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Learning in Online Advertising

Abstract

Prior literature on pay-per-click advertising assumes that publishers know advertisers’ click-
through rates (CTR). This information, however, is not available when a new advertiser first joins
a publisher. The new advertiser’s CTR can be learned only if its ad is shown to enough consumers,
i.e., the advertiser wins enough auctions. Since publishers use CTRs to calculate payments and
allocations, the lack of information about a new advertiser can affect the advertisers’ bids. Using a
game theory model, we analyze advertisers’ strategies, their payoffs, and the publisher’s revenue in
a learning environment. Our results indicate that a new advertiser always bids higher (sometimes
above valuation) in the beginning. The incumbent advertiser’s strategy depends on its valuation and
CTR. A strong incumbent increases its bid to deter the publisher from learning the new advertiser’s
CTR, whereas a weak incumbent decreases its bid to facilitate learning. Interestingly, the publisher
may benefit from not knowing the new advertiser’s CTR because its ignorance could induce adver-
tisers to bid more aggressively. Nonetheless, the publisher’s revenue sometimes decreases because of
this lack of information. The publisher can mitigate this loss by lowering the reserve price of, offering
advertising credit to, or boosting the bids of new advertisers.

1 Introduction

Online advertising, with an annual spending of over $100B, has become the largest category of adver-

tising in the US.1 Online advertising inventory is sold using two pricing models: performance-based

and impression-based. In performance-based (e.g., pay-per-click) pricing, an advertiser pays only if a

consumer completes a pre-defined action (e.g., a click). In impression-based pricing, the advertiser pays

for its ad being shown to a consumer, regardless of whether the impression leads to an action.

Understanding how an ad performs (e.g., how likely a consumer will take an action after viewing an ad)

is crucial for publishers in performance-based pricing, and for advertisers in impression-based pricing.

For example, in pay-per-click pricing, it is more profitable for a publisher to accept a payment of $1

per click for an ad with click-through rate (CTR) 10%, for an expected revenue $0.10 per impression,

than a payment of $2 per click for an ad with CTR 4%, for an expected revenue $0.08 per impression.

Similarly, the probability of action affects an advertiser’s willingness to pay (WTP) for an impression

in impression-based pricing. The advertiser is willing to pay more per impression if it knows that the

impression leads to a desired outcome with a higher probability.

Previous literature on online advertising primarily assumes that the probability of the pre-defined action

(e.g., CTR) is known to advertisers and publishers (Edelman et al., 2007; Katona and Sarvary, 2010;

1https://content-na1.emarketer.com/us-ad-spending
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Jerath et al., 2011). In practice, however, advertisers and publishers have to learn this probability. For

example, when a new advertiser joins the market, or when an existing advertiser revamps its ad cam-

paign, the CTRs of its ads are typically unknown to the publisher, other advertisers, and the advertiser

itself. They can at best have an expectation of the CTR based on a few observable characteristics of

the advertiser.2 The actual CTR becomes known only when the ads are displayed to consumers enough

number of times such that sufficient impression and click data become available. In other words, learn-

ing is asymmetric: participating in advertising auctions is not sufficient for the advertiser’s CTR to be

learned; the advertiser has to win advertising auctions sufficiently many times before the publisher and

the advertisers can learn its CTR.

The learning dynamic can affect advertisers’ and publishers’ strategies in the market. In particular,

winning in an advertising auction has two effects on an advertiser’s payoff. First, the advertiser receives

an immediate value from showing its ad to a consumer (the direct effect). Second, winning reveals

information about the performance of the ad to both the advertiser and the publisher (the indirect

effect); this improves the advertiser’s and the publisher’s estimate of the true CTR of the ad. In

performance-based pricing, this ad-performance information is used by the publisher to determine the

pricing and allocation of an ad slot, and in impression-based pricing, it is used by the advertiser to

determine the advertiser’s WTP. While the previous literature has primarily studied the direct effect of

winning in an advertising auction, our paper focuses on the indirect effect.

These two effects give rise to interesting trade-offs for advertisers when a new advertiser joins the

publisher. We illustrate these trade-offs in the following example.

Example. Suppose an advertiser, A, is the only advertiser bidding on an advertising slot of publisher P .

Suppose that the slot is sold in a pay-per-click second price auction, A’s bid is $1 per click, and its CTR

is 15%. Assume that B is a new advertiser who wants to advertise on the same slot. B’s bid is also $1

per click, but its CTR is not known to anybody at the time of entry. For the initial auctions, P assigns

an average CTR estimate (e.g., based on the performance of advertisers with similar characteristics) of,

say, 10%.

However, P can eventually learn the new advertiser’s CTR after sufficient impression and click data

2For instance, in pay-per-click pricing, Google assigns an average Quality Score to new advertisers based
on the performances of other advertisers using the same keyword. See https://searchengineland.com/

didnt-know-recent-quality-score-changes-259559.
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for the new advertiser become available. Furthermore, B can facilitate this learning process by bidding

aggressively and thereby winning in the early rounds. Doing so allows P to observe more click data for

B’s ad which would in turn allow P to more accurately estimate B’s true CTR.

Importantly, in pay-per-click pricing, P ’s estimate of B’s CTR directly affects the payment and alloca-

tion of the advertisers. This is because publishers use effective bids, computed as advertisers’ submitted

bids multiplied by their expected CTRs, to calculate payment and allocation.3 Given this, would B

prefer to have its CTR learned by P quickly or not?

If B privately knew its true CTR, then the answer would be evident. For example, if it knew that its true

CTR is 20% (i.e., higher than P ’s estimate), then B would unambiguously prefer P to quickly update

its CTR from the 10% estimate to the true 20%. The reason is that updating its CTR to a higher value

would not only make B’s future effective bid more competitive against the existing advertiser A, but

also lower B’s cost-per-click when it wins. In particular, with its $1 bid and 20% CTR, B will outrank

A’s effective bid of $1 × 15% and win the auction for a cost-per-click of $0.75; it would have lost the

auction to A had its CTR remained at the average of 10% (see Table 1). Conversely, B’s incentive to

facilitate P ’s learning its CTR would diminish if B knew its true CTR is lower than P ’s prior estimate.

In this case, B’s long-term payoff would decrease if its low CTR is learned quickly. In sum, B prefers P

to update B’s CTR estimate more quickly (slowly) if it privately knows that its CTR is higher (lower)

than P ’s prior estimate.

Advertiser B’s CTR
Not known (CTR=10%) Known (CTR=20%) Known (CTR=5%)

B
Has to bid (and pay) Wins at cost-per-click Has to bid (and pay)
$1× 15%/10% = $1.5 to win $1× 15%/20% = $0.75 $1× 15%/5% = $3 to win

A
Wins at cost-per-click Has to bid (and pay) Wins at cost-per-click
$1× 10%/15% = $0.66 $1× 20%/15% = $1.33 to win $1× 5%/15% = $0.33

Table 1: When the Publisher Knows vs. Does Not Know New Advertiser’s CTR

In reality, however, when B first enters the market, it does not know whether its true CTR is lower

or higher than an average advertiser with similar characteristics. Therefore, it is not clear whether the

new advertiser B should increase or decrease its bid to accelerate or slow down P ’s learning process if

B wants to maximize its profit.

3In practice, effective bids can also include other factors such as landing page experience and advertiser’s reputation;
however, for the purpose of this example, we only consider the expected CTR and the submitted bid that are the two most
important elements of effective bids.

3



Similarly, for the existing advertiser A, P ’s learning the new advertiser B’s CTR can be a double-edged

sword. If B’s CTR turns out to be higher than the estimated average, then A may lose the ad slot;

if it turns out to be lower, A can win the auction at a lower cost-per-click than when B’s CTR is not

known to P (from $0.66 to $0.33 in Table 1). Again, given that the existing advertiser A can facilitate

(hinder) P ’s learning process by decreasing (increasing) its bids when B joins, it is not clear which

bidding strategy would maximize its profit.

In this paper, we study how the learning incentives affect the advertisers’ and the publisher’s strate-

gies. We use a game-theoretic model to analyze advertisers’ and publisher’s strategies in a learning

environment. To facilitate exposition, in the main body of the paper, we assume the publisher uses

performance-based pricing, which currently accounts for 62% of the online advertising market in the

US,4 and use pay-per-click terminology. In the extensions, we show that our results apply to pay-per-

impression pricing model as well. We are interested in answering the following research questions.

1. Does a new advertiser (entrant) benefit from its CTR being learned by the publisher? How does

this affect the entrant’s bidding strategy?

2. Does an existing advertiser (incumbent) benefit from the publisher learning the CTR of the en-

trant? How does this affect the incumbent’s bidding strategy?

3. How does the lack of information about a new advertiser’s CTR affect the publisher’s revenue?

How do learning incentives affect the publisher’s optimal strategy?

In answering the first set of questions, we show that a new advertiser’s expected payoff when its CTR is

learned by the publisher is higher than when it is not. The higher payoff incentivizes the new advertiser

to bid aggressively to accelerate the learning process. As a result, the entrant should always bid higher

(sometimes even above its valuation) in the beginning when its CTR is unknown to the publisher,

than in the long run after its CTR becomes known. This finding is in line with what industry experts

commonly recommend new advertisers regarding starting bids — namely, bid aggressively “into high

positions” and “make adjustments after [accumulating] data.” Despite the risk of paying a high initial

cost, the experts explain that bidding high and thereby attaining top positions early on could help

improve the advertisers’ long-run profits.5

4http://totalaccess.emarketer.com/chart.aspx?r=219092
5https://searchengineland.com/4-ways-to-determine-your-your-starting-bids-144616.
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Our result indicate that even for advertisers whose long-run equilibrium cost-per-click is low, the initial

cost-per-click (at the time of joining the market) may be above their valuation. In other words, adver-

tisers should be prepared to lose money in the beginning when they start advertising with a publisher

for the first time. Moreover, they should not be discouraged from using that publisher even if the initial

cost-per-clicks are higher than their WTP.

In answering the second set of questions, we find that an incumbent’s response to an entrant joining

the auction depends on the incumbent’s CTR. If the incumbent’s CTR is high, the incumbent bids

aggressively to impede the entrant’s CTR from being learned by the publisher. This is because an

incumbent with a high CTR does not want to risk earning a low margin (or worse, losing its ad slot) in

the event the entrant’s CTR turns out to be high.

This “preemptive” strategy, however, is too expensive for an incumbent with a low CTR. As we show,

an incumbent with a low CTR lowers its bid when an entrant joins, so that the entrant’s CTR is learned

more quickly. Intuitively, competing with an advertiser whose CTR is unknown is too costly for the

weak incumbent; by accelerating the learning process, the incumbent hopes that the entrant’s CTR will

turn out to be lower than expectation.

In answering the third set of questions, interestingly, we find that the publisher may benefit from not

knowing the new advertiser’s CTR. The intuition is that the entrant, and sometimes the incumbent

as well, bids more aggressively when the entrant’s CTR is not known, which increases the publisher’s

revenue. Under certain conditions, however, the publisher’s ignorance could also hurt its revenue. For

instance, if the entrant’s CTR is high, the publisher misses clicks (and hence opportunities for earning

higher revenue) by not displaying the entrant’s ad in the beginning. The negative effect becomes more

pronounced when the incumbent’s CTR is high because a strong incumbent bids aggressively to mask

the entrant’s CTR. This deters the publisher from learning the entrant’s potentially high CTR.

We find that the publisher can mitigate the loss of not knowing the entrant’s CTR by reducing the

reserve price of the entrant. By reducing the reserve price, the publisher increases the probability of

the entrant winning in the auction, thereby increasing the probability of learning the entrant’s CTR.

Furthermore, we characterize the optimal mechanism and show that, first, in the presence of learning

considerations, a variation of the standard second-price auction with optimal reserve prices is sufficient

to achieve the optimal revenue. Second, it is optimal for the publisher to favor the entrant in the
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beginning, before the entrant’s CTR is learned. This manifests in a lower optimal reserve price of the

entrant when the publisher does not know the entrant’s CTR than when it knows.

In addition, we discuss alternative mechanisms that can help the publisher mitigate its loss of not

knowing the entrant’s CTR. For example, Google provides $75 ad credit to new advertisers when

they spend $25 on AdWords.6 Facebook also offers ad credit to new accounts that have a sufficiently

high audience engagement on their pages.7 While these programs have traditionally been viewed as

promotions to attract new advertisers, our research reveals new strategic incentives beyond new customer

acquisition that motivate publishers to offer ad credit.

Theoretical Contribution. While, from a managerial point of view, our work sheds light on advertisers’

and publishers’ strategies regarding new entries, we also want to highlight two unique aspects of our

model from a theoretical point of view. First, in the context of online advertising, we study the transition

of a game from an incomplete information game to a full information one. While the previous literature

on online advertising assumes that the game is either always full information (e.g., Edelman et al.,

2007) or always incomplete information (e.g., Edelman and Schwarz, 2010), in practice, the level of

information is constantly changing. Our paper takes a first step towards bridging this gap by analyzing

the transition.8 We show that the advertisers’ and the publishers’ strategies regarding the transition

are qualitatively distinct from those in full information and incomplete information games.

Second, our analysis demonstrates how some of the standard results from learning theory may be

reversed when the subjects of learning are not as “passive” as commonly assumed in the literature

(e.g., Gittins and Jones, 1979; Katehakis and Veinott, 1987). For instance, exploration-exploitation

trade-off from standard learning theory suggests that knowing less about new advertisers would only

hurt the publisher’s revenue because the publisher must then learn about new advertisers through costly

exploration. In contrast, our model shows that the publisher may be better off knowing less about the

new advertiser due to the advertisers’ strategic responses during the publisher’s learning process. In

other words, when the subjects are strategic agents, exploration could be profitable for the learner.

The rest of this paper is structured as follows. First, we discuss related literature. In Section 2, we

6https://www.google.com/ads/adwords-coupon.html
7http://www.digitalsitemap.com/free-facebook-ad-coupon/
8In fact, since new advertisers constantly join this market, and even existing advertisers frequently revamp their cam-

paigns, change their ad copies and landing pages, or change their ad agencies altogether, one could argue that this market
is always in transition.
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present the model. We analyze the model and discuss advertisers’ strategies in Section 3. The publisher’s

optimal strategy is discussed in Section 4. We explore extensions of the main model in Section 5 to

establish the robustness of our main results, and conclude in Section 6. All proofs are relegated to

Appendix A.

Related Literature

Our work contributes to the vast literature on display advertising. Empirical works in this area have

assessed the effectiveness of display advertising in various contexts. Lambrecht and Tucker (2013)

demonstrate that retargeting may not be effective when consumers have not adequately refined their

product preferences. Hoban and Bucklin (2015) find that display advertising increases website visitations

for a large segment of consumers along the purchase funnel, but not for those who had visited before.

