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Abstract possibly using multiple hops.

We give approximation algorithms and inapproximability results Of course, this playful description of the problem is
for a class of movement problems. In general, these IOrobkamsrmetorical: in reality, the objects are not firefighters but are,
volve planning the coordinated motion of a large collection of o8Y, autonomous robots with limited wireless connectivity
jects (representing anything from a robot swarm or firefighter te&fid limited mobility in the field because of energy and

to map labels or network messages) to achieve a global propdf§OUrce constraints, so theY wish to minimize the use of
of the network while minimizing the maximum or average movdl€Se resources to form a reliable radio network. See, e.g.,

ment. In particular, we consider the goals of achieving connd&HP~04a,l CHP"04b,[BDHROS] for descriptions of such

tivity (undirected and directed), achieving connectivity betweenP4actical scenarios.

given pair of vertices, achieving independence (a dispersion prob- 1Ne problem described above is one example of a natu-
lem), and achieving a perfect matching (with applications to mJyg! broader family of problems, calletiovement problems
ticasting). This general family of movement problems encompa¥bich we study systematically in this paper. In particular, the
an intriguing range of graph and geometric algorithms, with sevef4efighting problem can be abstracted into a problem called
real-world applications and a surprising range of approximabilify@hMax: minimize maximum movement to reach connec-
In some cases, we obtain tight approximation and inapproxima¢ity- This basic connectivity problem has many variations.
ity results using direct techniques (without use of PCP), assumingf €xample, ConSum asks to minimize the total movement,

just thatP  NP. which may be useful for reducing average power consump-
tion; while ConNum asks to minimize the number of fire-
1 Introduction fighters (robots) that have to move. In DirConMax, and anal-

Consider a group of firefighters surrounding a forest ﬁr%gously D|rCon_Sum and D'TCO”N“’“' the ra(_jlo connectivity
not necessarily symmetric and forms a directed network,

Each firefighter is equipped with a reliable but short-range . . :
radio (walkie-talkie) as well as limited connectivity to .g., because different radios have different power levels, and

satellite (or other central location) for triangulating and sh§ e goal is to ensure that everyone can receive messages from

ing the approximate positions of firefighters. To form fixed root (the_ captain). In PathMax, _PathSum, and Path-
effective communication network (for voice or data traffic ,um_, _the goal_ Is to re-arrange the objects to connect two
the firefighters’ radios must form a connected graph. T}ﬁgecmed Iocatlorﬁ._ . . . .

scenario naturally leads to the following problem: given the Many more variations arise from changing the desired

current locations of the firefighters, find the minimum di@_roperty of the final configuration. In general, for a specified

tance (time) required for each firefighter to move to reactPFOPEY of co nflgu_ra_t|o_ns of ObJeCt.S’ the goal of a move-
configuration that induces a connected radio network. Mcm?nt problemis to minimize the (maximum or total/average)
precisely, we wish to minimize the maximum movement gPovement in a motion that ends with a configuration sat-
the firefighters such that, in their final positions, any two firésifymg propertyP. The objects can be represented either

fighters can talk to each other in the reliable radio netwo%? ppmts or equivalently bodies that can only be tre}nslated,
say in the plane, or as pebbles placed on the vertices of a
graph that can move along edges. Many problems in this
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cation. In this case, we obtain two classic problems: wherovement problems we consider.
minimizing the maximum movement, we have the 1-center The three general families of problems we consider
problem; when minimizing the total movement, we hawae minimum maximum movement to propdPtyminimum
the 1-median problem. These problems have well-knowstal movement to property?, and minimum number of
polynomial-time exact solutions. movements to propert?. In all cases, we are given an

Another interesting version of the movement problefondirected or directed) grapfl = (V, E) with |V| = n
is dispersion where the goal is to distribute the objects imertices,n pebblesand a property on “configurations”. A
order to guarantee a minimum pairwise separation betweemfigurationis a function assigning each pebble to a vertex
the objects. In the context of a radio network, this goal @ V'; more than one pebble can be on a single vertex. We say
equivalent to guaranteeing that the radio network forms timat each such assigned vertexoezupiedby a pebble. We
empty graph or an independent set. Thus, we refer to thige given annitial configurationfor the pebbles. Anotion
problem as IndMax, IndSum, or IndNum according to thessigns a path(p) in the graph for each pebble, starting
objective function. This problem effectively asks to spread the vertex specified by the initial configuration and ending
out the objects (e.g., robots) while keeping them as closesasometarget vertexalso called théarget position (Thus,
possible to their original locations. The problem also hagbbles can move only along edges.) The lengtly)| of
applications to map labeling [DMN97,[JBOZ0#4[ SW0Q1, the path is themovemenbf p. The maximum movement
JQQ"03], where the goal is to find placements of labels aé a motion is the maximum length of any path; ttwal
close as possible to the specified features of the map soadvemenis the total length of all paths; and thember of
that the labels do not overlap each other (so their centersm@ementss the number of paths of nonzero length. The
sufficiently separated). target vertices of pebbles define ttagget configurationof

