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Abstract

We give approximation algorithms and inapproximability results
for a class of movement problems. In general, these problems in-
volve planning the coordinated motion of a large collection of ob-
jects (representing anything from a robot swarm or firefighter team
to map labels or network messages) to achieve a global property
of the network while minimizing the maximum or average move-
ment. In particular, we consider the goals of achieving connec-
tivity (undirected and directed), achieving connectivity between a
given pair of vertices, achieving independence (a dispersion prob-
lem), and achieving a perfect matching (with applications to mul-
ticasting). This general family of movement problems encompass
an intriguing range of graph and geometric algorithms, with several
real-world applications and a surprising range of approximability.
In some cases, we obtain tight approximation and inapproximabil-
ity results using direct techniques (without use of PCP), assuming
just thatP 6= NP.

1 Introduction

Consider a group of firefighters surrounding a forest fire.
Each firefighter is equipped with a reliable but short-range
radio (walkie-talkie) as well as limited connectivity to a
satellite (or other central location) for triangulating and shar-
ing the approximate positions of firefighters. To form an
effective communication network (for voice or data traffic),
the firefighters’ radios must form a connected graph. This
scenario naturally leads to the following problem: given the
current locations of the firefighters, find the minimum dis-
tance (time) required for each firefighter to move to reach a
configuration that induces a connected radio network. More
precisely, we wish to minimize the maximum movement of
the firefighters such that, in their final positions, any two fire-
fighters can talk to each other in the reliable radio network,
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possibly using multiple hops.
Of course, this playful description of the problem is

rhetorical: in reality, the objects are not firefighters but are,
say, autonomous robots with limited wireless connectivity
and limited mobility in the field because of energy and
resource constraints, so they wish to minimize the use of
these resources to form a reliable radio network. See, e.g.,
[CHP+04a, CHP+04b, BDHR05] for descriptions of such
practical scenarios.

The problem described above is one example of a natu-
ral broader family of problems, calledmovement problems,
which we study systematically in this paper. In particular, the
firefighting problem can be abstracted into a problem called
ConMax: minimize maximum movement to reach connec-
tivity. This basic connectivity problem has many variations.
For example, ConSum asks to minimize the total movement,
which may be useful for reducing average power consump-
tion; while ConNum asks to minimize the number of fire-
fighters (robots) that have to move. In DirConMax, and anal-
ogously DirConSum and DirConNum, the radio connectivity
is not necessarily symmetric and forms a directed network,
e.g., because different radios have different power levels, and
the goal is to ensure that everyone can receive messages from
a fixed root (the captain). In PathMax, PathSum, and Path-
Num, the goal is to re-arrange the objects to connect two
specified locations.1

Many more variations arise from changing the desired
property of the final configuration. In general, for a specified
propertyP of configurations of objects, the goal of a move-
ment problem is to minimize the (maximum or total/average)
movement in a motion that ends with a configuration sat-
isfying propertyP . The objects can be represented either
as points or equivalently bodies that can only be translated,
say in the plane, or as pebbles placed on the vertices of a
graph that can move along edges. Many problems in this
family arise naturally in the context of robotics, particularly
in organizing the behavior of swarms of robots (see, e.g.,
[HAB+03, LaV06, RW95, SPS03]).

A simple version of the movement problem iscolloca-
tion, where the goal is to move all objects to a common lo-

1For example, the firefighters might want to chain together their water
hoses from a fire hydrant to the fire.
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cation. In this case, we obtain two classic problems: when
minimizing the maximum movement, we have the 1-center
problem; when minimizing the total movement, we have
the 1-median problem. These problems have well-known
polynomial-time exact solutions.

Another interesting version of the movement problem
is dispersion, where the goal is to distribute the objects in
order to guarantee a minimum pairwise separation between
the objects. In the context of a radio network, this goal is
equivalent to guaranteeing that the radio network forms an
empty graph or an independent set. Thus, we refer to this
problem as IndMax, IndSum, or IndNum according to the
objective function. This problem effectively asks to spread
out the objects (e.g., robots) while keeping them as close as
possible to their original locations. The problem also has
applications to map labeling [DMM+97, JBQZ04, SW01,
JQQ+03], where the goal is to find placements of labels as
close as possible to the specified features of the map such
that the labels do not overlap each other (so their centers are
sufficiently separated).

Another version of the movement problem that arises in
the context of broadcasting or multicasting is to move the
objects into nearby pairs so that these pairs can exchange in-
formation. More precisely, in MatchMax, MatchSum, and
MatchNum, the goal is to minimize the movement of the ob-
jects to a position having a perfect matching of the objects
such that each matched pair can communicate (i.e., the ob-
jects are within distance1 of each other). This problem is
essentially a mobile version of the pseudo-matching prob-
lem (also known as path-matching) considered in the context
of broadcasting and multicasting in cut-through routed net-
works [CFKR98, Coh98, GHMM02]. The MatchMax prob-
lem is also closely related to one “round” of the freeze-tag
problem [ABF+02, ABG03, SABM04] in which a swarm of
mobile robots must collectively “wake up”, starting from a
single awake robot, and moving awake robots next to sleep-
ing robots to awaken them.

Several of the problems considered in this paper can
be viewed as considering the extent to which we exploit
the mobility of existing resources to achieve desired global
properties of the network such as connectivity. Related to
this endeavor is work that considers how to augment net-
works (consisting of nonmobile sensors) by adding addi-
tional resources to achieve such global properties; see, e.g.,
[BDHR05, CHP+04a, CHP+04b]. In fact, we can view the
class of movement problems as strictly more general than
these augmentation problems, by imagining additional mo-
bile resources initially “at infinity” and the goal is to min-
imize the total movement of these resources (and therefore
minimize the number of resources moved).

