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1 Introduction

One of the main functions of financial markets is to forecast future events. However, many

observers have expressed concern that, as they perceive it, the majority of forecasting activity

is devoted to forecasting frequent but relatively unimportant events. The financial system

has been criticized for its failure to predict the financial crisis of 2007-08.1 Taleb (2007)

asks “[w]hy do we keep focusing on the minutiae, not the possible significant large events, in

spite of the obvious evidence of their huge influence?” Relatedly, many commentators have

criticized the “quarterly earnings cycle” and the amount of effort devoted to forecasting firms’

next earnings announcements (see, e.g., Kay (2012)).2 Relatedly also, there are concerns

that the risk-management departments of financial institutions—which are concerned with

predicting and mitigating large but infrequent events—have trouble recruiting and retaining

high-quality employees (e.g., Palm, 2014).3

This paper analyzes the economic incentives for forecasting events of different frequencies.

Are there systematic economic forces that push people to focus on predicting everyday events

as opposed to rare events? Specifically, since trading is the main way that agents profit from

information in financial markets, are there forces that favor trading securities whose payoffs

depend on frequent events? Do traders of different skills trade different kinds of securities?

Does the aggregate amount of trading skill dedicated to predicting rare and frequent events

differ? And are rare events more or less likely to be predicted as a result?

By analyzing a simple equilibrium model of the financial sector, we identify a strong

economic force that leads individuals to sort into trading different assets depending on their

skill. Traders sort into three groups. Traders with high skill trade an asset that depends

on a common event, those with less skill trade on a rare event, and those with the lowest

skill levels don’t trade at all. The endogenous allocation of higher talent to the common

1Financial Times, November 25 2008, “The economic forecasters’ failing vision.”
2Financial Times, February 29, 2012, “Investors should ignore the rustles in the undergrowth.”
3American Banker, September 9, 2014, “Why Banks Face a Risk Management Talent Shortage.”
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event asset results in both a higher bid-ask spread for this asset, and in a reduced ability of

financial markets to predict rare events.

A potential conjecture is that the rare event asset should be attractive to informed

traders because its price is low, and hence allows large long positions. But this reasoning

is too simplistic: if many informed traders trade the asset, this is reflected in a higher ask

price, which in turn reduces the size of the positions they can acquire. A full analysis must

allow for these effects. A key feature of our model is that it combines equilibrium analysis

of the financial market (using a standard Glosten and Milgrom (1985) model of bid and ask

prices) with equilibrium analysis of the labor market (using a standard Roy (1951) model).

Specifically, individuals choose between the two “occupations”of trading a binary-payoff

asset in which both states are reasonably likely—a “common event” asset—and trading an

alternative “rare event” asset in which one state is overwhelmingly more likely than the other

state. We consider the limit as the probability of the rare event goes to zero.

Holding investment grade bonds, the carry trade, and “selling volatility” (selling out of

the money puts) are all covered by our analysis. These are bets against rare events, and we

allow traders to take short positions as well as long positions. For example, bond payoffs

are contingent on the event of default. For an investment grade bond, this is a rare event,

so investment grade bonds correspond to short positions on a rare event asset. Since a short

position in a rare event asset is equivalent to a long position in an asset that almost always

pays off, all our results on rare event assets also apply to nearly safe assets.

Traders are subject to position limits. We do not assume any specific functional form for

position limits, and our main results hold for any position limits in a very general class. We

also present a few stronger results for the economically natural case where traders’ positions

are limited so they do not default if the event they were betting on does not occur.

To convey the intuition for our results, first imagine that traders could buy and sell

assets with zero bid ask spread at their expected values (a zero bid ask spread cannot be

an equilibrium in the financial market, because informed traders would make large profits
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at other traders’ expense). The trading patterns in the two assets would be different: in the

common event market, skilled traders would take moderately sized positions, either long or

short; in the rare event market they would occasionally predict that the rare-event asset will

pay off, taking very large long positions, but most of the time they would hold small short

positions. Next, consider how this changes when prices are determined in equilibrium.

Our simple yet central observation is that the rare-event asset must have a non-negligible

bid-ask spread (bounded away from zero) in the limit as the probability of the rare event

goes to zero. This is because if the bid-ask spread were instead negligible, trading the rare-

event asset would be profitable for even the lowest-skilled traders. But then, non-negligible

trading skill would be devoted to the rare-event asset, leading to a bid-ask spread that is

non-negligible. The non-negligible bid-ask spread, combined with position limits, means that

traders are unable to adopt very large long positions in the rare-event asset. Also, while most

of the time traders in the rare-event asset will take short positions, these are not particularly

profitable since the bid price of the asset is negligible. Hence prediction skill has low value

when it is devoted to the rare event.

Next we consider financial markets’—as opposed to individuals’—ability to predict rare

events. How much can one learn by observing market data such as order flow or average

transaction price? Clearly this depends on the equilibrium distribution of talent across

different assets. We show that the highest-skilled agents choose to specialize in predicting

the frequent event, while the rare event asset is traded by only relatively unskilled traders.

The lowest skilled traders do not trade at all. Unless only few of the highly skilled traders

specialise in the common event asset, and many of the lower skill traders specialise in the

rare event asset, there is more total skill at work predicting the common event. So normally,

aggregate trading activity contains more information about common events than about rare

events. Our formal results exhibit sufficient conditions for this.

Our prediction on the allocation of skill matches informal perceptions that a lot of fore-

casting “talent” is devoted to forecasting frequent events. It is also consistent with the view
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that many standard trading strategies such as the carry trade, selling out-of-the-money put

options, etc., are “nickels in front of a steamroller strategies” that are implemented by people

with mediocre talents. As these are short positions on rare events, our model predicts they

attract low-skill traders.

In addition to predictions on the allocation of skill to different types of assets, our model

delivers predictions for variation in bid-ask spreads across different assets. In particular,

our model predicts that low-rated bonds have larger bid-ask spreads than high-rated bonds,

consistent with empirical evidence.

For example, if traders can hold either hold investment grade bonds or junk bonds the

traders with high ability choose to trade junk bonds (short positions on common events)

while those with lower ability choose to trade investment grade bonds (short positions on

rare events); as a result, junk bonds have a higher bid ask spread and their order flow is

more informative.

Related literature:

Existing literature on information acquisition mostly deals with ex ante homogeneous

investors dividing their information acquisition efforts across different assets. In contrast,

we study matching between heterogeneous investors (different skills) and heterogeneous as-

sets (different payoff frequencies). That is, we study the inter-personal division of labor in

information acquisition, while the existing literature focuses on the intra-personal issues.

Van Niewerburgh and Veldkamp (2010) analyze investors who choose which assets to

acquire information about in order to improve portfolio allocation, and establish conditions

for specialization in acquiring information about just one asset. An important difference with

our paper is that in our analysis asset prices, including the bid-ask spread, are determined

endogenously. Veldkamp (2006) analyzes a multi-asset REE model in which traders buy

information from information providers who enjoy economies of scale. Information delivers

trading profits at the expense of less informed agents, and improves portfolio allocation. She

shows that different traders choose the same signals, increasing asset price comovement. In
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Peng and Xiong (2006) the representative investor has a cognitive constraint (which could

alternatively be interpreted as a cost of information production), and chooses signals that

are informative about many assets. Information improves the consumption-savings decision,

while in our paper information helps traders make money from uninformed traders.

Buffa and Javadekar (2019) study the allocation of managers of different skills across

mutual fund strategies. They argue that stock picking generates a career track record with

many observations that are informative about skill, and therefore attracts highly-skilled

traders since they want their skill to become known. In contrast, market timing strategies

are less informative about skill and are chosen by lower skilled managers in equilibrium.

Gandhi and Serrano-Padial (2015) also study pricing of rare and common event assets.

They argue belief heterogeneity can explain the favorite-longshot bias in sporting bets (em-

pirically, bets on competitors with a low chance of winning are overpriced). In their model,

a small (but fixed) fraction of gamblers who are overoptimistic about longshots bet all their

money on them as their probability of winning converges to zero, stopping the price of long-

shot bets converging to zero. They are the marginal buyers of the longshot bets, as short

sales are assumed impossible. In contrast, in our model different trader valuations result from

different private signals with the same prior beliefs, and there is a bid-ask spread because

uninformed agents learn from the demands of informed agents.

2 Model

2.1 Assets

There are two financial assets, the r-asset and the c-asset (“rare” and “common”). Each

asset pays either 0 or 1 (in other words, the asset price should be understood as the price per

unit of payoff if the asset pays off). We model the assets as associated with two underlying

independent random variables, ψr and ψc, each distributed uniformly over [0, 1], with each

asset j = r, c paying off in the event ψj ≤ qj, for parameters qr, qc ∈ (0, 1) that equal the
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payoff probabilities of the two assets. This formulation allows us to study comparative statics

as qr grows small—i.e., the r-asset pays off rarely—in a natural way. As will be seen below,

the properties of informed traders’ signals and the behavior of liquidity traders respond in

economically consistent ways.

We focus on the case in which qr approaches zero, i.e., the r-asset only pays off rarely. This

allows us to obtain results with only very mild assumptions on position limits. However,

in Online Appendix D we also show that in the economically natural case of default-free

position limits (see (3)), our main results hold for any pair of asset payoff probabilities with

min {qr, 1− qr} < min {qc, 1− qc}.