Another version of the movement problem that arisestime motion. The goal is to find a motion that minimizes one
the context of broadcasting or multicasting is to move tloé these three measures subject to the target configuration
objects into nearby pairs so that these pairs can exchangeatisfying propertyP.
formation. More precisely, in MatchMax, MatchSum, and  This graph-theoretic formulation of the movement prob-
MatchNum, the goal is to minimize the movement of the okems also captures the geometric setting. For example, the
jects to a position having a perfect matching of the objedsiclidean plandas defined by an infinite graph whose ver-
such that each matched pair can communicate (i.e., the tides correspond to points = (p.,p,), and edges con-
jects are within distancé of each other). This problem isnect two distinct verticep andq whose Euclidean distance
essentially a mobile version of the pseudo-matching pratp,q) = /(p. — ¢.)? + (py, — q,)? is less thanl. This
lem (also known as path-matching) considered in the contdgfinition models mobile nodes with unit communication ra-
of broadcasting and multicasting in cut-through routed nelius. Because the graph is infinite, there is no notiordf “
works [CEFKR98| Coh98, GHMMO(2]. The MatchMax probso we definer = m, the number of pebbles.
lem is also closely related to one “round” of the freeze-tag We define the following propertid3of interest and their
problem [ABF"02,[ABG03[ SABMO04] in which a swarm of associated problems of minimizing maximum movement.
mobile robots must collectively “wake up”, starting from & most cases, we state a propeltyon graphs, implicitly
single awake robot, and moving awake robots next to sleegferring to the subgraph ofr induced by the vertices
ing robots to awaken them. occupied by pebbles in the configuration.

Several of the problems considered in this paper cai. Minimum maximum movement to connectivity (Con-
be viewed as considering the extent to which we exploit Max): P is connectivity.
the mobility of existing resources to achieve desired globaP. Minimum maximum movement to connectivity in di-
properties of the network such as connectivity. Related to rected graphs (DirConMaxP is directed connectivity
this endeavor is work that considers how to augment net- from every vertex to some root vertex.
works (consisting of nhonmobile sensors) by adding addi3. Minimum maximum movement tos-t connectivity
tional resources to achieve such global properties; see, e.g., (PathMax):P is having a path between two certain ver-
[BDHRO5,/CHP 044, CHF 04k]. In fact, we can view the ticess andt.
class of movement problems as strictly more general thad. Minimum maximum movement to independence (Ind-
these augmentation problems, by imagining additional mo- Max): P is that no two pebbles occupy the same or ad-
bile resources initially “at infinity” and the goal is to min-  jacent vertices.
imize the total movement of these resources (and therefor®& Minimum maximum movement to perfect matchability
minimize the number of resources moved). (MatchMax): P is the property that there is a perfect

matching in the graph on pebbles in which two pebbles

1.1 Motion Problems and Model. Before we describe p andq are adjacent precisely if their distande(p, ¢)
our specific results, we formally define the model and the in G is at mostl.




Max __Sum Num as all pebbles approaching a common location) requires
con |O(Vm/OPT) (29 g((mff;{?’ m}) E%; g((lmf)) maximum movement dR(n).
n 9o. ogn .
Path |O(v/m/OPT) (12.2)0(n) (45.3) polynomial Itis also not hard AL A A
DirCon [E™ (§2.3)[open O(m®) to see that the prob- jr jr jr
() (§2.4 Q(log” n) lem is NP-complete -© o
Ind 1+ % additive open PTAS inR? in general, even to ap- jt jt jt
nR2 __ (43 , _ proximate better than hd hd hd
Match [polynomial @A polynomial §5.4)[ polynomial a factor of2. We can Figure 1: Optimally moving the
Table 1: A summary of our results. reduce from Hamilto- pebbles (drawn as disks) into a
Analogously, we define the problems of minimizing tg'an Path as follows. c?nbnelcteldt_conf(ljguranor_ltr:equwes a
tal movement (ConSum, DirConSum, IndSum, PathSuffiven @ graphG: = globalsolu ion (drawn with arrows).

and MatchSum) and minimizing the number of movemerits: &), we subdivide

(ConNum, DirConNum, IndNum, PathNum, and Matche-aCh edge i into a path of three edges, and attach a new
Num) to achieve the same properties. To our knowledde@ Vertex to each vertex iif. We place two pebbles on

none of these problems have been considered before irffaf" Vertex inv and we place one pebble on each added
algorithmic setting. leaf. Any solution to this instance of ConMax of maximum

movementl can move the pebble on each leaf to its neigh-

1.2 Our Results. We prove several approximation and inP°nNg vertexinV’, and must move the two pebbles on each
rtex in V' toward neighboring vertices to induce a con-

approximability results for the problems listed above, F ;
many cases obtaining tight bounds (assumingiust NP). nected subgraph. Such a solution corresponds to a connected

The various movement problems show a surprising range_n?)‘?x'mum'degre?'z §ubgraﬁh G that visits every vertex
difficulty, not consistent with the nonmovement (standarlij V- I-€-» @ Hamiltonian path igr.

version of each problem. For example, testing connectiv- L
ity of a graph is trivial, but DirConMax and ConSum aré-l O(y/m/OPT)-Approximation for ConMax. In