Bruce et al. (2017) examine the dynamic effects of display advertising and show that animated (vs. static)

ads with price information are the most effective in terms of consumer engagement. On the theoretical

front, Sayedi et al. (2018) study advertisers’ bidding strategies when publishers allow advertisers to

bid for exclusive placement on the website. Sayedi (2018) analyzes the interaction between selling

ad slots through real-time bidding and selling through reservation contracts. Zhu and Wilbur (2011)

and Hu et al. (2016) study the trade-offs involved in choosing between “cost-per-click” and “cost-per-

action” contracts. Berman (2016) explores the effects of advertisers’ attribution models on their bidding

behavior and their profits. Kuksov et al. (2017) study firms’ incentives in hosting the display ads of

their competitors on their websites.

Within online advertising, the increasing prevalence of search advertising has motivated a growing

body of empirical (e.g., Rutz and Bucklin, 2011; Yao and Mela, 2011; Haruvy and Jap, 2018) and

theoretical papers. Katona and Sarvary (2010) and Jerath et al. (2011) study advertisers’ incentives

in obtaining lower vs. higher positions in search advertising auctions. Sayedi et al. (2014) investigate

advertisers’ poaching behavior on trademarked keywords, and their budget allocation across traditional

media and search advertising. Desai et al. (2014) analyze the competition between brand owners and

their competitors on brand keywords. Lu et al. (2015) and Shin (2015) study budget constraints, and

budget allocation across keywords. Zia and Rao (2017) look at the budget allocation problem across

search engines. Wilbur and Zhu (2009) find the conditions under which it is in a search engine’s interest
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to allow some click fraud. Cao and Ke (2017) model a manufacturer and retailers’ cooperation in

search advertising and show how it affects intra- and inter-brand competition. Amaldoss et al. (2015a)

show how a search engine can increase its profits and also improve advertisers’ welfare by providing

first-page bid estimates. Berman and Katona (2013) study the impact of search engine optimization,

and Amaldoss et al. (2015b) analyze the effect of keyword management costs on advertisers’ strategies.

Katona and Zhu (2017) show how quality scores can incentivize advertisers to invest in their landing

pages and to improve their conversion rates.

Following Edelman et al. (2007), by arguing that players learn each others’ types after playing the game

repeatedly, the vast majority of this literature uses a full information setup to model search advertising

auctions. There are a few papers (e.g., Amaldoss et al., 2015a,b; Edelman and Schwarz, 2010) that use

an incomplete information setting for modeling search advertising. In these papers, however, the game

remains an incomplete information game; i.e., players do not learn each others’ types. To the best of

our knowledge, our paper is the first on online advertising to model the learning process, wherein the

game starts as an incomplete information game and, if a new advertiser’s type is learned, transitions to

a full information game.

Parts of our model may resemble the literature on games with asymmetric information. For instance,

in Jiang et al. (2011), a seller may want to hide its type from a publisher by pooling with another type.

Despite some similarities, our paper differs in that we do not model information asymmetry. Although

we allow players take certain actions to facilitate or hinder the revelation of information, those actions

do not signal their types. Furthermore, in signaling games, players mimic other players’ strategies in

order to hide or reveal information; in contrast, advertisers in our model interfere with the publisher’s

learning process in order to do so.

There are a few papers in Computer Science and Operations Research literature that address dynamic

learning in repeated auctions. Li et al. (2010) solve for an advertiser’s optimal bidding strategy when

it is uncertain about its CTR and faces an exogenous distribution of competing bids. Hummel and

McAfee (2016) characterize the search engine’s optimal bid on behalf of advertisers under uncertain

CTRs in a repeated game, and Balseiro and Gur (2017) introduce adaptive bidding strategies for

budget-constrained advertisers in repeated auctions of incomplete information.

Closest to our paper within this stream is Iyer et al. (2014), which studies bidding strategies of agents
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who learn their valuations. Under the assumption that the market size is infinitely large, Iyer et al.

(2014) adopt a mean-field approximation to solve for equilibrium strategies. They report a similar

finding that in a learning environment, an advertiser’s bid consists of the present expected value of

winning the ad slot and the “marginal future gain from one additional observation regarding [the

advertiser’s] valuation.” The present paper, however, differs along several important dimensions.

First, since we use performance-based pricing, the learning agent in our model is the publisher, not the

advertiser. The publisher receives new information about a new advertiser who wins, and incorporates

the information to the rules of the subsequent auctions. Thus, a new advertiser bids strategically not to

learn its own type per se, but to influence the publisher’s learning process. Second, our paper sheds light

on a novel incentive for existing advertisers to deter the publisher from learning the new advertiser’s

type. This is distinct from the idea of advertisers adopting (symmetric) bidding strategies to learn their

own types. The discrepancies in the incentives across advertisers that are highlighted in our paper do

not emerge in a mean-field equilibrium wherein all agents behave in a symmetric manner. Finally, our

paper analyzes a small, stylized market with limited number of participants, which allows us to model

fully rational behavior of all players. Our assumption of a small market is motivated by the fact that,

due to the fine-grained targeting available in online advertising, most auctions have a small number

of participants; as such, advertisers’ one-to-one interactions affect their optimal strategies. Papers

that employ mean-field equilibrium (e.g., Iyer et al., 2014; Balseiro et al., 2015) abstract away from

advertisers’ one-to-one interactions, and characterize an approximate equilibrium wherein agents are

assumed to be boundedly rational.

2 Model

Our model consists of a publisher and two advertisers, the incumbent and the entrant, indexed by P ,

I and E, respectively. The publisher sells one ad slot in a second-price auction with reserve price R.9

Each advertiser has an advertiser-specific CTR — cI for the incumbent and cE for the entrant — that

represents the average CTR of the advertiser if placed in the ad slot. In other words, when an ad is

displayed to a consumer, the consumer clicks on the incumbent’s (entrant’s) ad with probability cI (cE).

Parameters cI and cE depend on the advertisers’ ad copies, as well as the relevance and strength of

9We consider a multiple-slot Generalized Second-Price auction in Section 5.
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their brands with respect to the publisher’s webpage in display advertising, or consumer’s search query

in search advertising.

In our main model, we assume performance-based pricing, which currently accounts for 62% of the

online advertising market in the US,10 and use pay-per-click pricing terminology.11 In Section 5.1,

we show that, under some assumptions, our findings apply to impression-based pricing as well. We

first assume that both advertisers have the same valuation per click, which we normalize to 1. This

assumption is not necessary, but simplifies the discussion of advertisers’ strategies in Section 3. We

relax this assumption in Section 4 when analyzing the publisher’s strategy. The incumbent (entrant)

submits a bid bIt (bEt), where t indexes the game stage. The bids indicate how much the advertisers

are willing to pay per click.

In performance-based pricing, publishers take advertisers’ expected performance into account when

determining payment and allocation. In pay-per-click pricing, publishers compute advertisers’ effective

bids as the product of their submitted bids and the estimated CTRs of their ads.12 Some publishers

may also include other parameters such as landing page experience in the effective bids; however, to

focus on the role of CTRs, we only take the submitted bids and the CTRs into account, and assume that

the two advertisers are the same along other dimensions that a publisher may consider.13 Therefore,

the effective bids of the incumbent and the entrant at stage t are cIbIt and cEbEt, respectively. The

advertiser with the higher effective bid wins the auction, provided its effective bid is greater than or

equal to the reserve price, R. The winner pays (per-click) the minimum bid required to win the auction;

i.e., if the incumbent wins, it pays max[cEbEt, R]/cI and if the entrant wins, it pays max[cIbIt, R]/cE .

We assume that cE is drawn from a differentiable cumulative distribution function (c.d.f.) FE . Since the

incumbent has been advertising with the publisher for an extended period of time, following Edelman

et al. (2007) (and many other papers in the literature), we assume that its CTR, cI , is common knowl-

edge. On the other hand, the entrant’s CTR is not known at the time of entry because the entrant has

not advertised with the publisher in the past. When the entrant joins, the publisher, the incumbent,

and the entrant only know the distribution of the entrant’s CTR. 14 We assume that cI and µE , the

10http://totalaccess.emarketer.com/chart.aspx?r=219092
11Pay-per-click pricing is the most common form of performance-based pricing; nonetheless, our results can be readily

applied to other performance-based pricing models such as pay-per-conversion.
12For example, see https://www.facebook.com/business/help/430291176997542 and https://searchengineland.

com/guide/ppc/how-the-ppc-ad-auction-works.
13For a discussion of other parameters in advertisers’ effective bids in search advertising see Katona and Zhu (2017).
14Note that this model implies two important assumptions on the information structure of the game. First, the assump-
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expected value of cE , are greater than the reserve price, so that the incumbent and the entrant can beat

the reserve price in expectation.

Before we proceed, we should elaborate on the meaning of the CTR parameters cI and cE . In our model,

these parameters represent the advertiser-specific CTRs which, as explained above, depend on the

advertisers’ ad copies and brand strengths among others. Advertiser-specific CTRs are independent of

position effects where higher ad slot position increases the ad’s click propensity. Indeed, publishers only

take into account advertiser-specific CTRs, controlling for position effects, when computing advertisers’

effective bids.15 Position-specific CTRs will be incorporated in the multi-slot extension in Section 5.4.

Next, we describe the timing of the game, which is depicted in Figure 1.

Stage 1: The entrant joins the market. The entrant’s CTR is initially unknown, and is therefore set to

its expected value µE .16 The incumbent and the entrant simultaneously submit their bids bI1 and bE1 to

the publisher. The incumbent’s effective bid is cIbI1 whereas the entrant’s is µEbE1, since the publisher

does not know the entrant’s CTR yet. If the incumbent wins, it pays (per-click) max[µEbE1, R]/cI ,

and if the entrant wins, it pays max[cIbI1, R]/µE . If the entrant wins, its CTR becomes known to the

publisher by the next stage; otherwise, it remains unknown.

To simplify the analysis, we assume that if the entrant wins a single auction (i.e., the auction in Stage 1),

then the publisher learns its CTR. In practice, the entrant would have to win sufficiently many times

for the publisher to accurately learn its CTR. Stage 1 in our model corresponds to as many auctions

as the entrant needs to win for the publisher to learn its CTR. Furthermore, in practice, learning is

continuous and gradual such that the publisher’s estimate of the entrant’s CTR improves incrementally

every time the entrant wins. Our model can be viewed as a discrete approximation of this learning

process: the publisher either knows or does not know the entrant’s CTR.

Stage 2: The advertisers submit their bids bI2 and bE2. The incumbent’s effective bid is cIbI2. The

entrant’s effective bid depends on the outcome of the Stage 1 auction. If the entrant had won in

tion that cI is common knowledge implies that the entrant and the publisher have the same level of information about the
incumbent. Second, we are implicitly assuming that the incumbent and the publisher have the same level of information
about the entrant. In practice, it is possible that large publishers such as Google and Facebook can estimate advertisers’
CTRs more accurately than other advertisers based on their vast troves of data. We relax both of these assumptions in
Section 5.2 and establish the robustness of our results.

15https://support.google.com/google-ads/answer/1659696
16In Google AdWords, new advertisers received an average Quality Score of 6. See https://searchengineland.com/

minimum-quality-score-can-save-money-adwords-226757. In Section 5.3.2, we consider an extension in which, instead
of using µE , the publisher strategically sets the entrant’s CTR.
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Figure 1: Game Timing

Stage 1, then its CTR becomes known to the publisher by Stage 2, and therefore, its effective bid is

cEbE2. Otherwise, as in Stage 1, its CTR is not learned and its effective bid is µEbE2.17

We capture the relative weight of Stage 2 compared to Stage 1 with parameter δ > 0. Note that since

the advertisers’ decisions in Stage 1 affects their payoffs in Stage 2, δ affects how the advertisers trade

off short-term revenue (in Stage 1) for long-term revenue (in Stage 2).18

The incumbent’s expected profit is the sum of its first and second stage payoffs. That is, E[πI ] =

πI1 + δE [πI2] where πI1 denotes the incumbent’s first stage payoff, and πI2 its second stage payoff

contingent on the realization of cE , over which expectation is taken. Specifically,

πI1 =


cI

(
1− max[µEbE1,R]

cI

)
if cIbI1 ≥ max[µEbE1, R],

0 otherwise,

πI2 =


cI

(
1− max[c̃EbE2,R]

cI

)
if cIbI2 ≥ max[c̃EbE2, R],

0 otherwise,

where c̃E is cE if cE is learned (i.e., entrant won in Stage 1 auction), and µE otherwise. Similarly, the

entrant’s expected profit is E[πE ] = E [πE1] + δE [πE2], where

πE1 =


cE

(
1− max[cIbI1,R]

µE

)
if µEbE1 ≥ max[cIbI1, R],

0 otherwise,

πE2 =


cE

(
1− max[cIbI2,R]

c̃E

)
if c̃EbE2 ≥ max[cIbI2, R],

0 otherwise.

17If the entrant wins the auction in Stage 1, the publisher learns cE ; however, we do not make any assumptions on
whether the incumbent also learns cE or not. Specifically, as we show in Lemma 1, the incumbent bids truthfully in
Stage 2 regardless of the outcome of Stage 1.

18One might argue that the publisher eventually learns the entrant’s CTR, even if the entrant does not win in Stage 1.
For instance, its CTR may be learned if the entrant’s ad is displayed on the second page of the search results for a
sufficiently long period of time. In this case, we could assume that the game has a Stage 3 in which, regardless of the
outcomes of Stages 1-2, cE becomes learned by the publisher. It is easy to show that both advertisers bid truthfully in
Stage 3, and that the existence of Stage 3 does not affect the advertisers’ strategies in Stages 1-2. In this model, δ could
be interpreted as the length of time required for the publisher to learn the entrant’s CTR if the entrant does not win in
Stage 1 (compared to when it wins in Stage 1).
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Finally, the publisher’s expected profit is E[πP ] = E[πP1] + δE [πP2], where

πP1 =


max[µEbE1, R] if cIbI1 ≥ max[µEbE1, R],

cE
max[cIbI1,R]

µE
if µEbE1 > max[cIbI1, R],

0 otherwise,

πP2 =


max[c̃EbE2, R] if cIbI2 ≥ max[c̃EbE2, R],

cE
max[cIbI2,R]

c̃E
c̃EbE2 > max[cIbI2, R],

0 otherwise.

We use subgame perfect Nash equilibrium as the solution concept and solve by backward induction.