1.1 Motion Problems and Model. Before we describe
our specific results, we formally define the model and the

movement problems we consider.
The three general families of problems we consider

areminimum maximum movement to propertyP, minimum
total movement to propertyP, and minimum number of
movements to propertyP. In all cases, we are given an
(undirected or directed) graphG = (V,E) with |V | = n
vertices,m pebbles, and a propertyP on “configurations”. A
configurationis a function assigning each pebble to a vertex
of V ; more than one pebble can be on a single vertex. We say
that each such assigned vertex isoccupiedby a pebble. We
are given aninitial configurationfor the pebbles. Amotion
assigns a pathπ(p) in the graphG for each pebblep, starting
at the vertex specified by the initial configuration and ending
at sometarget vertex, also called thetarget position. (Thus,
pebbles can move only along edges.) The length|π(p)| of
the path is themovementof p. The maximum movement
of a motion is the maximum length of any path; thetotal
movementis the total length of all paths; and thenumber of
movementsis the number of paths of nonzero length. The
target vertices of pebbles define thetarget configurationof
the motion. The goal is to find a motion that minimizes one
of these three measures subject to the target configuration
satisfying propertyP.

This graph-theoretic formulation of the movement prob-
lems also captures the geometric setting. For example, the
Euclidean planeis defined by an infinite graph whose ver-
tices correspond to pointsp = (px, py), and edges con-
nect two distinct verticesp andq whose Euclidean distance
d(p, q) =

√
(px − qx)2 + (py − qy)2 is less than1. This

definition models mobile nodes with unit communication ra-
dius. Because the graph is infinite, there is no notion of “n”,
so we definen = m, the number of pebbles.

We define the following propertiesP of interest and their
associated problems of minimizing maximum movement.
In most cases, we state a propertyP on graphs, implicitly
referring to the subgraph ofG induced by the vertices
occupied by pebbles in the configuration.

1. Minimum maximum movement to connectivity (Con-
Max): P is connectivity.

2. Minimum maximum movement to connectivity in di-
rected graphs (DirConMax):P is directed connectivity
from every vertex to some root vertex.

3. Minimum maximum movement tos-t connectivity
(PathMax):P is having a path between two certain ver-
ticess andt.

4. Minimum maximum movement to independence (Ind-
Max): P is that no two pebbles occupy the same or ad-
jacent vertices.

5. Minimum maximum movement to perfect matchability
(MatchMax): P is the property that there is a perfect
matching in the graph on pebbles in which two pebbles
p andq are adjacent precisely if their distancedG(p, q)
in G is at most1.
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Table 1: A summary of our results.

Analogously, we define the problems of minimizing to-
tal movement (ConSum, DirConSum, IndSum, PathSum,
and MatchSum) and minimizing the number of movements
(ConNum, DirConNum, IndNum, PathNum, and Match-
Num) to achieve the same properties. To our knowledge,
none of these problems have been considered before in an
algorithmic setting.

1.2 Our Results. We prove several approximation and in-
approximability results for the problems listed above, in
many cases obtaining tight bounds (assuming justP 6= NP).
The various movement problems show a surprising range of
difficulty, not consistent with the nonmovement (standard)
version of each problem. For example, testing connectiv-
ity of a graph is trivial, but DirConMax and ConSum are
Ω(n1−ε)-inapproximable, while the best approximation so
far for ConMax isO(

√
m/OPT) in a graph or in the Eu-

clidean plane, and we give evidence that even the geometric
scenario is difficult. On the other hand, we give an addi-
tive O(1)-approximation for IndMax in the Euclidean plane,
even though the nonmovement version (independent set) is
very hard for graphs and not known to be solvable exactly in
the Euclidean plane. Yet some movement problems such as
MatchMax turn out to have polynomial-time solutions. Our
hardness results are particularly strong, yet they do not use
techniques such as PCP and thus avoid any higher-level com-
plexity assumptions, making them of independent interest.

We focus primarily on the maximum-movement prob-
lems, proving various approximability and inapproximabil-
ity results in Sections 2, 3, and 4. We then consider the
total-movement versions of the problems in Section 5. The
number-of-movements versions tend to be less interesting
because there is little correlation between a pebble’s initial
and final position, so we omit the details from this extended
abstract. Table 1 summarizes all of our results.

In the interest of space, several proofs are deferred to the
appendices.

2 Minimum Maximum Movement to Connectivity

We begin with the problem of ConMax, a well-motivated
problem as described in the introduction. To provide some
intuition about the problem, Figure 1 gives an example of a
challenging instance. Here there is a “global” solution using
maximum movement of1, but any “local” solution (such

as all pebbles approaching a common location) requires
maximum movement ofΩ(n).

Figure 1: Optimally moving the
pebbles (drawn as disks) into a
connected configuration requires a
global solution (drawn with arrows).

It is also not hard
to see that the prob-
lem is NP-complete
in general, even to ap-
proximate better than
a factor of2. We can
reduce from Hamilto-
nian Path as follows.
Given a graphG =
(V,E), we subdivide
each edge inE into a path of three edges, and attach a new
leaf vertex to each vertex inV . We place two pebbles on
each vertex inV and we place one pebble on each added
leaf. Any solution to this instance of ConMax of maximum
movement1 can move the pebble on each leaf to its neigh-
boring vertex inV , and must move the two pebbles on each
vertex in V toward neighboring vertices to induce a con-
nected subgraph. Such a solution corresponds to a connected
maximum-degree-2 subgraph inG that visits every vertex
in V , i.e., a Hamiltonian path inG.