Q(n'—¢)-inapproximable, while the best approximation s@is section we develop an(,/m/OPT)-approximation al-

far for ConMax isO(y/m/OPT) in a graph or in the Eu- gorithm for ConMax, wheren is the number pf pebblgs.
clidean plane, and we give evidence that even the geomeffjete thatm can be much smaller than) In particular, this
scenario is difficult. On the other hand, we give an addilgorithmis arO(y/n)-approximation algorithm if the initial
tive O(1)-approximation for IndMax in the Euclidean planeconfiguration places at most one pebble on each vertex. We
even though the nonmovement version (independent sef§@8 &/so show how to convert this approximation algorithm,
very hard for graphs and not known to be solvable exactly@hindeed any approximation algorithm for ConMax, to work
the Euclidean plane. Yet some movement problems sucHhée Euclidean plane at a small extra cost (a multiplicative
MatchMax turn out to have polynomial-time solutions. Ouk+ € factor in the approximation ratio).

hardness results are particularly strong, yet they do not 4S€-OREM2.1. There is anO(y/m/OPT)-approximation

techniques such as PCP and thus avoid any higher-level C%ﬁﬂbrithm (and thus also a®(y/m)-approximation algo-
plexity assumptions, making them of independent interesl‘,.ithm) for ConMax.

We focus primarily on the maximum-movement prob-
lems, proving various approximability and inapproximabil- Given a subse$ of vertices in a grapld7, thedth power
ity results in Section§]Z;]3, arjd 4. We then consider thluced onS, denoted byG“[S], has vertex sef and has
total-movement versions of the problems in Secfipn 5. The edgeg(u, v) between two vertices, v € S if and only if
number-of-movements versions tend to be less interestihgre is a path ird between: andv with at mostd edges.
because there is little correlation between a pebble’s initi_al : .
and final position, so we omit the details from this extendgg e 2 COnSder an Instance of Gonfiax problem,

' . & nsisting of a graphG and an initial configuration of

abstract. Tablgl1 summarizes all of our results. m pebbles, with an optimal solution of maximum move-

In the interest of space, several proofs are deferred to fRgniOPT. For any integerk betweerd andm,/2, there is a

appendices. subsetS of vertices of7 satisfying the following properties:
2 Minimum Maximum Movement to Connectivity 1. Every vertex inS is occupied by a pebble in the initial
configuration.

We begin with the problem of ConMax, a well-motivated
problem as described in the introduction. To provide some. The shortest-path distance between any two distinct
intuition about the problem, Figufé 1 gives an example of a  vertices inS is greater thark + 4OPT.

challenging instance. Here there is a “global” solution using3 The (2k + 60PT + 1)th power ofG induced ons is
maximum movement of, but any “local” solution (such connected.



4. Every vertexv in S has at least2k pebbles whose
shortest-path distance tois at most: + 20PT.

5. For every vertexv occupied by a pebble in the initial
configuration, there is a vertex in S whose shortest-
path distance tav is at most3k + 8OPT + 1.

w

Proof: We computeS via a greedy algorithm. Initiallys is
the empty set, which satisfies Properties 1-4. In each step,
if there is a vertex whose addition 1 would still satisfy
Properties 1-4, we add the vertexdo

First we prove that the greedy algorithm computes a Figure 2: Path between ands.
nonempty setS, i.e., at the first step, there is a vertex we,

can add it taS. Let T be a spanning tree of the (connected)» V1+v2: -+ v; = &') be a path between’ ands’ in the
graph induced by the target configuration in the optim¢ionnected) graph induced by the target position® il

solution OPT. Define acenterc of T to be a vertex of L€tV denote the initial position of some pebble whose target
that minimizes the maximum distance framto any vertex POSition isv; in OPT, making choices so tha = w and

of T. We claim thatc is within distancek of at least2k Y7 — - T_hus, th_e d|stance betweeyandy; is at mosOPT.
target positions of pebbles, and thus the initial position By the triangle inequalityN D, < N Dy, +20PT + 1.

of any pebble whose final position isis within distance BecauseNDy, = ND, > 3k + 8OPT + 1, because

k + 20PT of at least2k initial positions of pebbles, andVDv, = NDs =0, gnd be?aUSWDU} decre.ases'by at
thereforeS = {u} satisfies Properties 1-4. The proof of thif!0St2OPT + 1 each time we incremerif there is an index
claim divides into two cases. In Case 1, every verterof " SUch thatk + 4OPT < ND, <2k + GOPT +1.

is within distance: of ¢, and thus the target positions of all We_cla|m that we can add,. to S while s_atlsfylng

m pebbles are within distandeof ¢, proving the claim. In Properties 1-4, contradicting the maximal choice5ofBy

Case 2, there is at least one vertex at distance exactlyt OUr choice ofv,, we satisfy Properties 1-3. By the tri-
from ¢. In this case, we claim by induction dnthat there 2ndle inequality, the distance betweenand v, is at least
are at leasek vertices of T’ within distancek of ¢. Note that Y Pw — N Du, > (3k +80PT 4 1) — (2k +6OPT +1) =

we remain in Case 2 even when considering smaller valt,life§ 20PT. Thus, the distance betvyee_m andv,, namelyr,
of k. In the base casé,— 0 and the claim is vacuous. In thdS at1east +20PT —20PT = k. Similarly, by the triangle

general casé > 0, by induction, there are at leaat — 2 inequality, the distance betweepands is at leastvVD,, —

1 H . /
vertices ofT" within distancek — 1 of c. Because we are in’Y Ps > 2k +4OPT. Thus, the distance betweepands’,
Case 2, there is at least one vertert distance exactly namelyj—r, isatleasgk+40PT—20PT = 2k+20PT >