Finally, to ensure the existence of a weakly dominant strategy for the incumbent, we assume that cI +

δ
(

(cI − µE)+ −
∫ 1

0 (cI −max[cE , R])+ dFE

)
≥ R, for which a sufficient condition is δ ≤ 1

fE(R)+FE(R) .19

This assumption is only needed to facilitate the exposition in Section 3, and will be dropped in Section 4.

3 Advertisers’ Strategies

In this section, we analyze the advertisers’ bidding strategies and assume that the publisher’s mechanism

is exogenous. As a benchmark, in Section 3.1, we analyze the advertisers’ strategies in a full information

game. Then, in Section 3.2, we study how learning incentives in an incomplete information game affect

the advertisers’ bidding strategies.

3.1 Full Information Setting

As a benchmark, we first consider the case where the entrant’s CTR is common knowledge. This

corresponds to what most of the previous theoretical papers in online advertising literature assume.

Even though the auction is not a standard second-price auction because advertisers’ bids are multiplied

by their CTRs, truthful bidding (i.e., bidding the per-click valuation) is still a weakly dominant strategy

for both advertisers. The advertisers’ equilibrium strategies and their payoffs under full information are

summarized in the following proposition.

Proposition 1 (Bids and Payoffs Under Full Information). Under full information, truthful bidding

is a weakly dominant strategy for both advertisers. The payoffs of the incumbent, the entrant, and

19This is not a restrictive assumption; for example, for FE(c) = c, the condition holds for all δ > 0 and cI ≥ R. The

sufficient condition derives from the fact that cI + δ
(

(cI − µE)+ −
∫ 1

0
(cI −max[cE , R])+ dFE

)
is equal to R at cI = R,

and then imposing that the former increases in cI .
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the publisher, respectively, are πFI = (1 + δ)(cI − max[cE , R])+, πFE = (1 + δ)(cE − cI)+, and πFP =

(1 + δ) max[min[cI , cE ], R], where x+ ≡ max[x, 0].

Proposition 1 shows that when the publisher knows the entrant’s CTR, both advertisers always bid

truthfully. This finding is not new to the literature and is presented here for the sake of completeness.

Interestingly, in the next section, we show that truthful bidding is no longer an equilibrium strategy

when the publisher does not know the entrant’s CTR.

3.2 Incomplete Information Setting

In practice, there is little information regarding the entrant’s CTR that is available to the publisher.

Therefore, unlike the case for the incumbent’s CTR, the advertisers and the publisher have at best only

partial information about the entrant’s CTR.

We begin our analysis under incomplete information with the second stage bids. We focus on dominant

strategy equilibrium where advertisers play weakly dominant strategies. As we show in Lemma 1,

Stage 2 auction is straightforward: advertisers bid truthfully. This is because in the last stage there are

no strategic considerations of future payoffs; thus, the truthfulness property of standard second-price

auctions holds.

Lemma 1 (Bids in Stage 2 Under Incomplete Information). Regardless of the outcome in Stage 1,

bidding truthfully is a weakly dominant strategy for both advertisers in Stage 2.

In contrast, we find that in Stage 1, the advertisers’ bidding strategies are not always truthful. Their

bids can be either below or above valuation depending on their expectations of Stage 2 payoffs. The

following lemma characterizes the advertisers’ first stage equilibrium bids.

Lemma 2 (Bids in Stage 1 Under Incomplete Information). In Stage 1, it is weakly dominant for the

incumbent and the entrant, respectively, to bid

b∗I1 = 1 +
δ

cI

(
(cI − µE)+ −

∫ cI

0
cI −max[cE , R] dFE

)
, (3.1)

b∗E1 = 1 +
δ

µE

(∫ 1

cI

cE − cI dFE − (µE − cI)+

)
. (3.2)
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In general, truthful bidding is a weakly dominant strategy in a second-price auction even under incom-

plete information. Expressions (3.1) and (3.2), however, show that the advertisers’ bids are no longer

truthful. What drives the change in advertisers’ strategies in our model is the advertisers’ incentive (or

lack thereof) to help the publisher learn the entrant’s CTR. The advertisers’ Stage 1 bids are shaped by

their preference to play a Stage 2 game in which the entrant’s CTR is µE vs. cE , where cE is randomly

drawn from FE . For example, if the entrant’s expected payoff in Stage 2 is higher when its CTR is cE

(i.e., its CTR is learned), compared to when it is µE (i.e., its CTR is not learned), the entrant would

raise its Stage 1 bid.

But does the entrant prefer its CTR to be learned by the publisher? We find the answer to be affirmative.

For the entrant, the benefits of revealing its CTR are two-fold. First, it allows the entrant to outrank

the incumbent in Stage 2 with some probability even when µE ≤ cI , a situation in which the entrant

would have surely lost in Stage 2 if its CTR was unknown and set to µE by the publisher. Second, it

provides an opportunity for the entrant to pay lower cost-per-click in the event that its CTR turns out

to be high, compared to the case when its CTR is assigned the mean estimate µE . Evidently, there is

also the risk of its CTR turning out to be low, in which case the entrant would have been better off

being assigned µE . The reward of a high CTR realization, however, is disproportionately larger than

the loss the entrant incurs for a low realization. The reason is that while the gains for the entrant

increase proportionally with high realizations of cE , the loss of a low cE is bounded from below by zero.

Therefore, in expectation, the entrant prefers its CTR to be learned by the publisher.

The following table shows this more formally for the case when µE > cI :

Table 2: Entrant’s Stage 2 Profit

Publisher does not know cE Publisher knows cE

E[πE2] =
∫ 1

0 cE(1− cI/µE) dFE E[πE2] =
∫ 1

0 cE(1− cI/cE)+ dFE

E[πE2] = (1− cI/µE)
∫ 1

0 cE dFE = (1− cI/µE)µE E[πE2] =
∫ 1
cI
cE(1− cI/cE) dFE

E[πE2] = µE − cI =
∫ 1

0 cE − cI dFE E[πE2] =
∫ 1
cI
cE − cI dFE

From Table 2, we see that the entrant’s Stage 2 profit when the publisher does not know the entrant’s

CTR (left-hand side) is integrated over negative values as well (in the range cE ∈ (0, cI)). This integral

value is lower than that when the publisher knows cE (right-hand side) where only positive values are

integrated. In sum, for any entrant CTR distribution FE , the entrant’s Stage 2 profit is higher in

expectation if the publisher learns its CTR. Therefore, the entrant bids aggressively in Stage 1 in order
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to facilitate the publisher’s learning process.

The incumbent’s bidding strategy is slightly more nuanced: the incumbent underbids for low cI and

overbids for high cI . Suppose cE is not learned by the publisher in Stage 2. If cI is close to µE , then the

incumbent either loses the Stage 2 auction or, even if it wins the auction, receives a low Stage 2 payoff

because the cost-per-click µE/cI is high. In this case, the incumbent is better off shading its Stage 1

bid below valuation, thereby helping the entrant win the first stage auction. The intuition is that by

facilitating the revelation of the entrant’s CTR, the incumbent foregoes its first stage payoff, but creates

an opportunity to reap a large second stage payoff in the event cE turns out to be low. Thus, a weak

incumbent has a strategic incentive to underbid.

On the other hand, if cI is significantly greater than µE , then the incumbent’s Stage 1 strategy switches

from underbidding to overbidding. To illustrate, suppose cI is high and compare the incumbent’s

Stage 2 payoff when cE is concealed vs. revealed. Had cE been concealed, the incumbent would win in

Stage 2 at a low cost-per-click of µE/cI , since cI � µE . Conversely, had cE been revealed, there are

two possibilities: if cE turns out to be low, the incumbent will pay an even lower cost; if cE turns out

to be high, the incumbent will pay a high cost (if not lose the ad position). However, the reward of a

low cE realization is outweighed by the risk of a high cE realization because the incumbent’s potential

to reap larger margins for a low cE realization is limited by the reserve price. Therefore, the incumbent

has incentive to conceal cE when its CTR is high, and thus bids above valuation in Stage 1. This can

also be seen from the following expressions of the incumbent’s Stage 2 profit when cI > µE :

Table 3: Incumbent’s Stage 2 Profit when cI > µE

Publisher does not know cE Publisher knows cE

E[πI2] = cI(1− µE/cI) E[πI2] =
∫ 1

0 cI(1−max[cE , R]/cI)
+ dFE

E[πI2] = cI − µE E[πI2] =
∫ R

0 cI(1−R/cI) dFE +
∫ cI
R cI(1− cE/cI) dFE

E[πI2] =
∫ 1

0 cI − cE dFE E[πI2] =
∫ R

0 cI −RdFE +
∫ cI
R cI − cE dFE

From Table 3, we see that the incumbent’s Stage 2 profit when the publisher does not know the entrant’s

CTR (left-hand side) is cI − cE integrated over all values of cE . When cE is known (right-hand side),

for values of cE ∈ (0, R), we have cI −R integrated; since R > cE , the incumbent is better off when the

publisher does not know cE for this integration range. Within the integration range of cE ∈ (R, cI), the

expressions on both sides are equal to cI − cE . Finally, within the range cE ∈ (cI , 1), negative values

are integrated on the left-hand side expression whereas the right-hand side expression is zero. For this
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integration range, the incumbent is better off when the publisher knows cE . Overall, the negative effect

of learning cE on the incumbent’s profit (which happens for cE ∈ (0, R)) is constant as cI increases, but

the positive effect (which happens for cE ∈ (cI , 1)) shrinks as cI increases. Therefore, a weak incumbent

with low cI is better off in Stage 2 when cE is learned, whereas a strong incumbent with high cI is

better off when cE is not learned. This incentivizes a weak (strong) incumbent to underbid (overbid)

in Stage 1. We summarize these results in the following proposition.

Proposition 2 (Advertisers’ Strategies in Stage 1 Under Incomplete Information). In Stage 1, the

entrant always bids above its valuation. The incumbent bids below its valuation if cI is low, and bids

above its valuation if cI is high. See Figure 2.

The advertisers’ bidding behavior outlined in Proposition 2 can also be understood from an asymmetric

learning perspective. Suppose that the publisher always learns the entrant’s CTR in Stage 2, regard-

less of the Stage 1 outcome. In this hypothetical scenario, the advertisers’ Stage 2 payoffs would be

independent of the Stage 1 outcome. As a result, neither the incumbent nor the entrant would have

incentive to deviate from truthful bidding in Stage 1. In our model, however, the fact that the pub-

lisher’s learning is asymmetric — that is, learning occurs if only if the entrant wins in Stage 1 — creates

an important interdependence between the two sequential auctions. This interdependence, which is

depicted in Figure 1, generates strategic incentives for advertisers to deviate from truthful bidding.

Publisher’s Revenue

We turn to the implications of learning incentives on the publisher’s revenue. Is the publisher unequiv-

ocally better off knowing the entrant’s CTR? One may conjecture that being more informed about the
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bidders can only benefit the publisher as it would allow for more efficient ad slot allocation. Surpris-

ingly, we find that this is not always the case. Under certain conditions, not knowing the entrant’s CTR

increases the publisher’s revenue.20

The intuition revolves around two effects. First, the publisher’s ignorance of the entrant’s CTR induces

the entrant to bid more aggressively in Stage 1. As explained above, the incentive to bid higher arises

from the fact that the entrant’s expected payoff in Stage 2 is higher if the publisher learns its CTR.

This higher bid increases the incumbent’s payment if it wins, which results in higher Stage 1 revenue

for the publisher.

The second effect is subtler. Consider the publisher’s Stage 2 revenue when cI > µE . Recall that the

advertisers bid truthfully in Stage 2. If cE is not known, the publisher’s expected revenue in Stage 2 is

(µE/cI)cI = µE . Using the definition of µE , this can be rewritten as

∫ 1

0
cE dFE . (3.3)

If cE is known, the publisher’s Stage 2 revenue depends on the realization of cE and can be written as

∫ R

0
RdFE +

∫ cI

R
cE dFE +

∫ 1

cI

cI dFE . (3.4)

Comparing the two integral expressions (3.3) and (3.4), we see that within the integration range cE ∈

(0, R), Expression (3.4) is larger; within the range cE ∈ (R, cI), the two expressions are equal, and within

the range cE ∈ (cI , 1), Expression (3.3) is larger. Thus, if cI is not too high, then the publisher’s revenue

when it does not know cE (i.e., Expression (3.3)) is larger than when it does (i.e., Expression (3.4)).

Intuitively, since the benefit of a high realization of cE is bounded from above by cI , i.e., the publisher

cannot fully reap the benefits of a high cE , the publisher’s Stage 2 revenue may be higher when cE

is not known than when it is. Taken together, the publisher’s ignorance of the entrant’s CTR can be

blissful for moderate values of cI . This result is formalized in the following proposition.

Proposition 3 (Publisher Revenue: Ignorance is Bliss). The publisher’s revenue is higher not knowing

the entrant’s CTR than knowing it if and only if (i) c < cI < c, or (ii) cI ≤ µE and δ < 1, where c and

c are defined in the appendix.

20To be more precise, the common knowledge that the publisher does not know the entrant’s CTR may increase its
revenue.
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Proposition 3 suggests that publishers do not always have to be concerned about not knowing the

new advertisers’ types. In fact, not knowing the new advertisers’ CTRs can sometimes increase the

publisher’s revenue because ignorance induces advertisers to bid aggressively. However, Proposition 3

also reveals conditions under which the publisher’s ignorance can be a curse. For instance, if the

incumbent is strong (e.g., high cI in Figure 3), then not knowing the entrant’s CTR decreases the

publisher’s revenue. This is because, when cI is sufficiently high, the entrant, who is the “price setter”

in the auction, bids less aggressively. Furthermore, when cI is high, the publisher does not learn the

entrant’s CTR in equilibrium due to the incumbent’s aggressive bidding. As a result, it suffers from

suboptimal allocation of the ad slot (i.e., missing out on a potentially high cE).

Given that the publisher may incur a revenue loss for not knowing cE , one may wonder what strategies

a publisher can deploy to mitigate this loss. In the next section, we characterize the publisher’s optimal

strategy in a learning environment. We show that, in the presence of learning incentives, it is optimal

for the publisher to favor the entrant in Stage 1 in order to increase the probability of the entrant’s

winning.

4 Publisher’s Strategy

In the previous section, we assumed that advertisers have the same, commonly known valuation for

the ad slot. Moreover, we focused primarily on the advertisers’ strategies, with the publisher passively

implementing an exogenously fixed auction mechanism. In this section, we analyze a setting where

advertisers have stochastic, private valuations and, more importantly, the publisher optimally chooses
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the mechanism that maximizes its profit.21 We show that, in the presence of learning incentives,

the publisher can achieve the optimal revenue using a variation of the standard second-price auction

with personalized (advertiser-specific) reserve prices. Additionally, the learning incentives induce the

publisher to favor the entrant in Stage 1.