2.1 O(
√

m/OPT)-Approximation for ConMax. In
this section we develop anO(

√
m/OPT)-approximation al-

gorithm for ConMax, wherem is the number of pebbles.
(Note thatm can be much smaller thann.) In particular, this
algorithm is anO(

√
n)-approximation algorithm if the initial

configuration places at most one pebble on each vertex. We
can also show how to convert this approximation algorithm,
or indeed any approximation algorithm for ConMax, to work
in the Euclidean plane at a small extra cost (a multiplicative
1 + ε factor in the approximation ratio).

THEOREM 2.1. There is anO(
√

m/OPT)-approximation
algorithm (and thus also anO(

√
m)-approximation algo-

rithm) for ConMax.

Given a subsetS of vertices in a graphG, thedth power
induced onS, denoted byGd[S], has vertex setS and has
an edge(u, v) between two verticesu, v ∈ S if and only if
there is a path inG betweenu andv with at mostd edges.

LEMMA 2.1. Consider an instance of ConMax problem,
consisting of a graphG and an initial configuration of
m pebbles, with an optimal solution of maximum move-
mentOPT. For any integerk between0 andm/2, there is a
subsetS of vertices ofG satisfying the following properties:

1. Every vertex inS is occupied by a pebble in the initial
configuration.

2. The shortest-path distance between any two distinct
vertices inS is greater than2k + 4OPT.

3. The(2k + 6OPT + 1)th power ofG induced onS is
connected.



4. Every vertexv in S has at least2k pebbles whose
shortest-path distance tov is at mostk + 2OPT.

5. For every vertexw occupied by a pebble in the initial
configuration, there is a vertexu in S whose shortest-
path distance tow is at most3k + 8OPT + 1.

Proof: We computeS via a greedy algorithm. InitiallyS is
the empty set, which satisfies Properties 1–4. In each step,
if there is a vertex whose addition toS would still satisfy
Properties 1–4, we add the vertex toS.

First we prove that the greedy algorithm computes a
nonempty setS, i.e., at the first step, there is a vertex we
can add it toS. Let T be a spanning tree of the (connected)
graph induced by the target configuration in the optimal
solutionOPT. Define acenterc of T to be a vertex ofT
that minimizes the maximum distance fromc to any vertex
of T . We claim thatc is within distancek of at least2k
target positions of pebbles, and thus the initial positionu
of any pebble whose final position isc is within distance
k + 2OPT of at least2k initial positions of pebbles, and
thereforeS = {u} satisfies Properties 1–4. The proof of this
claim divides into two cases. In Case 1, every vertex ofT
is within distancek of c, and thus the target positions of all
m pebbles are within distancek of c, proving the claim. In
Case 2, there is at least one vertex at distance exactlyk + 1
from c. In this case, we claim by induction onk that there
are at least2k vertices ofT within distancek of c. Note that
we remain in Case 2 even when considering smaller values
of k. In the base case,k = 0 and the claim is vacuous. In the
general casek > 0, by induction, there are at least2k − 2
vertices ofT within distancek − 1 of c. Because we are in
Case 2, there is at least one vertexv at distance exactlyk
from c, and at least one vertexw at distance exactlyk + 1
from c. If there are at least two vertices at distance exactly
k from c, then we have the claim. If vertexv is the only
vertex at distance exactlyk from c, then we argue thatc
cannot be a center. Movingc one step towardv decreases the
distance fromc to v, w, and any vertices ofT with distance
at leastk, in particular decreasingw’s distance ofk + 1,
while the distance fromc to all other vertices (which have
distance at mostk − 1) increases by at most1 and so the
distance remains at mostk. Therefore, this move decreases
the maximum distance fromc to any vertex ofT , contracting
centrality ofc.

Now consider the maximal setS output by the greedy
algorithm, and suppose for contradiction that some vertex
w is not within distance3k + 8OPT + 1 of its nearest
vertexs in S. (If there is more than one such vertexs, we
choose one arbitrarily.) For any vertexv, let NDv denote
the distance betweenv and its nearest vertex inS. Thus,
NDw > 3k + 8OPT + 1. Let w′ and s′ denote the
target positions for some pebble initially on vertexw and
for some pebble initially on vertexs, respectively, in the
optimal solutionOPT. Refer to Figure 2. LetP = 〈w′ =
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Figure 2: Path betweenw ands.

v′0, v
′
1, v

′
2, . . . , v

′
j = s′〉 be a path betweenw′ ands′ in the

(connected) graph induced by the target positions inOPT.
Let vi denote the initial position of some pebble whose target
position isv′i in OPT, making choices so thatv0 = w and
vj = s. Thus, the distance betweenvi andv′i is at mostOPT.
By the triangle inequality,NDvi

≤ NDvi+1 + 2OPT + 1.
BecauseNDv0 = NDw > 3k + 8OPT + 1, because
NDvj = NDs = 0, and becauseNDvi decreases by at
most2OPT + 1 each time we incrementi, there is an index
r such that2k + 4OPT < NDvr

≤ 2k + 6OPT + 1.
We claim that we can addvr to S while satisfying

Properties 1–4, contradicting the maximal choice ofS. By
our choice ofvr, we satisfy Properties 1–3. By the tri-
angle inequality, the distance betweenw andvr is at least
NDw −NDvr > (3k + 8OPT + 1)− (2k + 6OPT + 1) =
k +2OPT. Thus, the distance betweenw′ andv′r, namelyr,
is at leastk+2OPT−2OPT = k. Similarly, by the triangle
inequality, the distance betweenvr ands is at leastNDvr

−
NDs > 2k + 4OPT. Thus, the distance betweenv′r ands′,
namelyj−r, is at least2k+4OPT−2OPT = 2k+2OPT >
k. Therefore,v′r−k, v′r−k+1, . . . , v

′
r, . . . , v

′
r+k−1, v

′
r+k are

2k + 2 vertices along the pathP . The corresponding ver-
tices vr−k, vr−k+1, . . . , vr, . . . , vr+k−1, vr+k are occupied
by pebbles and have distance at mostk + 2OPT from vr.
Hence, we satisfy Property 4. 2

LEMMA 2.2. Given an instance of ConMax problem with
m pebbles and with an optimal solution of maximum move-
mentOPT, for any integerk between0 and m/2, there is
a polynomial-time algorithm to find a motion with maximum
movement at most5k + 14OPT + 2 + (6OPT + 1)m/(2k).