There is a single period in which the assets trade, after which payoffs are realized. Traders

who take long (short) positions in the j-asset buy (sell) at the ask (bid) price price P j
L

(respectively, P j
S). The following subsection covers price determination.

2.2 Financial market structure

The r- and c-assets are traded by a mixture of skilled traders, who receive informative signals

about one of ψr and ψc , and liquidity traders. Both groups are described further below.

Long and short trades are executed, respectively, at ask and bid prices P j
L and P j

S, which

are set by the zero profit condition of a competitive market maker. Traders arrive simultane-

ously and fulfill their orders at these prices. The expected quantity of buys and sells for the

j-asset depends on the realization of the state ψj . Notationally, we write E
[

buys|ψj ≤ qj
]

for the expected measure of buy orders stemming from skilled traders and liquidity traders,

conditional on the event ψj ≤ qj , with analogous notation for other cases.

Each market maker takes into account the equilibrium skill and behavior of skilled and

liquidity traders when posting prices:

E
[

buys|ψj ≤ qj
]

Pr
(

ψj ≤ qj
) (

P j
L − 1

)

+ E
[

buys|ψj > qj
]

Pr
(

ψj > qj
)

P j
L = 0

E
[

sales|ψj ≤ qj
]

Pr
(

ψj ≤ qj
) (

1− P j
S

)

+ E
[

sales|ψj > qj
]

Pr
(

ψj > qj
) (

−P j
S

)

= 0.
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Rearranging and simplifying gives

P j
L = qj

E
[

buys|ψj ≤ qj
]

E [buys]
(1)

P j
S = qj

E
[

sales|ψj ≤ qj
]

E [sales]
. (2)

This price setting mechanism is similar to that in Glosten and Milgrom (1985). The inter-

pretation of the zero profit condition is that there are many market makers each posting

binding quotes for bid and ask prices.

2.3 Skilled traders

There is a unit continuum of risk-neutral skilled traders. Each trader observes either an

informative signal or noise. When a trader observes a signal sj ∈ [0, 1] no-one, including

the trader, knows whether the signal is informative or not. However, there is heterogeneity

in traders’ chances of getting an informative signal: each trader knows their probability α

of receiving an informative signal. We refer to α as the trader’s “skill.” The population

distribution of α is given by probability measure µ, defined over the Borel sets B of [0, 1],

which admits a density g. The support of µ is a lower interval, i.e., takes the form [0, ᾱ]

for some ᾱ > 0. A trader with skill α who chooses to observe a signal about ψj observes

the true realization with probability α, and otherwise observes the realization of a noise

term uniformly distributed over [0, 1]. This assumption has the natural property that the

unconditional probability distribution of signals is the same for all α.

Collecting information takes time. To capture this, we assume that signals have an

opportunity cost: each trader must choose between receiving signals about ψr or signals

about ψc. They also have the option of not trading. After observing their signals, traders

choose whether to trade (at this stage, we allow for the possibility they might choose an

asset but only trade sometimes, although this is not an equilibrium outcome). They can

take either long or short positions. Let V j (α) denote the expected payoff of a skilled trader
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with skill α who specializes in the j-asset for j ∈ {r, c, 0}. The payoff of a trader who chooses

not to trade either asset is V 0 (α) = 0.

Instead of assuming traders are risk neutral, we equivalently could assume traders are

risk-averse but are insured by risk-neutral employers. In subsection 8.1 we extend our analysis

to cover risk aversion. Also, while we focus on a single period model, in Online Appendix I

we show that our main results continue to hold in a dynamic setting in which agents learn

about their skill from their past trading outcomes.

2.4 Position limits

Traders face position limits, corresponding to margin constraints and limits on borrowing.

We denote the long and short position limits in asset j by hj
L

(

P j
L

)

and hj
S

(

P j
S

)

respectively,

where the notation reflects the natural property that position limits may depend on prices.

Position limits are important because a potential attraction of the r-asset is that its price is

low, so a trader can scale up profits by buying large amounts; position limits determine how

much. In practice position limits are determined by traders’ budget constraints, by margin

requirements, and by the ability to use purchased securities or sales proceeds as collateral;

consequently, low prices typically allow larger long positions but smaller short positions.

We do not restrict position limits to be any particular function. Indeed, we allow for

nearly any possible specification of position limits, making only the following pair of mild

assumptions:

Assumption 1 hj
L and hj

S are continuous functions over (0,∞) and take strictly positive

values.

Assumption 2 limP→0 Phj
S (P ) = 0.

Assumption 1 is very weak. It includes the case in which hj
L and/or hj

S is close to 0 for

all prices, corresponding to long and/or short positions being almost impossible. (The only
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reason that we do not simply allow hj
L ≡ 0 or hj

S ≡ 0 is that in these cases ask and bid prices

respectively are undefined in equilibrium, complicating the statements of many results.)

Assumption 2 requires that short positions do not grow too fast as the rare event becomes

rarer and its price (presumably) falls. This is a very weak assumption because lower prices

mean lower short proceeds to collateralize future obligations, which would normally lead to

lower position limits.4 There is no need for an analogous assumption on long position limits

hj
L (P ) because, in equilibrium, ask prices P j

L are bounded away from zero (Lemma 2).

As a concrete example, an economically natural case is default-free position limits, where

traders can take the largest positions that allow them to meet their obligations in all states.

In this case, position limits for a trader with initial wealth W are5

hj
L

(

P j
L

)

=
W

P j
L

and hj
S =

W

1− P j
S

. (3)

A second concrete example is price-invariant position limits, e.g., traders can trade one unit,

regardless of the price. Formally, price-invariant position limits are simply hj
L (·) and hj

S (·)

both constant. Although this assumption is commonly made in the literature, it is important

to consider the (realistic) possibility that traders can buy larger quantities of cheaper assets,

since this is one the main potential attractions of the r-asset.

Both default-free (3) and price-invariant position limits satisfy Assumptions 1 and 2.

2.5 Liquidity traders

In addition to skilled traders, there is a continuum of traders with no information about asset

realizations. We assume these “liquidity traders” trade for hedging purposes (Diamond and

Verrecchia (1981), Dow and Gorton (2008)). Each liquidity trader receives an endowment

4FINRA rule 4210 requires hj
S (P ) = W/2.5 as P → 0, which satisfies this requirement. (For larger P ,

minimum required margin is a percentage of position value, rather than a fixed $2.50 amount per share.)
5The long position limit follows from the fact that, since the asset may pay 0, leveraged positions are

impossible. The short position limit arises as follows. A trader who short sells x units has total wealth
W + xP j

S , which is sufficient collateral for W + xP j
S short positions. So the largest feasible short position is

given by the solution to x = W + xP j
S .
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shock that gives them a strong desire for resources in a particular state. A measure λr of

liquidity traders are r-liquidity traders, and each receives a shock χr ∼ U [0, 1], meaning

that they want resources in state ψr = χr. Similarly, a measure λc of liquidity traders are

c-liquidity traders, and each receives a shock χc ∼ U [0, 1], meaning they want resources in

state ψc = χc. Except in Section 7, we make no assumption on whether and how liquidity

shocks are correlated across liquidity traders. We assume that j-liquidity trader preferences

for resources in state χj are lexicographic, so that each j-liquidity trader takes as large a

long position as possible in the j-asset as possible if χj ≤ qj, and as large a short position as

possible if χj > qj.6 The long and short position limits for j-liquidity traders are the same

as for skilled traders, namely hj
L and hj

S. Given this, j-liquidity traders each buy hj
L(P

j
L)

units of the j-asset if they experience a shock χj ≤ qj , and short sell hj
S(P

j
S) units of the

j-asset if they experience a shock χj > qj.

Consequently, the expected number of buy orders for the j-asset from liquidity traders

is qjλjhj
L(P

j
L), and the expected number of sell orders is (1− qj) λjhj

S(P
j
S). In particular, as

the probability qr that the r-asset pays off approaches 0, the expected number of liquidity

traders who place buy orders approaches 0.

The following concrete interpretation may be helpful. A natural interpretation of the

r- and c-assets is as CDS contracts on high- and low-rated borrowers. The CDS on the

high-rated borrower pays off only in a few states of the world, so only a few liquidity traders

need insurance against one of these small number of states and buy it. The CDS on the

low-rated borrower is bought by more liquidity traders.

Some readers may prefer an alternative interpretation of our formal assumptions in which

“liquidity” traders are instead overconfident traders. Traders who are unskilled (α = 0) but

who mistakenly believe they are highly skilled7 behave exactly as just described.

6Since liquidity traders trade to the position limit, their trades are price elastic. Our main results also
hold if instead liquidity traders are price inelastic (see discussion in subsection 8.2), or if they are more
price elastic than skilled traders (this latter case would strengthen our results, akin to other perturbations
discussed in subsection 8.2).

7Specifically: They believe their skill levels are high enough to profitably trade. Lemma 1 characterizes
minimum skill levels for profitable trading.
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The volume of liquidity trade affects equilibrium prices and hence the trading decisions of

skilled traders. Our analysis requires assumptions on how the volume of liquidity trade be-

haves as the probability qr of the rare event gets smaller. Our specification of liquidity trade

has the attractive feature that if skilled traders were randomly allocated (without regard

to talent, but proportionally to λr and λc) between the r- and c-asset, then an individual

skilled trader would find the r- and c-assets equally attractive to trade, independent of the

probabilities qr and qc, and the bid-ask spread would be the same. In this sense, our liquidity

trade assumptions represent a natural case. They ensure we are not making an assumption

that directly implies the r-asset has a vanishingly small bid-ask spread, which would make it

easy for the least-skilled among the skilled traders to profit by trading it. See also subsection

8.2 for a discussion of alternative specifications.

