pt. The

risk-free asset is in zero supply, and the supply of the risky asset is normalized to 1. The

risky asset pays dividends Dt at the start of each period t. The (absolute) excess return on

the risky asset from date t to t + 1 is

Xt+1 ≡ Pt+1 +Dt+1 − RtPt.

Write Ii,t for investor i’s information at date t, detailed below. Let investor i’s demand qi,t

for the asset be a function of the expected return, E [Xt+1|Ii,t], and factors unrelated to

returns, Zt + ui,t:

qi,t = AiE [Xt+1|Ii,t]− Bi (Zt + ui,t) . (2)

In (2), Ai and Bi are potentially equilibrium objects. In particular, in the standard mean-

variance framework, Ai depends on the combination of investor i’s risk tolerance and var [Xt+1|Ii,t],

where the latter is an equilibrium object.

The term Zt is an aggregate “taste” shock to investors’ desired asset holdings. As such,

Zt shifts prices independent of expectations of dividends. Following the literature, I will

typically refer to Zt as a discount rate shock. Similarly, ui,t is an investor specific shock to

desired holdings.

At date t, investors receive private and noisy signals of next period’s dividend Dt+1 (see

(4) below).

Write Ht for the history of exogenous cash flows and aggregate discount rate shocks, i.e.,

Ht = {Dt, Zt−1, Dt−1, Zt−2, Dt−2, . . .} .

Information in Ht is public at the date t trading stage.3 Define the innovations

ǫD,t = Dt+1 − E [Dt+1|Ht]

ǫZ,t = Zt −E [Zt|Ht] .

I highlight the timing convention in ǫD,t, which arises because investors observe noisy signals

about Dt+1 at date t, implying that the date t price Pt contains information about Dt+1.

3The lagged aggregate value of the discount rate term Zt−1 can be inferred from the history of dividends
and equilibrium prices.
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Assume ǫD,t and ǫZ,t are normally distributed and i.i.d. As noted, the normality assump-

tion means that all results should be interpreted as approximations based on the first two

moments of distributions. For use throughout, note that

E [ǫD,t] = E [ǫD,t|Ht] = 0

var [ǫD,t] = var [ǫD,t|Ht] , (3)

with parallel identities for ǫZ,t, by the laws of total expectation and variance, respectively.

The assumption that ǫD,t and ǫZ,t are uncorrelated is important. While the analytical

results below can be generalized to allow for correlation (notes available upon request), these

generalizations are much harder to empirically implement. The assumption that dividend

and discount rate innovations are uncorrelated fits well with how the literature has conceived

of the origins of discount rate fluctuations (e.g., see review in Cochrane 2011). Even in

a consumption-based asset pricing paper such as Bansal and Yaron (2004), discount rate

fluctuations stem largely from fluctuations in cash flow volatility that are assumed to be

uncorrelated with cash flow innovations.

Investor i observes at date t a private signal of date t+ 1 dividends,

yi,t = Dt+1 + ǫi,t, (4)

where ǫi,t ∼ N
(
0, τ−1

i

)
. In particular, τi is the precision of investor i’s private signal. Note

that the shock Zt + ui,t both directly affects investor i’s asset demand, and also serves as a

signal about Zt.

Regarding the process

(

Dt

Zt−1

)

, I impose only:

Assumption 1 In equilibrium, the price innovation is linear in the dividend and discount

rate innovations:

Pt −E [Pt|Ht] = cDǫD,t + cZǫZ,t. (5)

Appendix D establishes that if

(

Dt

Zt−1

)

follows a VAR(1) process then there is indeed

an equilibrium that satisfies the linearity condition (5). But for both transparency and

generality, I establish all results starting directly from Assumption 1, and without imposing

further conditions on the process

(

Dt

Zt−1

)

.

For the purposes of Proposition 3, regarding the value of information, and subsection 9.4,

regarding the implied price elasticity of demand for the aggregate asset, I also use:
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Assumption 2 The unconditional mean of Zt is zero: E [Zt] = 0.

Investor i’s information Ii,t (τi) consists of Ht, combined with prices {Pt, Pt−1, . . .}, private

shocks to asset demand, {Zt + ui,t, Zt−1 + ui,t−1, . . .}, and private dividend signals {yi,t, yi,t−1, . . .}.,

each of which has a precision τi. I drop the argument τi when the meaning is clear. As noted,

the inclusion of the lagged realization of the aggregate discount rate, i.e., Zt−1, in Ii,t reflects

the fact that this realization can be inferred from the history of dividend and price realiza-

tions. But an individual investor i does not know the contemporaneous aggregate discount

rate shock; instead, investors know only their own trading preferences, Zt + ui,t. The spe-

cial case Ii,t (0) is the information of an uninformed investor who lacks signals about future

dividends (though still benefits from information about his/her own trading preferences).

In addition to Ii,t (τi) and Ht, define the econometrician’s information set of

Jt ≡ Ht ∪ {Pt, Pt−1, . . .} .

As written, the only public signals are the realizations of prices and dividends. It is straight-

forward to extend the framework to incorporate additional public signals, such as public

macroeconomic announcements. Under such an extension, the required inputs would be the

outputs of predictability regressions that incorporate the same set of public announcements.

3 Measuring information aggregation

3.1 Information aggregation

Lemma 3 below establishes that equilibrium prices coincide with those in a representative-

agent economy in which each individual investor i observes a signal of form (4), where ǫi,t

has variance τ̄−1. By the standard formula,

var [ǫD,t|yi,t,Ht]
−1 = var [ǫD,t|Ht]

−1 + τ̄ ,

or equivalently (using (3)),

τ̄ = var [ǫD,t|yi,t,Ht]
−1 − var [ǫD,t]

−1
.

Analogously, the precision of the information in the price is

τprice ≡ var [ǫD,t|Pt,Ht]
−1 − var [ǫD,t]

−1
. (6)
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The main result in the paper it to deliver sufficient statistics that bound the value of

τprice

τ̄
. (7)

The ratio (7) is a measure of how effectively the price aggregates information. Specifically, it

measures the number of independent signals of precision τ̄ an investor would have to observe

to be indifferent between (a) observing these signals, but not the price, and (b) observing the

price but nothing else. A ratio
τprice

τ̄
= 0 corresponds to a complete absence of information

aggregation. Conversely, a ratio
τprice

τ̄
= ∞ corresponds to perfect information aggregation.

3.2 Roadmap

As a high-level roadmap to the paper: The precision of the price is straightforwardly esti-

mated; indeed, a significant existing literature does so. The challenge is to estimate τ̄ . There

are two steps.The first step is to measure the total information advantage of an average in-

vestor relative to the econometrician,

(
var [ǫD,t|Ii,t (τ̄)]

var [ǫD,t|Jt]

)−1

. (8)

This total information advantage reflects a combination of an investor’s direct private signal

about the dividend innovation ǫD,t; and an investor’s superior ability to extract information

from the price Pt that arises from the fact that an investor potentially has information about

the discount rate that is unavailable to the econometrician, and as such is able to extract

more information from the price than the econometrician is able to. Conceptually, (8) is

measured as follows. Consider a positive innovation to the dividend Dt+1. Investors observe

noisy signals of this innovation at date t. By market clearing, such an innovation leaves

the average expected return of investors, viz.
´

E [Xt+1|Ii,t (τ̄)] di, unchanged. But to the

extent to which the innovation is incorporated into the date t price Pt it raises this price. An

econometrician observing a higher price attaches some weight to the price increase stemming

from a change in the discount rate Zt. Accordingly, the econometrician’s expectation of the

return, E [Xt+1|Jt], falls. The gap between the decline in E [Xt+1|Jt] and the constancy

of
´

E [Xt+1|Ii,t (τ̄ )] di allows a quantification of how much more the representative-agent

knows than the econometrician, i.e., (8).

The second step is to express τ̄ in terms of the representative-agent’s total information

advantage, (8). The key challenge is that (8) reflects both the signal yi,t of ǫD,t, which has

precision τ̄ ; and an individual investor’s knowledge of Zt + ui,t. Here, the key step is to use

the restriction that individual demand decreases in the price to derive an upper bound on

8



the information contained in Zt + ui,t.

4 Conditional distributions

I start by collecting results on the conditional distributions of

(

ǫD,t

ǫZ,t

)

under different

conditioning information. In particular, the moments of

(

ǫD,t

ǫZ,t

)

conditional on Ii,t and Jt

have simple linear relations.

An input for the results in this section is the observation that, because Ii,t and Jt both

include the date t price Pt, and because the price is determined by the innovations ǫD,t and

ǫZ,t, the variance-covariance matrix of

(

ǫD,t

ǫZ,t

)

conditional on each of these information sets

is singular. Formally, this follows from (using Jt as an example)

var [ǫZ,t|Jt] =

(
cD

cZ

)2

var [ǫD,t|Jt] (9)

cov [ǫZ,t, ǫD,t|Jt] = −
cD

cZ
var [ǫD,t|Jt] . (10)

The results in this section follow from this observation, combined with manipulation of

standard updating rules for normal random variables. In particular, it follows that

var [ǫD,t|Ii,t]

var [ǫD,t|Jt]
=

var [ǫZ,t|Ii,t]

var [ǫZ,t|Jt]
=

cov [ǫD,t, ǫZ,t|Ii,t]

cov [ǫD,t, ǫZ,t|Jt]

and so

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

=
var [ǫD,t|Ii,t]

var [ǫD,t|Jt]
var

[(

ǫD,t

ǫZ,t

)

|Jt

]

.

That is, the ratio
var [ǫD,t|Ii,t]

−1

var [ǫD,t|Jt]
−1

measures an investor’s information advantage over the econometrician not just with respect

to ǫD,t, but with respect to ǫZ,t also.

A key ingredient for equilibrium relations is how the sensitivity of the conditional expec-

tation of

(

ǫD,t

ǫZ,t

)

to its true value depends on the information set. The relation is most

easily expressed in terms of forecast errors:4

4For a related instance of the convenience afforded by forecast errors see Coibion and Gorodnichenko
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Lemma 1

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

=
var [ǫD,t|Ii,t]

var [ǫD,t|Jt]

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Jt

]

−

(

ǫD,t

ǫZ,t

))

(11)

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

=
var [ǫD,t|Ii,t]

var [ǫD,t|Jt]

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Jt

]

−

(

ǫD,t

ǫZ,t

))

.(12)

I am ultimately interested in estimating τ̄ , the precision of the signal about the dividend

innovation ǫD,t that is observed by the representative agent. By the standard formula,

var [ǫD,t|Ii,t (τ̄)]
−1 = var [ǫD,t|Ii,t (0)]

−1 + τ̄ , (13)

which rearranges to

τ̄ =

(

var [ǫD,t|Ii,t (τ̄ )]
−1

var [ǫD,t|Jt]
−1 −

var [ǫD,t|Ii,t (0)]
−1

var [ǫD,t|Jt]
−1

)

var [ǫD,t|Jt]
−1

. (14)

Equation (14) gives τ̄ in terms of the representative agent’s information advantage relative

to the econometrician,
var[ǫD,t|Ii,t(τ̄)]

−1

var[ǫD,t|Jt]
−1 , which can be estimated, see Proposition 1; the in-

formation contained in the price, var [ǫD,t|Jt]
−1, which can likewise be estimated; and the

information advantage of an uninformed investor (τi = 0) relative to the econometrician,

which can be bounded.

In order to decompose an investor’s information advantage over an econometrician into

contributions from signals about the dividend from signals about the discount rate, I make

use of the fact that demand curves slope down. Operationalizing this requires characterizing

how an investor’s expectations respond to a change in the price, holding other elements of

the information set fixed:

Lemma 2

∂E [ǫD,t|Ii,t (τ̄)]

∂ (Pt − E [Pt|Ht])
=

1
∂Pt

∂ǫD,t

var [ǫD,t|Ii,t (τ̄)]

var [ǫD,t|Jt]

((
var [ǫD,t|Ii,t (0)]

var [ǫD,t|Jt]

)−1

−
var [ǫD,t|Jt]

var [ǫD,t]

)

(15)

∂E [Xt+1|Ii,t (τ̄)]

∂ (Pt − E [Pt|Ht])
=

∂E [ǫD,t|Ii,t (τ̄)]

∂ (Pt −E [Pt|Ht])

(

∂Xt+1

∂ǫD,t

−
∂Pt

∂ǫD,t

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

)

+

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

. (16)

To build intuition for (15), note first that if an investor has the same information as the

(2015).
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econometrician5 then (15) simplifies to

∂E [ǫD,t|Ii,t (τ̄)]

∂ (Pt − E [Pt|Ht])
=

1
∂Pt

∂ǫD,t

(

1−
var [ǫD,t|Jt]

var [ǫD,t]

)

,

capturing the standard idea that since the price Pt is a noisy signal of ǫD,t, an increase in

the price originating from a positive shock to ǫD,t increases the expected value of ǫD,t by

less than the shock. Relative to this baseline, an improvement in an investor’s information

about discount rates (lower var [ǫD,t|Ii,t (0)]) increases the amount of updating, while an

improvement in an investor’s information about dividends (lower var [ǫD,t|Ii,t (τ̄ )]) reduces

updating from the price.

To build intuition for (16), it is useful to consider the case in which Zt is i.i.d. In this case,

shocks to Zt only affect the contemporaneous price Pt, and (16) simplifies to the intuitive

expression
∂E [Xt+1|Ii,t]

∂ (Pt −E [Pt|Ht])
=

∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

(
∂E [Pt+1]

∂ǫD,t

+ 1

)

− R.

Equation (16) extends this to the more general case in which Zt is serially correlated.

5 The information advantage of the representative agent

This section derives a formula that gives the information advantage of the representative

agent in terms of sufficient statistics that can be empirically estimated. The key step in

obtaining the formula is the market clearing condition, combined with Lemma 1.