4.1 Optimal Mechanism

Suppose advertiser j’s per-click valuation, vj , is drawn from a c.d.f. Gj with support [0, vj ] and is private

information, for j ∈ {I, E}. Following the literature on auction theory (see Krishna, 2010), we impose

the following assumption on Gj .

Assumption 1 (Increasing Hazard Rate). Let gj denote the density of Gj. The hazard rate function

gj(x)
1−Gj(x) is increasing in x for j ∈ {I, E}.22

Prior to Stage 1, the publisher sets the ad auction rules. In particular, it decides the allocation rule (who

wins the ad slot), and the payment rule (how much each bidder pays). The rest of the game proceeds

the same as in Section 3. The following lemma characterizes the publisher’s optimal mechanism.

Lemma 3 (Publisher’s Optimal Mechanism). The publisher’s optimal mechanism is as follows.

Stage 1: Compute the incumbent’s and entrant’s virtual bids, respectively, as

ψI1(bI1) = cI

(
bI1 −

1−HI(bI1)

hI(bI1)

)
and ψE1(bE1) = µE

(
bE1 −

1−HE(bE1)

hE(bE1)

)
+ δ∆P , (4.1)

and set the virtual reserve price to δ∆I .

Stage 2: Compute advertiser j’s virtual bid as

ψj2(bj2) = cj

(
bj2 −

1−Gj(bj2)

gj(bj2)

)
for j ∈ {I, E},23 (4.2)

21In order to characterize the optimal mechanism, we have to assume stochastic private valuations for the advertisers;
otherwise, the publisher’s optimal strategy is to set the reserve price of Stage 2 to 1, leaving no surplus for the advertisers.
Stochastic private valuation is a standard assumption in mechanism design literature; e.g., see Myerson (1981) for a general
setting, and Edelman and Schwarz (2010) for the context of online advertising.

22Assumption 1 greatly facilitates the derivation of the optimal mechanism. A large class of distributions satisfy this
property; e.g., exponential, Weibull, modified extreme value, Gamma (with parameters α > 1, λ > 0), and truncated
normal (with “commonly accepted [parameters]”). See Barlow and Proschan (1965) and Brusset (2009) for details.

23We are slightly abusing notation: “cE” in Stage 2 is c̃E , which is cE if cE is learned, and µE otherwise.
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and set the virtual reserve price to 0,

where Hj(bj1) = Gj

(
bj1 − δ∆j

cj

)
, ∆I = πI2(µE) −

∫ 1
0 πI2(cE) dFE, ∆E =

∫ 1
0 πE2(cE) dFE − πE2(µE),

∆P =
∫ 1

0 πP2(cE) dFE − πP2(µE), and πj2(c′E) denotes the Stage 2 profit of player j ∈ {I, E, P} under

the optimal Stage 2 mechanism when the publisher assigns entrant’s CTR as c′E.

Allocate the ad slot to the advertiser with highest virtual bid, provided it exceeds the virtual reserve price.

Payment (per-click) is equal to the minimum bid required for the winning advertiser to win.

The details of the proof are provided in the appendix. We briefly discuss here the intuition behind the

optimal mechanism. Variables ∆j , j ∈ {I, E, P}, capture the difference in a full-information Stage 2

vs. an incomplete-information Stage 2 in the players’ payoffs; i.e., ∆E measures the additional Stage 2

payoff the entrant gains from having its CTR learned by the publisher; ∆P measures the additional

Stage 2 payoff the publisher gains from learning the entrant’s CTR; and ∆I represents the additional

Stage 2 payoff the incumbent gains if the entrant’s CTR is not learned. Distributions Hj , j ∈ {I, E},

are similar to advertisers’ valuation distributions Gj , except that they are shifted to account for the

advertisers’ incentives to have the entrant’s CTR learned or not learned.

The derivation of the optimal mechanism closely follows Myerson (1981). The optimal mechanism in

Stage 2, where learning incentives are absent, is a direct application Myerson’s lemma. Intuitively, the

virtual bid transformation amounts to sorting advertisers based on the marginal revenue they bring to

the publisher (Krishna, 2010). Thus, allocating the ad slot to the advertiser with the highest virtual

bid maximizes the publisher’s profit.

In Stage 1, the presence of learning incentives (for both the advertisers and the publisher) distorts

the advertiser’s virtual bids compared to the standard format in Myerson (1981). Specifically, we see

from (4.1) that the publisher additively inflates the entrant’s virtual bid by δ∆P . This term represents

the additional Stage 2 payoff the publisher gains from learning the entrant’s CTR and is proven to be

always positive.24 Intuitively, since the publisher can only learn the entrant’s CTR if the entrant wins

in Stage 1, the publisher has an incentive to help the entrant win. The publisher accomplishes this by

increasing the entrant’s virtual bid in Stage 1.25

24To see that ∆P is positive, it suffices to show πP2(cE) =
∫∫

max [ψI2(xI2|cI), ψE2(xE2|cE)]+ dG is convex in cE . The
integrand is convex in cE because it is the maximum of ψI2(xI2|cI)+, which is independent of cE , and ψE2(xE2|cE) which
is a linear function of cE . And since any linear combination with positive weights of convex of functions is also convex, we
conclude πP2(cE) is convex in cE .

25It can be easily verified that the Stage 1 virtual bids in (4.1) reduce to the standard format (Myerson, 1981) when the
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Lemma 3 also sheds light on the nature of the optimal virtual bids. For example, if the advertisers’

valuations are uniformly distributed, then it is optimal for the publisher to compute virtual bids by

multiplying the advertisers’ bids with their expected CTRs (modulo an additive term). This implies

that publishers with diffuse priors about advertisers’ valuations can achieve near-optimal revenues by

ranking advertisers based on CTR × bid. Moreover, the fact that the CTR-multiplier formula is also

used in Stage 1 in the presence of learning dynamics attests to the robustness of this particular virtual

bid format.

Next, we discuss the advertisers’ bidding strategies under the optimal mechanism. Interestingly, we

find that the insights from Section 3 regarding bid adjustments carry over to the optimal mechanism

setting. As shown in Figure 4, the entrant overbids in Stage 1. Its motivation closely mirrors that of

Section 3: its expected payoff in Stage 2 is greater if its CTR is learned by the publisher because the

downside risk of a low cE draw is bounded.

A weak incumbent bids below its valuation and helps the entrant reveal its CTR. In contrast to Sec-

tion 3, however, the heterogeneity in advertisers’ valuations necessitates an additional condition for this

result to hold. Namely, the valuation distributions GI and GE must be such that the weak incumbent’s

probability of winning in Stage 2 decreases sufficiently slowly in cE . Roughly, this is equivalent to the

incumbent’s valuation distribution being more concentrated around higher values than is the entrant’s

valuation distribution. For then, even if the entrant’s CTR turns out to be high in Stage 2, the incum-

bent, whose valuation is more heavily concentrated on higher values, would still have a considerable

chance of winning. This condition ensures the weak incumbent, who effectively helps the entrant win in

Stage 1, feels adequately “insured” against the risk of a high cE draw in Stage 2. The weak incumbent

will then forego its Stage 1 profit and help reveal the entrant’s CTR, as it creates an opportunity to

earn higher profits against an entrant with a low CTR draw.

Finally, a strong incumbent may overbid under the optimal mechanism (see Figure 4). Again, the

intuition mirrors that from Section 3; however, the added necessary condition is that the incumbent’s

probability of winning in Stage 2 decrease steeply in the entrant’s CTR draw. In this case, the incumbent

deems the risk of revealing the entrant’s CTR in Stage 2 too high. Therefore, it bids aggressively in

Stage 1 and deters the publisher from learning the entrant’s CTR. We summarize these findings in the

following proposition.

learning dynamics are muted (e.g., δ = 0).
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Proposition 4 (Advertisers’ Strategies in Stage 1 Under Optimal Mechanism). Suppose the publisher

implements the optimal mechanism characterized in Lemma 3. In Stage 1, the entrant always bids above

its valuation. The incumbent bids below its valuation if cI is low and the valuation distributions GI and

GE are such that the probability of the incumbent winning in Stage 2 decreases sufficiently slowly in

the entrant’s CTR draw. The incumbent bids above its valuation if cI is high and GI and GE are such

that the incumbent’s probability of winning in Stage 2 decreases steeply in the entrant’s CTR draw. The

exact conditions are provided in the proof in Section A.7.

4.2 Optimal Reserve Prices

In this section, we delve deeper into a particular aspect of the optimal mechanism, the (effective) reserve

prices. We examine how the learning incentives affect the publisher’s optimal reserve prices in Stage 1.

Before we proceed, we should clarify two distinct units of reserve prices. Virtual reserve price is defined

in the virtual bids space, and measures the minimum virtual bid required for an advertiser to participate.

Effective reserve price is defined in the submitted bids space, and refers to the minimum submitted bid

required for a particular advertiser to participate (Ostrovsky and Schwarz, 2016). To illustrate, suppose

the publisher sets a virtual reserve price $0.15 and an advertiser bids b. Suppose that the advertiser’s

virtual bid is set to 0.1 × b by the publisher. The advertiser will be considered in the auction if its

virtual bid 0.1 × b is greater than or equal to $0.15. Equivalently, the advertiser will be considered if

its submitted bid b is greater than or equal to the effective reserve price $0.15/0.1 = $1.5.

Although the optimal mechanism uses the same virtual reserve price for all advertisers, because it

applies different virtual bid transformations, advertisers experience different effective reserve prices.

In the following, we consider the effective reserve price as it is a more intuitive concept to discuss
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advertisers’ payments.

Our analysis shows that the optimal reserve price depends crucially on two countercurrent forces. On

the one hand, the entrant’s overbidding incentive exerts an upward force on the entrant’s reserve price.

That is, the higher is the value that the entrant gains from the publisher learning its CTR, the higher

it bids in Stage 1. The publisher can, thus, extract more from the entrant by setting a higher reserve

price. Therefore, the reserve price increases with the entrant’s overbidding incentive. The converse is

true for the incumbent: the reserve price for the incumbent increases with the incumbent’s value of

deterring the publisher from learning the entrant’s CTR.

On the other hand, the publisher’s learning incentive pushes the entrant’s reserve price downward. The

higher is the value for the publisher if it learns the entrant’s CTR, the greater its incentive to help the

entrant win in Stage 1. This is accomplished by lowering the entrant’s reserve price. Therefore, the

reserve price decreases with the publisher’s learning incentive.

Figure 5 illustrates the dynamics of each advertiser’s optimal reserve price for particular valuation

distributions GI and GE . Interestingly, the entrant’s reserve price can be non-monotonic in the Stage 2

weight parameter, δ. When δ is small, the publisher learning incentive dominates, and as δ increases,

the publisher lowers the reserve price to facilitate learning the entrant’s CTR. When δ is large, however,

the entrant overbidding incentive dominates. Here, as δ increases, the publisher increases the reserve

price to extract more surplus from the entrant.

So far, we have discussed the two countercurrent forces that induce the publisher to increase/decrease

the entrant’s reserve price in a learning environment. But what is the net effect of these forces on

the entrant’s reserve price? We conclude this section by presenting the conditions under which the

publisher sets a lower reserve price for the entrant when it does not know the entrant’s CTR than under
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full information. While a closed-form characterization of the optimal reserve price with respect to δ

is intractable, we can analytically delineate the conditions for when the publisher sets a lower reserve

price. In Proposition 5, we show that, for any δ, the publisher sets a lower reserve price for the entrant

in a learning environment (compared to full information) if and only if the increment in its Stage 2

profit from learning the entrant’s CTR is sufficiently high.

Proposition 5. The publisher sets a lower reserve price for the entrant when the publisher does not

know the entrant’s CTR than when it does if and only if ∆P > ∆I + µEρ
δ (where ∆j is as defined in

Lemma 3 and ρ > 0 is as defined in the proof); i.e., the publisher’s gain in Stage 2 from learning the

entrant’s CTR is sufficiently high.

The results of Lemma 3 and Proposition 5 show that when the publisher’s learning incentives are

sufficiently strong, it is optimal for the publisher to favor the entrant. Favoring the entrant can be

implemented by increasing the entrant’s virtual bid as in Lemma 3, or decreasing the entrant’s reserve

price as in Proposition 5. In Section 5.3, we show that other mechanisms that favor the entrant can

create a similar effect. For example, giving free advertising credit to new advertisers, or artificially

inflating the “estimated” CTR of new advertisers can increase the publisher’s revenue.

5 Extensions

We present four extensions of the main model to assess the robustness of our results. In Section 5.1, we

show that our results from the main model continue to hold under impression-based pricing. In the main

model, we assumed that the advertisers and the publisher have the same level of information about the

CTRs; in Section 5.2, we relax this assumption to establish the robustness of our results. In Section 5.3,

we explore other mechanisms that help the publisher increase its revenue in a learning environment.

We show that offering free ad credit to new advertisers, or artificially inflating the “estimated” CTR of

new advertisers can increase the publisher’s revenue. Finally, in Section 5.4, we turn to the context of

search advertising and discuss how our results change when there are multiple ad slots.
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5.1 Impression-based Pricing

Suppose the publisher sells a single ad slot through a cost-per-impression (CPM) auction instead of

cost-per-click. Consistent with practice, we assume that the publisher receives the advertisers’ per-

impression bids and assigns the slot to the highest bidder.26 The winning bidder pays the minimum bid

required to win the auction.

To model a CPM auction, it is important to recognize that the relevant performance metric for adver-

tisers is the consumers’ “estimated action rates” per ad impression. Consumer actions can range from

clicking a link to watching a video longer than a certain amount of time, or completing a certain task

on the advertiser’s website. For j ∈ {I, E}, let aj ∈ [0, 1] denote the probability of action of a consumer

conditional on viewing advertiser j’s ad. We normalize the value of a consumer’s action to 1 for both

advertisers. Put together, a single impression is worth aj to advertiser j.

In the spirit of the main model, assume that the action probability associated with the entrant’s

ad, aE , is known only up to its c.d.f. F̃ with mean ãE , while the incumbent’s action probability,

aI , is common knowledge.27 The true value of aE can only be learned if the entrant wins the first

stage auction; only then can the entrant accurately assess the likelihood of a consumer responding

to its ad with some pre-defined action. Similar to Section 3, we assume that the reserve price is

exogenously set at R, and is less than aI and ãE . In addition, as in Section 3, we assume aI +

δ
(

(aI − ãE)+ −
∫ 1

0 (aI −max[aE , R])+ dF̃
)
≥ R to ensure the existence of weakly dominant strategies.

Analyzing the advertisers’ strategies yields the following proposition, which echoes the results from the

main model.