3 Equilibrium in financial and labour markets

Consider a skilled trader of skill α who specializes in the j-asset. The trader receives a

“buy” signal sj ≤ qj with probability qj. Conditional on this the expected payoff on the

asset is α + (1− α) qj: here, α is the probability the signal was informative, (1− α) qj is

the probability the signal was uninformative but correct anyway. Profits are expected value,

minus price, multiplied by size of the position: hj
L

(

P j
L

) (

α + (1− α) qj − P j
L

)

. Similarly if

the trader receives a “sell” signal sj > qj then profits are hj
S

(

P j
S

) (

P j
S − (1− α) qj

)

. Given

that traders may choose not to trade if their skill α is too low, a trader’s expected payoff

from trading the j-asset, V j (α), is given by8

V j(α) = qj max
{

0, hj
L

(

P j
L

) (

α + (1− α) qj − P j
L

)}

}

+
(

1− qj
)

max
{

0, hj
S

(

P j
S

) (

P j
S − (1− α) qj

)}

. (4)

8It is straightforward to verify that if P j
S ≤ qr then a skilled trader would never sell after observing

sj ≤ qj . Similarly, if P j
L ≥ qr then a skilled trader would never buy after observing sj > qj . We verify below

that P j
L ≥ qj ≥ P j

S indeed holds in equilibrium.

11



3.1 Benchmark: No financial market equilibrium

We start by considering how traders would allocate themselves if assets were simply priced

at their expected values (with no bid-ask spread), i.e.,

P j
L = P j

S = qj , (5)

instead of satisfying the equilibrium property that prices reflect informed trading. For this

exercise, we assume default-free position limits (3). A trader of skill α specializing in the

j-asset has expected profits (4), which reduces to V j(α) = αW . Importantly, this is the

same for both assets; traders are indifferent between the two assets, regardless of skill level.

So this benchmark illustrates that our model treats the two assets neutrally, and is not based

on biased assumptions that automatically imply that one asset is easier to profitably trade

than the other. This conclusion depends on the availability of both long and short positions.

As the asset becomes rare, long positions grow more profitable while short positions become

less profitable. If only long positions are possible, the expected payoff to specializing in the

j-asset is αW (1− qj), so trading the r-asset is more profitable. In line with this, one might

suppose that the r-asset is attractive because it is so cheap that very large positions are

possible. As we argue below, this supposition is fallacious because it fails to recognize that

equilibrium bid and ask prices respond to the level of informed trading activity.

3.2 Equilibrium in both financial and labor markets

With skilled traders present, assets do not trade at their unconditional expected values;

they trade at prices that reflect the incidence of informed trading. Our analysis jointly

characterizes asset prices and traders’ choices of which asset to trade. Equilibrium in financial

markets requires that prices reflect the level of informed trade. Equilibrium in labor markets

requires that, given asset prices, traders optimally choose which asset to specialize in.

As (4) makes clear, some traders have too little skill to profitably trade either asset, and
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prefer to do nothing. Others specialize in trading the r- or c-asset. In cases in which a trader

is indifferent between specializing and doing nothing, we assume the latter.9

For the following equilibrium definition, let M (µ) denote the support of µ.

Definition 1 An equilibrium consists of prices (P r
L, P

r
S, P

c
L, P

c
S) and an allocation of skilled

traders (µr, µc, µ0) across the r-asset, the c-asset and doing nothing, such that:

1. Labor market equilibrium:

(a) Traders optimize over choice of asset: V r (α) ≥ V c (α) and V r (α) > 0 for almost all α ∈

M (µr); V c (α) ≥ V r (α) and V c (α) > 0 for almost all α ∈ M (µc); and V r (α) = V c (α) = 0

for almost all α /∈ M (µr) ∪M (µc).

(b) Labour markets clear: µr (B) + µc (B) + µ0 (B) = µ (B) for all Borel sets B ∈ B.

2. Financial market equilibrium: Given profit-maximizing trading by skilled traders, prices

satisfy (1) and (2).

4 Prices conditional on skill allocation

We first solve for the financial market equilibrium given the allocation of skill. Given a

labour market allocation (µr, µc, µ0), write Aj for the aggregate skill in asset j, i.e.,

Aj ≡

ˆ

αµj (dα) , (6)

and N j for the mass (“number”) of skilled traders in asset j, i.e.,

N j ≡

ˆ

µj (dα) . (7)

Define

Xj ≡
Aj

λj +N j
. (8)

9From (4), there is at most a single skill level at which an agent is indifferent between trading and doing
nothing. So nothing is at stake in what indifferent agents do.

13



A market maker who fills a buy or sell order is concerned about the informational advantage

of the counterparty, which in our setting is the probability the order comes from a skilled

trader, multiplied by the expected skill conditional on the trader being skilled. This is

N j

λj +N j
.
Aj

N j
=

Aj

λj +N j
= Xj,

so bid and ask prices for the asset should reflect Xj. Similarly, traders also care about Xj; if

it is too high relative to their skill then trading is unprofitable. The intuition (familiar from

Glosten and Milgrom (1985) and the microstructure literature) is that the bid-ask spread

is a measure of the amount of skilled trading. The more skilled trading there is, the larger

the bid-ask spread, the harder it is for low-skill traders to make profits, and the higher the

threshold level of skill required to trade profitably. Hence Xj is related to both the bid-ask

spread and the minimum skill required to profitably trade the asset:

Lemma 1 Given (Ar, N r, Ac, N c), for j = r, c the bid-ask spread of the j-asset is Xj, and

ask and bid prices are

P j
L = qj +

(

1− qj
)

Xj (9)

P j
S = qj − qjXj. (10)

Moreover, the minimum skill required both to profitably buy the j-asset after observing signal

sj ≤ qj and to profitably sell the j-asset after observing signal sj > qj is Xj .

5 Equilibrium analysis

5.1 Equilibrium existence

To establish existence, we construct a correspondence that maps skill distributions into

themselves. We sketch the approach here. By Lemma 1, the effect of skill distributions on
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asset prices in the financial market equilibrium is fully captured by (N r, N c, Ar, Ac), the mass

of skilled traders who trade each asset and the aggregate skill devoted to each asset. Given

a candidate skill distribution, we use Lemma 1 to construct candidate ask and bid prices.

We then use the labor market equilibrium condition to determine which asset a trader with

skill α specializes in. Kakutani’s fixed point theorem implies that this correspondence has a

fixed point, at which both labor and financial markets are in equilibrium.

Proposition 1 An equilibrium exists.

5.2 The bid-ask spread in the r-asset is bounded away from zero

We start by showing that the combination of equilibrium in financial and labor markets

implies that both the bid-ask spread (Xr) in the r-asset, and the minimum skill level required

to trade it (also Xr), are bounded away from 0, even as the r-event grows rare (qr → 0).

This result is central to our analysis.

To build intuition, suppose there is just one asset in the economy, and let the probability

that it pays off approach zero, so its expected payoff also approaches zero. Is it possible that

its ask price also approaches zero? For example, a fixed percentage markup over expected

value implies an ask price approaching zero. If it does approach zero, then all agents, however

low their chance of receiving an informative signal, will buy the asset when they receive a

buy signal (sr ≤ qr). But this implies that a positive measure of skilled traders buy the asset

after observing a buy signal, so a buy trade is informative about asset value, implying that

the ask price cannot be close to zero. This is a contradiction. A zero ask price in the limit

would violate a basic equilibrium condition.

More constructively, we can see what does happen in the limit: as the payoff probability

approaches zero, the price approaches a limit that is higher than zero. At this price, higher-

skilled traders trade while lower-skilled traders do not trade. In between, there is a marginal

trader whose skill is just high enough to be indifferent between trading and not trading.

Given this, the ask price is higher than the expected value by a premium that reflects
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the average informativeness of signals of all types above this marginal type. Informally,

this premium reflects the cumulative “brainpower” of traders who buy when they receive a

positive signal. In equilibrium, the premium in turn implies that the marginal type is indeed

indifferent between trading and not trading.

The above intuition is for an economy where the r-asset is the only asset. The argument

for two assets is only slightly more involved, and is formalized by Lemma 2.

Lemma 2 Both the bid-ask spread for the r-asset and the minimum skill level required to

trade the r-asset remain bounded away from 0 as qr → 0, i.e., there exists δ > 0 such that

Xr ≥ δ for all qr small.

Note that Proposition 1 does not establish equilibrium uniqueness.10 However, Lemma 2

and all similar results below cover any possible sequence of equilibria, and so the possibility

of multiple equilibria does not affect any of our conclusions.

An immediate but important consequence is:

Corollary 1 The ask price P r
L is bounded away from 0 as the unconditional expected value

of the r-asset qr → 0.

Moreover:

Corollary 2 Aggregate skill in the r-asset, Ar, is bounded away from 0 as qr → 0.