5.1 Equivalence to a representative-agent economy

The general framework allows for a great deal of heterogeneity of investors; in particular,

it places no restrictions on the distribution of characteristics (Ai, Bi, τi) over the investor

population.

Nonetheless, the equilibrium price coincides with the equilibrium price in an economy in

which agents are ex ante identical, i.e., share a common
(
Ā, B̄, τ̄

)
. This representative-agent

characterization of the economy is simply a modest generalization of various results in the

existing literature.

The market-clearing condition is

ˆ

i

qi,tdi = 1, (17)

5That is: Ii,t (τ̄ ) = Ii,t (0) = Jt.
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which implies

ˆ

i

∂qi,t

∂ǫD,t

di = 0 (18)

ˆ

i

∂qi,t

∂ǫZ,t
di = 0. (19)

A trivial decomposition of
∂qi,t
∂ǫD,t

and
∂qi,t
∂ǫZ,t

is

∂qi,t

∂ǫD,t

= Ai

∂Xt+1

∂ǫD,t

−Ai

∂

∂ǫD,t

(Xt+1 − E [Xt+1|Ii,t]) (20)

∂qi,t

∂ǫZ,t
=

(

Ai

∂Xt+1

∂ǫZ,t
−Bi

)

− Ai

∂

∂ǫZ,t
(Xt+1 −E [Xt+1|Ii,t]) . (21)

Here, the first term in each expression is the change in asset demand of investor who perfectly

forecasts the return Xt+1, and the second term represents the “underreaction” stemming from

imperfect information. Decompositions (20) and (21) combine with Lemma 1 to yield

∂qi,t

∂ǫD,t

= Ai

∂Xt+1

∂ǫD,t

− Ai

var [ǫD,t|Ii,t (τi)]

var [ǫD,t|Ii,t (0)]

∂

∂ǫD,t

(Xt+1 −E [Xt+1|Ii,t (0)]) (22)

∂qi,t

∂ǫZ,t
=

(

Ai

∂Xt+1

∂ǫZ,t
− Bi

)

−Ai

var [ǫD,t|Ii,t (τi)]

var [ǫD,t|Ii,t (0)]

∂

∂ǫZ,t
(Xt+1 − E [Xt+1|Ii,t (0)]) . (23)

Substituting into the market-clearing conditions (18) and (19) delivers the following repre-

sentative agent result.

Lemma 3 The equilibrium price coefficients cD and cZ coincide with those in an economy

in which all investors are ex ante identical, i.e., (Ai, Bi, τi) =
(
Ā, B̄, τ̄

)
for all i, where

var [ǫD,t|Ii,t (τ̄)] =

´

Aivar [ǫD,t|Ii,t (τi)]
´

Ai

B̄

Ā
=

´

Bi
´

Ai

.

In words, Lemma 3 says that the precision τ̄ of the representative agent’s information

is the weighted average of the cross-section of signal precisions, where the weights are the

coefficients Ai that determine the sensitivity of investor i’s trade to expectations about the

excess return.
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5.2 Measuring the information of the representative agent

The main result of this section is that the precision of the representative agent’s information

advantage over the econometrician can be expressed in terms of sufficient statistics that can

be estimated using only aggregate data.

The key step is the application of market-clearing. Condition (18) for the representative

investor is

Ā
∂Xt+1

∂ǫD,t

− Ā
var [ǫD,t|Ii,t (τ̄)]

var [ǫD,t|Jt]

∂

∂ǫD,t

(Xt+1 − E [Xt+1|Jt]) = 0, (24)

which rewrites to

var [ǫD,t|Ii,t (τ̄ )]

var [ǫD,t|Jt]
=

∂Xt+1

∂ǫD,t

∂
∂ǫD,t

(Xt+1 − E [Xt+1|Jt])
.

By construction, the dividend innovation ǫD,t affects the econometrician’s information set Jt

only via the price Pt. Hence:

Proposition 1 The representative agent’s informational advantage is given by

var [ǫD,t|Ii,t (τ̄)]
−1

var [ǫD,t|Jt]
−1 = 1−

∂E[Xt+1|Jt]
∂Pt

∂Pt

∂ǫD,t

∂Xt+1

∂ǫD,t

.

Proposition 1 says that the representative agent’s informational advantage over the econo-

metrician can be inferred from the objects ∂Pt

∂ǫD,t
, ∂E[Xt+1|Jt]

∂Pt
, and ∂Xt+1

∂ǫD,t
.

In words, ∂Pt

∂ǫD,t
is the relation between today’s price and the innovations to next period’s

dividend. It is related to ability of prices to forecast future dividends. Likewise, ∂E[Xt+1|Jt]
∂Pt

is related to the ability of today’s price to forecast next period’s return. Finally, ∂Xt+1

∂ǫD,t
is

a combination of ∂Pt

∂ǫD,t
, the direct effect of the dividend innovation ǫD,t on Dt+1, which is

simply 1, and the effect of the dividend innovation ǫD,t on Pt+1, which is determined largely

by the persistence of dividend innovations.

Section 8 relates these objects to dividend-price predictability.

The economic idea behind Proposition 1 is as follows. Suppose that higher prices today

lead an econometrician to forecast lower returns, as the price-dividend ratio literature sug-

gests. But by definition, the average investor’s holding doesn’t change, since the average

investor must continue to hold the market supply. For this to happen, it must be the case

that the average investor’s expectation differs from the econometrician’s. In particular, the

average investor must observe private signals that are on average positive when prices are

high. Proposition 1 quantifies this statement.
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6 Bounds for information aggregation

The measure of information aggregation is
τprice

τ̄
. From (6) and (14), this equals

τprice

τ̄
=

var[ǫD,t|Jt]
−1

var[ǫD,t]
−1 − 1

(
var[ǫD,t|Ii,t(τ̄)]

−1

var[ǫD,t|Jt]
−1 −

var[ǫD,t|Ii,t(0)]
−1

var[ǫD,t|Jt]
−1

)
var[ǫD,t|Jt]

−1

var[ǫD,t]
−1

. (25)

The econometrician’s information
var[ǫD,t|Jt]

−1

var[ǫD,t]
−1 is straightforwardly measured; conceptually,

the key input is the R2 of regressing the dividend innovation on the lagged price. By Propo-

sition 1, the representative agent’s information advantage relative to the econometrician,
var[ǫD,t|Ii,t(τ̄)]

−1

var[ǫD,t|Jt]
−1 , can be expressed in terms of observable sufficient statistics. This leaves

the term
var[ǫD,t|Ii,t(0)]

−1

var[ǫD,t|Jt]
−1 , which measures an uninformed investor’s information advantage

relative to the econometrician. To proceed, I bound this term.

A lower bound for
var[ǫD,t|Ii,t(0)]

−1

var[ǫD,t|Jt]
−1 is simply 1, i.e., an uninformed investor doesn’t enjoy

any information advantage relative to an econometrician. To obtain an upper bound, I make

use of the fact that an investor’s demand curve should be downwards sloping as a function

of the price., i.e.,
∂E [Xt+1|Ii,t (τ̄)]

∂ (Pt − E [Pt|Ht])
< 0. (26)

Intuitively, inequality (26) provides an upper bound on
var[ǫD,t|Ii,t(0)]

−1

var[ǫD,t|Jt]
−1 because if an unin-

formed investor is much more informed than the econometrician, by definition this means

that an uninformed investor can extract much more information from a price change by mak-

ing use of his/her information of his/her own trading preferences. Substituting in Lemma 2,

the downwards-sloping demand condition (26) delivers:6

6The upper bound (27) for an uninformed investor’s information advantage requires

∂Xt+1

∂ǫD,t
∂Pt

∂ǫD,t

>

∂Xt+1

∂ǫZ,t
∂Pt

∂ǫZ,t

. In

the empirical implementation of Section 9 this is indeed the case. In general, one would expect this inequality
to hold, because ∂Xt+1

∂ǫD,t
and ∂Pt

∂ǫD,t
are both naturally positive (unless dividend innovations are followed by

reversals so strong that Pt+1 +Dt+1 declines), while ∂Xt+1

∂ǫZ,t
and ∂Pt

∂ǫZ,t
naturally take opposite signs (unless

the discount rate innovation is very persistent).
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Proposition 2 If the representative investor’s demand curve slopes down then

1 ≤
var [ǫD,t|Ii,t (0)]

−1

var [ǫD,t|Jt]
−1 <

var [ǫD,t|Jt]

var [ǫD,t]
−

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

∂Xt+1

∂ǫD,t
∂Pt

∂ǫD,t

−

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

var [ǫD,t|Ii,t (τ̄)]
−1

var [ǫD,t|Jt]
−1 . (27)

Importantly, the quantities in the RHS of (27) are observable. The only term not al-

ready discussed is the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

, corresponding to the ratio of how an innovation to the

discount rate affects prices and returns, respectively. Discount rate innovations aren’t di-

rectly observed, and instead are inferred from residuals. In particular, the variance terms
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] and
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] can both be inferred from the variance in returns

and prices that is unexplained by dividend innovations. Given estimates of these variances,

the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

is given by

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

= -

√
√
√
√
√
√

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t]
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t]
. (28)

The negative sign in (28) reflects the fact that the shock ǫZ,t pushes Pt and Xt+1 in opposite

directions, unless the process {Zt} is so strongly persistent that the effect of ǫZ,t on Pt+1

outweighs its effect on Pt. The quantitative implementation in Section 8 confirms that that

(28) indeed has a negative sign.

7 The value of private information

My primary focus is to estimate the extent to which prices aggregate individual information.

The tools developed also deliver an estimate of the value of the representative agent’s private

information. Specifically, I calculate by how much giving an uninformed investor access to

the representative agent’s information would increase the uninformed investor’s expected

return. Observe that this exercise is well-defined regardless of whether or not uninformed

investors are actually present in the market.

The benefit of focusing on return differentials rather than, for example, willingness-to-

pay measures of utility differences, is that it is possible to give a sufficient statistics formula

for the return differential. In contrast, I have been unable to find a sufficient statistics

formula for willingness-to-pay in which the components can be estimated. In particular, a

utility-based measure would require estimates of investor risk aversion.
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To isolate the value of information, I evaluate this expected return differential for an

investor who resembles the representative investor in other dimensions. Concretely, I consider

an investor with characteristics

(
Ā, B̄

)
=

(
ˆ

i

Aidi,

ˆ

i

Bidi

)

, (29)

and compare the expected return from investment strategies made under the information of

the representative agent,

qi,τ̄ ,t ≡ ĀE [Xt+1|Ii,t (τ̄ )]− B̄ (Zt + ui,t) ,

and under the information of the uninformed investor,

qi,0,t ≡ ĀE [Xt+1|Ii,t (0)]− B̄ (Zt + ui,t) .

Getting access to the average investor’s information would raise an uninformed investor’s

expected return by a fraction

V ≡
E [qi,τ̄ ,tXt+1]

E [qi,0,tXt+1]
. (30)

As a first step in evaluating V , note that an investor with characteristics
(
Ā, B̄, τ̄

)
is a

representative agent for the economy, in the sense of Lemma 3. Moreover, the market clears,

so that
ˆ

qi,τ̄ ,tdi = E [qi,τ̄ ,t|Ht] = 1. (31)

Consequently, the investment strategy qi,τ̄ ,t is independent of the aggregate shocks ǫD,t and

ǫZ,t. This is a version of the “average investor theorem” of Sharpe (1991).

Corollary 1
∂qi,τ̄ ,t
∂ǫD,t

=
∂qi,τ̄,t
∂ǫZ,t

= 0.

Corollary 1 implies that the representative agent’s asset holding is uncorrelated with the

return. Moreover, by the law of iterated expectation,

E [qi,τ̄ ,t|Ht] = E [qi,0,t|Ht] = ĀE [Xt+1|Ht]− B̄E [Zt|Ht] . (32)

In words: While an uninformed and informed investor make different investment decisions,

in expectation the gap between their asset holdings is zero.

Substitution of Corollary 1, (31) and (32) into (30) yields (see proof of Proposition 3 for

details)

V =
E [Xt+1]

E [Xt+1] + cov [qi,0,t, Xt+1|Ht]
. (33)
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Expression (33) relates the value of information to the covariance between an uninformed

investor’s asset position, and returns. Expanding, this covariance is given by

cov [qi,0,t, Xt+1|Ht] =

∂qi,0,t
∂ǫD,t

∂Xt+1

∂ǫD,t

(
∂Xt+1

∂ǫD,t

)2

var [ǫD,t] +

∂qi,0,t
∂ǫZ,t

∂Xt+1

∂ǫZ,t

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] . (34)

The key challenge in evaluating (34) is that while
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] can be estimated (see

discussion following Proposition 2) this still leaves the term

∂qi,0,t
∂ǫZ,t
∂Xt+1

∂ǫZ,t

.

The key step in characterizing the value of information is to use the market-clearing

condition (19) to infer

∂qi,0,t
∂ǫZ,t
∂Xt+1

∂ǫZ,t

. Doing so yields a sufficient statistics expression for the value

of information V :

Proposition 3 Under Assumption 2, the value of information V is given by (33), where

cov [qi,0,t, Xt+1|Ht] =

(

1−
var [ǫD,t|Ii,t (τ̄)]

−1

var [ǫD,t|Ii,t (0)]
−1

)(

1−

∂Pt

∂ǫD,t

∂Xt+1

∂ǫD,t

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

)
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t]

E [Xt+1]
.