Proof: The algorithm proceeds as follows.

1. Find a subsetS of vertices ofG with the properties of
Lemma 2.1.

2. Move each pebble to its nearest vertex inS.

3. Let H be the(2k + 6OPT + 1)th power ofG induced
on S. By Property 3,H is connected, so letT be a
spanning tree ofH, and root it at an arbitrary vertex.

4. For each vertexv in S other than the root, move all but
one of the pebbles onv to occupy some of the vertices



on the path inG corresponding to the edge betweenv
and its parent in the treeT .

5. Let T ′ be the tree inG obtained by combining the paths
corresponding to the edges ofT . For every vertex of
T ′ that is unoccupied by a pebble, move all pebbles one
step inT ′ toward that vertex.

By Property 5, Step 2 moves each pebble at most3k +
8OPT + 1 steps. By Properties 2 and 4 of Lemma 2.1,
for every vertexs in S, there are at least2k pebbles that
are closer tos than to any other vertex inS. Thus, after
Step 2 of the algorithm, every vertexs in S is occupied
by at least2k + 1 pebbles. By Property 3, Step 4 moves
each pebble at most2k + 6OPT + 1 steps. After Step 4, at
most6OPT + 1 vertices of each path corresponding to an
edge ofT lack a pebble. Thus the treeT ′ in G has at most
|S|(6OPT + 1) vertices that lack a pebble. Each iteration
of the loop in Step 5 removes at least one of these vertices
at a cost of1. Thus Step 5 moves each pebble by at most
|S|(6OPT + 1) steps. But|S| is at mostm/(2k), because
we assign at least2k pebbles to each vertex inS and the
total number of pebbles ism. Therefore the total cost is
(3k+8OPT+1)+(2k+6OPT+1)+(6OPT+1)m/(2k) =
5k+14OPT+2+(6OPT+1)m/(2k), proving the lemma.

2

To prove Theorem 2.1, we first check whetherOPT is
zero, i.e., whether the pebbles already induce a connected
graph. Otherwise, we apply Lemma 2.2 withk =

√
m/x

wherex is a guessed value ofOPT. With k =
√

m/OPT
(or with the best guess ofx), we obtain an approximation
ratio ofO(

√
m/OPT).

Finally, it is worth mentioning that ConMax can be
solved exactly on special classes of graphs. The follow-
ing solution for the case of trees interestingly uses bipartite
matching as its main tool, not the usual dynamic program-
ming on trees.

THEOREM 2.2. Given a treeT and a configuration ofk
pebbles onT , ConMax can be solved in polynomial time.

2.2 O(
√

m/OPT)-Approximation for PathMax. Our
techniques can be extended to obtain the same approxima-
tion factor for connectivity between just two fixed verticess
andt. The previous approach does not apply directly to this
problem because not all of the pebbles need to be involved
in the solution; we can select an arbitrary subset of pebbles
to use for our path.

THEOREM 2.3. There is anO(
√

m/OPT)-approximation
algorithm (and thus also anO(

√
m)-approximation algo-

rithm) for PathMax.

It is easy to prove that PathMax is NP-hard via a
reduction from Hamiltonian Path.2

2.3 εm-Approximation for DirConMax. Next we con-
sider the directed version of ConMax, DirConMax, where
we obtain nearly tight results: anεm-approximation and
m1−ε inapproximability assumingP 6= NP. Our approx-
imability result is based on another extension of our tech-
niques from ConMax.

THEOREM 2.4. For any integer constantk, there is an
nk+O(1) algorithm that, given an instance of DirConMax
with m pebbles and rootr, finds a motion with maximum
movement at mostOPT + 2bm/kc. (In particular, this
algorithm is a2bm/kc-approximation.)

2.4 Ω(n1−ε) Inapproximability for DirConMax. Next
we prove that theεn-approximation algorithm is essentially
tight, assuming only thatP 6= NP without the use of PCP-
type arguments:

THEOREM 2.5. For every constantε, 0 < ε < 1, it is NP-
hard to approximate DirConMax within ann1−ε factor.

Proof: We prove that, if DirConMax can be approximated
within n1−ε, then set cover can be solved in polynomial
time. LetS = (E,C, k) be an instance of set cover, where
E = {e1, e2, . . . , em} is the universe of elements,C =
{c1, c2, . . . , cs} is the set of subsets ofE, andk is an integer.
Without loss of generality, assume thatm ≥ s; otherwise,
we can places−m dummy elementsem+1, . . . , es in every
subset inC.