5.3 Skill allocation across assets

Given equilibrium prices (Lemma 1), a skilled trader’s profits from asset j are (from (4))

V j (α) = qj
(

1− qj
) (

hj
L

(

qj +
(

1− qj
)

Xj
)

+ hj
S

(

qj − qjXj
))

max
{

0,
(

α−Xj
)}

. (11)

10In brief, the main obstacle to establishing uniqueness is that as the bid-ask spread in the r-asset falls,
the average skill of skilled traders trading the r-asset falls, which potentially leads to a further drop in the
bid-ask spread (depending on the number of liquidity traders and the specific distribution of skill). This is
similar to issues encountered for liquidity traders in Admati and Pfleiderer (1988) and Dow (2004).
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Hence the marginal value of skill in trading asset j is, for α > Xj,

∂V j (α)

∂α
= qj

(

1− qj
) (

hj
L

(

qj +
(

1− qj
)

Xj
)

+ hj
S

(

qj − qjXj
))

. (12)

From this expression, and using Corollary 1 and Assumption 2, the marginal value of skill

is low in the r-asset because qj is low. Formally:

Lemma 3 As qr → 0, the marginal value of skill in the r-asset (12) approaches 0.

To understand Lemma 3, notice from (11) that for a skilled trader who chooses to trade

in one of the assets, profits as a function of α are a straight line. The slope of this line is the

marginal value of skill. Therefore, to show the marginal value of skill goes to zero as qr → 0,

we can show that trading profits go to zero. There are two economic effects underlying this.

First, as qr → 0, traders only rarely buy the r-asset. Consequently, the expected profit from

long positions also becomes small unless traders are able to make enormous profits from long

positions—which could only happen if they took enormous long positions, as they do in the

benchmark model of Section 3 without financial market equilibrium. But by Corollary 1,

the dual requirement of equilibrium in financial and labor markets means that the ask price

of the r-asset stays bounded away from 0. The lower bound on the price implies an upper

bound on the size of the positions, so traders’ long positions cannot grow arbitrarily large,

implying that the expected profit from long positions indeed approaches 0.

Second, turning to short positions, as qr → 0 traders specializing in the r-asset nearly

always adopt short positions. Traders with skill α have an expected profit on each short

position of P j
S − (1− α) qj = qj (α−Xj), which converges to 0 as qr → 0. So it would only

be possible for traders to make non-negligible expected profits on the short position if they

could take large enough short positions, but Assumption 2 stops the short position from

growing large (as noted above, it is natural for position limits on short positions to decrease

as price falls, so this is a very weak assumption).

In contrast, the marginal value of skill in the common asset does not go to zero (see the
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Figure 1: Equilibrium allocation of traders

proof of Proposition 2). The higher marginal value of skill in the common asset implies that

high skill traders have a comparative advantage in the common asset and hence specialize

in that asset. High skill traders are better at trading both assets, i.e., they have an absolute

advantage compared to low skill traders. But an additional unit of skill is more valuable in

the common asset, giving higher skilled traders a comparative advantage in that asset. Hence

in equilibrium there is a threshold skill level so that traders with skill below the threshold

choose the r-asset while those with skill above the threshold choose the c-asset.

Proposition 2 For all qr sufficiently small, the minimum skill required to profitably trade

the r-asset is below the minimum skill to profitably trade the c-asset, i.e., Xr < Xc. More-

over, there exists α̂ ∈ (Xc, ᾱ) such that traders with skill α ∈ (Xr, α̂) trade the r-asset and

traders with skill α ∈ (α̂, ᾱ) trade the c-asset.

Proposition 2 is illustrated by Figure 1, which shows how expected profits from special-

izing in each asset depend on the trader’s skill level.

Proposition 2 predicts that (among active traders) the least-skilled traders specialize in

the r-asset. As noted, most of the time, they take a short position in this asset. The short
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position nets a small immediate profit, but exposes the trader to a small risk of a much

larger loss in the future if the rare event is realized. Hence, our model predicts that the

least skilled traders pursue what are often described as “picking-up nickels in front of a

steamroller” strategies, such as the carry trade in currency markets, or writing out-of-the-

money puts. See Online Appendix C for a numerical solution to a parameterized example.

Although we state Proposition 2 as a limiting result, it is worth highlighting that un-

der default-free position limits (3) it in fact holds for any payoff probabilities such that

min {qr, 1− qr} < min {qc, 1− qc}; see Online Appendix D.

Because traders in the r-asset are relatively unskilled, only a few of them manage to

successfully predict the rare event when it actually occurs. Hence our model rationalizes

the fact that rare events are foreseen by few people. Nonetheless, for those few traders,

the posterior estimate of their skill is high.11 In Online Appendix I we explore these issues

further in an extended version of our model in which agents learn about their skill over time.

5.4 Bid-ask spreads

Since more skill is needed to trade common events than to trade rare events (Proposition 2),

and bid-ask spreads coincide with minimum required skilled levels (Lemma 1), Proposition

2 implies that the bid-ask spread is larger for the c-asset. As we discuss in Section 6, this

prediction can be tested empirically.

Corollary 3 For all qr sufficiently small, the bid-ask price is smaller for the r-asset than

the c-asset, P r
L − P r

S < P c
L − P c

S.
11If the prior belief that a trader receives an accurate signal is α, then the posterior belief after a successful

long trade of the r-asset is α
qr+α(1−qr) , which approaches 1 as qr → 0 for any α > 0. By Lemma 2, the skill

of any trader trading the r-asset is indeed bounded away from 0.
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6 Empirical predictions

6.1 The cross-section of skill

Proposition 2 predicts that the highest skill traders trade the c-asset, intermediate skill

traders trade the r-asset, and the lowest skill traders cannot trade profitably in either asset.

Trading profits are increasing in skill (traders with higher α could always add noise to their

signals to effectively lower α). Therefore, traders who trade the c-asset, being higher skilled,

make higher trading profits than traders who trade the r-asset. To interpret this predic-

tion recall that “picking up pennies” trades, yielding frequent small profits and occasional

significant losses, correspond to short positions on the r-asset.

This prediction applies both for traders trading on their own account, and for inter-

mediated investments such as hedge funds, private equity, and mutual funds. Because of

data availability, we focus on intermediated investments. We also focus on comparisons

within broad classes of intermediated investment, since across these classes there are many

differences that are unrelated to our analysis.

For hedge funds, there is a long-standing argument that a significant number of funds

engage in low-skill “picking up pennies” trades. Lo (2001) gives the colorful example of a

fictional fund, “Capital Decimation Partners,” and shows how a simple strategy of selling

options can yield hedge-fund like returns. As he points out, this strategy could be imple-

mented in a less obvious fashion by dynamic trading that replicates the option payoffs. More

recently, Jurek and Stafford (2015) show empirically that the hedge fund return index can

be replicated using this kind of strategy, strengthening Lo’s argument.

Although there is considerable cross-sectional variation across different hedge funds in

the types of trades they undertake, the opaque nature of many funds means that there is

relatively little research relating hedge fund returns to style of trading. One exception is

Gibson and Gyger (2007), who use a standard classification of hedge funds into four broad

groups: Tactical Trading, Long and Short Market Hedged, Event Driven, Relative Value. Of
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these, the first two correspond roughly to trading the c-asset, the fourth one to trading the

r-asset, while the remaining “Event Driven” category falls outside our analysis.12As shown

in Gibson and Gyger’s Table 1, and consistent with our analysis, hedge funds in the first two

categories have experienced higher average returns than those in the fourth category (with

the Event Driven category falling in between).

Turning to private equity funds, among venture capital (VC) investments the style split

that maps most easily to our model is between early- and late-stage VCs, corresponding to

the r- and c-asset respectively. Early stage investments have a low probability of paying off.

Korteweg and Sorensen (2017) report greater persistence of returns among late-stage funds,

consistent with Proposition 2 ’s prediction that these are higher-skill funds.

Among other (non-VC) private equity investment, it is hard to identify a division of styles

that match our model.

Finally, within mutual funds, we consider the best mapping between style classifications

and our model to be that income funds correspond to the r-asset, while growth funds cor-

respond to c-asset. Income funds have a high probability of modest return, with a low

probability of losses, akin to shorting the r-asset. Growth funds are likely to give both high

and low returns. Grinblatt and Titman (1993) and Kosowski et al. (2006) both find evidence

of higher returns among growth funds than income funds, consistent with Proposition 2.13

6.2 The cross section of bid-ask spreads

Our model predicts that the r-asset has a smaller bid ask spread than the c-asset. This

prediction is most easily applied to bonds and CDS securities, because their payoffs are well

approximated by the binary payoff of our assets. A bond is equivalent to a long position in

12Tactical trading and Long and Short Market Hedged are funds that carry out standard timing and stock
selection strategies that either win or lose quite frequently. Relative Value funds typically concentrate on
trades such as anomalies in the yield curve, in Libor/bond spreads, or in yield spreads between similar bonds,
that pay off small amount most of the time but occasionally lose large amounts of money. Event Driven
trades comprise distressed investing (common events); merger arbitrage (rare events); and special situations
(for example, negotiating restructuring of distressed securities) that are outside our model.

13These are risk adjusted returns; and, in the case of Kosowski et al. (2006), adjusted for the value
premium as they use a multifactor model.
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the risk free asset combined with a short position in the j-asset (Appendix B shows this in

detail). So the r-asset corresponds to a short position in a highly-rated bond, which pays off

if the bond defaults (a rare event for highly-rated bonds). Similarly, the c-asset corresponds

to a short position in a lower-rated bond, where the payoff state of bond default is more

likely. So Corollary 3 predicts lower bid-ask spreads for higher-rated bonds. Similarly, it

predicts higher bid-ask spreads for CDS contracts on assets with more default risk.