(35)

Note that the role of Assumption 2 is that it implies (via the unconditional expectation of

the market-clearing condition (17)) that the parameter Ā entering the representative agent’s

demand is the reciprocal of the unconditional market risk premium, i.e.,

ĀE [Xt+1] = 1. (36)

The covariance term (35) can be estimated. For the first term, note that the information

advantage of the representative agent relative to uninformed investor simply equals the ratio

of the information advantages of the representative agent and uninformed investor to the

econometrician:

var [ǫD,t|Ii,t (τ̄ )]
−1

var [ǫD,t|Ii,t (0)]
−1 =

var[ǫD,t|Ii,t(τ̄)]
−1

var[ǫD,t|Jt]
−1

var[ǫD,t|Ii,t(0)]
−1

var[ǫD,t|Jt]
−1

. (37)

The numerator in the RHS of (37) is given directly by Proposition 1, while Proposition 2

gives bounds for the denominator.

For the second term: Both ∂Pt

∂ǫD,t
and ∂Xt+1

∂ǫD,t
can be estimated, and indeed enter Proposition

1, while the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

can be estimated using (28).
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Finally, the third term in (37) is simply the variance of date t+1 returns attributable to

shocks to date t + 1 dividends.

The estimated value of the covariance (35) is negative, meaning that uninformed investors

end up negatively timing the market, in the sense of increasing their asset holdings when

future returns are low. To see why negative covariance arises, consider a date t shock to

either discount rates or dividends that increases the return from date t to t+1. In response

to this shock, uninformed investors’ return-expectations rise less than those of informed

investors (see Lemma 1). By market clearing, the average investor’s desired asset holding

cannot respond (Corollary 1). It follows that an uninformed investor’s asset holding must

fall.

As noted, the negative covariance between uninformed asset holdings and subsequent

returns is closely related to results in Watanabe (2008) and Biais et al (2010). It occurs even

though the uninformed investor has fully Bayesian expectations about future returns.

As a final comment on Proposition 1: Recall that the value of information V is based on

an uninformed investor who responds to return expectations and discount rate shocks Zt+uit

in the same way as the average investor in the economy, i.e., has characteristics Ā and B̄ given

by (29). However, in many underpinnings of asset demand (2), the coefficient Ai on return

expectations is a joint function of the endogenous perceived return variance, var [Xt+1|Ii,t],

and exogenous risk aversion. Moreover, the same is potentially true of the coefficient Bi

on discount rate shocks. As such, the measure V doesn’t account for the increase in the

average size of an uninformed investor’s average position that may accompany getting access

to better information and thereby reducing perceived return variance.

Two points are worth making here. First, incorporating this effect into the measure V

would require substantially stronger assumptions about investors’ asset demands than I have

made so far. That is: How exactly does an investor’s asset demand depend on perceived

return variance? Second: Although estimates of the reduction in the perceived variance

of dividend innovations ǫD,t turn out to be relatively large (Section 9), estimates of the

reduction in the perceived variance of returns Xt+1 are much smaller, because estimates

indicate that most return variance is driven by date t + 1 discount rate shocks (Section 8).

As such, incorporating the reduction-in-perceived-variance effect into V is likely to have only

a small impact.

8 Predictability empirics

The key quantities required to operationalize Propositions 1, 2 and 3 are tightly related to

the outputs of empirical analysis that studies the predictability of returns and dividends,
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emphasizing the role of the price-dividend ratio.

The literature is sizable. In this paper, I use of the estimates of Binsbergen and Koijen

(2010), henceforth BK, to illustrate the methodology developed in Section 5. As the preced-

ing analysis indicates, the interpretation of today’s prices requires incorporating the history

of prices and dividends in order to infer the history of discount rate shocks. An important

advantage of BK’s estimates is that, as they write, “Our latent variables approach aggregates

the whole history of price-dividend ratios and dividend growth rates to estimate expected

returns and expected growth rates.”

8.1 Estimated VAR

BK estimate an empirical model with exogenous shocks to dividend growth, expected return,

and realized dividends. As emphasized by BK and Cochrane (2008), an implication of

the present value identity (Campbell and Shiller 1988) is that such an empirical model is

indistinguishable from an alternative one with exogenous shocks to dividend growth and the

price-dividend ratio. I will work with this latter specification because it is stated in terms of

observables, and as such is closer to quantities needed as inputs for Propositions 1, 2 and 3.

Specifically, write rt+1 = ln Pt+1+Dt+1

Pt
and ∆dt+1 = ln Dt+1

Dt
for the asset log return and

dividend log growth rate between dates t and t + 1. Write pdt = log Pt

Dt
for the log price-

dividend ratio, along with p̄d for its steady state value, and ρ =
exp(p̄d)

1+exp(p̄d)
. Let νd,t+1 and

νpd,t+1 denote the unforecastable (to the econometrician) innovations to ∆dt+1 and pdt+1:

∆dt+1 = E [∆dt+1|Jt] + νd,t+1

pdt+1 = E [pdt+1|Jt] + νpd,t+1.

Denote by µt and gt the econometrician’s date t expectations about returns and dividend

growth:

µt = E [rt+1|Jt]

gt = E [∆dt+1|Jt] .

BK assume that µt and gt follow AR1 processes:

µt+1 = µ̄+ φµ (µt − µ̄) + νµ,t+1 (38)

gt+1 = ∆̄d+ φg

(
gt − ∆̄d

)
+ νg,t+1. (39)

From the present value identity, the innovation νpd,t+1 is a function of νµ,t+1 and νg,t+1 (see

19



appendix for details):

νpd,t+1 =
νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

. (40)

Since the econometrician observes only dividends and prices, the innovations νg,t+1 and νµ,t+1

must be functions of νpd,t+1 and νd,t+1:
7

νg,t+1 = apdνpd,t+1 + adνd,t+1

νµ,t+1 = bpdνpd,t+1 + bdνd,t+1, (41)

where, from (40), bpd and bd satisfy

apd

1− ρφg

−
bpd

1− ρφµ

= 1

ad

1− ρφg

−
bd

1− ρφµ

= 0.

The estimated system is8

gt+1 − ∆̄d = φg

(
gt − ∆̄d

)
+ apdνpd,t+1 + adνd,t+1 (42)

∆dt+1 = gt + νd,t+1 (43)

pdt+1 − p̄d =
φg − φµ

1− ρφg

(
gt − ∆̄d

)
+ φµ

(
pdt − p̄d

)
+ νpd,t+1. (44)

The system has ten parameters,

{
∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ

2
pd, σ

2
d, σpd,d

}
.

Appendix B details how to recover estimates of these ten values from the estimates reported

in BK. The first five parameters
{
∆̄d, p̄d, ρ, φg, φµ

}
coincide with the BK values. Using the

estimates reported in the first column of BK’s Table II yields the values reported in Table 1.

BK’s estimates are based on nominal annual returns and nominal annual dividend growth

rates. Accordingly, the appropriate risk free rate Rt is a nominal annual rate. I use a risk

free rate of 2% in the calculations below.

7Linearity here follows from Cochrane (2008, p. 11).
8Equation (44) follows from the present value identity; see appendix for details.
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Parameter Estimated value

∆̄d 0.062
p̄d 3.571
ρ 0.969
φg 0.354
φµ 0.932
apd 0.0482
ad 0.3952
σpd 0.1596
σd 0.0576
σpd,d

σpdσd
−0.3118

µ̄ 0.090
bpd −0.0898

R2 of ∆dt+1 regressed on Jt 13.9%

Table 1: Parameter estimates recovered by BK

8.2 From predictability estimates to inputs for Proposition 1

The evaluation of Proposition 1 requires estimates of ∂E[Xt+1|Jt]
∂Pt

, ∂Pt

∂ǫD,t
, and ∂Xt+1

∂ǫD,t
. See Table 2,

which also summarizes the corresponding economic quantities and estimated values. Recall

that ǫD,t is the innovation to date t+ 1 dividends, though investors observe noisy signals at

date t.

Term Description Estimate Result(s)
∂E[Xt+1|Jt]

∂Pt
Expected return and price −.0983 Props 1, 2, 3

∂Pt

∂ǫD,t
Price and next-period dividend 12.1 Props 1, 2, 3

∂Xt+1

∂ǫD,t
Realized return and dividend 4.24 Props 1, 2, 3

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] Variance of returns due to ǫZ,t P 2
t−1 × .0282 Props 2, 3

(
∂Pt

∂ǫZ,t

)2

var [ǫZ,t] Variance of price due to ǫZ,t P 2
t−1 × .1602 Props 2, 3

(
∂Xt+1

∂ǫD,t

)2

var [ǫD,t] Variance of returns due to ǫD,t P 2
t−1 × .0112 Prop 3

E [Xt+1] Equity premium Pt−1 × .0915 Prop 3

Table 2: Quantities to estimate; estimates; and results for which inputs are relevant

In particular, ∂E[Xt+1|Jt]
∂Pt

is closely related to the estimated parameter bpd, i.e., the relation

between the expected return (νµ,t) and the price-dividend ratio (νpd,t), holding dividends fixed

(νd,t = 0). Similarly, ∂Pt

∂ǫD,t
is closely related to apd, i.e., the relation between expectations

about the dividend growth rate (νg,t) and today’s price (νpd,t), holding current dividends
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fixed (νd,t = 0). Below, I sketch some key steps; the appendix contains all omitted details.

8.2.1 The term
∂E[Xt+1|Jt]

∂Pt

The term ∂E[Xt+1|Jt]
∂Pt

captures how an increase in the price Pt affects the econometrician’s

expected return from t to t+1. From (41), its empirical counterpart is bpd, which captures how

an innovation in the price-dividend ratio affects the expected return, holding the dividend

constant. The estimated value of bpd is

bpd =
∂E [rt+1|Jt]

∂ lnPt

= −.0898, (45)

i.e., a 1% increase in prices is associated with a decline in the econometrician’s expected

return of 9 basis points. Converting from percent-to-percent to dollar-to-dollar changes

gives
∂E [Xt+1|Jt]

∂Pt

≈ −.0993. (46)

That is: a price increase of $1 reduces the ($) expected return by approximately $0.1.

8.2.2 The term ∂Pt

∂ǫD,t

The term ∂Pt

∂ǫD,t
captures how an innovation to the date t + 1 dividend Dt+1 affects the date

t price. Its closest empirical counterpart is apd, which captures how an innovation in the

price-dividend ratio affects the expected dividend growth rate, and has an estimated value

apd =
∂E [lnDt+1|Jt]

∂ lnPt

= 0.0482,

i.e., a 1% increase in prices is associated with an increase in the econometrician’s expected

dividend growth rate of 5bp.

I first relate apd to ∂pdt
∂∆dt+1

∣
∣
∣
∆dt,Jt−1

, and then second relate ∂pdt
∂∆dt+1

∣
∣
∣
∆dt,Jt−1

to the desired

term ∂Pt

∂ǫD,t
. The second step is a simply a shift from percentage changes to level changes.

The first step corresponds to switching from “does today’s price predict future dividends”

to “do future dividends predict today’s price”? Note that this distinction is closely related

to Dávila and Parlatore (2025), who derive a measure of price informativeness for which

the key empirical input is the R2 of a regression of date t price innovations on date t + 1

cash flow innovations. The input required for my sufficient statistics formulae, ∂Pt

∂ǫD,t
, likewise

corresponds to the regression coefficient from this same regression.
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For the first step:

∂pdt

∂∆dt+1

∣
∣
∣
∣
∆dt,Jt−1

=
cov [pdt,∆dt+1|∆dt,Jt−1]

var [∆dt+1|∆dt,Jt−1]
=

1

apd

a2pdvar [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
. (47)

The final fraction in (47) is the fraction of the residual variance of ∆dt+1 after controlling for

∆dt and Jt−1 that is explained by further controlling for pdt. If this ratio is 1, i.e., pdt and

∆dt+1 are perfectly correlated conditional on ∆dt and Jt−1, then ∂pdt
∂∆dt+1

∣
∣
∣
∆dt,Jt−1

is simply

the reciprocal of apd. Evaluating

a2pdvar [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
= 0.0159. (48)

The low value of this last term reflects the standard result that today’s price contains very

limited predictive power for tomorrow’s dividend. Returning to (47),

∂pdt

∂∆dt+1

∣
∣
∣
∣
∆dt,Jt−1

=
0.0159

0.0482
= 0.329, (49)

i.e., a 100% increase in date t+ 1 dividends suggests that date t prices were 33% higher.

For the second step, viz., converting the elasticity estimate (49) to the required dollar-

dollar estimate:

∂Pt

∂ǫD,t

=
∂Pt

∂Dt+1

∣
∣
∣
∣
∆dt,Jt−1

=
Pt

Dt+1

∂ logPt

∂ logDt+1

∣
∣
∣
∣
∆dt,Jt−1

=
Pt

Dt+1

∂pdt

∂∆dt+1

∣
∣
∣
∣
∆dt,Jt−1

≈ 12.1. (50)

8.2.3 The term
∂Xt+1

∂ǫD,t

The term ∂Xt+1

∂ǫD,t
captures how an innovation to the date t+1 dividend Dt+1 affects the excess

return between dates t and t + 1. There are two distinct channels. First, an innovation to

Dt+1 is partially reflected in the date t price Pt, as quantified immediately above. Second,

the remaining part of the innovation, which the econometrician observes only at date t+ 1,

directly affects the price and dividend at that date, Pt+1 +Dt+1.

Formally, these two channels correspond to the following decomposition of ∂Xt+1

∂ǫD,t
into
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effects stemming from anticipated and unanticipated elements of ǫD,t:

∂Xt+1

∂ǫD,t

=
∂E [ǫD,t|Jt]

∂ǫD,t

∂Xt+1

∂E [ǫD,t|Jt]
+

∂ (ǫD,t − E [ǫD,t|Jt])

∂ǫD,t

∂Xt+1

∂ (ǫD,t −E [ǫD,t|Jt])

=
∂E [ǫD,t|Jt]

∂ǫD,t

∂E [Xt+1|Jt]

∂E [ǫD,t|Jt]
+

∂ (ǫD,t − E [ǫD,t|Jt])

∂ǫD,t

∂ (Pt+1 +Dt+1)

∂ (ǫD,t − E [ǫD,t|Jt])

=
∂Pt

∂ǫD,t

∂E [Xt+1|Jt]

∂Pt

+
∂ (ǫD,t −E [ǫD,t|Jt])

∂ǫD,t

∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

. (51)

Note that the final equality follows from the fact that the innovation ǫD,t affects the econo-

metrician’s date t expectation only via the price Pt.