We convert the set-cover instanceS into a graphG as
follows; refer to Figure 3. LetL bem2/ε. We start with a
root vertexr in G and then, for every subsetci ∈ C, we add
a vertexvi to G. Then, for eachvi, we add a directed pathPi

of lengthL+1 from vi to r. Label the vertices along pathPi

from source to destination asvi, ui,1, ui,2, . . . , ui,L, r. For
eachj, 1 ≤ j ≤ L, we add a vertexsj and we add an edge
from sj to ui,j for eachi, 1 ≤ i ≤ s. We also add a vertex
s0 and we add an edge froms0 to vi for eachi, 1 ≤ i ≤ s.
For every elementei ∈ E, we add two verticeswi andw′i
to G, and we add an edge fromw′i to wi. Finally, we add an
edge fromwi to vj precisely whenei ∈ cj . This graph has
n = 1 + (s + 1)(L + 1) + 2m = O(m2/ε+1) vertices. In
our instance of DirConMax, we place one pebble on eachw′i

2Duplicate the vertices of a graphG into n = |V (G)| levels, for a
total ofn2 vertices, and adding edges between every pair of adjacent levels
corresponding to edges ofG, for a total of2|E(G)|(n−1) edges. For each
vertexv of G, add a path of lengthn from each copy ofv to a common new
vertexv̂, at which we place a single pebble. Finally, connect the sources to
every vertex in the first level, and connect the sinkt to every vertex in the
last level; and attach to each ofs andt a path of lengthn, the end of which
has a single pebble.G has a Hamiltonian path if and only if we can move
each pebble to an instance of its corresponding vertex with a maximum
movement ofn, and construct a path froms to t.
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Figure 3: Reduction in Theorem 2.5.

and one pebble onr. We also placek pebbles on eachsi,
0 ≤ i ≤ L.

If S has a set coverC ′ = {cp1 , cp2 , . . . , cpk′} of size
k′ ≤ k, then we can connect the pebbles inG using a
maximum movement of1. Namely, we movek′ pebbles
from eachsi, 1 ≤ i ≤ L, to up1,i, up2,i, . . . , upk′ ,i. Then
we move the pebble fromw′j to wj for eachj, 1 ≤ j ≤ m,
and we movek′ pebbles froms0 to vp1 , vp2 , . . . , vpk′ .

Now we prove that, ifS has no set cover of size at
most k, then the maximum movement of any solution to
this instance of DirConMax is at leastm2/ε−1. Consider
a solution with maximum movement less thanm2/ε−1 and
let L′ bem2/ε−1. Because the pebble atr can never move,
the final positions of the pebbles must form a directed treeT
rooted atr. We call a pathPi semicompletedif ui,L′ is in T .
Let P ′ = {Pi1 , Pi2 , . . . , Pik′} be the set of semicompleted
Pi’s. We assert that the setC ′′ = {ci1 , ci2 , . . . , cik′} is a
set cover of sizek′ for the instanceS. Let fi be the final
position of the pebble starting onw′i. This vertexfi cannot
beui′,j for any i′ andj with 1 ≤ i′ ≤ s andL′ ≤ j ≤ L.
So the directed path fromfi to the rootr must visit some
vertex uij ,L′ along a semicompleted pathPij

for somej,
1 ≤ j ≤ k′. Thus,ei ∈ cij , and this property holds for
all i, 1 ≤ i ≤ m, so C ′′ is indeed a set cover of size
k′ for S. Now we prove thatk′ ≤ k, contradicting that
S has no such set cover. For eachj, 1 ≤ j ≤ k′, we
need at leastL − L′ pebbles to occupy the verticesuij ,j′ ,
L′ < j′ ≤ L. The total number of pebbles that can have a
final position ofui,j , where1 ≤ i ≤ s andL′ < j ≤ L, is
less thankL. Thusk′(L − L′) < kL, i.e.,1 − 1/m < k/k′.
Becausek′ ≤ s ≤ m, 1 − 1/k′ ≤ 1 − 1/m, and therefore
1 − 1/k′ < k/k′, i.e.,k′ ≤ k.

On the other hand, if there is a set cover of size at
most k, then there is a solution with maximum move-
ment 1. Thus any solution to DirConMax with maxi-
mum movement at leastL′ has an approximation ratio at
least L′ = m2/ε−1, which is asymptotically larger than
m2/ε+1−2−ε = (m2/ε+1)1−ε = Θ(n1−ε). Therefore, we
can decide whether there is a set cover of size at mostk
by testing whether anO(n1−ε)-approximation algorithm for
ConSum produces a solution of maximum movement less
thanm2/ε−1. 2

3 Minimum Maximum Movement to Independence

It is NP-hard to decide whether IndMax even has a valid
solution: an instance has a solution precisely if the graph
has an independent set of sizem, the number of pebbles.
Thus, to obtain any approximability result, we must restrict
our attention to special family of graphs.

In this section we focus on a particularly useful case of
the Euclidean plane. This scenario has applications in the
fields of map labeling and sensor networks, as described in
the introduction. Recall that in this case we definen = m.
We use the notationd for a more general notion of Euclidean
distance: for a pointp and a finite setQ of points,d(p, Q)
denotes the minimum distanceminq∈Q d(p, q).

THEOREM 3.1. There is a polynomial-time algorithm solv-
ing IndMax in the Euclidean plane using maximum move-
ment at most the optimal plus1 + 1√

3
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Figure 4: Decomposition of the
plane into equilateral triangles.

The heart of our
approximation algo-
rithm is the triangular
lattice, illustrated in
Figure 4, in which ev-
ery two distinct ver-
tices have distance at
least 1. Thus, these
vertices induce an in-
dependent set of the plane. The vertex set is given by

A =
{

(i, j
√

3), (i + 1
2 , j

√
3 +

√
3

2 )
∣∣∣ i, j ∈ Z

}
.

Let C denote the decomposition of the plane into equilateral
triangles with side length1 induced by this lattice.

For a finite setR of points, we define two additional
concepts. LetNeighbor(R) denote the set of points inA
whose distance toR is at most1+ 1√

3
. LetCircle(R) denote

the union of disks centered at points inR with radius 1
2 . In

particular, if every two distinct points inR have distance at
least1, thenCircle(R) has area|R| · π

4 .

LEMMA 3.1. The optimal solution has maximum movement
at most2n − 2.