Proposition 6 (Advertisers’ Strategies in Stage 1 Under CPM). In Stage 1, the entrant always bids

above its valuation. The incumbent bids below its valuation if aI , the action probability associated with

its ad, is low, and bids above valuation if aI is high. See Figure 6.

Proposition 6 shows that advertisers’ strategies under impression-based pricing are similar to those

under performance-based pricing. However, there is an important difference in the advertisers’ incentives

between the two pricing models. Under performance-based pricing, the entrant does not care about

26This contrasts with rankings based on effective bids in CPC auctions, where publishers multiply the advertiser’s bid
with its Quality Score.

27For our analysis, we only need the incumbent’s WTP to be common knowledge; this is a standard assumption in
papers with a full-information setting in online advertising, e.g.,Edelman et al. (2007).
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learning the CTR itself; it overbids so that the publisher learns the CTR. In contrast, under impression-

based pricing, since the CTR determines the entrant’s valuation per impression, the entrant overbids

so that the entrant itself learns its CTR. Similarly, under performance-based pricing, the incumbent

adjusts its bid to affect whether the publisher learns the entrant’s CTR or not, whereas under impression-

based pricing, the incumbent wants to affect whether the entrant learns its own CTR or not. Despite

discrepancies in the advertisers’ incentives across these two pricing models, the mathematical expressions

that capture the advertisers’ payoffs are relatively similar: in performance-based pricing, the publisher

includes the advertiser’s CTR in the effective bid, whereas in impression-based pricing the advertiser

includes the CTR in its submitted bid. As such, we obtain the same strategic behavior under both

pricing models.

5.2 Information Asymmetry

In this section, we test the robustness of our results when the information symmetry assumption is

relaxed. We examine two distinct cases. In Section 5.2.1, we demonstrate that the qualitative insights

of the main model carry over when the entrant is at an informational disadvantage; i.e., the entrant

only knows the incumbent’s CTR up to some distribution, while the incumbent and the publisher know

the incumbent’s true CTR. In Section 5.2.2, we replicate the incumbent’s bidding pattern from the

main model in a setting where the incumbent only knows the distribution of the entrant’s CTR up to

a distribution, while the entrant and the publisher know the true distribution of cE .
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5.2.1 Entrant Does Not Know True cI

In the main model, we assumed that the entrant, incumbent and the publisher possessed the same level

of information regarding the incumbent’s CTR. In reality, it could be argued that the entrant may not

be as knowledgeable about cI as the incumbent and the publisher. In this section, we analyze a model

that captures this information asymmetry more realistically. Our objective is to show that the the

entrant’s overbidding behavior is robust to the setting where the entrant is less informed about cI than

the incumbent and the publisher.

To that end, suppose that the entrant does not know the true value of cI , but knows that it follows

some distribution FI over the support [R, 1]. On the other hand, the publisher and the incumbent both

know the true cI . We find that the entrant’s overbidding pattern is robust to this information setting.

The following proposition summarizes the finding.

Proposition 7. Suppose the entrant does not know the true CTR of the incumbent, but only knows its

distribution. In Stage 1, the entrant always bids above its valuation.

We know from Section 3 that the entrant overbids for any given value of cI . Intuitively, when the entrant

only knows the distribution of cI , it integrates over all possible values of cI to calculate its optimal bid.

Since the optimal strategy for any value of cI is to overbid, the optimal strategy when cI is not known

(i.e., the outcome of the integration) is still to overbid. This is formalized in the proof of Proposition 7.

5.2.2 Incumbent Does Not Know True Distribution of cE

Another important case to consider is when the incumbent, as opposed to the entrant, is at an informa-

tional disadvantage. How would the incumbent having less information about cE than the entrant and

the publisher impact its bidding strategy? To address this question, we allow for the possibility that

the incumbent does not know the true distribution of cE ; i.e., the incumbent strategizes based on some

prior belief over a range of possible distributions of cE . The publisher and the entrant, on the other

hand, know the true distribution of cE .

Suppose the incumbent believes that the true distribution of cE is Fx for some x ∈ X . Let P (x)

denote the c.d.f. of the incumbent’s prior over the class of distributions {Fx}x∈X , and µx the mean

of Fx. In addition, as in Section 3, assume that the condition for the existence of weakly dominant
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strategies holds: cI + δ
∫
x∈X

(
(cI −max[µx, R])+ −

∫ 1
0 (cI −max[cE , R])+ dFx

)
dP (x) ≥ R. Then there

exists CTR thresholds such that a weak incumbent (i.e., with a low CTR) bids below its valuation,

whereas a strong incumbent (i.e., with a high CTR) bids above it. We state this as a proposition.

Proposition 8. Suppose the incumbent does not know the true distribution of the entrant’s CTR. There

exists a pair of thresholds (c′, c′) such that the incumbent bids below its valuation if cI < c′, and bids

above valuation if cI > c′.

The intuition for the result of Proposition 8 is similar to that of Proposition 7. For any distribution

Fx, we know from Section 3 that a weak incumbent underbids and a strong incumbent overbids. When

the incumbent does not know the entrant’s distribution, it integrates over all possible distributions

to calculate its optimal bid; however, the same pattern continues to exist. When the incumbent is

sufficiently weak it overbids and when it is sufficiently strong it overbids. This is formalized in the proof

of Proposition 8.

5.3 Other Mechanisms

In this section, we discuss two other mechanisms that can help publishers increase their revenue in a

learning environment.

5.3.1 Free Advertising Credit for New Advertisers

Publishers run promotions that provide free ad credit to new advertisers. For example, Google offers

ad coupons to new advertisers worth up to $75 which can be redeemed within 30 days of spending the

first $25 in advertising.28 Similarly, Facebook sends promotional codes to new advertisers that a have

sufficiently high user engagement on their pages. In this section, we study the implications of offering

ad credit on the advertisers’ bidding strategies and the publisher’s profit.

Suppose the publisher sets the ad credit α ≥ 0 prior to Stage 1, and then the incumbent’s CTR is

drawn from c.d.f. FI with support [R, 1].29 The advertisers observe α and the rest of the game proceeds

28https://www.google.com/ads/adwords-coupon.html
29We assume α is set before cI is realized because publishers use the same amount of ad credit across many keywords for

which incumbents have different CTRs. That is, in practice, α is not a function of cI . In addition, note that if α is decided
after cI is realized, the truthfulness nature of these second-price auctions will break down. This is because the incumbent

29

https://www.google.com/ads/adwords-coupon.html


identically as in the main model. The effect of the publisher’s ad credit is to transfer free ad credit α

to the entrant if it wins in Stage 1. Thus, the entrant’s Stage 1 payoff when the publisher offers ad

credit α is cE

(
1− max[cIbI1,R]

µE

)
+α if it wins, and 0 otherwise. Next, we present the advertisers’ bidding

strategies when the publisher offers free ad credit.

Proposition 9 (Advertisers’ Strategies with Ad Credit). If the publisher offers ad credit α ≥ 0 to the

entrant, then compared to the benchmark bids (3.1) and (3.2), the incumbent’s first stage bid remains

unchanged, whereas the entrant’s bid increases by α
µE

to

b∗E1(α) = 1 +
α

µE
+

δ

µE

(∫ 1

cI

cE − cI dFE − (µE − cI)+

)
. (5.1)

The intuition behind advertisers’ bidding strategies is straightforward: the incumbent’s bidding strategy

does not change because α does not affect its underlying payment mechanism. However, the ad credit

increases the entrant’s payoff when it wins in Stage 1, and thus incentivizes the entrant to bid more

aggressively in the first stage.

We turn to the impact of ad credit on the publisher’s revenue. Given the first stage bids of the incumbent

and the entrant in (3.1) and (5.1), respectively, the publisher’s expected revenue as a function of ad

credit α is E[πP (α)] =
∫ 1
R ΠP (α, cI) dFI where

ΠP (α, cI) =


µEb

∗
E1(α) + δmin[cI , µE ] if cIb

∗
I1 ≥ µEb∗E1(α),

max[cIb
∗
I1, R]− α+ δ

(∫ cI
0 max[cE , R] dFE + (1− FE(cI))cI

)
if cIb

∗
I1 < µEb

∗
E1(α).

(5.2)

Expression (5.2) reveals the three forces created by the ad credit α. The first is the cost of α that is

transferred from the publisher to the entrant when it wins; this has a negative effect on the publisher’s

revenue, and is represented by −α in the second case of Expression (5.2). The two other forces have a

positive effect on the publisher’s revenue, and are more nuanced; we discuss each of these in turn.

Recall that the entrant’s bid increases in proportion to the ad credit α (see Proposition 9). This implies

that the incumbent’s payment upon winning increases with α. The publisher can thus extract additional

surplus from the incumbent by inflating its payment. We call this the extraction effect.

would anticipate the publisher to set α high enough to extract all surplus from the incumbent’s bid, creating incentives
for the incumbent to shade its bid. Finally, the assumption that the ad credit is only available in Stage 1 reflects the fact
that these promotions typically expire after a short period of time.
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The last effect of ad credit concerns the change in the publisher’s Stage 2 payoff. To illustrate, suppose

the incumbent’s CTR is high. In this case, knowing the entrant’s CTR leads to a higher publisher

revenue than that under ignorance (see Proposition 3). This is due to the more efficient allocation

of the ad slot as well as a higher expected payment of the winner. Since offering ad credit helps the

entrant win, thereby facilitating the publisher learning its CTR, it could increase the publisher’s Stage 2

revenue. We call this the learning effect.

These three effects summarize all the pros and cons of offering ad credit in our model.30 Due to space

considerations, we relegate the extended discussion to Section OA1 of the online appendix. In the

discussion, we (i) delineate the condition under which offering ad credit is profitable for the publisher,

(ii) characterize the extraction effect and learning effect more formally, and (iii) discuss the optimal ad

credit level that maximizes the publisher’s profit.

5.3.2 Inflating the Bid Multiplier

In this section, we analyze how the publisher’s profit would change if, instead of offering ad credit

(Section 5.3.1), the publisher artificially inflated the entrant’s effective bid by a multiplier β ≥ 1. To

begin, suppose that the publisher applies a boosting multiplier β such that for any bid bE of the entrant,

the entrant’s Stage 1 effective bid µEbE increases to β×µEbE . The rest of the game proceeds as in the

main model.

We find that the two policies — offering ad credit and multiplicatively boosting the effective bid — have

the same qualitative implications for the publisher’s profit. The intuition is as follows. In the case of

ad credit, the entrant increases its own effective bid by bidding high in anticipation of the ad credit,

whereas in the case of boosting multiplier, the publisher increases the effective bid on behalf of the

entrant. Thus, the resultant effective bids across the two policies are the same, and the players’ payoffs

are identical up to a constant. We formalize this finding in the following proposition.

Proposition 10. The multiplicative boosting policy is isomorphic to the free ad credit policy, in the

sense that the publisher can replicate (up to a constant) its profit from one policy using the other.

30Note that we are not discussing the customer acquisition effect of offering free ad credit. Promotional incentives for
attracting new customers have been extensively studied in the literature (e.g., Jedidi et al., 1999; Nijs et al., 2001; van
Heerde et al., 2003). Instead, we focus on the extraction and learning effects of ad credit that are new to the literature.
We show that even if the free ad credit does not attract new advertisers, the publisher may still benefit from offering it
because of these two positive effects.
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In summary, we find that other mechanisms such as offering free ad credit or inflating the entrant’s

effective bid can increase the publisher’s revenue as they facilitate learning by favoring the entrant.

These mechanisms, however, are inefficient in the sense that they do always guarantee the publisher the

optimal profit. To see this, note that the optimal mechanism sometimes lowers the payment for both

the entrant and the incumbent at the same time (e.g., when the incumbent’s CTR is low). Such an

outcome cannot be produced by offering ad credit or inflating the entrant’s bid because these instruments

unilaterally benefit the entrant at the expense of the incumbent.

Another reason why these alternative mechanisms do not always yield the optimal profit pertains to

the virtual bid transformations. Offering ad credit and inflating the entrant’s bid do not take into ac-

count the advertisers’ valuation distributions in the allocation rule. Recall that the optimal mechanism

computes the marginal revenue each advertiser generates based on the advertisers’ valuation distribu-

tions and then allocates the ad slot accordingly. Such efficient allocation cannot always be attained

with artificial adjustment of the entrant’s effective bid, especially when the valuation distributions are

non-uniform.

5.4 Multiple Advertising Slots

Another assumption in the main model is that the publisher offers a single ad slot. In search advertising,

however, search engines typically sell more than one ad slot, which are allocated via the Generalized

Second-Price (GSP) auction. In this section, we test whether the main insights derived from the base

model carry over to the multiple-slot GSP setting.

We consider a two-slot, three-player game where two incumbents face an entry from a new advertiser.

To simplify the analysis, we assume that the existing advertisers also learn cE if the entrant wins in

Stage 1.31 As in Section 3, all advertisers share a common per-click valuation of 1, and the reserve price

R is less than µE . We normalize the position-specific CTR of the first ad slot to 1 and denote that

of the second slot as θ ∈ (0, 1). We index by i and I the incumbent with the lower and higher CTR,

respectively (i.e., ci < cI), and normalize cI to 1.32 Since a weakly dominant strategy equilibrium no

31This could be justified by the fact that advertisers can estimate the effective bid of the advertisers below them by
observing the amount they are charged.

32The normalization can also be interpreted as assuming that the CTR of the average entrant does not exceed that of
the strong incumbent. This assumption simplifies expressions but is not necessary. The analysis without this assumption
is provided in the appendix.
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longer exists, we use the lowest-revenue envy-free (LREF) Nash equilibrium (Edelman et al., 2007) for

equilibrium selection.

Our analysis shows that the main results are robust to multiple-slot settings under GSP auction. In

particular, the entrant’s overbidding strategy carries over, but with the caveat that the reserve price has

to be sufficiently high. Moreover, the findings that (i) a weak incumbent prefers to reveal the entrant’s

CTR, and that (ii) a strong incumbent has incentives to mask the entrant’s CTR are preserved in the

multiple-slot extension. The next lemma summarizes the advertisers’ incentives in Stage 1.

Lemma 4 (Multiple-Slot GSP Auction). The entrant and the incumbent with the lower CTR are always

better off in Stage 2 if the entrant’s CTR is learned. The incumbent with the higher CTR is better off

in Stage 2 if the entrant’s CTR is learned if and only if (i) µE < ci and θ > θ̂; or (ii) ci ≤ µE and

θ > 1
2 , where θ̂ is defined in the appendix.

Lemma 4 shows that if the second ad slot generates very few clicks (i.e., θ is low), then the incumbent

with the higher CTR is better off masking the entrant’s CTR, thereby securing the top ad position.