Both elements of the first term of (51), corresponding to the effect of the anticipated

component of ǫD,t, are calculated above.

Next, consider the second term of (51), which corresponds to the effect of the unantici-

pated component of ǫD,t. The key element here is
∂E[ǫD,t|Jt]

∂ǫD,t
, and its empirical counterpart

is the R2 of the regression of ∆dt+1 on the econometrician’s information set Jt, which BK

estimate to be 13.9%.

Specifically (using Lemma A.3 in Bond and García (2022)):

∂E [ǫD,t|Jt]

∂ǫD,t

= 1−
var [ǫD,t|Jt]

var [ǫD,t]
≈ R2 of regressing ∆dt+1 on Jt. (52)

For the remaining element of the second term in (51),

∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

= 1 + epdt+1

(
∂pdt+1

∂∆dt+1

∣
∣
∣
∣
Jt

+ 1

)

= 1 + epdt+1

(
cov [νpd,t+1, νd,t+1]

var [νd,t+1]
+ 1

)

.

Evaluating,

∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

≈ 1 + 39.1×

(

−0.3118×
0.1596

0.0576
+ 1

)

= 6.31. (53)

Putting everything together,

∂Xt+1

∂ǫD,t

≈ 12.1× (−0.0993) + (1− 0.139)× 6.31 = 4.24.

Perhaps as one would expect, the main impact of the dividend innovation ǫD,t stems from

the unanticipated component, and specifically, its effect on the date t+1 dividend and price.
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8.3 From predictability estimates to inputs for Proposition 2

Relative to Proposition 1, Proposition 2 additionally requires an input for the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

,

which from (28) in turn requires inputs for the return and price variance stemming from

discount rate shocks, viz.,
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] and
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] respectively.

8.3.1 The term
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t]

The term
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] measures the variance in date t+ 1 returns that is attributable

to innovations to the date t discount rate. It is estimated from

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] = var [E [Xt+1|Dt+1,Jt] |Dt+1, Dt,Jt−1] . (54)

Note in particular that (54) doesn’t incorporate information from the realizations of date

t+ 1 prices, which depend on the date t + 1 innovation to the discount rate. Evaluating,

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1 × .00282.

Hence date t discount rate innovations contribute little to the variance of the return Xt+1.

The reason is that, empirically, the price-dividend ratio is highly persistent, with the esti-

mated autoregressive parameter φµ equalling 0.932. Hence a shock to the date t discount

rate shifts both Pt and Pt+1 by roughly equal amounts, leaving the expected return largely

unaffected.

8.3.2 The term
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t]

The term
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] measures the variance in the date t price that is attributable to

innovations to the date t discount rate. Evaluating (see appendix)

(
∂Pt

∂ǫZ,t

)2

var [ǫZ,t] = var [Pt|ǫD,t,Ht] = var [Pt|Dt+1, Dt,Jt−1] ≈ P 2
t−1 × .1602. (55)

The approximate empirical counterpart9 of (55) is the conditional variance var [pdt|∆dt+1,∆dt,Jt−1]

of the price-dividend ratio, where the conditioning set includes both the econometrician’s

9As shown in the appendix, var [Pt|Dt+1, Dt,Jt−1] and var [pdt|∆dt+1,∆dt,Jt−1] differ by a factor of

approximately
(

Pt−1e
∆̄d
)2

≈ (Pt−1 × 1.064)2.
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date t − 1 information and the realizations of date t and t + 1 dividends. Evaluating (see

(98) in appendix) gives

var [pdt|∆dt+1,∆dt,Jt−1] ≈ .1502. (56)

In this case, a much simpler approach also yields an approximately similar result. Empir-

ically, date t dividend fluctuations drive little of the fluctuation in date t price-dividend

ratios; and future dividend growth is only weakly forecast by date t price-dividend ratios.

Consequently, conditioning on ∆dt+1 and ∆dt in (56) makes little difference, and hence

var [pdt|∆dt+1,∆dt,Jt−1] ≈ var [pdt|Jt−1] = var [νpd,t] = .1602.

A final point to note is that the appendix’s evaluation of
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] and
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t]

confirms that ∂Xt+1

∂ǫZ,t
and ∂Pt

∂ǫZ,t
have opposite signs,10 a result already reflected in the negative

sign in (28) (see earlier discussion).

8.4 From predictability estimates to inputs for Proposition 3

Relative to Propositions 1 and 2, Proposition 3 additionally requires inputs for the return

variance due to dividend shocks,
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t], and for the equity premium, E [Xt+1].

8.4.1 The term
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t]

The term
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] measures the variance in date t+ 1 returns that is attributable

to innovations to date t + 1 dividends. By (51), this variance can be decomposed into the

portions due to the innovation that is incorporated into the date t price, and the remaining

portion that is observed by the econometrician only at date t+ 1:

(
∂Xt+1

∂ǫD,t

)2

var [ǫD,t] =

(
∂E [Xt+1|Jt]

∂Pt

)2

var

[
∂Pt

∂ǫD,t

ǫD,t

]

+

(
∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

)2

var

[
∂ (ǫD,t − E [ǫD,t|Jt])

∂ǫD,t

ǫD,t

]

. (57)

Evaluating,
(
∂Xt+1

∂ǫD,t

)2

var [ǫD,t] ≈ P 2
t−1 × .0112. (58)

This variance is overwhelmingly driven by the second term in (57). That is: BK’s estimates

suggest that the variance in date t + 1 returns that is attributable to variance in the date

10Specifically, see (99), and the fact that the quantitative evaluation of (100) is negative.
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t+ 1 dividend innovation is almost entirely attributable to dividend innovations that aren’t

incorporated into the date t+ 1 price.

Remark (Aside): Combining the variance to returns Xt+1 stemming from dividend shocks

ǫD,t and discount rate shocks ǫZ,t gives

(
∂Xt+1

∂ǫD,t

)2

var [ǫD,t] +

(
∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1 × .01132. (59)

Expressed in percentage terms, date t + 1 innovations and date t discount rate innovations

generate a standard deviation of returns of approximately 1%. Why is this value so much

lower than the total standard deviation of returns, which is on the order of 15% − 20%?

The reason is that (59) omits the return variation stemming from date t + 1 discount rate

innovations. Evaluating, this source of return variation is

(
∂Xt+1

∂ǫZ,t+1

)2

var [ǫZ,t+1] ≈ P 2
t−1 × .1702. (60)

In other words, most of the variation in returns from date t to t + 1 stems from date t + 1

discount rate innovations; and the estimated value of this variation is consistent with total

return variation lying in the 15− 20% range.

8.4.2 The term E [Xt+1]

Finally, I consider the term E [Xt+1]. This is simply the equity premium. While many

estimates are available, for consistency I use one based on the same BK estimates as the

other terms. The key input into the calculation is, as one would expect, BK’s estimate of µ̄,

the unconditional mean of the log return. Evaluating:

E [Xt+1] ≈ Pt−1 × .0915.

9 Estimates

Finally, I use the estimated values to operationalize Propositions 1, 2 and 3, dealing with,

respectively, the information advantage of the representative agent over the econometrician;

the extent to which prices aggregate information; and the value of the representative agent’s

information. I further use these estimates to obtain an information-induced demand elastic-

ity.
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9.1 The representative agent’s information advantage

The representative agent’s information advantage is, by Proposition 1,

var [ǫD,t|Ii,t (τ̄)]
−1

var [ǫD,t|Jt]
−1 ≈ 1−

−.0983× 12.1

4.24
= 1.28. (61)

That is: The representative agent’s private information reduces the conditional variance of

the next dividend by approximately 1− 1
1.28

≈ 22%.

9.2 Information aggregation

First, I evaluate the information in the price. To do so, I make use of

var [ǫD,t|Jt] = var
[
Dte

∆dt+1 |Jt

]
≈

(

Dte
∆̄d
)2

var [∆dt+1|Jt] =
(

Dte
∆̄d
)2

var [νd,t+1] ,

var [ǫD,t|∆dt,Jt−1] = var
[
Dte

∆dt+1|∆dt,Jt−1

]
≈

(

Dte
∆̄d
)2 (

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
)
,

where the latter equation follows from (96) in the appendix. Evaluating,

var [ǫD,t|Jt]
−1

var [ǫD,t|∆dt,Jt−1]
≈ 1.016. (62)

That is: The information in the price reduces the conditional variance of the next dividend

by approximately 1.6%. The low magnitude corresponds to the widespread finding that

aggregate prices have little predictive power for aggregate dividends.

Second, I use Proposition 2 to bound the amount of information of an uninformed in-

vestor. Evaluating,

1 ≤
var [ǫD,t|Ii,t (0)]

−1

var [ǫD,t|Jt]
−1 ≤ 1.046. (63)

Comparing the upper bound in (63) to (61) indicates that the large majority of the repre-

sentative agent’s information advantage stems from information about dividend shocks as

opposed to information about discount rate shocks.

Substitution into (25) delivers an estimate for the extent of information aggregation:

.056 ≤
τprice

τ̄
≤ .067. (64)

That is: The extent of information aggregation is low. Observing just one private signal

about the dividend Dt+1, but not seeing the date t, conveys much more information than

seeing the date t price but no private signal.
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The economic force behind result (64) is the empirically high variance of discount rates

shock—again, a central finding of prior research. This variance works against the effective

aggregation of information in prices.

9.3 The value of the representative agent’s information

The value of the representative agent’s information is given by Proposition 3. As first step,

note that (61) and (63) imply that the representative agent’s information advantage relative

to an uninformed investor satisfies

1.23 ≤
var [ǫD,t|Ii,t (τ̄ )]

−1

var [ǫD,t|Ii,t (0)]
−1 ≤ 1.28. (65)

Evaluating Proposition 3 yields the following bounds for the value of the representative

agent’s information advantage V :

1.0034 ≤ V ≤ 1.0042. (66)

Expressed in return rates, this corresponds to an uninformed investor experiencing a return

penalty of approximately 3-4 basis points relative to the return of the representative agent.

Estimate (65) suggests a sizable information gap between the representative agent and

an uninformed investor. Why, then, is the estimated value of this information in (66) so

small? To gain insight, it is useful to return to (34) and evaluate the magnitude of the first

term on the RHS. This term corresponds to the advantage that the representative investor

enjoys relative to an uninformed investor in timing dividend innovations—which is what the

representative agent’s informational advantage relates to. From (20) and (22), and using

Corollary 1,

∂qi,0,t

∂ǫD,t

= Ā
∂Xt+1

∂ǫD,t

−

(

Ā
∂Xt+1

∂ǫD,t

−
∂qi,τ̄ ,t

∂ǫD,t

)
var [ǫD,t|Ii,t (τ̄)]

−1

var [ǫD,t|Ii,t (0)]
−1 = Ā

(

1−
var [ǫD,t|Ii,t (τ̄)]

−1

var [ǫD,t|Ii,t (0)]
−1

)

∂Xt+1

∂ǫD,t

.

Hence the first term on the RHS of (34) evaluates to

(

1−
var [ǫD,t|Ii,t (τ̄)]

−1

var [ǫD,t|Ii,t (0)]
−1

)
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t]

E [Xt+1]
. (67)
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Expression (67) differs only from (35) only via the multiplicative term

1−

∂Pt

∂ǫD,t

∂Xt+1

∂ǫD,t

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

≈ 1.051.

That is: Although the representative agent’s direct informational advantage about dividend

innovations also generates an informational advantage about discount rate innovations, the

quantitative value of this advantage is an order of magnitude smaller than that stemming

from the direct advantage of better information about dividend innovations. Building on this

insight, the estimated information advantage is small because the return variance that stems

from dividend innovations is itself quantitively small—from (58), the standard deviation of

returns stemming from dividend innovations is about 1%.

9.4 The implied price elasticity of demand

In a recent work, Gabaix and Koijen (2023) suggest that the price elasticity of demand for

the aggregate stock market is “surprisingly inelastic.”

The demand-based asset pricing literature (Koijen and Yogo 2019) gives a number of mo-

tivations for the limited elasticity of asset demand; see, for example, the discussion in Davis

et al (2025). Relatively little discussed, however, is the possibility that demand elasticity

stems from the information-content of asset prices, viz., a decline in the asset price makes

an asset more attractive holding future cash flows and prices constant; but makes an asset

less attractive because the decline in the price reduces expectations about future cash flows

and prices.11

Specifically, an increase in the price has two effects on the expected return: a direct effect

stemming from the change in today’s price, and an indirect effect stemming from changes

in expectations of future cash flows and discount rates, both of which feed into changes

in expectations of future prices. The expression (16) for how a change in the price affects

the average investor’s expected returns, and hence demand for the asset, stems from the

decomposition (see proof of Lemma 2):

∂E [qi,t|Ii,t]

∂ (Pt −E [Pt|Ht])
= Ai

∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

∂Xt+1

∂ǫD,t

+ Ai

∂E [ǫZ,t|Ii,t]

∂ (Pt −E [Pt|Ht])

∂Xt+1

∂ǫZ,t
(68)

11Haddad et al (2025) qualitatively relate a model based on dispersed information to demand elasticities.
Davis et al (2025) show that, empirically, changes in asset prices have limited passthroughs to expected
returns; this finding is consistent with asset prices conveying information. A contemporaneous working
paper of Binsbergen et al (2025) similarly notes that “price-shift” terms may be persistent, and hence affect
expectations about future prices; see also He et al (2025).
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Both terms in (68) reflect the direct effect of a change in today’s price. In addition, the first

term captures what a change in the price reveals about future cash flows; and the second

term captures what a change in the price reveals about the discount rate term Zt, which,

given persistence, affects futures prices also.