/ ! ! / !
from ¢, and at least one vertex at distance exactly + 1 *- Therefo_re,vrflk,vpﬁﬂ, i UT;I’_H' : ’”Hk*l’vrdfk are
from c. If there are at least two vertices at distance exacﬁ{? + 2 vertices along the patf. & corresponaing ye(;—
k from ¢, then we have the claim. If vertexis the only UCESUr—k,Ur—k41,- -, Ur, .. Vrik—1, Ur4p Are OCCUPIE

by pebbles and have distance at mbst 20PT from v,..

vertex at distance exactly from ¢, then we argue that )
Hence, we satisfy Property 4. |

cannot be a center. Movingone step toward decreases the
distance fronr to v, w, and any vertices df’ with distance

at leastk, in particular decreasing’s distance ofk + 1, LEMMA 2.2. Given an instance of ConMax problem with

hile the dist f 1o all oth " hich have'” pebbles and with an optimal solution of maximum move-
while the distance frone 1o all other vertices (whic aVementOPT, for any integerk betweer) andm/2, there is
distance at most — 1) increases by at modtand so the 5 noynomial-time algorithm to find a motion with maximum

distance remains at mokt Therefore, this move decreaseg,qovement at most: +140PT + 2+ (60PT + 1)m/(2k).
the maximum distance fromto any vertex of’, contracting

centrality ofc. Proof: The algorithm proceeds as follows.

Now consider the maximal sét output by the greedy 1 Fing a subses of vertices ofG with the properties of
algorithm, and suppose for contradiction that some vertex LemmdZ1.

w is not within distance3k + 8OPT + 1 of its nearest _ _
vertexs in S. (If there is more than one such vertexwe 2. Move each pebble to its nearest vertexsin

fﬁo?fet one abrb;trarlly.) I;o_rt any vert;ex Iei N %’5’ d;r:ote 3. Let H be the(2k + 60PT + 1)th power ofG induced
€ distance between and 1ts hearest vertex 18. us, on S. By Property 3,H is connected, so Ief’ be a

!/ !
ND, > 3k +80PT + 1. Let w .and 8 denote the spanning tree off, and root it at an arbitrary vertex.
target positions for some pebble initially on vertexand
for some pebble initially on vertex, respectively, in the 4. For each vertex in S other than the root, move all but
optimal solutionOPT. Refer to Figur{]z. LeP = (v = one of the pebbles onto occupy some of the vertices



on the path inG corresponding to the edge between It is easy to prove that PathMax is NP-hard via a
and its parent in the treE. reduction from Hamiltonian Paff.

5. LetT” be the tree i obtained by combining the path<-3 €7m-Approximation for DirConMax. Next we con-
corresponding to the edges 6t For every vertex of sider the directed version of ConMax, DirConMax, where

T’ that is unoccupied by a pebble, move all pebbles o¥ obtain nearly tight results: atm-approximation and
step inT” toward that vertex m*~¢ inapproximability assumin@® # NP. Our approx-
imability result is based on another extension of our tech-

By Property 5, Step 2 moves each pebble at Bést niques from ConMax.

8OPT + 1 steps. By Properties 2 and 4 of Lemina]2.%;,e0rem 2.4, For any integer constank, there is an
for every vertexs in S, there are at leastk pebbles that ,,k+0(1) gigorithm that, given an instance of DirConMax
are closer tos than to any other vertex is. Thus, after with m pebbles and root, finds a motion with maximum
Step 2 of the algorithm, every vertexin S is occupied movement at mosDPT + 2|m/k|. (In particular, this
by at least2k + 1 pebbles. By Property 3, Step 4 movealgorithm is a2|m/k|-approximation.)

each pebble at mogk + 60PT + 1 steps. After Step 4, at

most60PT + 1 vertices of each path corresponding to a4 Q(n!~¢) Inapproximability for DirConMax. Next
edge ofT" lack a pebble. Thus the tré€ in G has at most we prove that then-approximation algorithm is essentially
|S|(60PT + 1) vertices that lack a pebble. Each iteratiotight, assuming only tha? # NP without the use of PCP-
of the loop in Step 5 removes at least one of these vertitgse arguments:

at a cost ofl. Thus Step 5 moves each pebble by at most o
|S|(60PT + 1) steps. ButS| is at mostm/(2k), because THEOREM 2.5._ For every constant, O. < elf 1, itis NP-
we assign at leastk pebbles to each vertex ifi and the hard to approximate DirConMax within am™~* factor.

total number of pebbles is:. Therefore the total cost is
(3k+80PT+1)+(2k+60PT+1)4+(60PT+1)m/(2k) =
5k+140PT +2+ (60PT+1)m/(2k), proving the lemma.

Proof: We prove that, if DirConMax can be approximated
within n!—¢, then set cover can be solved in polynomial
time. LetS = (E, C, k) be an instance of set cover, where
E = {ej,ea,...,en} is the universe of elements; =

To prove Theorerfr 211, we first check whett@PT is {c1,¢2,...,cs} isthe set of subsets @, andk is an integer.

zero, i.e., whether the pebbles already induce a connecil\{sé'gwl;t Iloss of ger&errilrlrt]y, alsil]m:ﬁ that > s; ot?r]erclsre,
graph. Otherwise, we apply Lemr@z.z with= /m/x € can place —m dummy element8y, 11, .. ., s I every

wherez is a guessed value @PT. With &k = \/m/OPT subsetirC'

ith the best btai imati We convert the set-cover instanSeinto a graphG as
(or with the best guess of), we obtain an approximationgy o ,ye: refer to Figurd 3. Lef. bem?/<. We start with a
ratio of O(/m/OPT).