The model’s predictions are consistent with evidence from both corporate and sovereign

debt markets. Edwards, Harris, and Piwowar (2007) study all transactions in US corporate

bonds for 2003 and 2004 using multivariate regressions to estimate the bid ask spread implied

by transaction prices (even for infrequently traded bonds). They find that bonds with higher

credit risk have higher bid ask spreads, controlling for other factors. The positive relationship

between default risk and bid ask spread is also found in Goldstein and Hotchkiss’ (2011) study

over a longer period, and by Benmelech and Bergman (2018) and Feldhütter and Poulsen

(2018). Calice et al (2013) study the sovereign debt CDS market for the Eurozone and also

show a positive relationship between default risk (credit spreads) and bid ask spreads.

6.3 Proportional bid-ask spreads

While Corollary 3 concerns absolute bid-ask spreads, we can also consider proportional bid-

ask spreads, i.e., the ratio of the absolute bid-ask spread and the mid-point quote. In contrast

to the absolute bid-ask spread, the proportional bid-ask spread differs between a bond and

a CDS on the bond.

Since the absolute bid-ask spread is lower for higher-rated bonds, and the bond price is

one minus the asset price, it follows that proportional spreads are likewise lower for higher-

rated bonds. Moreover because, for bonds, proportional bid ask spreads are approximately

equal to absolute bid ask spreads (because prices are close to 1), the evidence in subsection

6.2 speaks to proportional bid ask spreads.

In contrast, CDS contracts exhibit the opposite pattern for proportional bid ask spreads
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Table 1: Average CDS prices and Bid-Ask Spreads, 10/2014 to 06/2018
GER NED AUT FRA BEL IRE ESP ITA POR

CDS 15.95 20.17 23.79 32.69 34.52 48.6 81.03 132.26 195.36
Bid-Ask Spread 3.6 4.68 4.64 4.29 4.3 9.82 7.12 6.97 15.5
(Bid-Ask Spread)/CDS 23% 23% 20% 13% 12% 20% 9% 5% 8%

Source: Bloomberg

than for absolute bid-ask spreads. CDS contracts correspond to long positions in the asset

in our model. The proportional bid-ask spread on the j-asset is
P

j
L−P

j
S

1
2(P

j
L+P j

S)
, and ranges from

0 up to 2. The proportional bid-ask spread on the r-asset approaches the upper bound of 2

as qr approaches 0: this is an immediate consequence of the ask price being bounded away

from 0 (Corollary 1), along with the bid price converging to 0 (Lemma 1). Economically,

the high proportional bid-ask spread on the r-asset reflects the fact that a non-negligible

amount of skill is devoted to this asset (Corollary 2), even if less than to the c-asset.

Table 1 presents data for CDS contracts on Euro sovereigns. It shows the positive pre-

dicted relation between underlying bond ratings (proxied by low CDS prices) and propor-

tional bid-ask spreads.14 (Table 1 also shows the negative predicted relation between credit

quality and absolute bid-ask spreads, as discussed in the previous subsection.)

A closely related observation is that the unconditional expected return on a long position

in the r-asset is very low; it is given by qr

P r
L
, and since the ask price remains bounded away

from 0, it approaches 0 as qr approaches 0. This is consistent with empirical evidence on low

returns to wagers on extreme underdogs in betting markets (the “longshot-favorite bias”),

and with low returns to buying out-of-money puts and calls in option markets (the “smile”

in implied volatilities).

14Table 1 reports averages computed over the period 10/2014 to 6/2018, as reported by Bloomberg. We
thank Lukas Kremens for generously sharing the data used to construct this table. While the tables in Calice
et al (2013) report CDS bid ask spreads, they do not report the levels of bid and ask prices, and hence do
not allow the computation of proportional bid ask spreads.
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7 Predictions from the market

Thus far, we have focused on the ability of individual traders to forecast rare events. In this

section, we instead consider the information content of aggregate trading activity.

Bid and ask prices are set before the arrival of orders, so they are independent of the

true state and hence uninformative. In contrast, the aggregate order flow is informative. We

consider the inferences about the likelihood of the j-event (ψj ≤ qj) made by an outside

observer who sees the total numbers of buy and sell orders for asset j. The total numbers

of buy and sell orders can, alternatively, be inferred from observing a combination of any

two of: (i) the average transaction price, (ii) aggregate volume (unsigned; this is the total

number of units of the asset bought or sold), and (iii) order flow imbalance (signed; this is

the difference between the total number of units bought and total number of units sold).

Write Lj and Sj for total buy (long) and sell (short) orders for asset j. Write λjL and λjS

for the mass of liquidity traders who buy and sell asset j. Write N j
L and N j

S for the mass of

skilled traders who buy and sell asset j. Hence

Lj =
(

λjL +N j
L

)

hj
L

(

P j
L

)

Sj =
(

λjS +N j
S

)

hj
S

(

P j
S

)

.

Since both liquidity traders and active skilled traders always trade in one direction or the

other, λjL + λjS = λj and N j
L +N j

S = N j . Hence observing the total number of buy and sell

orders (Lj , Sj) has the same information content as simply observing the total number of

buy orders, Lj .

The information content of the aggregate order flow depends critically on the correlation

among liquidity traders, and similarly, on the correlation among skilled traders. For example,

if skilled trades are uncorrelated conditional on the realization of ψj (a natural assumption),

and liquidity trades are uncorrelated, then by the law of large numbers Lj perfectly reveals

whether or not ψj ≤ qj. In the literature, it is assumed that liquidity trades are correlated
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so as to prevent full revelation (e.g., Grossman and Stiglitz 1980, Hellwig 1980, Kyle 1985).

We follow the literature and assume that liquidity trades are correlated, so that λjL is a non-

degenerate random variable. For simplicity, we assume that skilled trades are uncorrelated

conditional on ψj (see, e.g., Grossman 1976, Hellwig 1980),15 so that

N j
L = Aj1ψj≤qj +

(

N j − Aj
)

qj. (13)

Given (13), the information content of the aggregate order flows in asset j is the same as

the information content of

L̃j ≡
Lj

hj
L

(

P j
L

) −
(

N j − Aj
)

qj = Aj1ψj≤qj + λjL. (14)

From (14), one can see that the aggregate skill Aj deployed to asset j is the key factor that

determines the information content of aggregate order flow.

So far we have shown (Proposition 2) that all traders in the r-asset have skill below a

certain threshold α̂ while all traders in the c-asset have skill higher than that threshold. This

implies that the average skill of traders in the r-asset is lower than that of traders in the

c-asset, i.e., Ar

Nr < Ac

Nc , and relatedly, that the bid-ask spread is smaller for the r-asset than

for the c-asset, i.e., Ar

λr+Nr < Ac

λc+Nc (Corollary 3). We now investigate whether aggregate

skill is likewise lower, i.e., Ar < Ac.

7.1 Lower aggregate skill in the r-asset

Clearly, a sufficient condition for aggregate skill devoted to the r-asset to be lower is that

fewer people trade it, N r ≤ N c: we already know traders in this asset are less skilled, so if

there are fewer of them, the total skill must be low. More generally, aggregate skill devoted

to the r-asset is lower provided that N r does not exceed N c by too much. But if there are a

very large number of low-skill traders in the r-asset, and not many high-skill traders in the

15We obtain similar results in the case in which the assumption of conditional independence is relaxed.
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c-asset, it appears that aggregate skill in the r-asset could be higher.

Intuitively, N r can only exceed N c by a large amount if the density function g of the skill

distribution declines rapidly in skill α. Our next result formalizes this intuition, and gives a

simple sufficient condition on the slope of the density function g that guarantees that N r is

not too large relative to N c, and hence in turn that less aggregate skill is indeed deployed

to the r-asset than to the c-asset.

Proposition 3 If there are equal numbers of liquidity traders in the two assets, λr = λc,

and the density of skill g satisfies

x

ˆ x

z

αg (α) dα > z2g (z) (x− z) for all z < x ≤ α, (15)

then for any qr sufficiently small, less aggregate skill is deployed to the r-asset, i.e., Ar < Ac.

Condition (15) holds trivially if the density function is weakly increasing in skill. In

particular, condition (15) holds if skill α is distributed uniformly over [0, ᾱ]. Moreover,

even when (15) is violated, the conclusion that Ar < Ac still holds for a very wide class

of parameters. For example, in Online Appendix E we analyze the case in which there are

equal numbers of liquidity traders in the two assets (λr = λc) and the distribution of skill

is left triangular, i.e., g (α) = 2
α2 (α− α). This class of distributions captures the plausible

idea that the skill density tapers to zero as the upper bound ᾱ is approached, and allows for

a rapid decline in the density g, which as discussed above, is the case in which the conclusion

Ar < Ac is least likely to obtain. We first show that the ratio Ac/Ar that obtains in the limit

as qr → 0 is a function only of the number of liquidity traders λr = λc, and is independent

of all other model parameters, including ᾱ. We then calculate the ratio Ac/Ar numerically,

and show that Ar < Ac holds except for cases in which λr = λc is extremely small (i.e.,

below 0.01, corresponding to the total number of liquidity traders being below 2% of the

population of skilled traders).