Overall, (68) captures how an investor’s holding of the risky asset changes in response

to a price shock with a cause that is unknown to the investor, and holding constant the

investor’s own desire to the hold asset, Zt + ui,t, and own signal about cash flows, yi,t. This

is the object estimated in demand-based asset pricing.

The estimates derived in this paper can be used to empirically estimate the decom-

position (68) for the representative agent. Specifically, using the smallest possible value

for the information advantage of an uninformed investor relative to the econometrician,
(

var[ǫD,t|Ii,t(0)]
var[ǫD,t|Jt]

)−1

, viz., a value of 1, delivers

Pt

∂E [qi,t|Ii,t (τ̄ )]

∂ (Pt − E [Pt|Ht])

=
1

E [Xt]

∂E [ǫD,t|Ii,t]

∂ (Pt −E [Pt|Ht])

∂Xt+1

∂ǫD,t

+
1

E [Xt]

1
∂Pt

∂ǫZ,t

(

1−
∂Pt

∂ǫD,t

∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

)
∂Xt+1

∂ǫZ,t

≈

cash flow term
︷︸︸︷

.05 −

discount rate term
︷︸︸︷

.19 = −.14. (69)

Recall that quantities are normalized so that the average investor holds one unit; hence (69)

corresponds to a demand elasticity of −.14. From the decomposition: an increase in the price

communicates a positive innovation to future cash flows and a negative innovation to the

discount rate term Zt. Because prices are decreasing in the discount rate term, this means

that a price increase communicates positive news about future cash flows and prices via

both channels. This positive news partially offsets the negative direct effect of an increase in

today’s price, thereby reducing the responsiveness of quantity demanded to a price increase.12

Gabaix and Koijen’s estimate a price elasticity of ≈ 1
5
. As such, estimate (69) suggests

that Gabaix and Koijen’s estimated price elasticity can be largely explained by the informa-

tion content of prices.

12Using larger values for the information advantage of an uninformed investor relative to the econometrician
raises the first term, potentially as high as .19, because a larger information advantage leads to a greater
ability to extract information from the price. Numerically, larger values for the information advantage of
an uninformed investor relative to the econometrician have only very small effects on the second term. The
upper bound of the information advantage corresponds precisely to the two terms offsetting each other,
corresponding to a vertical (perfectly inelastic) demand curve.
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10 Concluding remarks

I derive and implement a sufficient statistics formula for how well financial prices aggregate

dispersed information. The key inputs to the formula are closely related to the outputs

of the price-dividend predictability literature. The formula follows from market-clearing.

Empirical implementation suggests a low level of aggregation, viz., the information of a

single representative investor is much more informative than the information conveyed by

the price. I further derive formulae for the value of a representative investor’s information;

empirical implementation suggests the value is small. Finally, I use the formulae derived to

produce an estimate of demand elasticity, taking into account the information an investor

derives from a price change of unknown origin; this exercise yields a highly inelastic value

consistent with Gabaix and Koijen (2023)’s estimate.
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A Appendix: Proofs

A.1 Results omitted from main text

Lemma 4

var [ǫD,t|Ii,t (0)]
−1 = var [ǫD,t]

−1 +

(
cD

cZ

)2
(
var [ǫZ,t]

−1 + var [ui,t]
−1)

.

Proof of Lemma 4:

var [ǫD,t|Jt] = var [ǫD,t|Ht, Pt] = var [ǫD,t]−
cov [ǫD,t, Pt|Ht]

2

var [Pt|Ht]
2

= var [ǫD,t]−
c2Dvar [ǫD,t]

2

c2Dvar [ǫD,t] + c2Zvar [ǫZ,t]

=
c2Zvar [ǫD,t] var [ǫZ,t]

c2Dvar [ǫD,t] + c2Zvar [ǫZ,t]

and hence

var [ǫD,t|Jt]
−1 = var [ǫD,t]

−1 +

(
cD

cZ

)2

var [ǫZ,t]
−1

.
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Moreover,

var [ǫD,t|Ii,t (0)] = var [ǫD,t|Jt]−
cov [ǫD,t, Zt + ui,t|Jt]

2

var [Zt + ui,t|Jt]

= var [ǫD,t|Jt]−
cov [ǫD,t, ǫZ,t|Jt]

2

var [ǫZ,t|Jt] + var [ui,t]

= var [ǫD,t|Jt]−

(
cD
cZ

)2

var [ǫD,t|Jt]
2

(
cD
cZ

)2

var [ǫD,t|Jt] + var [ui,t]

=
var [ǫD,t|Jt] var [ui,t]

(
cD
cZ

)2

var [ǫD,t|Jt] + var [ui,t]
.

Hence

var [ǫD,t|Ii,t (0)]
−1 =

(
cD

cZ

)2

var [ui,t]
−1 + var [ǫD,t|Jt]

−1
,

establishing the result.

A.2 Proofs of results stated in the main text

Proof of Lemma 1: Let W denote the row vector of variables in Ii,t. Since all random

variables are normally distributed,

∂

∂ǫD,t

E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(
∂W

∂ǫD,t

)
⊺

=
1

var [ǫD,t]
cov [ǫD,t,W ] var [W ]−1

cov [ǫD,t,W ]⊺

∂

∂ǫZ,t
E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(
∂W

∂ǫZ,t

)
⊺

=
1

var [ǫZ,t]
cov [ǫD,t,W ] var [W ]−1

cov [ǫZ,t,W ]⊺

Moreover,

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= var

[(

ǫD,t

ǫZ,t

)]

−cov

[(

ǫD,t

ǫZ,t

)

,W

]

var [W ]−1
cov

[(

ǫD,t

ǫZ,t

)

,W

]
⊺

,

and so

var [ǫD,t|Ii,t] = var [ǫD,t]− cov [ǫD,t,W ] var [W ]−1
cov [ǫD,t,W ]⊺

cov [ǫD,t, ǫZ,t|Ii,t] = cov [ǫD,t, ǫZ,t]− cov [ǫD,t,W ] var [W ]−1
cov [ǫZ,t,W ]⊺ .

Hence
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∂

∂ǫD,t

E [ǫD,t|Ii,t] =
1

var [ǫD,t]
(var [ǫD,t]− var [ǫD,t|Ii,t])

∂

∂ǫZ,t
E [ǫD,t|Ii,t] =

1

var [ǫZ,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t]) ,

and similarly,

∂

∂ǫD,t

E [ǫZ,t|Ii,t] =
1

var [ǫD,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t])

∂

∂ǫZ,t
E [ǫZ,t|Ii,t] =

1

var [ǫZ,t]
(var [ǫZ,t]− var [ǫZ,t|Ii,t]) .

Since cov [ǫD,t, ǫZ,t] = 0,

∂

∂ǫD,t

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

1

0

)

= −
1

var [ǫD,t]

(

var [ǫD,t|Ii,t]

cov [ǫD,t, ǫZ,t|Ii,t]

)

(70)

∂

∂ǫZ,t
E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

0

1

)

= −
1

var [ǫZ,t]

(

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫZ,t|Ii,t]

)

. (71)

Taking the ratio of (70) with analogous identity for information set Jt yields (11). Similarly,

the ratio of (71) with analogous identity for information set Jt yields (12), completing the

proof.

Proof of Lemma 2: To establish (15), note first that

E [ǫD,t|Ii,t] = E [ǫD,t|Ii,t\Pt] +
cov [ǫD,t, Pt|Ii,t\Pt]

var [Pt|Ii,t\Pt]
(Pt − E [Pt|Ii,t\Pt]) .

Further note that

Pt − E [Pt|Ii,t\Pt] = Pt −E [Pt|Ht]− (E [Pt|Ii,t\Pt]− E [Pt|Ht])

and that

E [Pt|Ii,t\Pt]−E [Pt|Ht] = E [cDǫD,t + cZǫZ,t + E [Pt|Ht] |Ii,t\Pt]− E [Pt|Ht]

=
(

cD cZ

)

E

[(

ǫD,t

ǫZ,t

)

|Ii,t\Pt

]

.
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From these observations,

∂E [ǫD,t|Ii,t]

∂ (Pt −E [Pt|Ht])

=
cov [ǫD,t, Pt|Ii,t\Pt]

var [Pt|Ii,t\Pt]

=
cDvar [ǫD,t|Ii,t\Pt]

c2Dvar [ǫD,t|Ii,t\Pt] + c2Zvar [ǫZ,t|Ii,t\Pt]

=
1

cD

(
cD
cZ

)2 (
var [ǫD,t]

−1 + τi
)−1

(
cD
cZ

)2 (
var [ǫD,t]

−1 + τi
)−1

+
(
var [ǫZ,t]

−1 + var [ui,t]
−1)−1

=
1

cD

(
cD
cZ

)2 (
var [ǫZ,t]

−1 + var [ui,t]
−1)

var [ǫD,t]
−1 + τi +

(
cD
cZ

)2 (
var [ǫZ,t]

−1 + var [ui,t]
−1)

. (72)

Substituting in Lemma 4, expression (72) equals

1

cD
var [ǫD,t|Ii,t]

(
var [ǫD,t|Ii,t (0)]

−1 − var [ǫD,t]
−1)

.

Substituting of cD = ∂Pt

∂ǫD,t
delivers (15).

To establish (16), note that

∂E [Xt+1|Ii,t]

∂ (Pt −E [Pt|Ht])
=

∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

∂Xt+1

∂ǫD,t

+
∂E [ǫZ,t|Ii,t]

∂ (Pt − E [Pt|Ht])

∂Xt+1

∂ǫZ,t
. (73)

From (5),

cD
∂E [ǫD,t|Ii,t]

∂ (Pt −E [Pt|Ht])
+ cZ

∂E [ǫZ,t|Ii,t]

∂ (Pt − E [Pt|Ht])
= 1.

Hence the RHS of (73) equals

∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

∂Xt+1

∂ǫD,t

+
1

cZ

(

1− cD
∂E [ǫD,t|Ii,t]

∂ (Pt − E [Pt|Ht])

)
∂Xt+1

∂ǫZ,t
.

Substitution of cD = ∂Pt

∂ǫD,t
and cZ = ∂Pt

∂ǫZ,t
delivers (16), completing the proof.

Proof of Lemma 3: Using (22) and (23), the market-clearing conditions (18) and (19)
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rewrite as

∂Xt+1

∂ǫD,t

−
1

var [ǫD,t|Ii,t (0)]

´

Aivar [ǫD,t|Ii,t (τi)]
´

Ai

∂
∂ǫD,t

(Xt+1 −E [Xt+1|Ii,t (0)])

var [ǫD,t|Ii,t (0)]
= 0

∂Xt+1

∂ǫZ,t
−

´

Bi
´

Ai

−

´

Aivar [ǫD,t|Ii,t (τi)]
´

Ai

∂
∂ǫZ,t

(Xt+1 −E [Xt+1|Ii,t (0)])

var [ǫD,t|Ii,t (0)]
= 0.

The result then follows immediately.

Proof of Proposition 3: Note that

V =
E [E [qi,τ̄ ,tXt+1|Ht]]

E [E [qi,0,tXt+1|Ht]]
=

E [E [qi,τ̄ ,t|Ht]E [Xt+1|Ht] + cov [qi,τ̄ ,t, Xt+1|Ht]]

E [E [qi,0,t|Ht]E [Xt+1|Ht] + cov [qi,0,t, Xt+1|Ht]]
.

By Corollary 1, cov [qi,τ̄ ,t, Xt+1|Ht] = 0. By (31) and (32),

E [qi,τ̄ ,t|Ht] = E [qi,0,t|Ht] = 1.

Hence

V =
E [E [Xt+1|Ht]]

E [E [Xt+1|Ht] + cov [qi,0,t, Xt+1|Ht]]
=

E [Xt+1]

E [Xt+1] + cov [qi,0,t, Xt+1|Ht]
.

From the market-clearing condition (19) ,

Ā
∂Xt+1

∂ǫZ,t
− B̄ − Ā

var [ǫD,t|Ii,t (τ̄ )]

var [ǫD,t|Ii,t (0)]

∂

∂ǫZ,t
(Xt+1 − E [Xt+1|Ii,t (0)]) = 0.

Noting that
∂qi,0,t

∂ǫZ,t
= Ā

∂Xt+1

∂ǫZ,t
− B̄ − Ā

∂

∂ǫZ,t
(Xt+1 − E [Xt+1|Ii,t (0)]) ,

it follows that

∂qi,0,t

∂ǫZ,t
+

(

1−
var [ǫD,t|Ii,t (τ̄ )]

var [ǫD,t|Ii,t (0)]

)

Ā
∂

∂ǫZ,t
(Xt+1 −E [Xt+1|Ii,t (0)]) = 0. (74)

Further below, I establish that forecast error sensitivities are related according to

∂
∂ǫZ,t

(Xt − E [Xt|Ii,t])

∂
∂ǫD,t

(Xt −E [Xt|Ii,t])
= −

var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

. (75)

Equality (75) follows entirely from updating rules, making use of the fact that all relevant
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date t information sets include the price Pt. Substitution into (74) yields

∂qi,0,t

∂ǫZ,t
= Ā

(

1−
var [ǫD,t|Ii,t (τ̄ )]

var [ǫD,t|Ii,t (0)]

)
var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂

∂ǫD,t

(Xt −E [Xt+1|Ii,t (0)]) . (76)

Market-clearing condition (18) and (22) deliver

∂Xt+1

∂ǫD,t

−
var [ǫD,t|Ii,t (τ̄)]

var [ǫD,t|Ii,t (0)]

∂

∂ǫD,t

(Xt+1 − E [Xt+1|Ii,t (0)]) = 0, (77)

and hence

(

1−
var [ǫD,t|Ii,t (τ̄)]

var [ǫD,t|Ii,t (0)]

)
∂

∂ǫD,t

(Xt − E [Xt+1|Ii,t (0)]) = −
∂

∂ǫD,t

E [Xt+1|Ii,t (0)] .