- L . root vertexr in G and then, for every subset € C, we add
Finally, it is worth rnenUonmg that ConMax can bea vertexv; to G. Then, for eachy;, we add a directed path;
solved exactly on special classes of graphs. The fOIIOWf'IengthLJrlfromvz tor. Label the vertices along pafh
ing solution for the case of trees interestingly uses bipartﬂsm source to destilnation as.u; 1. u Wit For
s Wi, 1y Wg, 25« ooy Wg Ly 1

matching as its main tool, not the usual dynamic prograr@échj 1< j < L we add a vertex; and we add an edge
1 — — L ]

ming on trees. from s; to u; ; for eachi, 1 < i < s. We also add a vertex
sp and we add an edge fromg to v; for eachi, 1 < i < s.

THEOREM2.2. Given a treeT" and a configuration ofc For every element; € F, we add two vertices; andw,
pebbles o, ConMax can be solved in polynomial time. o (7, and we add an edge frony to w;. Finally, we add an

o edge fromw; to v; precisely where; € c;. This graph has
2.2 O(y/m/OPT)-Approximation for PathMax. Our , — 1 4 (s +1)(L + 1) 4+ 2m = O(m?/=*1) vertices. In
techniques can be extended to obtain the same approXifig-instance of DirConMax, we place one pebble on each
tion factor for connectivity between just two fixed vertices
andt. The previous approach does not apply directly to this 2Duplicate the vertices of a grapfi into n = [V(G)| levels, for a
problem because not all of the pebbles need to be involeg of n2 vertices, and adding edges between every pair of adjacent levels

in the solution; we can select an arbitrary subset of pebbfegesponding to edges 6, for a total of2| E(G)|(n — 1) edges. For each
to use for our path vertexv of GG, add a path of length from each copy of) to a common new

’ vertexv, at which we place a single pebble. Finally, connect the soutoe
every vertex in the first level, and connect the sirtk every vertex in the

. . . last level; and attach to each ©&ndt a path of length, the end of which
THEOREM2.3. There is anO( \% m/OPT)-apprOX|mat|0n has a single pebble: has a Hamiltonian path if and only if we can move

a]gorithm (and thus also a®(y/m)-approximation algo- each pebble to an instance of its corresponding vertex with a maximum
rithm) for PathMax. movement of, and construct a path fromto ¢.




Figure 3: Reduction in Theorem 2.5.

and one pebble on. We also place: pebbles on each;,
0<i<L.

If S has a set cove€’ = {c,,,cp,,...,¢p,, } Of size
k' < k, then we can connect the pebblesGhusing a
maximum movement of. Namely, we movek’ pebbles
from eachs;, 1 < i < L, t0up, i, Upyis- -, Up,, - THEN
we move the pebble fromu;. tow; for eachj, 1 < j < m,

and we mové:’ pebbles fromsg t0 vy, , vp,, . .., Up,, .

Now we prove that, ifS has no set cover of size at
most k, then the maximum movement of any solution to

this instance of DirConMax is at least?/<—!. Consider
a solution with maximum movement less thart/c—! and
let L' bem?/c— 1. Because the pebble atcan never move

rooted at-. We call a pathP; semicompleted w; ./ isinT.
Let P’ = {Pil,Piz,...
Py’'s. We assert that the sét” = {c;,,ci,,..., ¢, } is a
set cover of sizé’ for the instanceS. Let f; be the final
position of the pebble starting an,. This vertexf; cannot
beu, ; foranyi andj with1 < ¢ < sandL’ < j < L.

So the directed path fronf; to the rootr must visit some

vertex u;, 1, along a semicompleted path, for somej,

1 < j < K. Thus,e; € ¢;;, and this property holds for

the final positions of the pebbles must form a directedTre Ia_ttlce, ilustrated in

, P;,, } be the set of semicompletecf.

On the other hand, if there is a set cover of size at
most &, then there is a solution with maximum move-
ment 1. Thus any solution to DirConMax with maxi-
mum movement at least’ has an approximation ratio at
least L’ = m?/—!, which is asymptotically larger than
m?/eti=2=e — (m2/etl)l== = Q(n'~*). Therefore, we
can decide whether there is a set cover of size at rhost
by testing whether a®(n'~¢)-approximation algorithm for
ConSum produces a solution of maximum movement less
thanm?/c=1. o

3 Minimum Maximum Movement to Independence

It is NP-hard to decide whether IndMax even has a valid
solution: an instance has a solution precisely if the graph
has an independent set of sizeg the number of pebbles.
Thus, to obtain any approximability result, we must restrict
our attention to special family of graphs.

In this section we focus on a particularly useful case of
the Euclidean plane This scenario has applications in the
fields of map labeling and sensor networks, as described in
the introduction. Recall that in this case we define- m.

We use the notatiod for a more general notion of Euclidean
distance: for a poinp and a finite set) of points,d(p, Q)
denotes the minimum distanagn,cq d(p, q).