The intuition resonates with the insights from the main model. Had the search engine learned the

entrant’s CTR and it turned out to be high, the strong incumbent would risk being “downgraded” to

the low-CTR slot below. Conversely, if the second ad slot generates almost as many clicks as the first

slot (i.e., high θ), the strong incumbent benefits from the search engine learning the entrant’s CTR.

The reason is that the incumbent can capitalize on a potentially low cE realization, while its loss from

possibly being driven down to the second ad slot against a high cE is mitigated by the high θ.

Next, we examine the advertisers’ bidding strategies in Stage 1. Figures 7a and 8a depict the entrant’s

bid with respect to the weak incumbent’s CTR, ci. Observe that for high ci, the entrant’s high bid

mirrors the pattern from Section 3 (see Figure 2). Intuitively, if the competing incumbent’s CTR is

high, then the entrant can earn positive payoffs if and only if (i) its CTR is learned by the search

engine in Stage 2 and (ii) the realized CTR turns out to be higher than ci. Therefore, when facing a

strong incumbent, the entrant bids aggressively in Stage 1 in order to create an opportunity to receive

a positive payoff in Stage 2.

When facing a low ci, the entrant’s bidding strategy may diverge from the main model. In contrast to

the single-slot case, the entrant may lower its bid when the incumbent’s CTR is low (see Figure 7a). The

intuition revolves around the weak incumbent’s incentive to help the search engine learn the entrant’s
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Figure 7: Optimal bids in GSP without a reserve price; δ = 1, θ = 1
2

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Weak Incumbent's CTR (ci )

Entrant

With Learning

Entrant

Without Learning

(a) Entrant

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Weak Incumbent's CTR (ci )

Weak Incumbent

With Learning

Weak Incumbent

Without Learning

(b) Weak Incumbent

Figure 8: Optimal bids in GSP with a reserve price; δ = 1, θ = 1
2

CTR. Figure 7b shows that a weak incumbent shades its bid in order to help the entrant secure the

second slot in Stage 1. The search engine can then learn the entrant’s CTR, which in turn creates

an opportunity for the weak incumbent to win in Stage 2. And since in the LREF equilibrium the

advertisers’ bids change in proportion to their competitors’, the entrant also shades its bid for low ci.

However, when the search engine sets a sufficiently high reserve price, the weak incumbent bids below

the reserve price in the LREF equilibrium (see Figure 8b). As a result, the entrant’s incentive to shade

its own bid disappears, and we recover the overbidding pattern from the main model (see Figure 8a).

We formalize this finding in the next proposition.

Proposition 11. The entrant always bids (weakly) higher in the setting where the search engine does

not know (but can learn) the entrant’s CTR compared to the full-information setting if and only if the

reserve price is sufficiently high.
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6 Conclusion

In this paper, we study learning in online advertising. We investigate how a publisher’s lack of informa-

tion about a new advertiser’s click-through rate affects the strategies of new and existing advertisers,

as well as the publisher. Our theoretical analysis offers useful insights for several issues of managerial

importance.

Implications for New Advertisers. We show that when a new advertiser starts online advertising with a

publisher, it should bid aggressively in the beginning, sometimes even above its valuation. The reason is

that the new advertiser earns a higher expected future payoff when its CTR is learned by the publisher

than when it is not. The fact that the new advertiser’s CTR can only be learned when the advertiser

wins sufficiently many auctions provides strong incentives for the new advertiser to bid aggressively

until its CTR is learned.

Our results also indicate that a new advertiser should be prepared to, temporarily, pay more than its

valuation per click in the beginning. If the advertiser’s CTR turns out to be high, the average cost-per-

click will decline over time. In other words, a new advertiser should not leave the market even if the

initial cost of advertising is high.

Implications for Existing Advertisers. The entry of a new advertiser has two negative effects for an

existing advertiser. First, if the new advertiser’s CTR turns out to be high, the existing advertiser

risks losing its ad slot to the new advertiser. Second, since the online advertising slots are sold in

auctions, entry of a new advertiser increases the payment of the existing advertiser. We demonstrate

that, in response to these entry effects, an existing advertiser with a high CTR — e.g., a trademark

owner advertising on its branded keywords, or a manufacturer advertising on its own product pages on

an online retailer — should bid more aggressively to make it harder for the new advertiser to reveal its

CTR. On the other hand, an existing advertiser with a low CTR — e.g., lowest-slot advertisers —should

lower its bid to make the revelation process easier. By doing so, the existing advertiser foregoes its

short-term profit, but creates an opportunity to earn a larger long-term profit in the event that the new

advertiser’s CTR turns out to be low.

Implications for the Publisher. When a new advertiser enters the market, the publisher does not know

its CTR; the CTR can only be learned if the new advertiser’s ad is displayed to consumers sufficiently
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many times. On the surface, it appears that this lack of information about the new advertiser would lead

to a suboptimal allocation of the ad slot, and thus lower the publisher’s expected revenue. Surprisingly,

our result shows that the ignorance may be a boon to the publisher: its ignorance may incentivize the

advertisers to bid more aggressively, which in turn may increase the publisher’s revenue compared to

the full information benchmark.

The publisher’s ignorance, however, is not always blissful. In particular, if the existing advertiser’s CTR

is high, the lack of information about the new advertiser may hurt the publisher’s long-term revenue.

We show the publisher can mitigate this loss by favoring the new advertiser in the auction. For example,

by lowering the reserve price of, offering free ad credit to, or artificially inflating the bid of the new

advertiser, the publisher can increase the probability that the new advertiser wins. This allows the

publisher to learn the new advertiser’s CTR more quickly, which in turn increases the publisher’s long-

term revenue. In fact, our results show that the optimal selling mechanism favors the new advertiser in

the early rounds of the auction.

Future Research. Our work is a first step towards understanding how agents strategically respond

to a publisher’s learning process. Future research could explore other scenarios where agents and

publishers interact in a learning environment. For instance, a publisher may want to learn sellers’

qualities of products for ranking purposes, or customers’ WTP for pricing purposes. In addition, while

we allow the transition from an incomplete to a full information game, we make several simplifying

assumptions in doing so. For example, the transition is discrete and binary in our model. Analyzing

the advertisers’ strategies in a model with gradual, continuous learning process could lead to interesting

additional insights. Finally, our model assumes that advertisers’ CTRs are exogenously given. While

this assumption is realistic for a given ad copy, it does not capture advertisers’ constant efforts in

improving their ad copies (e.g., through experimenting with new ad copies). Modeling advertisers’

experiments in improving their CTRs, while the CTRs are being learned by the publisher and the

advertisers themselves, is another interesting avenue for future research.
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A Proofs

A.1 Proof of Proposition 1

Proof. Consider the incumbent’s second stage payoff as a function of its second stage bid bI2, given the

entrant’s second stage bid bE2.

πI2(bI2|bE2) =


cI

(
1− max[cEbE2,R]

cI

)
if cIbI2 ≥ max[cEbE2, R],

0 if cIbI2 < max[cEbE2, R].

We will show that truthful bidding weakly dominates bidding below and above valuation. To that end,

suppose the incumbent bids below valuation such that cIbI2 < cI . If max[cEbE2, R] ≤ cI , then truthful

bidding ensures a positive payoff of cI − max[cEbE2, R] whereas bidding below valuation yields either

the same payoff (if max[cEbE2, R] ≤ cIbI2 < cI), or a lower payoff of zero (if cIbI2 < max[cEbE2, R] <

cI). And both strategies yield zero payoff if cI < max[cEbE2, R]. Therefore, truthful bidding weakly

dominates underbidding.

Next, suppose the incumbent bids above valuation such that cIbI2 > cI . If max[cEbE2, R] ≤ cI , then

both strategies yield the same positive payoff of cI − max[cEbE2, R], and if cIbI2 < max[cEbE2, R],

then both strategies yield zero payoff as the incumbent loses the auction. On the other hand, if cI <

max[cEbE2, R] ≤ cIbI2, then truthful bidding yields zero payoff whereas overbidding yields a negative

payoff of cI −max[cEbE2, R]. Therefore, truthful bidding weakly dominates overbidding.

Given the second stage auction outcome, we analyze the first stage auction. The incumbent’s first stage
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payoff as a function of its first stage bid, given the entrant’s first and second stage bids bE1 and bE2 is

πI1(bI1|bE1) =


cI

(
1− max[cEbE1,R]

cI

)
+ δπI2(bI2 = 1|bE2) if cIbI1 ≥ max[cEbE1, R],

δπI2(bI2 = 1|bE2) if cIbI1 < max[cEbE1, R],

where the second stage payoff πI2(bI2 = 1|bE2 = 1) reflects the advertisers’ rational anticipation of

truthful bidding equilibrium in the second stage auction.

Since the incumbent’s second stage payoff is the same regardless of the outcome of the first stage

auction, it is immaterial when the incumbent determines its Stage 1 bid. Therefore, by the same

reasoning as above, we can show that a weakly dominant strategy in Stage 1 is also truthful bidding.

The weak dominance of truthful bidding strategy for the entrant can be shown in a similar manner and

is omitted.

Finally, consider the publisher’s revenue. In any stage, the publisher receives cI (max[cE , R]/cI) if the

incumbent wins, and cE (cI/cE) if the entrant wins. The publisher receives nothing if both advertisers’

effective bids are below the reserve price. The result follows. �

A.2 Proof of Lemma 1

Proof. Since the weak dominance argument of truthful bidding in Stage 2 under full information in

Proposition 1 does not rest on any assumption regarding an advertiser’s knowledge of its competitor’s

CTR, the truthful bidding result is preserved under incomplete information. �

A.3 Proof of Lemma 2

Proof. Consider the incumbent’s payoff. If the incumbent wins the first stage auction, then it pays

max[µEbE1, R]/cI and the entrant’s CTR remains unknown. Thus, in the second stage auction, where

both advertisers bid truthfully, the incumbent’s payoff is cI (1− µE/cI)+. On the other hand, if the

incumbent does not win in Stage 1, then its Stage 1 payoff is zero; however, it has a chance of winning

in Stage 2 in the event that cE turns out to be very low. Specifically, its second stage payoff conditional

on losing the first stage auction is
∫ 1

0 cI (1−max[cE , R]/cI)
+ dFE . In sum, the incumbent’s payoff as a
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function of its bid is

E[πI ] =


cI

(
1− max[µEbE1,R]

cI

)
+ δcI

(
1− µE

cI

)+
if cIbI1 ≥ max[µEbE1, R],

δ
∫ 1

0 cI

(
1− max[cE ,R]

cI

)+
dFE if cIbI1 < max[µEbE1, R] and µEbE1 ≥ R,

δcI

(
1− µE

cI

)+
if cIbI1 < max[µEbE1, R] and µEbE1 < R.

Suppose µEbE < R. Any effective bid above R yields payoff cI−R+δ (cI − µE)+, which is greater than

the payoff of any other effective bid less than R: δ (cI − µE)+. Therefore, any effective bid greater than R

weakly dominates for µEbE < R; in particular, if cI+δ
(

(cI − µE)+ −
∫ 1

0 (cI −max[cE , R])+ dFE

)
> R,

then a weakly dominant is bI such that cIbI = cI + δ
(

(cI − µE)+ −
∫ 1

0 (cI −max[cE , R])+ dFE

)
.

On the other hand, if µEbE ≥ R, then a weakly dominant bid must satisfy cI + δ(cI − µE)+ −

cIbI = δ (cI − µE)+. Therefore, for any µEbE , a weakly dominant first stage bid is b∗I1 = 1 +

δ
cI

(
(cI − µE)+ −

∫ cI
0 cI −max[cE , R] dFE

)
.

Next, consider the entrant’s payoff. If the entrant wins in Stage 1, then it pays max[cIbI1, R]/µE

and the entrant’s CTR becomes learned. Therefore, in Stage 2, the entrant’s expected payoff is∫ 1
0 cE (1− cI/cE)+ dFE . On the other hand, if the entrant does not win in Stage 1, then its Stage 1

payoff is zero and its CTR remains unknown. However, it still has a chance of winning in Stage 2 when

the incumbent’s CTR is sufficiently low. Specifically, the entrant’s second stage payoff conditional on

losing the first stage auction is cE (1− cI/µE)+. In sum, the entrant’s payoff as a function of its bid is

E[πE ] =


µE

(
1− max[cIbI1,R]

µE

)
+ δ

∫ 1
cI
cE

(
1− cI

cE

)
dFE if µEbE1 > max[cIbI1, R],

δµE

(
1− cI

µE

)+
if µEbE1 ≤ max[cIbI1, R].

(A.1)

Therefore, a weakly dominant first stage bid for the entrant is b∗E1 = 1+ δ
µE

(∫ 1
cI
cE − cI dFE − (µE − cI)+

)
.

�

A.4 Proof of Proposition 2

We first prove two intermediary results which will be used for the proof.

Claim 1. Suppose a differentiable function f(x) is single-peaked on the interval [a, b] (i.e., there exists

some ξ ∈ (a, b) such that f ′(x) ≥ 0 for all x ≤ ξ and f ′(x) ≤ 0 for all x ≥ ξ) and f(a) < 0 < f(b).
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Then there exists a pair x̃1 ≤ x̃2 in (a, b) such that (i) f(x) < 0 for all x ∈ [a, x̃1), (ii) f(x) = 0 for all

x ∈ [x̃1, x̃2], and (iii) f(x) > 0 for all x ∈ (x̃2, b].

Proof of Claim 1. By the Intermediate Value Theorem (IVT), there must exist at least one root in

the interval (a, b). From the set of roots (which could be a singleton), let x̃1 be the smallest; i.e.,

x̃1 ≡ min{x ∈ (a, b) : f(x) = 0}. By definition, we have f(x) < 0 for all x ∈ [a, x̃1). Next, let

x̃2 ≡ min{x ∈ [x̃1, b) : f ′(x) > 0}. The existence of x̃2 is guaranteed by f(b) > 0 and continuity of

f(x). Then f(x) = 0 for all x ∈ [x̃1, x̃2]. To see this, suppose to the contrary that either f(x) < 0 or

f(x) > 0 for some x′ ∈ [x̃1, x̃2]. In the first case, single-peakedness implies f(x) < 0 for all x ≥ x′, which

contradicts f(b) > 0. In the second case, continuity of f(x) implies that there exists some x′′ ∈ [x̃1, x
′)

such that f ′(x) > 0. This contradicts the definition of x̃2.

Finally, f(x) > 0 for all x ∈ (x̃2, b]. For otherwise, if f(x) ≤ 0 for some x ∈ (x̃2, b], then it must be

that f(x) had crossed the x-axis from above for some x′′′ ∈ (x̃2, b]; but then, single-peakedness implies

f(x) < 0 for all x > x′′′, which again contradicts f(b) > 0. This completes the proof. �

Claim 2. If FE is continuous, then ∂
∂cI

∫ 1
cI

1− cE
cI
dFE = 1

c2I

∫ 1
cI
cE dFE.