Noting that
∂qi,0,t
∂ǫD,t

= Ā ∂
∂ǫD,t

E [Xt+1|Ii,t (0)], it follows that

cov [qi,0,t, Xt+1|Ht]

Ā
=

(

∂Xt+1

∂ǫD,t

var [ǫD,t]−
var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂Xt+1

∂ǫZ,t
var [ǫZ,t]

)

∂

∂ǫD,t

E [Xt+1|Ii,t (0)]

= −
1−

var[ǫD,t|Ii,t(τ̄)]
var[ǫD,t|Ii,t(0)]

var[ǫD,t|Ii,t(τ̄)]
var[ǫD,t|Ii,t(0)]

(

∂Xt+1

∂ǫD,t

−

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂Xt+1

∂ǫZ,t

)

∂Xt+1

∂ǫD,t

var [ǫD,t] ,

where the second equality following from by substituting for ∂
∂ǫD,t

E [Xt+1|Ii,t (0)] using (77).

Finally, substitution of (36) delivers (35).

It remains to establish (75). Since the variance-covariance matrix of

(

ǫD,t

ǫZ,t

)

conditional

on Ii,t is singular, expressions (70) and (71) from the proof of Lemma 1 can be written as

∂

∂ǫD,t

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

1

0

)

= −
1

var [ǫD,t]

(

var [ǫD,t|Ii,t]

cov [ǫD,t, ǫZ,t|Ii,t]

)

∂

∂ǫZ,t
E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

0

1

)

= −
1

var [ǫZ,t]





cov [ǫD,t, ǫZ,t|Ii,t]
cov[ǫD,t,ǫZ,t|Ii,t]

2

var[ǫD,t|Ii,t]



 ,

and hence

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

=
var [ǫD,t]

var [ǫZ,t]

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫD,t|Ii,t]

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))
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Moreover, the analogue of (10) for the information set Ii,t implies

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫD,t|Ii,t]
= −

cD

cZ
= −

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

,

delivering (75) and completing the proof.

B Appendix: Parameter values in (42)-(44)

B.1 Details for subsection 8.1

The now-standard present value approximation (Campbell and Shiller 1988; for complete-

ness, see Appendix E) is

pdt − p̄d =
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

. (78)

Substitution of (38) and (39) into (78) yields

pdt+1 − p̄d =
φg

(
gt − ∆̄d

)

1− ρφg

−
φµ (µt − µ̄)

1− ρφµ

+
νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

,

which after a further substitution of (78) yields

pdt+1 − p̄d =
φg − φµ

1− ρφg

(
gt − ∆̄d

)
+ φµ

(
pdt − p̄d

)
+

νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

. (79)

Equalities (40) and (44) in the main text directly follow from (78).

B.2 From observable moments to parameter values

The parameters to estimate are:
{
∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ

2
pd, σ

2
d, σpd,d

}
.

Of these, p̄d and ∆̄d are estimated using the sample means of pdt and ∆dt, and ρ is in

turn a function of p̄d.

The remaining seven parameters
{
∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ

2
pd, σ

2
d, σpd,d

}
are estimated

from the observed variance and covariance of pdt and ∆dt, including lags.

As preliminaries: Let a0 denote the coefficient on gt in the pdt transition equation,

a0 =
φg − φµ

1− ρφg

.

The following variance and covariances, which are not directly observable, enter many ex-
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pressions below:

var [gt] =
var [apdνpd,t + adνd,t]

1− φ2
g

=
a2pdσ

2
pd + a2dσ

2
d + 2apdadσpd,d

1− φ2
g

(80)

cov [gt,∆dt] = φgvar [gt] + cov [apdνpd,t + adνd,t, νd,t] = φgvar [gt] + apdσpd,d + adσ
2
d

cov [gt, pdt] =
a0φgvar [gt] + cov [apdνpd,t + adνd,t, νpd,t]

1− φgφµ

=
a0φgvar [gt] + apdσ

2
pd + adσpd,d

1− φgφµ

.

The observable moments are

var [pdt] =
a20var [gt] + 2a0φµcov [gt, pdt] + σ2

pd

1− φ2
µ

(81)

var [∆dt] = var [gt] + σ2
d (82)

cov [∆dt, pdt] = a0var [gt] + φµcov [gt, pdt] + σpd,d, (83)

and

cov [∆dt+1,∆dt] = cov [gt + νd,t+1,∆dt] = cov [gt,∆dt] (84)

cov [∆dt+1, pdt] = cov [gt + νd,t+1, pdt] = cov [gt, pdt] (85)

cov [pdt+1,∆dt] = cov [a0gt + φµpdt + νpd,t+1,∆dt]

= a0cov [gt,∆dt] + φµcov [pdt,∆dt]

= a0cov [∆dt+1,∆dt] + φµcov [pdt,∆dt]

cov [pdt+1, pdt] = cov [a0gt + φµpdt + νpd,t+1, pdt]

= a0cov [gt, pdt] + φµvar [pdt]

= a0cov [∆dt+1, pdt] + φµvar [pdt]

and

cov [∆dt+2,∆dt] = φgcov [gt,∆dt] = φgcov [∆dt+1,∆dt]

cov[∆dt+2, pdt] = φgcov [gt, pdt] = φgcov [∆dt+1, pdt]

cov [pdt+2,∆dt] = cov [a0gt+1 + φµpdt+1,∆dt]

= a0φgcov [gt,∆dt] + φµcov [pdt+1,∆dt]

= a0φgcov [∆dt+1,∆dt] + φµcov [pdt+1,∆dt]

cov [pdt+2, pdt] = cov [a0gt+1 + φµpdt+1, pdt]

= a0φgcov [gt, pdt] + φµcov [pdt+1, pdt]

= a0φgcov [∆dt+1, pdt] + φµcov [pdt+1, pdt] .
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(One can continue to compute further lag covariances, but doing so does not yield any

additional information.)

The parameter φg is given by

φg =
cov [∆dt+2,∆dt]

cov [∆dt+1,∆dt]
.

Given φg, the parameter φµ can be inferred from the combination of cov [pdt+2, pdt], cov [∆dt+1, pdt]

and cov [pdt+1, pdt].

Given φg and φµ, the remaining non-redundant moment conditions are (81)-(85).

To solve for
{
apd, ad, σ

2
pd, σ

2
d, σpd,d

}
, first substitute (85) into (81) and (83) and rearrange

to yield expressions for σ2
pd, σ

2
d, σpd,d in terms of observable moments and var [gt].

σ2
pd =

(
1− φ2

µ

)
var [pdt]− a20var [gt]− 2a0φµcov [∆dt+1, pdt] (86)

σ2
d = var [∆dt]− var [gt] (87)

σpd,d = cov [∆dt, pdt]− a0var [gt]− φµcov [∆dt+1, pdt] . (88)

Next, substitute in for cov [gt,∆dt] and cov [gt, pdt] in (84) and (85) and rearrange to yield

apdσpd,d + adσ
2
d = cov [∆dt+1,∆dt]− φgvar [gt]

apdσ
2
pd + adσpd,d = (1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt] ,

and hence

(
σ2
pd,d − σ2

pdσ
2
d

)
apd = σpd,d (cov [∆dt+1,∆dt]− φgvar [gt])

− σ2
d ((1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt]) (89)

(
σ2
pd,d − σ2

pdσ
2
d

)
ad = σpd,d ((1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt])

− σ2
pd (cov [∆dt+1,∆dt]− φgvar [gt]) . (90)

Together, equations (86)-(90) give
{
apd, ad, σ

2
pd, σ

2
d, σpd,d

}
in terms of observable moments

and var [gt]. The term var [gt] itself can be solved for using (80).

B.3 Recovering observable moments from the reported estimates

in BK

BK estimate the system
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gt+1 − ∆̄d
BK

= φBK
g

(

gt − ∆̄d
BK
)

+ νBK
g,t+1

∆dt+1 = gt + νBK
d,t+1

pdt+1 − p̄d
BK

=
φBK
g − φBK

µ

1− ρBKφBK
g

(

gt − ∆̄d
BK
)

+ φBK
µ

(

pdt − p̄d
BK
)

−
1

1− ρBKφBK
µ

νBK
µ,t+1 +

1

1− ρBKφBK
g

νBK
g,t+1

under the restriction that cov
[
νBK
g,t+1, ν

BK
d,t+1

]
= 0.

First note that the relation between
{

∆̄d
BK

, p̄d
BK

, ρBK , φBK
g , φBK

µ

}

and observable mo-

ments is exactly the same as the relation between
{
∆̄d, p̄d, ρ, φg, φµ

}
and observable mo-

ments. So it is immediate that

{
∆̄d, p̄d, ρ, φg, φµ

}
=
{

∆̄d
BK

, p̄d
BK

, ρBK , φBK
g , φBK

µ

}

. (91)

As such, it is only necessary to recover the five moments that are used to infer
{
apd, ad, σ

2
pd, σ

2
d, σpd,d

}
,

namely var [pdt], var [∆dt], cov [∆dt, pdt], cov [∆dt+1,∆dt] and cov [∆dt+1, pdt]. Explicit eval-

uation implies that these five moments are given by the following expressions (in light of (91),

I drop the BK subscripts on
{
∆̄d, p̄d, ρ, φg, φµ

}
):

var [gt] =

(
σBK
g

)2

1− φ2
g

cov [gt,∆dt] = φgvar [gt]

cov [gt, pdt] =
a0φgvar [gt]−

σBK
µ,g

1−ρφµ
+

(σBK
g )

2

1−ρφg

1− φgφµ

var [pdt] =
a20var [gt] + 2a0φµcov [gt, pdt]

1− φ2
µ

+

(
1

1−ρφµ

)2 (
σBK
µ

)2
+
(

1
1−ρφg

)2 (
σBK
g

)2
− 2 1

1−ρφµ

1
1−ρφg

σBK
µ,g

1− φ2
µ

var [∆dt] = var [gt] +
(
σBK
d

)2

cov [∆dt, pdt] = a0var [gt] + φµcov [gt, pdt]−
1

1− ρφµ

σBK
µ,d

cov [∆dt+1,∆dt] = cov [gt,∆dt]

cov [∆dt+1, pdt] = cov [gt, pdt] .
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Because the first three of the moments namely var [pdt], var [∆dt], cov [∆dt, pdt], cov [∆dt+1,∆dt]

and cov [∆dt+1, pdt] are used in the analysis, I report the recovered values here:

Moment Estimated value

var [pdt] .1983
var [∆dt] .0038

cov [∆dt, pdt] −.0034
cov [∆dt+1,∆dt] .0014
cov [∆dt+1, pdt] −.000106

Table 3: Estimates of key moments, calculated from BK estimates

C Appendix: Details for calculations in subsections 8.2.1

to 8.4.2

C.1 Details for subsection 8.2.1

For use here and elsewhere: From the standard return approximation (113),

var [rt+1|Jt] = var [ρpdt+1 +∆dt+1|Jt] = var [ρνpd,t+1 + νd,t+1|Jt] .

Evaluating,

var [rt+1|Jt] = .1472. (92)

For any random variable Y ,

eY ≈ eE[Y ] + (Y − E [Y ]) eE[Y ] +
1

2
(Y −E [Y ])2 eE[Y ],

and hence

E
[
eY
]
≈ eE[Y ]

(

1 +
1

2
var [Y ]

)

.

Hence (substituting in for bpd using (45))

dE [ert+1|Jt] ≈ eE[rt+1|Jt]

(

1 +
1

2
var [rt+1|Jt]

)

dE [rt+1|Jt]

= eE[rt+1|Jt]

(

1 +
1

2
var [rt+1|Jt]

)

bpd
dPt

Pt

.
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Note that

Xt+1 = (ert+1 −R)Pt. (93)

Hence13

∂E [Xt+1|Jt]

∂Pt

≈ eE[rt+1|Jt]

(

1 +
1

2
var [rt+1|Jt]

)

bpd

= e.09
(

1 +
.1472

2

)

(−.0898) = −.0993. (94)

C.2 Details for subsection 8.2.2

To establish the second equality in (47), note that Evaluating,

cov [pdt,∆dt+1|∆dt,Jt−1] = cov [pdt, gt|∆dt,Jt−1]

= cov [νpd,t, apdνpd,t|νd,t] (95)

and

var [∆dt+1|∆dt,Jt−1] = var [νd,t+1] + var [gt|∆dt,Jt−1]

= var [νd,t+1] + var [apdνpd,t|νd,t] , (96)

Evaluation of (48) requires an input for var [νpd,t|νd,t]:

var [νpd,t|νd,t] = var [νpd,t]−

(
cov [νpd,t, νd,t]

var [νd,t]

)2

var [νd,t]

= var [νpd,t]
(
1− corr [νpd,t, νd,t]

2) = 0.0230. (97)

13Note that in evaluating (94) I have used only the effect of Pt on E [ert+1 |Jt], without considering the effect
on the “base” Pt in (93). The reason is that the Pt term in (93) corresponds to the market capitalization of

the asset in question, here the combined SP500; but the econometric estimate of bpd = ∂E[rt+1|Jt]
∂ lnPt

concerns
a change in SP500 index value, which isn’t proportional to SP500 market capitalization because of, for
example, share issues and repurchases.
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Evaluation of (50) requires the expected value of Pt

Dt+1
:

E

[
Pt

Dt+1

]

= E

[
Pt

Dt

Dt+1

Dt

]

=
E
[
Pt

Dt

]

E
[
Dt+1

Dt

] + cov

[

Pt

Dt

,
1

Dt+1

Dt

]

=
E
[
epdt
]

E [e∆dt+1]
+ cov

[
epdt , e−∆dt+1

]

≈
ep̄d
(
1 + 1

2
var [pdt]

)

e∆̄d
(
1 + 1

2
var [∆dt+1]

) −
ep̄d

e∆̄d
cov [pdt,∆dt+1] .