Proof: Suppose for contradiction that there is a pebble
x with initial position p and with target positionq in the
optimal solution, yetd(p, q) > 2n − 2. We definen points
r0, r1, . . . , rn−1 on the line segment fromp to q according
to d(p, ri) = 2i. The distance between any two of these
points ri and rj , i 6= j, is at least2, so any point can
have distance less than1 with at most one of these points
r0, r1, . . . , rn−1. By the Pigeonhole Principle, there is at
least one pointri that is not within distance1 of the target
position of any pebble other thanx. Thus we can change
the target position of pebblex to ri and obtain a valid
solution in which the movement ofx is at most2n − 2.
By induction, we can reduce the movement of every pebble
to at most2n − 2, giving us a solution with maximum
movement at most2n − 2, contradicting optimality of the
original solution.3 2

LEMMA 3.2. The number of points inA within distance at
most2n− 2 from an arbitrary pointp in the plane is at most
a polynomial function ofn.

Proof: Consider the squareS centered atp and with side
length4n− 4. All points ofA within distance2n− 2 from p
are in this square. Consider a decomposition ofS into a grid
of subsquares of side length12 . Because the distance between
each pair of points in such a subsquare is at most1/

√
2 < 1,

at most one point ofA can be in each subsquare. Thus the
number of subsquares is an upper bound on the number of
points ofA in S, which is an upper bound on the number of
points ofA within distance2n − 2 from p. The number of
subsquares is(4n − 4)2/( 1

2 )2 = O(n2). 2

LEMMA 3.3. Let CA andCB be two disks of radius1/
√

3
centered at pointsA andB, respectively. Letd = d(A,B)
be the distance betweenA andB. The area of intersection of

the two disksCA andCB is 2
3 arccos(d

√
3/2)−d

√
1
3 − 1

4d2.

�
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Figure 5:
Intersection of
the circles CA

andCB .

Proof: In Figure 5, we haveAC =
BC = AD = BD = 1/

√
3, AB =

d, ∠BAC = α. Thus, cos α =
AH/AC = (d/2)/(1/

√
3) =

d
√

3/2, so α = arccos(d
√

3/2).
Hence, the area of the pie wedge of
CA given by the angle∠DAC is 2α

2π ·
π
3 = 1

3α = 1
3 arccos(d

√
3/2). By

symmetry, the area of the pie wedge
of CB given by the angle∠CBD is the same. These pie
wedges overlap at precisely the intersection ofCA andCB .
Their union is the quadrangleABCD. Thus, the desired
area of intersection is the sum of the areas of the pie wedges,

3This argument can be improved to obtain a bound ofO(
√

n) on the
maximum motion, but it does not affect our main result.

2
3 arccos(d

√
3/2), minus the area of the quadrangleABCD.

Now CH =
√

AC
2 − (AB/2)2 =

√
1
3 − 1

4d2, so the area

of the quadrangleABCD is 1
2AB · CD = AB · CH =

d
√

1
3 − 1

4d2. Therefore, the desired area of intersection of

CA andCB is 2
3 arccos(d

√
3/2) − d

√
1
3 − 1

4d2 as desired.
2

Now we are ready to prove the main theorem.

Proof of Theorem 3.1: For i ∈ {1, 2, . . . , n}, let pi

and qi be the initial and target position of pebblei in
the optimal solutionOPT. BecauseOPT is a solution
to IndMax, we haved(qi, qj) ≥ 1 for all distinct i, j ∈
{1, 2, . . . , n}. Furthermore, the optimal solution minimizes
OPT = max1≤i≤n d(pi, qi) subject to this constraint. First
we prove that there is a polynomial-time algorithm to move
every pebble to a point ofA such that no two pebbles move
to the same point, and subject to minimizing the maximum
movementM . Then we prove that we can move the pebbles
from their target positions inOPT to points ofA so that no
two pebbles move to the same point and each pebble moves
at most1+ 1√

3
. Thus, our approximate solution of maximum

movementM satisfiesM ≤ OPT + 1 + 1√
3
.

The algorithm constructs a complete weighted bipartite
graphH = (X, Y,E). For i ∈ {1, 2, . . . , n}, we place
a vertexxi in X representing pebblei. By Lemma 3.1,
OPT ≤ 2n− 2. By the second part of the proof, the optimal
movementM to points ofA satisfiesM ≤ OPT+1+ 1√

3
≤

2n − 2 + 1 + 1√
3
. Thus, inM , no pebble moves more than

2n. For each pointp of A within distance2n−2 from the set
{p1, p2, . . . , pn} of initial positions, we place a vertex inYp.
By Lemma 3.2, the number of these points is polynomial in
n, so the graphH has polynomial size. For eachx ∈ X and
y ∈ Y , we set the weightw(x, y) = d(x, y). The algorithm
finds a perfect matching inH of minimum maximum weight.
For each edge(xi, yp) in the matching, we move theith
pebble to pointp of A. In this way, we move the pebbles
to points ofA such that no two pebbles move to the same
point using the minimum maximum movement.

Now we reach the heart of the proof: we prove that we
can transformOPT by moving each target position by at
most1 + 1√

3
such that every new target position is a point of

A and no two target positions are the same. We prove that
there is a perfect matching from the setQ = {q1, q2, . . . , qn}
of target positions inOPT to the points ofA such that the
distance between matched points is at most1+ 1√

3
. By Hall’s

Theorem, it suffices to show that, for each subsetR ⊆ Q,
|R| ≤ |Neighbor(R)|.

Consider a subsetR = {r1, r2, . . . , rm} ⊆ Q, and
the regionW = Circle(R). Because the distance between
every two points inR is at least1, Circle(R) has area
|R| · π

4 . Consider the setNeighbor(R) ⊆ A, and the



region V = Circle(Neighbor(R)). Again V has area
|Neighbor(R)| · π

4 . We prove that the area ofCircle(R)
is at most the area ofCircle(Neighbor(R)), which implies
|R| ≤ |Neighbor(R)|, completing the proof.