The conclusion of Proposition 3 also holds for any distribution of skill provided that the
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mass of liquidity traders is sufficiently large. In brief, the argument is as follows. As in

Proposition 3, we assume that λc = λr. As λc = λr → ∞, it is straightforward to show that

N c + N r is bounded away from 0. (Intuitively, if there are many liquidity traders then it

is easy for skilled traders to make profits.) If N r → 0 but N c ̸→ 0, it is immediate that

Ar < Ac. If instead N r ̸→ 0, then Xr

Xc is bounded away from 1 (from above). We know

Ar

Ac = Xr

Xc
λc+Nc

λr+Nr . Since N c and N r are both bounded, we know λc+Nc

λr+Nr → 1 as λc = λr → ∞.

It follows that Ar

Ac < 1 for λc = λr large enough.

7.2 Market predictions from the r-asset are less informative

Skilled traders in our model can work at either one of two tasks, producing information

about the r-asset or producing information about the c-asset.

Our main result of this section uses results from the theory of information orderings (see

Blackwell 1953, Lehmann 1988). It requires the mild assumption that the density of λrL is

log-concave. Recall that, as discussed in subsection 7.1, the condition Ac > Ar is typically

satisfied in equilibrium: there is more aggregate skill deployed in the c-asset. We can use this

to compare the accuracy of learning in the two assets. We consider the impact of exogenously

interchanging the sets of traders who trade the two asset types, i.e., Ar trade the c-asset

while Ac trade the r-asset. We show that this switch increases the informativeness of the

aggregate order flow in the r-asset.

To say that one information structure is more Blackwell-informative than another is a

strong statement. It means that any agent who needs to take any decision would prefer to

have the former information structure. It is only a partial ordering of information structures.

However in this case the event agents are trying to predict (the asset pays off) is binary,

which as Jewitt (2007) observes, simplifies the application of Blackwell’s theorem.

Proposition 4 Suppose the density of λrL is log-concave. If there are equal numbers of

liquidity traders in the two assets (λr = λc), and Ac > Ar, then the aggregate order flow of
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the r-asset would be more Blackwell informative if the sets of people trading the r-asset and

c-asset were exogenously switched.

By exogenously switching the sets of people who trade the r-asset and c-asset, we mean

that everyone who used to trade the c-asset (i.e., with skill α exceeding the threshold level α̂)

is now restricted to either trading the r-asset or doing nothing, and similarly, that everyone

who used to trade the r-asset (skill α ∈ [Xr, α̂]) is now restricted to either trading the c-asset

or doing nothing. The option of doing nothing potentially matters because after the people

trading the two assets are switched, asset prices change, and consequently it is possible

that not everyone who previously traded the c-asset wants to trade the r-asset at its new

equilibrium prices. The role of the condition λr = λc is to ensure that profitably trading the

r-asset is not much more difficult than trading the c-asset solely because of a lack of liquidity

traders; if instead λr were much lower than λc, it is possible that many traders who used to

trade the c-asset drop out of trading after they are exogenously switched to the r-asset.

Proposition 4 suggests that, unless the social value of forecasting common events is

significantly greater than that of forecasting rare events, there is a basic force leading to a

socially suboptimal undersupply of resources to forecasting rare events. In particular, if it is

socially more important to predict the rare event than the common event then information

is under-produced.

8 Generalizations

A natural question concerning our model is the extent to which the results are robust to

generalization. We have assumed very general forms for position limits. Here we investigate

two further generalizations, to risk aversion and alternative specifications of liquidity trade,

and show that suitably modified versions of our main results continue to hold. As mentioned

earlier, we also show in Online Appendix I that the results on trader allocation generalize to

a repeated setting with career concerns.
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8.1 Trader risk aversion

Thus far, we have assumed that traders are risk neutral, or equivalently are insured by a

risk neutral employer. Here, we consider the case in which traders are instead risk averse

and uninsured. A significant difference relative to the case of risk neutral traders is that risk

averse traders may find it worthwhile to take positions in only one direction.

We focus on the highly tractable case in which a trader’s initial wealth is W , and utility

over final wealth Y is given by Y if Y ≥ W and W − (1 + κ) (W − Y ) if Y ≤ W , for some

κ ≥ 0. That is, utility is a piecewise linear concave function, and κ measures the degree of

risk aversion, with κ = 0 representing risk neutrality (Dow (1998) and Carlin and Gervais

(2009), for example, also use this specification of risk aversion). Prices now take the form

P j
L = qj +(1− qj)Xj

L, and P j
S = qj − qjXj

S, where X
j
L and Xj

S are defined analogously to Xj

(see (8)), but depend on the aggregate skill and number of skilled traders in long and short

positions, respectively.

Online Appendix F analyzes this case, and includes numerical simulations to evaluate

equilibrium outcomes. The most important conclusion is that the main qualitative features

of our analysis remain. The lowest skilled traders trade nothing, medium skilled traders

trade the r-asset, and high-skilled traders trade the c-asset.

In addition, this material demonstrates a sense in which, for the r-asset, long positions

are more attractive than short positions. Consider first the benchmark case in which bid

and ask prices of the r-asset both equal the unconditional expected payoff qr. Then an

unskilled trader (α = 0) makes zero expected profits from both long and short trades, and

risk-aversion implies that both trades are unattractive. Indeed, the two trades are equally

unattractive, both yielding expected utility −κqr (1− qr).16 It follows that skill (α > 0)

is more valuable in avoiding losses for long positions in the r-asset than for “picking-up-

pennies” short positions. This can be seen for the extreme case of perfect skill (α = 1): for

16The long trade has expected utility of qr (1− P r
L)− (1− qr) (1 + κ)P r

L and the short trade has expected
utility of (1− qr)P r

S − qr (1 + κ) (1− P r
S).
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long positions, the probability of loss is reduced from 1 − qr to 0, while for short positions

the probability of loss is reduced from qr from 0. Numerical simulations illustrate that these

insights extend to equilibrium prices, and are not limited to the case of P r
L = P r

S = qr. In

particular, short “picking-up-pennies” trades in the r-asset are unattractive for unskilled risk-

averse agents, and considerable skill is required to render such trades attractive. Accordingly,

the minimum skill required for a risk-averse agent to benefit from a long position in the r-

asset is lower than the minimum skill required to benefit from a short position. The c-asset

exhibits a smaller difference between long and short positions; indeed, at qc = 1
2 and under

microfounded position limits such as (3), long and short positions are symmetric.

8.2 Alternative formulations of liquidity trade

Our assumptions on liquidity trade are economically natural in the sense that as we vary the

probability qr of the rare event, which coincides with the probability of an informed trader

getting a positive signal about this event, the probability of a liquidity trader buying the

asset also moves in exactly the same way. Intuitively, this can be motivated by the liquidity

traders wanting to insure against the event, and our construction of ψj is designed as a

natural way to model this. Because of this link between liquidity trade and the probability

of the rare event, our results on skill allocation are by no means immediate.

In contrast, in the literature, liquidity trade (also known as noise trade) is often modelled

as exogenous for simplicity. This presents problems for comparative statics because by

assumption, liquidity trade then cannot respond to variation in the exogenous parameters

even though the informal motivations for this trade, such as liquidity or hedging, suggest

that it should respond (Dow and Gorton, 2008). Nevertheless, we can consider how our

model behaves under the simpler assumption that liquidity trade is exogenous and does not

respond to changes in the probability of the rare event. In this alternative case, our results

that low-skill traders prefer the r-asset, and that the r-asset has a smaller absolute bid-ask

spread, follow almost immediately from assumptions. If the number of liquidity traders
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buying the r-asset is independent of the probability qr, then as the rare event becomes rare

and there are very few informed buy orders, a market-maker interprets a buy order as being

very likely to stem from a liquidity trader. So the ask price P r
L of the r-asset is very close

to the “fair” price qr, and even skilled traders with low skill can make profits. See Online

Appendix G for a formal analysis of this case.

A second alternative case is that liquidity trade responds to neither changes in the prob-

ability of the rare event, nor changes in the price (Online Appendix H). In this case, the

ask price of the r-asset also converges to the fair price because the relative frequency of liq-

uidity trades to informed trades becomes very large, although this convergence is partially

mitigated because informed trades grow larger as the price falls while liquidity trades are

assumed constant. Our results on skill allocation and on the comparing the absolute bid ask

spread across the r-asset and the c-asset remain. Finally, we note for completeness that if

liquidity trade depends on the probability of the rare event, but not on the asset prices, the

bid-ask spread on the r-asset does not go to zero, so our results on skill allocation remain.

9 Conclusion

One of the main functions performed by the financial sector is forecasting future events.

Many observers have expressed concern that, as they perceive it, the majority of forecasting

activity is devoted to forecasting frequent but relatively unimportant events. In this paper

we analyze a simple equilibrium model of the number and skill of financial sector participants

who are predict different types of events. The key feature of our model is that it combines

equilibrium analysis of the financial market, using a standard Glosten and Milgrom (1985)

model, with equilibrium analysis of the labor market, using a standard Roy (1951) model.