Evaluating (see Table 3 for values of the variance and covariance terms):

E

[
Pt

Dt+1

]

≈ e3.571−.062

(
1 + .1983

2

1 + .0038
2

+ .0001

)

= 33.4× 1.097 = 36.7.

C.3 Details for subsection 8.2.3

∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

= 1 +
Pt+1

Dt+1

∂ lnPt+1

∂ lnDt+1

∣
∣
∣
∣
Jt

= 1 +
Pt+1

Dt+1

∂ ln Pt+1

Dt+1

∂ ln Dt+1

Dt

+ 1

∣
∣
∣
∣
∣
Jt

= 1 + epdt+1

(
∂pdt+1

∂∆dt+1

∣
∣
∣
∣
Jt

+ 1

)

.

To numerically evaluate, I replace epdt+1 with its expected value:

E
[
epdt+1

]
≈ ep̄d

(

1 +
1

2
var [pdt+1]

)

= e3.571
(

1 +
.1983

2

)

= 39.1.

C.4 Details for subsection 8.3.1

C.4.1 Calculation of var [pdt|∆dt+1,∆dt,Jt−1]

Both here and below it is necessary to evaluate

var [pdt|∆dt+1,∆dt,Jt−1] .
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To do so, note that this equals

var [E [pdt|Jt−1] + νpd,t|gt + νd,t+1, gt−1 + νd,t,Jt−1]

= var [νpd,t|φggt−1 + apdνpd,t + adνd,t + νd,t+1, νd,t,Jt−1]

= var [νpd,t|apdνpd,t + νd,t+1, νd,t] ,

which expands as

σ2
pd −

(

apdσ
2
pd σpd,d

)
(

a2pdσ
2
pd + σ2

d apdσpd,d

apdσpd,d σ2
d

)−1(

apdσ
2
pd

σpd,d

)

= σ2
pd −

(

apdσ
2
pd σpd,d

)

a2pd
(
σ2
pdσ

2
d − σ2

pd,d

)
+ σ4

d

(

σ2
d −apdσpd,d

−apdσpd,d a2pdσ
2
pd + σ2

d

)(

apdσ
2
pd

σpd,d

)

= σ2
pd −

(

apdσ
2
pd σpd,d

)

a2pd
(
σ2
pdσ

2
d − σ2

pd,d

)
+ σ4

d

(

apd
(
σ2
pdσ

2
d − σ2

pd,d

)

σ2
dσpd,d

)

= σ2
pd −

a2pdσ
2
pd

(
σ2
pdσ

2
d − σ2

pd,d

)
+ σ2

dσ
2
pd,d

a2pd
(
σ2
pdσ

2
d − σ2

pd,d

)
+ σ4

d

=
σ2
pdσ

4
d − σ2

dσ
2
pd,d

a2pd
(
σ2
pdσ

2
d − σ2

pd,d

)
+ σ4

d

=
1−

(
σpd,d

σpdσd

)2

a2pd

(

1−
(

σpd,d

σpdσd

)2
)

σ−2
d + σ−2

pd

.

Numerically evaluating,

var [pdt|∆dt+1,∆dt,Jt−1] ≈ .0226 = .1502. (98)

C.4.2 Main calculation

The variance of any random variable conditional on information {Dt+1, Dt} ∪ Jt−1, or

equivalently {∆dt+1,∆dt} ∪ Jt−1, is independent of any additively separable terms mea-

surable with respect to this information set. Below, I write M (∆dt+1,∆dt,Jt−1) for such

terms.Expanding,

E [Xt+1|Dt+1,Jt] = DtE
[
epdt+1+∆dt+1 + e∆dt+1 − Repdt |Dt+1,Jt

]

= Dt

(
E
[
epdt+1+∆dt+1|∆dt+1,Jt

]
−Repdt

)
+M (∆dt+1,∆dt,Jt−1) .
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Note that

E
[
epdt+1+∆dt+1|Dt+1,Jt

]

≈ eE[pdt+1+∆dt+1|∆dt+1,Jt]

(

1 +
1

2
var [pdt+1 +∆dt+1|∆dt+1,Jt]

)

≈ eE[pdt+1+∆dt+1|∆dt+1,∆dt,Jt−1] (1 + E [pdt+1 +∆dt+1|∆dt+1,Jt]− E [pdt+1 +∆dt+1|∆dt+1,∆dt,Jt−1])

×

(

1 +
1

2
var [νpd,t+1|νd,t+1]

)

= E [pdt+1|∆dt+1,Jt] e
E[pdt+1+∆dt+1|∆dt+1,∆dt,Jt−1]

(

1 +
1

2
var [νpd,t+1|νd,t+1]

)

+M (∆dt+1,∆dt,Jt−1)

and

Repdt ≈ ReE[pdt|∆dt+1,∆dt,Jt−1] (1 + pdt −E [pdt|∆dt+1,∆dt,Jt−1])

= pdtReE[pdt|∆dt+1,∆dt,Jt−1] +M (∆dt+1,∆dt,Jt−1) .

Next, note that

E [pdt+1|∆dt+1,Jt]

= E [νpd,t+1|∆dt+1,Jt] + E [pdt+1|Jt]

= E [νpd,t+1|νd,t+1] +
φg − φµ

1− ρφg

gt + φµpdt + constant terms

=
cov [νpd,t+1, νd,t+1]

var [νd,t+1]
νd,t+1 +

φg − φµ

1− ρφg

(apdνpd,t + adνd,t) + φµνpd,t +M (∆dt+1,∆dt,Jt−1) .

Note that νd,t = ∆dt−gt−1 = ∆dt−E [∆dt|Jt−1] is measurable with respect to {∆dt+1,∆dt}∪

Jt−1, while

νd,t+1 = ∆dt+1 − gt = ∆dt+1 − νg,t +M (∆dt+1,∆dt,Jt−1)

= −apdνpd,t +M (∆dt+1,∆dt,Jt−1) .

Hence

E [pdt+1|∆dt+1,Jt] =

((
φg − φµ

1− ρφg

−
cov [νpd,t+1, νd,t+1]

var [νd,t+1]

)

apd + φµ

)

νpd,t+M (∆dt+1,∆dt,Jt−1) .

Similarly,

pdt = νpd,t + E [pdt|Jt−1] = νpd,t +M (∆dt+1,∆dt,Jt−1) .
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Putting everything together,

E [Xt+1|Dt+1,Jt] ≈ DtKνpd,t +M (∆dt+1,∆dt,Jt−1)

= Pt−1e
∆dt−pdt−1Kνpd,t +M (∆dt+1,∆dt,Jt−1) (99)

where

K = eE[pdt+1|∆dt+1,∆dt,Jt−1]e∆dt+1

×

(

1 +
1

2
var [νpd,t+1|νd,t+1]

)((
φg − φµ

1− ρφg

−
cov [νpd,t+1, νd,t+1]

var [νd,t+1]

)

apd + φµ

)

− ReE[pdt|∆dt+1,∆dt,Jt−1].

Note that var [νpd,t+1|νd,t+1] is evaluated in (97).

Evaluating at steady-state values,

e∆dt−pdt−1K ≈ e2∆̄d

(

1 +
1

2
var [νpd,t+1|νd,t+1]

)((
φg − φµ

1− ρφg

−
cov [νpd,t+1, νd,t+1]

var [νd,t+1]

)

apd + φµ

)

− Re∆̄d

= −.0189, (100)

and hence (using (98))

var [E [Xt+1|Dt+1,Jt] |Dt+1, Dt,Jt−1] ≈ P 2
t−1 × (−.0189)2 × .1502 = P 2

t−1 × .00282.

C.5 Details for subsection 8.3.2

Note that

Pt = Pt−1e
∆dt−pdt−1epdt

≈ Pt−1e
∆dt−pdt−1eE[pdt|∆dt+1,∆dt,Jt−1] (1 + pdt −E [pdt|∆dt+1,∆dt,Jt−1]) ,

and hence

var [Pt|Dt+1, Dt,Jt−1] ≈
(

Pt−1e
∆̄d
)2

var [pdt|∆dt+1,∆dt,Jt−1] ,

and so (using (98))

var [Pt|Dt+1, Dt,Jt−1] ≈ P 2
t−1 × .1602.
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C.6 Details for subsection 8.4.1

C.6.1 Evaluation of first term in (57)

By the law of total variance,14

var [Pt|Dt,Jt−1] ≈ var [Pt|Dt+1, Dt,Jt−1] + var [E [Pt|Dt+1, Dt,Jt−1] |Dt,Jt−1]

= var [Pt|Dt+1, Dt,Jt−1] + var

[
∂Pt

∂ǫD,t

ǫD,t

]

. (101)

That is: the variance of Pt given Dt,Jt−1 stems from ǫD,t and ǫZ,t. The term var [Pt|Dt+1, Dt,Jt]

isolates the effect stemming from ǫZ,t. Evaluating:

var

[
∂Pt

∂ǫD,t

ǫD,t

]

= D2
t

(
var

[
epdt |∆dt,Jt−1

]
− var

[
epdt |∆dt+1,∆dt,Jt−1

])

=
(
Pt−1e

∆dt−pdt−1
)2 (

var
[
epdt |∆dt,Jt−1

]
− var

[
epdt |∆dt+1,∆dt,Jt−1

])

≈ P 2
t−1e

¯2∆d−2p̄d
(

ep̄d
)2

(var [pdt|∆dt,Jt−1]− var [pdt|∆dt+1,∆dt,Jt−1])

= P 2
t−1e

2∆̄d (var [νpd,t|νd,t]− var [νpd,t|νd,t, apdνpd,t + adνd,t + νd,t+1]) ,

where

var [νpd,t|νd,t, apdνpd,t + adνd,t + νd,t+1]

= var [νpd,t|νd,t, apdνpd,t + νd,t+1]

= var [νpd,t|νd,t]− var [E [νpd,t|νd,t, apdνpd,t + νd,t+1] |νd,t]

= var [νpd,t|νd,t]− var

[
apdvar [νpd,t|νd,t]

var [apdνpd,t + νd,t+1|νd,t]
(apdνpd,t + νd,t+1) |νd,t

]

= var [νpd,t|νd,t]−
a2pdvar [vpd,t|νd,t]

2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]
.

Hence

var

[
∂Pt

∂ǫD,t

ǫD,t

]

≈ P 2
t−1e

2∆̄d
a2pdvar [vpd,t|νd,t]

2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]
. (102)

Hence the date t + 1 return variance attributable to date t + 1 dividend innovations incor-

porated into the date t price is (using (46), (97), (48))

(
∂E [Xt+1|Jt]

∂Pt

)2

var

[
∂Pt

∂ǫD,t

ǫD,t

]

≈ .09932 × P 2
t−1e

2×.062 × .0230× .0159 = P 2
t−1 × .0022.

14Equation (101) holds exactly under joint normality.
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C.6.2 Evaluation of second term in (57)

Note that (52) implies

var

[
∂ (ǫD,t −E [ǫD,t|Jt])

∂ǫD,t

ǫD,t

]

=
var [ǫD,t|Jt]

2

var [ǫD,t]
=

var [ǫD,t|Jt]

var [ǫD,t]
D2

t var
[
e∆dt+1|Jt

]

≈
var [ǫD,t|Jt]

var [ǫD,t]

(
Pt−1e

∆dt−pdt−1
)2
(

e∆̄d
)2

var [νd,t+1] .

Hence the variance attributable to date t + 1 dividend innovations unincorporated into the

date t price is (using (53), (52))

(
∂ (Pt+1 +Dt+1)

∂Dt+1

∣
∣
∣
∣
Jt

)2

var

[
∂ (ǫD,t −E [ǫD,t|Jt])

∂ǫD,t

ǫD,t

]

≈ 6.312 × (1− 0.139)× P 2
t−1e

2×(.062−3.571)e2×.062 ×

= P 2
t−1 × .0112.

C.6.3 Evaluation of (60)

The evaluation of (60) is very similar to the evaluation of (55). Note that

(
∂Xt+1

∂ǫZ,t+1

)2

var [ǫZ,t+1] = var [Xt+1|Dt+2, Dt+1,Jt] = var [Pt+1|Dt+2, Dt+1,Jt]

and

Pt+1 = Pt−1e
∆dt+1+∆dt−pdt−1epdt+1

≈ Pt−1e
∆dt+1+∆dt−pdt−1eE[pdt+1|∆dt+1,Jt] (1 + pdt+1 − E [pdt+1|∆dt+1,Jt]) ,

and hence

var [Pt+1|Dt+2, Dt+1,Jt] ≈
(

Pt−1e
2∆̄d
)2

var [pdt+1|∆dt+2,∆dt+1,Jt] .

This is differs from the calculation above only by a factor of
(

e∆̄d
)2

, and so

var [Pt+1|Dt+2, Dt+1,Jt] ≈ Pt−1 ×
(

e∆̄d × .160
)2

= Pt−1 × .1702.
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C.7 Details for subsection 8.4.2

E [Xt+1] = E

[

E

[

Dt (e
rt+1 −R)

Pt

Dt

|Jt

]]

= E
[
E
[
Pt−1e

∆dt−pdt−1 (ert+1 − R) epdt |Jt

]]

≈ Pt−1e
∆̄d

(

eµ̄
(

1 +
1

2
var [rt+1|Jt]

)

−R

)

.

Evaluating using (92),

E [Xt+1] ≈ Pt−1 × 0.0915.