Proof of Claim 2. At cI = 1, we have ∂
∂cI

∫ 1
cI

1 − cE
cI
dFE = ∂

∂cI
0 = 0 = 1

(1)2

∫ 1
1 cE dFE . Next, suppose

cI ∈ [0, 1). Then ∂
∂cI

∫ 1
cI

1− cE
cI
dFE is equal to

lim
ε→0

1

ε

(∫ 1

cI+ε
1− cE

cI + ε
dFE −

∫ 1

cI

1− cE
cI
dFE

)
= lim

ε→0

(∫ 1

cI+ε

cE
cI(cI + ε)

dFE −
1

ε

∫ cI+ε

cI

1− cE
cI
dFE

)
.

(A.2)

The limit operator can be distributed inside the bracket because the limit values of the summands

converge. For the first summand, limε→0

∫ 1
cI+ε

cE
cI(cI+ε) dFE = 1

c2I

∫ 1
cI
cE dFE . On the other hand, the

second summand converges to zero. To see this, note that the right limit (i.e., ε → 0+) of the second

summand is “squeezed” from below and above by values which converge to zero:

1

ε

∫ cI+ε

cI

1− cI + ε

cI
dFE ≤

1

ε

∫ cI+ε

cI

1− cE
cI
dFE ≤

1

δ

∫ cI+ε

cI

1− cI
cI
dFE . (A.3)

The left-most term of (A.3) simplifies to −
∫ cI+ε
cI

1
cI
dFE = − 1

cI
(F (cI + ε) − F (cI)), which vanishes

to zero as ε → 0+ due to right-continuity of FE . The right-most term also vanishes to zero because
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the term inside the integral is zero. Similarly, the left limit (i.e., ε → 0−) can be shown to converge

to zero by bounding the integral from below and above and then invoking the continuity assumption.

Therefore, (A.2) = limε→0

∫ 1
cI+ε

cE
cI(cI+ε) dFE − limε→0

1
ε

∫ cI+ε
cI

1− cE
cI
dFE = 1

c2I

∫ 1
cI
cE dFE . �

Proof of Proposition 2. Consider the incumbent’s bid. Whether the bid is below or above valuation

depends on the sign of g(cI) ≡
(

1− µE
cI

)+
− FE(R)

(
1− R

cI

)+
−
∫ 1
R

(
1− cE

cI

)+
dFE . If 0 ≤ cI ≤ R,

then g(cI) = 0, so the incumbent bids truthfully. If R < cI ≤ µE , then g(cI) = −FE(R)
(

1− R
cI

)
−∫ cI

R 1 − cE
cI
dFE . And since 0 < P{cE ≤ R}, we have g(cI) < 0, which means that the incumbent bids

below valuation. Finally, if µE < cI ≤ 1, then

g(cI) =

(
1− µE

cI

)
− FE(R)

(
1− R

cI

)
−
∫ cI

R
1− cE

cI
dFE . (A.4)

We will show that (A.4) satisfies the properties of Claim 1, thereby proving that there exists a pair of

thresholds c̃1 ≤ c̃2 in (µE , 1) that satisfies the properties stated in the proposition.

(i) Differentiability

g′(cI) =
∂

∂cI

(
1− µE

cI
−
∫ R

0
1− R

cI
dFE −

∫ cI

R
1− cE

cI
dFE

)
= − 1

c2
I

∫ 1

0
max[R− cE , 0] dFE +

∂

∂cI

∫ 1

cI

1− cE
cI
dFE (∵ R < cI)

= − 1

c2
I

∫ 1

0
max[R− cE , 0] dFE +

1

c2
I

∫ 1

cI

cE dFE , (A.5)

where the last equality follows from Claim 2. Since the derivative is well-defined for all cI ∈ (0, 1),

we conclude that g(cI) is differentiable.

(ii) Single-peakedness

From (A.5), it follows that the sign of g′(cI) is equal to the sign of h(cI) ≡
∫ 1
cI
cE dFE−

∫ 1
0 max[R−

cE , 0] dFE . At cI = 0+33, h is positive because
∫ 1
cI
cE dFE −

∫ 1
0 max[R− cE , 0] dFE =

∫ 1
0+ cE dFE −∫ 1

0 max[R − cE , 0] dFE =
∫ 1

0 cE − max[R − cE , 0] dFE ≥
∫ 1

0 cE − RdFE = µE − R > 0. At

cI = 1, h is negative because
∫ 1
cI
cE dFE −

∫ 1
0 max[R − cE , 0] dFE =

∫ 1
1 cE dFE −

∫ 1
0 max[R −

cE , 0] dFE = −
∫ 1

0 max[R − cE , 0] dFE < 0. Finally, h(cI) is non-increasing because for any δ > 0,

h(cI + δ) − h(cI) =
∫ 1
cI+δ cE dFE −

∫ 1
cI
cE dFE =

∫ 1
cI+δ cE dFE −

∫ 1
cI+δ cE dFE −

∫ cI+δ
cI

cE dFE =

33We evaluate at the right-limit 0+ because g′(cI) is undefined at cI = 0.
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−
∫ cI+δ
cI

cE dFE ≤ 0.

In total, since h(cI) is non-increasing in [0, 1], h(0+) ≥ 0, and h(1) ≤ 0, by the IVT, there exists a

ξ ∈ (0, 1) such that h(cI) ≥ 0 for all cI ≤ ξ and h(cI) ≤ 0 for all cI ≥ ξ. By the sign equivalence,

we have g′(cI) ≥ 0 for all cI ≤ ξ and g′(cI) ≤ 0 for all cI ≥ ξ.

(iii) Endpoint values

We have g(µE) = −FE(R)
(

1− R
µE

)
−
∫ µE
R

(
1− cE

µE

)
dFE < 0 and g(1) = 1−µE−FE(R) (1−R)−∫ 1

R 1− cE dFE = 1− µE −
∫ R

0 1−RdFE −
∫ 1
R 1− cE dFE =

∫ R
0 R− cE dFE > 0.

Therefore, g(cI) satisfies the properties of Claim 1, which implies that there exists a pair c̃1 ≤ c̃2 in

(µE , 1) such that g(cI) < 0 for all cI ∈ (µE , c̃1), g(cI) = 0 for all cI ∈ [c̃1, c̃2], and g(cI) > 0 for

all cI ∈ (c̃2, 1]. This, in turn, implies that the incumbent bids below valuation, truthfully, and above

valuation for cI ∈ (µE , c̃1], cI ∈ [c̃1, c̃2], and cI ∈ (c̃2, 1], respectively.

Second, consider the entrant’s bid b∗E1(cI) = 1 + δ
µE

(∫ 1
cI

(cE − cI) dFE − (µE − cI)+
)

. Whether the

entrant bids below or above valuation depends on the sign of k(cI) ≡
∫ 1
cI

(cE − cI) dFE − (µE − cI)+. If

µE ≤ cI , then k(cI) =
∫ 1
cI
cE − cI dFE ≥ 0, where the inequality holds with equality only if cI = 1. If

µE > cI , then k(cI) =
∫ 1
cI

(cE − cI) dFE − (µE − cI)+ =
∫ 1

0 cE − cI dFE −
∫ cI

0 cE − cI dFE − (µE − cI) =

−
∫ cI

0 cE − cI dFE > 0. This completes the proof. �

A.5 Proof of Proposition 3

Proof. First, we will show that there exists a unique ĉ ∈ (µE , 1) such that the entrant wins the first stage

auction for cI < ĉ, and the incumbent wins otherwise. To that end, consider the difference in effective

bids DA(cI) ≡ cIb∗I1(cI)−µEb∗E1(cI). If cI ≤ R, then DA(cI) = cI−µE+δ
(
µE −R−

∫ 1
R cE −RdFE

)
=

cI − µE + δ
(∫ 1

0 cE −RdFE −
∫ 1
R cE −RdFE

)
= −(µE − cI) − δ

∫ R
0 R − cE dFE < 0. Therefore, the

entrant wins the first stage auction for all cI ≤ R. Note that the entrant also beats the reserve price

because b∗E1(cI) ≥ 1 (cf. Lemma 2) and µE > R.

If R < cI < µE , then DA(cI) = cI−µE−δ
∫ 1
cI
cE−cI dFE+δ

(
cI − µE −

∫ 1
0 (cI −max[cE , R])+ dFE

)
<

0. Therefore, the entrant wins the first stage auction in this interval as well.

Finally, if µE ≤ cI ≤ 1, then DA(cI) = (1+δ)(cI−µE)−δ
∫ 1
cI
cE−cI dFE−δ

∫ 1
0 (cI −max[cE , R])+ dFE .

44



Thus, D′A(cI) = 1 + δ(1− FE(cI)) + δ
(

1− ∂
∂cI

∫ 1
0 (cI −max[cE , R])+ dFE

)
, which simplifies to


1 + δ(1− FE(cI)) + δ (1− 1) if cI ≥ max[cE , R],

1 + δ(1− FE(cI)) + δ (1− 0) if cI < max[cE , R],

> 0.

Therefore, DA(cI) is strictly increasing in the interval [µE , 1]. Combined with the fact that DA(µE) =

−δ
∫ 1
µE
cE−µE dFE−δ

∫
(µE −max[cE , R])+ dFE < 0 andDA(1) = 1−µE+δ

(
1− µE −

∫
1−max[cE , R] dFE

)
=

1− µE + δ
∫

max[cE , R]− cE dFE > 0, we have, by the IVT, a unique ĉ ∈ (µE , 1) such that DA(cI) < 0

for all cI < ĉ and DA(cI) > 0 for all cI > ĉ. More generally, combining the results from the intervals

above yield that the entrant wins the first stage bid for all cI < ĉ and the incumbent wins for all cI ≥ ĉ.

Next, we characterize the publisher’s expected payoff when it knows the entrant’s CTR before the auc-

tions take place. If the entrant’s CTR is known, then advertisers bid truthfully in each round. Therefore,

the publisher’s total expected revenue under full information is E[πFP ] = (1+δ)
(∫ 1

cI
cI dFE +

∫ cI
0 max[cE , R] dFE

)
.

On the other hand, if cE is a priori unknown to all players and is revealed only if the entrant wins an

auction, then the publisher’s expected revenue is

(A.6)E[πP ] =


µEb

∗
E1 + δmax[min[cI , µE ], R] if cIb

∗
I1 ≥ µEb∗E1,

max[cIb
∗
I1, R] + δ

(∫ 1
mmdFE +

∫m
0 max[cE , R]I{cI≥max[cE ,R]} dFE

)
if cIb

∗
I1 < µEb

∗
E1.

Next, define the difference Dπ(cI) ≡ E[πP ]− E[πFP ]. The set of cI for which Dπ(cI) > 0 corresponds to

the region where the publisher’s revenue is higher when it does not know cE than when it does.

IfR < cI ≤ µE , thenDπ(cI) = max
[
cI − δ

∫ cI
0 cI −max[cE , R] dFE , R

]
−
(∫ cI

0 max[cE , R] dFE +
∫ 1
cI
cI dFE

)
,

which is positive if and only if

cI −
∫ cI

R
cE dFE −

∫ 1

cI

cI dFE −
∫ R

0
RdFE − δ

(∫ cI

R
cI − cE dFE +

∫ R

0
cI −RdFE

)
> 0.

But the expression on the left-hand side is 0 at cI = R, and its derivative with respect to cI is (1 −

δ)FE(cI). This implies that if δ < 1, then Dπ(cI) > 0 for all R < cI ≤ µE , and if δ > 1, then Dπ(cI) < 0

for all R < cI ≤ µE .
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If µE < cI < ĉ, then

Dπ(cI) = max

[
cI + δ

(
cI − µE −

∫ cI

0
cI −max[cE , R] dFE

)
, R

]
−
(∫ cI

0
max[cE , R] dFE +

∫ 1

cI

cI dFE

)
,

which is positive if and only if

cI −
∫ cI

R
cE dFE −

∫ 1

cI

cI dFE −
∫ R

0
RdFE + δ

(
cI − µE −

∫ cI

R
cI − cE dFE −

∫ R

0
cI −RdFE

)
> 0.

Now, the expression on the left-hand side is strictly increasing in cI because ∂
∂cI
LHS = FE(cI) + δ(1−

FE(cI)) > 0. Furthermore, the difference is negative and positive at cI = R and cI = 1, respectively:

Dπ(R) = δ(R−µE) < 0 andDπ(1) = 1−
∫ 1
R cE dFE−

∫ R
0 RdFE+δ

(
1− µE −

∫ 1
R 1− cE dFE −

∫ R
0 1−RdFE

)
=

1 −
∫ 1

0 max[cE , R] dFE + δ
∫ 1

0 max[cE , R] − cE dFE > 0. Therefore, by the IVT, there exists a unique

c̃1 ∈ (r, 1) such that Dπ(cI) < 0 for all cI ∈ (R, c̃1) and Dπ(cI) > 0 for all cI ∈ (c̃1, 1). However, the

interval in question here is (µE , ĉ), so we re-define the threshold as c ≡ max[µE ,min[ĉ, c̃1]].

Finally, if ĉ ≤ cI ≤ 1, then the incumbent wins the first stage auction and the difference in payoffs

between the uncertain and full information cases is

Dπ(cI) = (1 + δ)

(
µE −

(∫ R

0
RdFE +

∫ cI

R
cE dFE +

∫ 1

cI

cI dFE

))
+ δ

∫ 1

cI

cE − cI dFE .

Similarly as above, we invoke the IVT to prove the unique existence of a root. We have D′π(cI) =

−(1 + 2δ)(1− FE(cI)) < 0,

Dπ(µE) = (1 + δ)

(
µE −

(∫ R

0
RdFE +

∫ µE

R
cE dFE +

∫ 1

µE

µE dFE

))
+ δ

∫ 1

µE

cE − µE dFE

= (1 + δ)

(∫ µE

R
µE − cE dFE +

∫ R

0
µE −RdFE

)
+ δ

∫ 1

µE

cE − µE dFE > 0,

and Dπ(1) = (1+δ)
(
µE −

∫ 1
R cE dFE −

∫ R
0 RdFE

)
= (1+δ)

∫ R
0 cE−RdFE < 0. Therefore, by the IVT,

there exists a unique c̃2 ∈ (µE , 1) such that Dπ(cI) > 0 for all cI ∈ (µE , c̃2) and Dπ(cI) < 0 for all cI ∈

(c̃2, 1). However, the interval in question here is [ĉ, 1], so we bound the threshold as c ≡ max[ĉ, c̃2].