Our main result is the following prediction: individuals with higher skill trade the com-

mon event asset, while individuals with less skill trade the rare event asset. Moreover,

because this leads to more informed trading in the common event asset, the bid-ask spread
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for this asset is higher. In other words, trades on the frequent event are more informa-

tive. Our prediction on the allocation of skill matches perceptions that a lot of forecasting

“talent” is devoted to forecasting frequent events. It is also consistent with the view that

many standard trading strategies (e.g., the carry trade, selling out-of-the-money put options)

are “nickels in front of steamroller strategies” that are typically carried out by people with

mediocre talents.

The bid-ask spread prediction is easiest to apply to bonds (or corresponding CDS), as

the binary payoff assumption of our model is a good approximation of their payoff structure.

Our model predicts that low-rated bonds have larger bid-ask spreads than high-rated bonds.

This is consistent with evidence from both sovereign and corporate bond markets.

Finally, we show that the endogenous distribution of talent across different types of assets

reduces financial markets’ ability to predict future rare events. Specifically, we show that

financial markets produce less information about rare events compared to a counterfactual

in which the people trading rare and common assets are exogenously interchanged.
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A Proofs of results stated in main text

Proof of Lemma 1: We first compute prices under the conjecture that any skilled trader

who trades j-asset takes both long and short positions; and then confirm this conjecture.

Under this conjecture:

E
[

buys|ψj
]

= qjλjhj
L

(

P j
L

)

+

ˆ

(

α1ψj≤qj + (1− α) qj
)

µj (dα)hj
L

(

P j
L

)

=
(

qjλj + Aj
(

1ψj≤qj − qj
)

+ qjN j
)

hj
L

(

P j
L

)

E
[

sells|ψj
]

=
(

1− qj
)

λjhj
S

(

P j
L

)

+

ˆ

(

α1ψj>qj + (1− α)
(

1− qj
))

µj (dα)hj
S

(

P j
S

)

.

=
((

1− qj
)

λj + Aj
(

1ψj>qj −
(

1− qj
))

+
(

1− qj
)

N j
)

hj
S

(

P j
S

)

.

Hence from (1) and (2),

P j
L = qj

qjλj + Aj (1− qj) + qjN j

qjλj + qjN j
= qj

(

1 +
Aj

λj +N j

1− qj

qj

)

(A-1)

P j
S = qj

(1− qj) λj − Aj (1− qj) + (1− qj)N j

(1− qj) λj + (1− qj)N j
= qj

(

1−
Aj

λj +N j

)

. (A-2)

Substituting for Xj in expressions (A-1) and (A-2) yields prices (9) and (10).

Note that substituting for prices (9) and (10) in the profit expression (4), profits per unit

conditional on receiving buy and sell signals rewrite as follows:

α+ (1− α) qj − P j
L =

(

1− qj
)

(

α−
Aj

λj +N j

)

=
(

1− qj
) (

α−Xj
)

P j
S − (1− α) qj = qj

(

α−
Aj

λj +N j

)

= qj
(

α−Xj
)

.

Hence the minimum skill level required to profitably buy the j-asset after observing signal

sj ≤ qj is Xj, and similarly, the minimum skill level required to profitably sell the j-asset

after observing signal sj > qj is Xj. Hence any skilled trader who trades the j-asset takes

both long and short positions. QED
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Proof of Proposition 1: We sketch the approach in the main text preceding Proposi-

tion 1. Formally, we construct a correspondence ξ : [0, 1]4 → [0, 1]4 as follows. For any

(N r, N c, Ar, Ac) ∈ [0, 1]4, define xj (N r, N c, Ar, Ac) ≡ min
{

Aj

λj+Nj , 1
}

for j = r, c. Let M be

the set of measures on [0, 1]. Then define

ξ (N r, N c, Ar, Ac) ≡ {(nr, nc, ar, ac) : ∃
(

µr, µc, µ0
)

∈ M3 such that
(

nj, aj
)

=

(
ˆ

µj (dα) ,

ˆ

αµj (dα)

)

and µr,µc,µ0 satisfy the equilibrium conditions 1(a) and 1(b) if for j = r, c

ask and bid prices are P j
L=qj+

(

1− qj
)

xj (N r, N c, Ar, Ac)

and P j
S = qj − qjxj (N r, N c, Ar, Ac)}.

To establish equilibrium existence we apply Kakutani’s fixed point theorem. To do so, we

need to verify that ξ is closed,17 with non-empty convex compact values.

For prices P j
L=qj+(1− qj)Xj and P j

S = qj − qjXj, a trader α makes profits (11) from

the j-asset. In particular, profits are 0 for skill α ≤ Xj, corresponding to doing nothing; and

linear and strictly increasing in skill α ≥ Xj. So it is immediate that either (i) other than

at at most a single skill level, traders have a strict preference over the choices of trading

the r- versus c-asset, or (ii) for all α above some critical value X , traders are indifferent

between trading the r- and c-asset, and strictly prefer doing so to doing nothing. For

use below, note that a necessary (but not sufficient) condition to be in case (ii) is that

xr (N r, N c, Ar, Ac) = xc (N r, N c, Ar, Ac).

In case (i), ξ (N r, N c, Ar, Ac) is a singleton, and hence trivially non-empty, convex, and

compact valued. For use below, note that there exist cutoffs β1 , β2, β3 with (β1, β2) ∩

(β2, β3) = ∅ and [β1, β2] ∪ [β2, β3] = [min {xr (N r, N c, Ar, Ac) , x (N r, N c, Ar, Ac)} , ᾱ] such

that

ξ (N r, N c, Ar, Ac) =

{(
ˆ β2

β1

µ (dα) ,

ˆ β3

β2

µ (dα) ,

ˆ β2

β1

αµ (dα) ,

ˆ β3

β2

αµ (dα)

)}

. (A-3)

17If a correspondence maps into a compact set, and is closed-valued (as is the case here, see proof below),
then it is closed if and only if it is upper hemi-continuous; see Border (1985).
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In words: all traders with skill above min {xr (N r, N c, Ar, Ac) , x (N r, N c, Ar, Ac)} trade one

of the two assets, and for each asset, the set of traders who trade it is a (possibly degenerate)

interval.

In case (ii), ξ (N r, N c, Ar, Ac) is not a singleton. Convexity follows straightforwardly from

the possibility of taking the convex combination of different allocations of traders across the

r- and c-assets. To establish compactness, for any X ∈ [0, 1] and nr ∈
[

0,
´

X
µ (dα)

]

de-

fine (uniquely) α̂1 (nr, X) and α̂2 (nr, X) by
´ α̂1(nr,X)

X
µ (dα) =

´

α̂2(nr,X) µ (dα) = nr, and

A (nr, X) =
[

´ α̂1(nr ,X)

X
αµ (dα) ,

´

α̂2(nr,X) αµ (dα)
]

. In words: α̂1 (nr, X) corresponds to

achieving a target number of traders nr trading the r-asset by choosing the least skilled

group possible in [X, ᾱ], while α̂2 (nr, X) corresponds to choosing the most skilled group.

Compactness follows from the following claim, which we prove further below.

Claim: If ξ (N r, N c, Ar, Ac) is not a singleton, then there exists X = xr (N r, N c, Ar, Ac) =

xc (N r, N c, Ar, Ac) such that

ξ (N r, N c, Ar, Ac) = {(nr, nc, ar, ac) : nr ∈

[

0,

ˆ

X

µ (dα)

]

, ar ∈ A (nr, X) ,

nc =

ˆ

X

µ (dα)− nr, ac =

ˆ

X

αµ (dα)− ar}. (A-4)

Finally, closedness of ξ follows from (A-3) and (A-4), combined with the fact that β1 ,β2,

β3 in (A-3) and min {xr (N r, N c, Ar, Ac) , x (N r, N c, Ar, Ac)} are all continuous functions of

(N r, N c, Ar, Ac).

Proof of claim: As noted, ξ (N r, N c, Ar, Ac) is not a singleton if and only if xr (N r, N c, Ar, Ac) =

xc (N r, N c, Ar, Ac), and moreover, the expected profits (11) from trading the two assets ex-

actly coincide for all skill levels α when evaluated at Xr = Xc = xr (N r, N c, Ar, Ac). For

the remainder of the proof of the claim, let X = xr (N r, N c, Ar, Ac). Hence the number of

traders trading either the r-asset or the c-asset, and the aggregate skill of these traders, are
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respectively

nr + nc =

ˆ

X

µ (dα) (A-5)

ar + ac =

ˆ

X

αµ (dα) . (A-6)

Consequently, (nr, nc, ar, ac) ∈ ξ (N r, N c, Ar, Ac) only if nr ∈
[

0,
´

X
µ (dα)

]

and (A-5) and

(A-6) both hold, and moreover, ar ∈ A (nr, X), establishing that ξ (N r, N c, Ar, Ac) is a subset

of the RHS of (A-4). To establish that (A-4) holds with equality, simply note that for any

nr ∈
[

0,
´

X
µ (dα)

]

one can vary α1 continuously from X to α̂1 (nr, X) while simultaneously

continuously increasing α2 from α̂2 (nr, X) to satisfy

nr =

ˆ α1

X

µ (dα) +

ˆ

α2

µ (dα)

and that by doing so the quantity

ˆ α1

X

αµ (dα) +

ˆ

α2

αµ (dα)

varies continuously from
´

α̂2(nr ,X) µ (dα) to
´ α̂1(nr ,X)

X
αµ (dα), i.e., covers all values in Â (nr, X),

completing the proof of the claim. QED

Proof of Lemma 2: Suppose to the contrary that there exists some sequence {qr} such

that qr → 0 and the associated Xr → 0.