THEOREM 3.1. There is a polynomial-time algorithm solv-
ing IndMax in the Euclidean plane using maximum move-
ment at most the optimal plus+ %

The heart of our
approximation algo-
rithm is the triangular

71‘\[3

0,v3

1,v3  2,v3  3,V3

igure[4, in which ev-
ry two distinct ver-

ices have distance atF_ 4 D i ¢ th
leastl. Thus, these F19ure 4: Decomposition of the

vertices induce an in- plane into equilateral triangles.

dependent set of the plane. The vertex set is given by

A={6.3v3),6+3.3v3+$) | ijez}.

alli, 1 < i < m, soC” is indeed a set cover of sizd-€tC denote the decomposition of the plane into equilateral

S has no such set cover. For eaghl < j < k', we
need at least. — L’ pebbles to occupy the vertices, ;/,

For a finite setR of points, we define two additional
concepts. LelNeighbor(R) denote the set of points iA

L' < j* < L. The total number of pebbles that can haveV§hose distance t& is at mostH—%. LetCircle(R) denote

final position ofu; ;, wherel < i < sandL’ < j < L, is
less tharkL. Thusk/(L — L) < kL,i.e.,1 —1/m < k/K .

the union of disks centered at pointsfhwith radius%. In
particular, if every two distinct points i® have distance at

Becauset’ < s < m, 1 —1/F < 1—1/m, and therefore leastl, thenCircle(R) has areaR| - 7.

1-1/k <k/K, ie K <k.

LEMMA 3.1. The optimal solution has maximum movement
at most2n — 2.



Proof: Suppose for contradiction that there is a pebb%arccos(d\/g/Q), minus the area of the quadrangi&C D.

x with initial position p and with target positiory in the = \/—2—— B

optimal solution, yeti(p, ¢) > 2n — 2. We definen points Now CH =/ AC™ — (AB/2)7_ Vi_ %dfo miarea

r0,71,...,Tn_1 ON the line segment from to ¢ according of the quadrangledBCD is $AB - CD = AB - CH =

to d(p,r;) = 2i. The distance between any two of thesg, /1 _ 142 Therefore, the desired area of intersection of

pointsr; andr;, i # j, is at least2, so any point can

have distance less thanwith at most one of these pointsCa andC is 3 arccos(dv/3/2) — dy/ 3 — jd? as desired.

ro,71,---,"n—1. BY the Pigeonhole Principle, there is at d

least one point; that is not within distancé of the target

position of any pebble other than Thus we can change

the target position of pebble to r; and obtain a valid Proof of Theorem : Fori € {1,2,...,n}, let p;

solution in which the movement of is at most2n — 2. and ¢; be the initial and target position of pebbiein

By induction, we can reduce the movement of every pebltfe optimal solutionOPT. BecauseOPT is a solution

to at most2n — 2, giving us a solution with maximumto IndMax, we havedi(g;,q;) > 1 for all distincti,j €

movement at moskn — 2, contradicting optimality of the {1,2,...,n}. Furthermore, the optimal solution minimizes

original squtiorﬁ] 0 OPT = maxi<;<, d(p;, ¢;) subject to this constraint. First
we prove that there is a polynomial-time algorithm to move

LEMMA 3.2. The number of points idl within distance at €VErY pebble to a point od such that no two pebbles move

most2n — 2 from an arbitrary pointp in the plane is at most t0 the same point, and subject to minimizing the maximum
a polynomial function ofi. movement)/. Then we prove that we can move the pebbles

from their target positions iOPT to points ofA so that no
Proof: Consider the squar8§ centered ap and with side two pebbles move to the same point and each pebble moves
length4n — 4. All points of A within distancen — 2 fromp at mostl + % Thus, our approximate solution of maximum
are in this square. Consider a decompositio§y @fto a grid movement\/ satisfiesM < OPT + 1 4+ L.

of subsquares of side length Because the distance between  pe algorithm constructs a complete weighted bipartite

each pair of points in such a subsquare is at mgsf2 < 1, graphH = (X,Y,FE). Fori € {1,2,...,n}, we place
at most one point ofi can be in each subsquare. Thus the vertexz,; in X representing pebble By Lemma[ 3L,
number of subsquares is an upper bound on the numbep@fT < 25, — 2. By the second part of the proof, the optimal
points of A in S, which is an upper bound on the number ghovement\/ to points ofA satisfiesM < OPT+1+ % <

points of A within disga”‘ie%" -2 fr20m p. The number of , +1+ % Thus, inM, no pebble moves more than

subsquares igln — 4)°/(3)" = O(n). 2n. For each poinp of A within distance2n — 2 from the set
{p1,p2,-..,pn} Of initial positions, we place a vertex irj,.

LEMMA 3.3. LetC4 and C be two disks of radius/v/3 By Lemmg 3.2, the number of these points is polynomial in

centered at pointsl and B, respectively. Letl = d(A, B) p, so the graph{ has polynomial size. For eache X and

be the distance betweehand B. The area of intersection of, ¢ v we set the weighto(, y) = d(z,y). The algorithm

the two disk€' 4 andCp is % arccos(dv/3/2)—d, /% — 142, finds a perfect matching iff of minimum maximum weight.
For each edgé€z;,y,) in the matching, we move théh

pebble to poinp of A. In this way, we move the pebbles

to points of A such that no two pebbles move to the same

point using the minimum maximum movement.