Consider a disk of radius1√
3

centered at each point ofR.
Define the regionS to consist of the equilateral triangles
of the decompositionC that intersect at least one of these
disks. The vertices of the triangles inS are the points of
Neighbor(R), because these vertices are the points ofA
within distance1 + 1√

3
from the points ofR.

� �

�

The common area is in shaded
Figure 6:

Next we prove that
Area(Circle(Neighbor(R))) ≥
Area(S) · π

2
√

3
. For each triangle

T in S, there are only three circles
of Circle(Neighbor(R)) that
intersect with it, those whose
centers are placed on the vertices
of T ;. see Figure 6. These
circles have areaπ8 in common
with T . Therefore, the ratio of
this common area to the area ofT is π

8 /
√

3
4 = π

2
√

3
. Because

this ratio is the same for every triangle inS, so is the
ratio Area(Circle(Neighbor(R)) ∩ S)/ Area(S) = π

2
√

3
.

Therefore,Area(Circle(Neighbor(R)))/ Area(S) ≥ π
2
√

3

or Area(Circle(Neighbor(R))) ≥ Area(S) · π
2
√

3

Next we prove thatArea(S) · π
2
√

3
≥ Area(Circle(R)),

which would prove the theorem. For each pointr in R, we
assign a regionRegion(r) contained inS of area at least√

3
2 such that every two regionsRegion(r) andRegion(s),

r 6= s, are disjoint. Because these regions pack a subset ofS,
we obtainArea(S) ≥ |R| ·

√
3

2 . Therefore,Area(S) · π
2
√

3
≥

|R| ·
√

3
2 · π

2
√

3
= |R| · π

4 = Area(Circle(R)).
It remains to assign to each pointr of R a region

Region(r). We do so according to the following algorithm:

1. For each pointr in R, initially set Region(r) to the
disk Region0(r) of radius 1√

3
centered atr. (Thus,

Region0(r) has areaπ3 .)

2. For two arbitrary pointsr and s in R, if Region0(r)
intersectsRegion0(s), omit half of their intersection
fromRegion(r) and omit the other half fromRegion(s)
according to the perpendicular bisector ofr ands, as
shown in the Figure 7.

Obviously, the resulting regions are pairwise disjoint and
each region is contained inS.

We prove that the sum of the areas omitted from
Region(r) is at mostπ3 −

√
3

2 , for each pointr in R; thus,

Region(r) keeps an area of at least
√

3
2 as desired. Let

e(r, s) = 1
2 Area(Region0(r) ∩ Region0(s)) be the area of

Region(r) omitted because ofRegion(s). (This definition

�

region(s)

omitted from region(r)

�

region(r)

omitted from region(s)

Figure 7: The omitted region from the disks.

actually overestimates the omitted area if multiple overlap-
ping regions are omitted.) Thus, our goal is to prove that∑

s 6=r∈R e(r, s) ≤ π
3 −

√
3

2 . For a fixed pointr in R, con-
sider the pointss of R that have a nonzero valuee(r, s). Sort
these points according to the angle of the ray fromr to s with
respect to thex axis, resulting in a sequences1, s2, . . . , sl.

We prove that e(r, si) + e(r, si+1) ≤(
1
3 −

√
3

2π

)
∠sirsi+1. Let a = d(r, si), b = d(r, si+1), and

c = d(si, si+1). Becauser, si, andsi+1 are points ofR,
we havea, b, c ≥ 1, and in particular,c2 ≥ 1. Because
e(r, si), e(r, si+1) 6= 0, we havea, b ≤ 2√

3
. By the Law

of Cosines, we havec2 = a2 + b2 − 2ab cos(∠sirsi+1),
and thus cos(∠sirsi+1) ≤ a2+b2−1

2ab , so ∠sirsi+1 ≥
arccos

(
a2+b2−1

2ab

)
. By Lemma 3.3, we have

e(r, si) = 1
2

(
2
3 arccos(a

√
3/2) − a

√
1
3 − 1

4a2
)

ande(r, si+1) = 1
2

(
2
3 arccos(b

√
3/2) − b

√
1
3 − 1

4b2
)

.

One can check algebraically that

1
2

(
2
3 arccos(a

√
3/2) − a

√
1
3 − 1

4a2 + 2
3 arccos(b

√
3/2)

−b
√

1
3 − 1

4b2
)
≤

(
1
3 −

√
3

2π

)
arccos

(
a2+b2−1

2ab

)
.

Thus,e(r, si) + e(r, si+1) ≤
(

1
3 −

√
3

2π

)
∠sirsi+1.

By summing the previous inequality, we obtain

e(r, s1) + e(r, s2) ≤
“

1
3
−

√
3

2π

”
∠s1rs2

e(r, s2) + e(r, s3) ≤
“

1
3
−

√
3

2π

”
∠s2rs3

...
...

e(r, sl) + e(r, s1) ≤
“

1
3
−

√
3

2π

”
∠slrs1

⇒ 2

lX
i=1

e(r, si) ≤
“

1
3
−

√
3

2π

”
2π

Therefore,
∑l

i=1 e(r, si) ≤
(

Π
3 −

√
3

2

)
as desired.

In summary, for eachR ⊆ Q, we have |R| ≤
|Neighbor(R)|, so there is a perfect matching fromQ to
Neighbor(Q); thus, we can move each pebble to a unique
point in A such that the maximum movement is at most
1 + 1√

3
. 2



4 Minimum Maximum Movement to Perfect
Matchability

In contrast to the difficult problems of ConMax and IndMax,
we show that minimizing movement does not make perfect
matching much harder: there is a polynomial-time algorithm
for MatchMax.