First, consider the case in which Xc stays bounded away from 0, by xc say. But then

for any Xr < xc, traders in the skill interval [Xr, xc] certainly trade the rare asset. It

follows that as Xr → 0, the mass of skilled traders N r trading the r-asset is bounded

below by µ
([

1
2x

c, xc
])

, which in turn (using (8)) implies that Xr is bounded away from 0, a

contradiction.

Second, consider the case in which Xc → 0 for some subsequence. So along this subse-
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quence, the mass of skilled traders who trade one of the assets approaches 1, i.e., N r+N c → 1.

Hence there exists a subsequence in along which at least one of N r and N c is bounded away

from 0, which in turn implies (by (8)) that at least one of Xr and Xc is bounded away from

0. This contradicts Xc +Xr → 0, completing the proof. QED

Proof of Corollary 2: From Lemma 2, there exists x > 0 such that Xr ≥ x even as as

qr → 0. Since Ar ≤ N r, it follows that Ar

λr+Ar ≥ Ar

λr+Nr ≥ x, and hence that there exists A

such that Ar ≥ A even as as qr → 0. QED

Proof of Lemma 3: By Lemma 2, as qr → 0, the term qr (1− qr)hr
L (q

r + (1− qr)Xr) in

equation (12) approaches 0. The remaining term qr (1− qr) hr
S (q

r − qrXr) can be written

1−qr

1−Xr qr (1−Xr)hr
S (q

r (1−Xr)), of which qr (1−Xr)hr
S (q

r (1−Xr)) approaches 0 as qr →

0 by Assumption 2 while 1−qr

1−Xr is bounded above since Xj ≤ 1
1+λj

(because Aj ≤ N j). QED

Proof of Proposition 2: Note first that, for all qr, by (12) the marginal value of skill in

the c-asset is bounded below by

qc (1− qc) min
X̃∈[0, 1

1+λc ]
hc
L

(

qc + (1− qc) X̃
)

> 0.

In contrast, from Lemma 3 we know the marginal value of skill in the r-asset approaches 0.

To establish Xr < Xc when qr is small, suppose to the contrary that Xr ≥ Xc even as

qr grows small. From the above comparison of the marginal value of skill, it follows that

no-one trades the r-asset for qr sufficiently small (since the payoff functions are linear and

upward sloping, and the payoff for the r-asset has a larger intercept and a smaller slope).

But then Xr = 0, which contradicts Lemma 2 and so establishes that Xr < Xc.

Given Xr < Xc and the comparison of the marginal value of skill, the existence of a

cutoff skill level α̂ is immediate.

Finally, α̂ > Xc because a trader with skill α = Xc has a strictly positive payoff from

trading the r-asset but a zero payoff from trading the c-asset; and α̂ < ᾱ because otherwise
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Ac = 0, implying Xc = 0, a contradiction. QED

Proof of Proposition 3: Write λ for the common value of λr and λc. For any x ∈ (0,α],

define f (x) as the unique solution in (0, x) to

f (x)

(

λ+

ˆ x

f(x)

g (α) dα

)

−

ˆ x

f(x)

αg (α) dα = 0.

The existence of f (x) follows from the fact that

z

(

λ+

ˆ x

z

g (α) dα

)

−

ˆ x

z

αg (α) dα

is strictly negative at z = 0 and strictly positive at z = x. Uniqueness follows from the fact

that differentiation implies that this same function is strictly increasing in z. Moreover, and

for use below, note that

f ′ (x)

(

λ+

ˆ x

f(x)

g (α) dα

)

+f (x) g (x)−f (x) f ′ (x) g (f (x))−xg (x)+f ′ (x) f (x) g (f (x)) = 0,

and hence

f ′ (x) =
g (x) (x− f (x))

λ+
´ x

f(x) g (α) dα
=

f (x) g (x) (x− f (x))
´ x

f(x) αg (α) dα
.

Define

X̄c = f (α)

X̄r = f
(

X̄c
)

,

so that

X̄c =

´ α

X̄c αg (α) dα

λ+
´ α

X̄c g (α) dα
(A-7)

X̄r =

´ X̄c

X̄r αg (α) dα

λ+
´ X̄c

X̄r g (α) dα
. (A-8)
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From the observations about the marginal value of skill in the proof of Proposition 2, we

know that as qr → 0, Xc → X̄c, Xr → X̄r and α̂→ X̄c. So to establish the result, we show

ˆ α

X̄c

αg (α) dα >

ˆ X̄c

X̄r

αg (α) dα,

or equivalently,
ˆ α

f(α)

αg (α) dα >

ˆ X̄c

f(X̄c)
αg (α) dα.

Since α > f (α) = X̄c, it suffices to show that
´ x

f(x) αg (α) dα is increasing in x, or equiva-

lently,

xg (x)− f ′ (x) f (x) g (f (x)) > 0,

which substituting in the earlier expression for f ′ (x) is equivalent to

xg (x) >
f (x) g (x) (x− f (x))
´ x

f(x) αg (α) dα
f (x) g (f (x)) ,

i.e.,

x

ˆ x

f(x)

αg (α) dα > f (x)2 g (f (x)) (x− f (x)) .

This inequality is implied by (15), completing the proof. QED

Proof of Proposition 4: First note that when traders who trade the c-asset in equilibrium

are exogenously reallocated to trading the r-asset, they are happy to actively trade the r-

asset. This follows because (by Lemma 1), the minimum skill required to profitably trade the

r-asset after the exogenous switch coincides with the minimum skill required to profitably

trade the c-asset before the switch.

The result then follows from the following claim:

Claim: The Blackwell informativeness of the aggregate order flow in the r-asset is increasing

in the aggregate skill A of the people actively trading the r-asset.

Proof of claim: Let ωr
0 and ωr

1 respectively denote the events that the r-asset does not pay
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off, ψr > qr and that it does pay off, ψr ≤ qr. Let H denote the distribution function of

λrL. As discussed in the main text, if aggregate skill A actively trades the r-asset, then the

information content of the aggregate order flow of the r-asset with respect to ω ∈ {ωr
0,ω

r
1} is

the same as the information content of A1ω=ωr
1
+ λrL. Let F (·;ω, A) denote the distribution

function of A1ω=ωr
1
+ λrL.

Evaluating, F (y;ω, A) = H
(

y −A1ω=ωr
1

)

and F−1 (t;ω, A) = H−1 (t) + A1ω=ωr
1
.

Consider any pair of aggregate skill levels A and Ã > A. Hence

F−1
(

F (y;ω, A) ;ω, Ã
)

= H−1
(

H
(

y − A1ω=ωr
1

))

+ Ã1ω=ωr
1
= y +

(

Ã− A
)

1ω=ωr
1
.

Consequently, for any y,

F−1
(

F (y;ωr
1, A) ;ω

r
1, Ã
)

≥ F−1
(

F (y;ωr
0, A) ;ω

r
0, Ã
)

,

i.e., the r-asset order flow is more informative in the Lehmann sense (Lehmann 1988) if it

is actively traded by a set of people with aggregate skill Ã rather than A. Since the density

of λrL is log-concave, the distribution function F (y;ω, A) has the monotone likelihood ratio

property. Since {ωr
0,ω

r
1} is a binary set, it follows from Proposition 1 in Jewitt (2007) that an

increase in aggregate skill A makes the r-asset order flow more informative in the Blackwell

sense (Blackwell 1953), completing the proof of the claim, and hence the proof. QED

42



B Explicit calculation of payoffs from trading bonds

As noted in the main text, our model applies to bonds. A bond should be viewed as

a combination of a long position in a risk free asset combined with a short position in

the j-asset. This assumes the approximation of zero recovery in default. To make this

interpretation explicit, here we verify that profits from trading a bond coincide with profits

from trading the j-asset in our analysis.

Recall that we denote the ask and the bid prices for the j-asset by PL and PS respectively.

Viewing the bond as a long position in the risk free asset, which has a price of 1, combined

with a short position in the j-asset, its ask price is 1− PS (the price to take a long position

in the bond). Its bid price is 1 − PL. Given unlimited size positions in the risk free asset,

then the binding position limits are hS (PS) for the long position in the bond and hL (PL)

for the short position. This assumes that position limits are set so that the probability of

default on the largest permissible long position in the bond is the same as the probability of

default on the largest permissible short position in the the j-asset (for example, default-free

position limits (3)).

A skilled trader with skill α buys the bond (i.e., shorts the underlying risky asset) after

observing a signal s > q and sells the bond (i.e., is long the underlying risky asset) after

observing a signal s ≤ q. The probability of buying the bond, i.e. signal s > q, is (1 − q)

and selling the bond, i.e. signal s < q, is q.

Conditional on signal s > q, the bond defaults with probability (1− α) q. Conditional on

signal s ≤ q, the bond defaults with probability α+ (1− α) q. A trader who buys the bond

obtains the face value, pays the price, and then loses the face value in the event of default.

A trader who sells it short gets the price, minus the face value, plus gains the face value in

the event of default. So the trader’s expected payoff is
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(1− q)hS (PS)max {0, 1− (1− PS)− (1− α) q}

+ qhL (PL)max {0, (1− PL)− 1 + (α + (1− α) q)}}

This expression coincides with expression (4).
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