Now we reach the heart of the proof: we prove that we

Now we are ready to prove the main theorem.

Proof: In Figure@, we havedC =
BC = AD = BD = 1//3, AB =
d, /ZBAC = «. Thus, cosa =
AH/AC = (d/2)/(1/V3) =

dv3/2, so a = arccos(dv3/2). Fioure . can transflormOPT by moving each target_ .pos.ition by at
Hence, the area of the pie wedge q '?ersection o'f most1 + 7 such that every new target position is a point of
C4 given by the angle’ DAC'is 22 - the circles © A and no two target positions are the same. We prove that
© — 1o = Larccos(dv3/2). By andC 4 there is a perfect matching from the €= {q1, qa, . . . , ¢ }
éymmétry, thg area of the pie wedge B of target positions irOPT to the points ofA such that the

of Cs given by the angle’/CBD is the same. These piedistance between matched points is at mes%. By Hall's

wedges overlap at precisely the intersectiofafandCz. Theorem, it suffices to show that, for each subBeC Q,

Their union is the quadrangld BCD. Thus, the desired || < [Neighbor(R)|.

area of intersection is the sum of the areas of the pie wedges, Consider a subsek = {ry,r2,...,7»} C @, and
the regioni = Circle(R). Because the distance between

3This argument can be improved to obtain a bound¢t/m) on the EVEry two poin'ts inR is at leastl, Circle(R) has area
maximum motion, but it does not affect our main result. R| - 7. Consider the seNeighbor(R) C A, and the




region vV = Circle(Neighbor(R)). Again V has area omitted from region(r) omitted from region(s)
| Neighbor(R)| - 7. We prove that the area @ircle(R)
is at most the area dfircle(Neighbor(R)), which implies
|R| < | Neighbor(R)|, completing the proof.

Consider a disk of radiu% centered at each point &
Define the regionS to consist of the equilateral triangles

of the decompositior” that intersect at least one of these

disks. The vertices of the triangles B are the points of Figure 7: The omitted region from the disks.
Neighbor(R), because these vertices are the pointsdof ) ) ] ]
within distancel + L from the points ofR. actually overestimates the omitted area if multiple overlap-
Next we \grove that ping regions are omitted.) Thus, our goal is to prove that
Area(Circle(Neighbor(R))) > > ozrene(rys) < 5 — 4. For afixed pointin R, con-
Area(S) - =Z-. For each triangle sider the.pomts othhat have a nonzero valuér, s). Sprt
T'in S, there are only three circles these points acco_rdmg to Fhe gngle of the ray frotm s with
of Circle(Neighbor(R)) that respect to the: axis, resulting in a sequenag, ss, . . ., s;.
intersect with it, those whose We prove that e(rsi) + e(r,sit1) <
centers are placed on the vertice (% - i) Zsirsiy1. Leta = d(r,si), b = d(r,s;+1), and
of T;. see Figureg[]6. These ¢ = d(s;,si+1). Becauser, s;, ands,;y; are points ofR,
circles have areg in common Figure 6: we havea,b,c > 1, and in particularc> > 1. Because
wi.th T. Therefore, the ratio of e(r,s;),e(r,si41) # 0, we havea,b < % By the Law
this common area to the areabfis g/@ = 5.5 Because Cosines, we have? = a2 + b? — 2abcos(Ls;r5i11),

this ratio is the same for every triangle i, so is the a®+b%—1
and thuscos(Zs;rs; < , SO Zs;rs; 2

ratio Area(Circle(Neighbor(R)) N 5)/ Area(S) = = az(jf);(_ls rein) < iab s

Therefore, Area(Circle(Neighbor(R)))/ Area(S) > - arccos (<545-). By "emm’we have

or Area(Circle(Neighbor(R))) > Area(S) .

23 s;) = 1 5/2) —ay/t — La
Next we prove thatirea(S) - e(r,5:) 2 ( arccos(av3/2) e )

775 2 Area(Circle(R)),
which would prove the theorem. For each pairih R, we  ande(r,s;,1) = ; (g arccos(bv/3/2) — by /% % )
assign a regioRegion(r) contained inS of area at least

f such that every two regiori@egion(r) andRegion(s),

r 7& s, are disjoint. Because these regions pack a subsgt of 1 (3 arccos(av/3/2) — a /% _ iag i %arccos(b\/ﬁ/Q)

we obtainArea(S) > |R|- f . Therefore Area(S) - 75 2

|R| - @ 55 = =|R|-Z = Area(Clrcle(R)) —by/3 — %b2> < (% - \2/75) arccos (“2222’1) .
It remams to a35|gn to each pointof R a region Y
Region(r). We do so according to the following algorithm: Thus,e(r, si) + e(r, siy1) < (5 - *) L8irSit1-
By summing the previous inequality, we obtain

B

S

One can check algebraically that

1. For each point- in R, initially set Region(r) to the
; . ; 1 e(r,s1) +e(r,s2) < (} — f) /51782
disk Region,(r) of rad|usﬁ centered at. (Thus, ’ ’ = \37 2r
Regiony(r) has ared;.) e(r, s2) +e(r,s3) < (% _ TS) /So7S3
2. For two arbitrary points- and s in R, if Regiony(r) : :
intersectsRegion,(s), omit half of their intersection L 3
from Region(r') and omit the other half frorRegion (s) e(rs) +e(rs) < (5 - 7) 28irs:
according to the perpendicular bisectorroéind s, as !
shown in the Figurg]7. = QZS(Tv si) < (% - T\/E) 2m