LEMMA 4.1. If two pebblesp andq are within distance1 in
the target configuration, then|π(p)|+ |π(q)| ≥ dG(p, q)−1,

and thusmax {|π(p)|, |π(q)|} ≥
⌈

dG(p,q)−1
2

⌉
.

Proof: Each step in the motion path ofp or q may decrease
dG(p, q) by at most1. Therefore the sum of the movements
of p andq must be at least their original distancedG(p, q)
minus their target distance of0 or 1. 2

THEOREM 4.1. There is a polynomial-time algorithm solv-
ing MatchMax.

Proof: We assume that the number of pebbles in each
connected component ofG is even; otherwise, no solution
exists. We can also consider each connected component
separately, so we assume without loss of generality thatG
is connected. Letp1, p2, . . . , p2n denote the pebbles.

Define the weighted complete undirected graphH as
follows. For each pebblepi we make a vertexvi in graphH.
For each edgee = {vi, vj} in H, we set its weightw(e)
to ddG(pi,pj)−1

2 e. Define themaximum weightw(M) =
maxe∈M w(e) of a perfect matchingM of H to be the
maximum weight of its edges.

Our algorithm computes a perfect matchingM in H
of minimum maximum weightw(M) (in polynomial time),
and converts this matching into a motion as follows. For
each edge{vi, vj} in the matchingM , we movepi by⌈

dG(pi,pj)−1
2

⌉
steps towardpj along a shortest path frompi

to pj in G, and we movepj by
⌈

dG(pi,pj)−1
2

⌉
steps towardpi

along the same shortest path. (Note that
⌈

dG(pi,pj)−1
2

⌉
≥ 0.)

Thus, after the motion,pi and pj are at distance at most
1 in G. The maximum movement in this motion is the
maximum weight of such a matched edge{vi, vj}, which
is preciselyw(M).

Now we argue that no solution to MatchMax has
maximum movement less thanw(M). By definition of
MatchMax, any solution induces a perfect matchingM ′

in the graphH (i.e., on the pebbles) with the property
that, in the target configuration, every two matched peb-
bles have distance at most1 in G. For every edgee =
{vi, vj} in this matchingM ′, by Lemma 4.1, we have that

max {|π(pi)|, |π(pj)|} ≥
⌈

dG(p,q)−1
2

⌉
= w(e). Therefore,

the maximum movement in the solution must be at least
maxe∈M ′ w(e) = w(M ′). But M was chosen to minimize

this lower boundw(M), so every solution must have max-
imum movement at leastw(M), proving optimality of our
strategy of maximum movementw(M). 2

5 Minimum Total Movement

In this section, we consider the variations of the movement
problems in which the goal is to minimize total movement
instead of maximum movement. For both ConSum and
MatchSum, we obtain tight results.

5.1 Connectivity: Ω(n1−ε) Inapproximability.

THEOREM 5.1. For every constantε, 0 < ε < 1, it is NP-
hard to approximate ConSum within ann1−ε factor.

5.2 Connectivity: Õ(min{n, m}) Approximation.
Note that O(nm)-approximation is trivial for ConSum,
wheren is the number of vertices andm is the number of
pebbles. If the pebbles already induce a connected graph,
then there is nothing to do. Otherwise, the optimal solution
has total motion at least1, and we can move allm pebbles to
any particular vertex using at mostm(n−1) total movement.

THEOREM 5.2. There is an O(min{n log n, m})-
approximation algorithm for ConSum.

5.3 Path Connectivity: O(n) Approximation.

THEOREM 5.3. There is anO(n)-approximation algorithm
for PathSum.

It is also easy to prove that PathSum is NP-hard via a
reduction from Hamiltonian Path.4

5.4 Perfect Matchability. Like MatchMax, the Match-
Sum variation can also be solved in polynomial time:

THEOREM 5.4. There is a polynomial-time algorithm solv-
ing MatchSum.

6 Conclusion

This paper makes a systematic study of movement prob-
lems which, despite connections to several practical prob-
lems, have not been studied before in theoretical computer
science. Among the problems we consider, we highlight one
open problem of primary concern: the approximability of
ConMax and PathMax. For directed graphs, we proved es-
sentially tight approximability and inapproximability results
for DirConMax, of roughlyΘ̃(n). However, for undirected
graphs, we obtained anO(

√
m/OPT) = O(

√
m) approx-

imation for ConMax and PathMax. Can these approxima-
tions be improved, or are there matching inapproximability

4Apply the same construction as Footnote 2.G has a Hamiltonian path
if and only if PathSum has a solution of total movementn(n + 2).



results? Figure 1 shows a difficult example which might be
extended to prove inapproximability for both problems.

It would also be interesting to consider more problems
in the practical scenario of the Euclidean plane, either for
improved approximation ratios compared to general graphs
or for problems that cannot be solved on general graphs.
In particular, in the latter category, we obtained an additive
O(1)-approximation for IndMax, but even the existence of
a multiplicative O(1)-approximation for IndMax remains
open. (Specifically, whenOPT = o(1), we lack good
approximations.)

Several other movement problems fit into our general
framework. One variation changes the notion of the graph
induced by a set of pebbles to include edges between pebbles
within a given fixed distanced. This variation models
the situation in which pebbles can communicate within a
fixed distanced, but they still move one unit at a time
(so we cannot simply take thedth power of the graph).
Another variation, thefacility-location movement problem,
introduces two types of pebbles—clients and servers—and
the target property is that every client is collocated with
some server. If only the clients are permitted to move, this
problem is trivial: each client moves to its nearest server.
If both clients and servers can move, this solution is a2-
approximation to the maximum-movement version, but can
we do better? What about the other versions of the problem,
e.g., total movement?
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