D Appendix: A VAR(1) process for (Dt+1, Zt) implies lin-

ear prices (5)

Suppose that (

Dt+1

Zt

)

= Λ

(

Dt

Zt−1

)

+K +

(

ǫD,t

ǫZ,t

)

, (103)

where Λ is a 2 × 2 matrix and K is column vector. Assume that Λ satisfies the following

pair of mild assumptions, both of which hold generically:

|Λ− RI| 6= 0 (104)
(
Λ (Λ− IR)−1)

21
6= −1. (105)

This appendix establishes that there is an equilibrium in which the price takes the form

Pt = c

(

Dt+1

Zt

)

+ d

(

Dt

Zt−1

)

+ κP (106)

for some pair of row vectors c and d, and scalar κP .

The proof is conjecture-then-verification. Suppose that the price indeed takes form (106).

Together with (103), it follows that

Pt = (cΛ + d)

(

Dt

Zt−1

)

+ cK + κP + c

(

ǫD,t

ǫZ,t

)

.
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Investor i’s information set includes Pt, Dt, Zt−1, Dt+1 + ǫi,t, Zt + ui,t. Hence

E [ǫD,t|Ii,t] = E [ǫD,t|ǫD,t + ǫi,t, cDǫD,t + cZǫZ,t, ǫZ,t + ui,t]

= E

[

ǫD,t|ǫD,t + ǫi,t, ǫD,t +
cZ

cD
ǫZ,t, ǫD,t −

cZ

cD
ui,t

]

=
τi (ǫD,t + ǫi,t) +

(
cD
cZ

)2

τZ

(

ǫD,t +
cZ
cD
ǫZ,t

)

+
(

cD
cZ

)2

τu

(

ǫD,t −
cZ
cD
ui,t

)

τD + τi +
(

cD
cZ

)2

(τZ + τu)
,

and similarly,

E [ǫZ,t|Ii,t] =
τu (ǫZ,t + ui,t) +

(
cZ
cD

)2

τD

(

ǫZ,t +
cD
cZ
ǫD,t

)

+
(

cZ
cD

)2

τi

(

ǫZ,t −
cD
cZ
ǫi,t

)

τZ + τu +
(

cZ
cD

)2

(τD + τi)

=
τD

(

ǫZ,t +
cD
cZ
ǫD,t

)

+ τi

(

ǫZ,t −
cD
cZ
ǫi,t

)

+
(

cD
cZ

)2

τu (ǫZ,t + ui,t)

τD + τi +
(

cD
cZ

)2

(τZ + τu)
.

Define

Ei ≡
1

τD + τi +
(

cD
cZ

)2

(τZ + τu)




τi +

(
cD
cZ

)2

(τZ + τu)
cD
cZ
τZ

cD
cZ
τD τD + τi +

(
cD
cZ

)2

τu



 .

Hence

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= Ei

(

ǫD,t

ǫZ,t

)

+
1

τD + τi +
(

cD
cZ

)2

(τZ + τu)




τi − cD

cZ
τu

− cD
cZ
τi

(
cD
cZ

)2

τu





(

ǫi,t

ui,t

)

.

Evaluating investor i’s demand,

qi,t = AiE [Pt+1 +Dt+1 − RPt|Ii,t]−Bi (Zt + ui,t)

= AiE

[

(cΛ + d)

(

Dt+1

Zt

)

+ cK + κP + c

(

ǫD,t+1

ǫZ,t+1

)

+
(

1 0
)
(

Dt+1

Zt

)

|Ii,t

]

− AiR

(

(cΛ + d)

(

Dt

Zt−1

)

+ cK + κP + c

(

ǫD,t

ǫZ,t

))

−Bi

(

0 1
)
(

Dt+1

Zt

)

− Biui,t
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and hence

qi.t = Ai

(

cΛ + d+
(

1 0
))
(

Λ

(

Dt

Zt−1

)

+K + Ei

(

ǫD,t

ǫZ,t

))

+ Ai (cK + κP )

− AiR

(

(cΛ + d)

(

Dt

Zt−1

)

+ cK + κP + c

(

ǫD,t

ǫZ,t

))

−Bi

(

0 1
)
(

Λ

(

Dt

Zt−1

)

+K +

(

ǫD,t

ǫZ,t

)

+ idiosyncratic terms.

From market-clearing, the equilibrium conditions are

ˆ (

Ai

(

cΛ + d+
(

1 0
))

Ei −AiRc−Bi

(

0 1
))

di = 0(107)
ˆ (

Ai

(

cΛ + d+
(

1 0
))

Λ− AiR (cΛ + d)−Bi

(

0 1
)

Λ
)

di = 0(108)
ˆ (

Ai

(

cΛ + d+
(

1 0
))

K + Ai (1−R) (cK + κP )− Bi

(

0 1
)

K
)

di = 1.(109)

To confirm the conjecture, I show that there is a solution c, d, κP that solve (107), (108),

(109).

Condition (108) rewrites as

ˆ (

Ai (cΛ + d) (Λ− IR) +
(

Ai

(

1 0
)

− Bi

(

0 1
))

Λ
)

di = 0. (110)

Substitution of (110) into (107) yields (using (104))

ˆ (

Ai

(

1 0
)

Ei −AiRc−Bi

(

0 1
)

−
(

Ai

(

1 0
)

−Bi

(

0 1
))

Λ (Λ− IR)−1
)

di = 0.

(111)

Post-multiplying (111) by the column vector

(

1 − cD
cZ

)T

and noting that

(

1 0
)

Ei

(

1

− cD
cZ

)

=
τi +

(
cD
cZ

)2

τu

τD + τi +
(

cD
cZ

)2

(τZ + τu)
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yields

ˆ




Ai

τi +
(

cD
cZ

)2

τu

τD + τi +
(

cD
cZ

)2

(τZ + τu)
+Bi

cD

cZ
−
(

Ai

(

1 0
)

−Bi

(

0 1
))

Λ (Λ− IR)−1
(

cZ
cD

−1
)T




 di

(112)

By (105), equation (112) has a solution in cD
cZ

. The value of cZ is straightforwardly implied by

(111) post-multiplied by the column vector
(

0 1
)T

, hence delivering the vector c. Given

c, the vector d is directly implied by (110). Given c and d, the constant term κP is directly

implied by (109). This completes the verification that there is an equilibrium in which the

price takes form (106).

E Appendix: Standard present value approximation

rt+1 = ln
Pt+1 +Dt+1

Pt

= ln
Pt+1 +Dt+1

Dt+1

Dt+1

Dt

Dt

Pt

= ln

(

1 + exp

(

log
Pt+1

Dt+1

))

+ ln
Dt+1

Dt

− ln
Pt

Dt

= ln (1 + exp (pdt+1)) + ∆dt+1 − pdt

≈ ln
(
1 + exp

(
p̄d
))

+
exp

(
p̄d
)

1 + exp
(
p̄d
)
(
pdt+1 − p̄d

)
+∆dt+1 − pdt. (113)

Recalling ρ =
exp(p̄d)

1+exp(p̄d)
and defining Kp̄d = log

(
1 + exp

(
p̄d
))

− ρp̄d

pdt ≈ ρpdt+1 +∆dt+1 − rt+1 +Kp̄d.

Iterating forwards

pdt ≈

∞∑

s=0

ρs−1 (∆dt+s − rt+s) +
Kp̄d

1− ρ
.

Taking expectations of both sides, the AR1 assumption implies

pdt ≈
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

+
∆̄d− µ̄

1− ρ
+

Kp̄d

1− ρ
,

55



and hence

pdt − p̄d ≈
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

.
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F Notes on correlation between ǫD,t and ǫZ,t

Lemma ?? is unchanged.

In Lemma 1 and elsewhere, use the notation d
dǫD,t

etc to denote that a change in ǫD,t is

accompanied by a change in ǫZ,t of
cov[ǫD,t,ǫZ,t]
var[ǫD,t]

. Hence

d

dǫD,t

E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(
dW

dǫD,t

)
⊺

=
1

var [ǫD,t]
cov [ǫD,t,W ] var [W ]−1

cov [ǫD,t,W ]⊺

d

dǫZ,t
E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(
dW

dǫZ,t

)
⊺

=
1

var [ǫZ,t]
cov [ǫD,t,W ] var [W ]−1

cov [ǫZ,t,W ]⊺

Moreover,

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= var

[(

ǫD,t

ǫZ,t

)]

−cov

[(

ǫD,t

ǫZ,t

)

,W

]

var [W ]−1
cov

[(

ǫD,t

ǫZ,t

)

,W

]
⊺

,

and so

var [ǫD,t|Ii,t] = var [ǫD,t]− cov [ǫD,t,W ] var [W ]−1
cov [ǫD,t,W ]⊺

cov [ǫD,t, ǫZ,t|Ii,t] = cov [ǫD,t, ǫZ,t]− cov [ǫD,t,W ] var [W ]−1
cov [ǫZ,t,W ]⊺ .

Hence

d

dǫD,t

E [ǫD,t|Ii,t] =
1

var [ǫD,t]
(var [ǫD,t]− var [ǫD,t|Ii,t])

d

∂ǫZ,t
E [ǫD,t|Ii,t] =

1

var [ǫZ,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t]) ,

and similarly,

d

dǫD,t

E [ǫZ,t|Ii,t] =
1

var [ǫD,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t])

d

dǫZ,t
E [ǫZ,t|Ii,t] =

1

var [ǫZ,t]
(var [ǫZ,t]− var [ǫZ,t|Ii,t]) .
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Hence

d

dǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫD,t]

(

var [ǫD,t|Ii,t]

cov [ǫD,t, ǫZ,t|Ii,t]

)

(114)

d

dǫZ,t
E

([(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫZ,t]

(

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫZ,t|Ii,t]

)

. (115)

By Lemma ??, these expressions rewrite as

d

dǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫD,t]

(

var [ǫD,t|I0,i,t]

cov [ǫD,t, ǫZ,t|I0,i,t]

)

(1− τivar [ǫD,t|Ii,t])

d

dǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫZ,t]

(

cov [ǫD,t, ǫZ,t|I0,i,t]

var [ǫZ,t|I0,i,t]

)

(1− τivar [ǫD,t|Ii,t]) ,

which in turn implies

d

dǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= (1− τivar [ǫD,t|Ii,t])
d

dǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))

d

dǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= (1− τivar [ǫD,t|Ii,t])
d

dǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))

generalizing Lemma ??.

Equations (22) and (23) become

dqi,t

dǫD,t

= Ai

dXt+1

dǫD,t

−Bi

cov [ǫD,t, ǫZ,t]

var [ǫD,t]
−Ai (1− τivar [ǫD,t|Ii,t])

d

dǫD,t

(Xt+1 − E [Xt+1|I0,i,t])(116)

dqi,t

dǫZ,t
=

(

Ai

dXt+1

dǫZ,t
− Bi

)

−Ai (1− τivar [ǫD,t|Ii,t])
d

dǫZ,t
(Xt+1 − E [Xt+1|I0,i,t]) . (117)

Hence

Ā
dXt+1

dǫD,t

− B̄
cov [ǫD,t, ǫZ,t]

var [ǫD,t]
− Ā (1− T ) (1−Υ)

d

dǫD,t

(Xt+1 −E [Xt+1|Jt]) = 0.

This generalizes Proposition 1, but is no longer very useful, since B̄
Ā

cov[ǫD,t,ǫZ,t]
var[ǫD,t]

isn’t observ-

able.

Proposition 1 requires the evaluation of
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cov
[
q0,t
Ā
, Xt+1

]
. Observe that

cov [q0,t, Xt+1]

=
∂q0,t

∂ǫD,t

∂Xt+1

∂ǫD,t

var [ǫD,t] +
∂q0,t

∂ǫD,t

∂Xt+1

∂ǫZ,t
cov [ǫD,t, ǫZ,t]

+
∂q0,t

∂ǫZ,t

∂Xt+1

∂ǫZ,t
var [ǫZ,t] +

∂q0,t

∂ǫZ,t

∂Xt+1

∂ǫD,t

cov [ǫD,t, ǫZ,t]

=
∂q0,t

∂ǫD,t

var [ǫD,t]

(
∂Xt+1

∂ǫD,t

+
∂Xt+1

∂ǫZ,t

cov [ǫD,t, ǫZ,t]

var [ǫD,t]

)

+
∂q0,t

∂ǫZ,t
var [ǫZ,t]

(
∂Xt+1

∂ǫZ,t
+

∂Xt+1

∂ǫD,t

cov [ǫD,t, ǫZ,t]

var [ǫZ,t]

)

=
∂q0,t

∂ǫD,t

dXt+1

dǫD,t

var [ǫD,t] +
∂q0,t

∂ǫZ,t

dXt+1

dǫD,t

var [ǫZ,t]

=
dq0,t

dǫD,t

∂Xt+1

∂ǫD,t

var [ǫD,t] +
dq0,t

dǫZ,t

∂Xt+1

∂ǫZ,t
var [ǫZ,t] .

By market clearing,

dq0,t

dǫD,t

+ ĀT
d

dǫD,t

(Xt+1 −E [Xt+1|I0,i,t]) = 0

dq0,t

dǫZ,t
+ ĀT

d

dǫZ,t
(Xt+1 −E [Xt+1|I0,i,t]) = 0.

Hence

1

Ā

dq0,t

dǫZ,t
= −T

d

dǫZ,t
(Xt+1 − E [Xt+1|I0,i,t])

= T
var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

d

dǫD,t

(Xt+1 −E [Xt+1|I0,i,t])

where the second equality follows by the same argument as a present.

Hence

cov
[q0,t

Ā
, Xt+1

]

= −T
d

dǫD,t

(Xt+1 −E [Xt+1|I0,i,t])

(

∂Xt+1

∂ǫD,t

−

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂Xt+1

∂ǫZ,t

)

var [ǫD,t] .
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