Obviously, the resulting regions are pairwise disjoint a”?'hereforez e(r,s;) < (4 — f as desired.
each region is contained . ‘ 3
We prove that the sum of the areas omitted fro?iI In summary, for eachR C @, we have|R| <

. N N S eighbor(R)|, so there is a perfect matching frof to
Region(r) is at mosty — *5*, for each point in &; thus, Neighbor(Q); thus, we can move each pebble to a unique

Region(r) keeps an area of at leasf® as desired. Let point in A such that the maximum movement is at most
e(r,s) = 1 Area(Region,(r) N Region,(s)) be the area of 1 | 1 O
Region(r) omitted because dRegion(s). (This definition 3



4 Minimum Maximum Movement to Perfect this lower boundw(M), so every solution must have max-
Matchability imum movement at least(M), proving optimality of our

In contrast to the difficult problems of ConMax and IndMasgtrategy of maximum movement(}/). 0
we show that minimizing movement does not make perfect
matching much harder: there is a polynomial-time algorithgn  \jinimum Total Movement

for MatchMax. In this section, we consider the variations of the movement

LEMMA 4.1. If two pebbleg andg are within distance in problems in which the goal is to minimize total movement
the target configuration, their (p)| + |7 (¢)| > d(p, q)—1, Instead of maximum movement. For both ConSum and

and thusmax {|7(p)], [(q)|} > [dc(péq),ﬂ_ MatchSum, we obtain tight results.

. ) 5.1 Connectivity: Q(n!~¢) Inapproximability.
Proof: Each step in the motion path pfor ¢ may decrease
dc(p,q) by at mostl. Therefore the sum of the movement§HEOREM5.1. For every constant, 0 < ¢ < 1, it is NP-
of p andq must be at least their original distandg(p,¢q) hard to approximate ConSum within an—= factor.
minus their target distance 6for 1. a _
5.2 Connectivity: O(min{n, m}) Approximation.

. I : Note that O(nm)-approximation is trivial for ConSum,
;giﬁ;‘ém\j&i' There is a polynomial-time algorithm SOIV'vvheren is the number of vertices and is the number of

' pebbles. If the pebbles already induce a connected graph,

then there is nothing to do. Otherwise, the optimal solution

Proof: We assume that the number of pebbles in eah | . least and ath pebbl
connected component @f is even; otherwise, no solution as total motion at least and we can move peubles to

exists. We can also consider each connected compor‘?émpart'cmar vertex using at mosi(n—1) total movement.
separately, so we assume without loss of generality(fmatTHEOREM 5.2. There is an O(min{nlogn,m})-

is connected. Lepy, po, . . ., p2, denote the pebbles. approximation algorithm for ConSum.
Define the weighted complete undirected graphas

follows. For each pebble; we make a vertex; ingraphHl. 53 path Connectivity: O(n) Approximation.
For each edge = {v;,v;} in H, we set its weightu(e) _ o _
to |’dc(1”1,72pj)—1‘|_ Define themaximum weighto (1) = THEOREM5.3. There is anO(n)-approximation algorithm

max.c ) w(e) of a perfect matching\/ of H to be the for PathSum.

maximum weight of its edges. o It is also easy to prove that PathSum is NP-hard via a
Our algorithm computes a perfect matching in H  oq,ction from Hamiltonian Pafh.

of minimum maximum weighto(2/) (in polynomial time),

and converts this matching into a motion as follows. Fgry perfect Matchability. Like MatchMax, the Match-

each edge{v;, v;} in the matching)/, we movep; by sym variation can also be solved in polynomial time:

[%1 steps towargh; along a shortest path from
_ do(pips)—1 THEOREM5.4. There is a polynomial-time algorithm solv-

top, in G, and we move, by [%W steps towargh;  ing MatchSum.

(pi,pj)—1
along the same shortest path. (Note t 5 >0.) 6 Conclusion

Thus, after the motionp, and p; are at distance at most_, . .
his paper makes a systematic study of movement prob-

ems which, despite connections to several practical prob-
lems, have not been studied before in theoretical computer

agcience. Among the problems we consider, we highlight one
open problem of primary concern: the approximability of
ConMax and PathMax. For directed graphs, we proved es-
entially tight approximability and inapproximability results

%)r DirConMax, of roughly©(n). However, for undirected

1 in G. The maximum movement in this motion is th
maximum weight of such a matched edfe, v;}, which
is preciselyw(M).

Now we argue that no solution to MatchMax h
maximum movement less tham(M). By definition of
MatchMax, any solution induces a perfect matchihg
in the graphH (i.e., on the pebbles) with the propert

that, in the target configuration, every two matched pe . o
s v ditance t mosn . For overy e — U e aned T 0T 0 oo
{vi, vj} in this matching”, by Lemm, we have that|0ns be improved, or are there matching inapproximability

max {|7(p;)|, |7 (p;)|} > {% = w(e). Therefore,

the maximum movement in the solution must b? .atlleaSt“AppIy the same construction as Footr@e&has a Hamiltonian path
maxeep w(e) = w(M'). But M was chosen to minimizeif and only if PathSum has a solution of total movemefit + 2).
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