Putting together all the sets for which Dπ > 0 yields the result. �
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A.6 Proof of Lemma 3

Proof. The Stage 2 optimal mechanism, (Q∗2,M
∗
2 ), can be obtained by directly applying Myerson’s

Lemma (Myerson, 1981) and is omitted. We solve for the Stage 1 optimal mechanism.

First, we introduce notations. For j ∈ {I, E}, let Uj(xj1) denote advertiser j’s Stage 1 utility (in

particular, accounting for expected Stage 2 utility as well) under a generic mechanism (Q1,M1), when

advertiser j’s type draw in Stage 1 is xj1 ∈
[
δ∆j

cj
, vj +

δ∆j

cj

]
. That is, under (Q1,M1), if advertiser j’s

type draw is xj1 and advertiser k’s is xk1, then advertiser j wins the ad slot in Stage 1 with proba-

bility Qj1(xj1, xk1) and pays (per-click) Mj1(xj1, xk1). The distribution of advertiser j’s type follows

Hj(xj1) = Gj

(
xj1 − δ∆j

cj

)
. To facilitate exposition, we slightly abuse notation and write the publisher’s

Stage 2 estimate of entrant’s CTR (which is cE if the publisher learns it in Stage 2 and µE otherwise)

as cE . Let qI1(zI) =
∫ vE

0 QI1(zI , xE1) dHE be the probability that incumbent believes incumbent will

win if it bids zI , q
I
E1(zI) =

∫ vE
0 QE1(zI , xE1) dHE the probability that incumbent believes entrant will

win if it bids zI , and qEE1(zE) =
∫ vI

0 QE1(xI1, zE) dHI the probability that entrant believes entrant will

win if it bids zE , where Hj(xj1) = Gj

(
xj1 − δ∆j

cj

)
.

We will derive expressions for the expected payments from the advertisers to the publisher under the

generic (Q1,M1), which is incentive compatible (IC) and individually rational (IR), and then solve for

the publisher’s problem of optimizing (Q1,M1).

We have

UI1(xI1) = qI1(xI1)

(
cIxI1 + δ

∫ 1

0
πI2(cE) dFE

)
(incumbent wins)

+ qIE1(xI1)δ

(
0 +

∫ 1

0
πI2(cE) dFE

)
(entrant wins)

+ (1− qI1(xI1)− qIE1(xI1)) (0 + δπI2(µE)) (nobody wins)

− cImI1(xI1)

= qI1(xI1)(cIxI1 − δ∆I)− qIE1(xI1)δ∆I + δπI2(µE)− cImI1(xI1) (A.7)
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and

UE1(xE) = qEE1(xE1) (µExE1 + δπE2(µE)) (entrant wins)

+ (1− qEE1(xE1))(0 + δπE2(µE)) (otherwise)

− µEmE1(xE1)

= qEE1(xE1)µExE1 + δπE2(µE)− µEmE1(xE1). (A.8)

Next, we re-write these profit expressions using IC and IR conditions.

Claim 3. If (Q1,M1) is IC, then U ′j1(xj1) = cjqj1(xj1) for j ∈ {I, E}.34

Thus, we can write

Uj1(xj1) = Uj1

(
δ∆j

cj

)
+

∫ xj1

δ∆j
cj

cjqj1(tj) dtj . (A.9)

Combining equations (A.7), (A.8), and (A.9), we obtain

cImI1(xI1) = qI1(xI1)(cIxI1 − δ∆I)− qIE1(xI1)δ∆I + δIπI2(µE)− UI1
(
δ∆I

cI

)
−
∫ xI1

δ∆I
cI

cIqI1(tI) dtI

(A.10)

and

(A.11)µEmE1(xE1) = qEE1(xE1)µExE1 + δπE2(µE)− UE1

(
δ∆E

µE

)
−
∫ xE1

δ∆E
µE

cEqE1(tE) dtE .

We can simplify Uj1

(
δ∆j

cj

)
by invoking IR. From (A.7) and (A.8), we have UI1

(
δ∆I
cI

)
= −qIE1

(
δ∆I
cI

)
δ∆I+

δπI2(µE)− cImI1

(
δ∆I
cI

)
and UE1

(
δ∆E
µE

)
= qEE1

(
δ∆E
µE

)
δ∆E + δπE2(µE)− µEmE1

(
δ∆E
µE

)
. Substitution

of these values into (A.10) and (A.11) implies that the payment function M1 enters the publisher’s

objective function only as mj1

(
δ∆j

cj

)
for j ∈ {I, E}. And since the objective function increases in

mj1

(
δ∆j

cj

)
, the optimal mechanism M1 will be such that mj1(0) is set as high as IR permits.

To satisfy IR, we must have Uj1(xj1) ≥ Uj0 for all xj1, where Uj0 represents the value of advertiser j’s

outside option. But from Claim 3, we have that Uj1 is increasing; therefore, the IR condition simplifies

to Uj1

(
δ∆j

cj

)
≥ Uj0 under IC. Thus, under the optimal mechanism, mj1

(
δ∆j

cj

)
will be set such that

34The proof of Claim 3 can be found at the end of this section.
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IR binds: Uj1

(
δ∆j

cj

)
= Uj0. More explicitly, the outside options for the incumbent and the entrant,

respectively, can be written as

UI0 = q−IE1δ

∫
πI2(cE) dFE +

(
1− q−IE1

)
δπI2(µE) = δπI2(µE)− q−IE1δ∆I (A.12)

UE0 = δπE2(µE) (A.13)

where q−IE1 =
∫ vE

0 Q−IE1(xE1) dHE is the probability the publisher allocates the ad slot to the entrant

when the entrant is the only bidder.

Substituting these outside option values, (A.12) and (A.13), into (A.10) and (A.11) yields

cImI1(xI1) = qI1(xI1)(cIxI1 − δI∆I) +
(
q−IE1 − q

I
E1(xI1)

)
δI∆I −

∫ xI1

δI∆I
cI

cIqI1(tI) dtI , (A.14)

µEmE1(xE1) = qEE1(xE1)µExE1 −
∫ xE1

0
µEq

E
E1(tE) dtE . (A.15)

Finally, the publisher’s objective function can be written as the sum of (i) the expected payments in

Stage 1 from the advertisers, and (ii) expected profits in Stage 2 under (Q∗2,M
∗
2 ) (which are contingent

on Stage 1 outcome):

V (Q1,M1) =

∫∫ (
QI1(xI1, xE1)cI

(
xI1 −

δ∆I

cI
− 1−HI(xI1)

hI(xI1)
+

δ

cI
πP2(µE)

)
+QE1(xI1, xE1)µE

(
xE1 −

δ∆I

µE
− 1−HE(xE1)

hE(xE1)
+

δ

µE

∫
πP2(cE) dFE

)
+ (1−QI1(xI1, xE1)−QE1(xI1, xE1)) δπP2(µE)

)
+Q−IE1(xE1)δ∆I dG,

This simplifies to

(A.16)
V (Q1,M1) =

∫∫ (
QI1(xI1, xE1)cI

(
xI1 −

δ∆I

cI
− 1−HI(xI1)

hI(xI1)

)
+QE1(xI1, xE1)µE

(
xE1 −

δ∆I

µE
− 1−HE(xE1)

hE(xE1)
+

δ

µE
∆P

))
+Q−IE1(xE1)δ∆I dG + δπP2(µE).

The optimal Q∗1 corresponds to the allocation rule that chooses the maximal coefficients of QI1 and

QE1, provided they are positive, for any given xI1 and xE1. Finally, applying the fact that a mechanism

is invariant to positive affine transformations of “virtual valuations” yields the results. �
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Proof of Claim 3 . Consider the incumbent’s Stage 1 expected utility when it bids zI1 given a type draw

of xI1: UI1(zI1|xI1) = qI1(zI1)(cIxI1−δ∆I)−qIE1(zI1)δ∆I+δπI2(µE)−cImI1(zI1). For any ε, IC implies

UI1(xI1+ε|xI1+ε)−UI1(xI1|xI1)
ε ≤ UI1(xI1+ε|xI1+ε)−UI1(xI1+ε|xI1)

ε = qI1(xI1+ε)cI and UI1(xI1+ε|xI1+ε)−UI1(xI1|xI1)
ε ≥

UI1(xI1|xI1+ε)−UI1(xI1|xI1)
ε = qI1(xI1)cI . As the lower and upper bounds converge to qI1(xI1)cI as ε→ 0,

we obtain the desired result. The entrant’s result can be derived analogously and is omitted. �

A.7 Proof of Proposition 4

Proof. The entrant overbids if and only if ∆E > 0; i.e., the entrant earns a higher Stage 2 profit

if the publisher learns its CTR. It suffices to show that the entrant’s Stage 2 profit is convex in its

true CTR, for then Jensen’s inequality would imply the desired result. To that end, consider the

entrant’s Stage 2 profit when the publisher assigns it its true CTR: πE2(cE) =
∫ vE

0 UE(xE |cE) dGE =∫ vE
0 cE

∫ xE
0 q∗E2(tE)gE(tE) dtE dGE =

∫ vE
0 cEq

∗
E2(tE)(1−GE(tE)) dGE(tE) =

∫ vE
R∗E2

∫ vI
0 cEI{cE>χ(xI ,xE |cI)}(1−

GE(xE)) dGI dGE , where R∗E2 = inf
{
b ≥ 0 : b− 1−GE(b)

gE(b) ≥ 0
}

, I{E} is the indicator function which is

equal to 1 if E is true, and 0 otherwise, and χ(xI , xE |cI) = cI

(
xI − 1−GI(xI)

gI(xI)

)
/
(
xE − 1−GE(xE)

gE(xE1)

)
. Since

χ is independent of cE , we obtain that for any given xI and xE , cEI{cE>ξ(xI ,xE |cI)} is convex in cE . And

since any linear combination with positive weights of convex functions is also convex, we conclude that

πE2(cE) is convex in cE . This proves the entrant’s result.

Next, we turn to the incumbent. We will work with the following subgradient argument:

Claim 4. Let E[X] = µ. If a function f(x) that is differentiable at x = µ satisfies f(x) ≥ f ′(µ)(x −

µ) + f(µ) ≥ f(x) for all x, then E[f(X)] ≥ f (E[X]).

This follows immediately from E[f(X)] ≥ E[f ′(µ)(X − µ) + f(µ)] = f ′(µ)E[X − µ] + f(µ) = f(µ).

The incumbent’s Stage 2 profit when the publisher assigns cE is πI2(cE) =
∫ vI

0 UI(xI |cE , cI) dGI =∫ vI
0 cI

∫ xI
0 q∗I2(tI)gI(tI) dtI dGI =

∫ vI
0 cIq

∗
I2(xI)(1−GI(xI)) dGI , which simplifies to


∫ vI
R∗I2

cI(1−GI(xI))z
(
cIηI(xI)
cE

)
dGI if cIvI

vE
< cE ,∫ h−1

I

(
cEvE
cI

)
R∗I2

cI(1−GI(xI1))z
(
cIηI(xI)
cE

)
dGI +

∫ vI
h−1
I

(
cEvE
cI

) cI(1−GI(xI)) dGI otherwise,

where z(y) = GE
(
η−1
E (y)

)
, and ηj(x) = x− 1−Gj(x)

gj(x) for j ∈ {I, E}.
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Suppose cI <
vEµE
vI

such that at πI2(µE) =
∫ vI
R∗I2

cI(1−GI(xI))z
(
cIηI(xI)
µE

)
dGI and π′I2(µE) =

∫ vI
R∗I2

cI(1−

GI(xI))z
′
(
cIηI(xI)
µE

)(
− cIηI(xI)

µ2
E

)
dGI . By Claim 4, it suffices to show that

πI2(cE) ≥ π′I2(µE)(cE − µE) + πI2(µE) for all cE . (A.17)

Note that z(·) ≤ 1, which implies that

∫ vI

h−1
I

(
cEvE
cI

) cI(1−GI(xI)) dGI ≥
∫ vI

h−1
I

(
cEvE
cI

) cI(1−GI(xI))z
(
cIηI(xI)

cE

)
dGI

for all cE . Therefore, a sufficient condition for (A.17) is that for all cE ,

(A.18)

∫ vI

R∗I2

(1−GI(xI))z
(
cIηI(xI)

cE

)
dGI ≥

∫ vI

R∗I2

(1−GI(xI))
(
z′
(
cIηI(xI)

µE

)(
−cIηI(xI)

µ2
E

)
(cE−µE)

+ z

(
cIηI(xI)

µE

))
dGI .

Finally, a sufficient condition for (A.18) is that
∫ vI
R∗I2

(1−GI(xI))z
(
cIηI(xI)
cE

)
dGI be convex in cE for all

cE . The convexity condition simplifies to

∫ vI

R∗I2

(1−GI(xI))z′′
(
cIηI(xI)

cE

)
dGI ≥ 0 for all cE . (A.19)

Note that z
(
cIηI(xI)
cE

)
= P{cEηE(xE) ≤ cIηI(xI)}, which is the probability that the entrant’s valuation

draw is such that the incumbent wins in Stage 2. This probability can be easily verified to be decreasing

in cE . Now, condition (A.19) can be interpreted as this probability being “sufficiently convex” for all

xI . This is equivalent to the condition that the rate of decline of the incumbent’s winning probability

in cE be sufficiently low.

Finally, the sufficient condition for overbidding around the neighborhood of cI = 1 follows immediately

from Claim 4 and the continuity of πI2(cE) with respect to cI :

πI2(cE) ≤ π′I2(µE)(cE − µE) + πI2(µE) (A.20)

This means that the incumbent’s Stage 2 profit when cE turns out to be high is considerably low; i.e.,
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the risk of revealing the entrant’s CTR is high.35 �

A.8 Proof of Proposition 5

Proof. Let RFE be the entrant’s reserve price under full information. RFE satisfies

RFE −
1−GE(RFE)

gE(RFE)
= 0. (A.21)

When the publisher does not know the entrant’s CTR, the optimal reserve price RE satisfies

RE −
1−GE

(
RE − δ∆E

µE

)
gE(RE − δ∆E

µE
)

=
δ

µE
(∆I −∆P ).

Now Assumption 1 implies that for all R,

R−
1−GE

(
R− δ∆E

µE

)
gE(R− δ∆E

µE
)

< R− 1−GE (R)

gE(R)
.

Therefore, the condition RE < RFE is equivalent to

δ

µE
(∆I −∆P ) < RFE −

1−GE
(
RFE −

δ∆E
µE

)
gE(RFE −

δ∆E
µE

)
. (A.22)

Using (A.21), the right-hand side simplifies to

1−GE(RFE)

gE(RFE)
−

1−GE
(
RFE −

δ∆E
µE

)
gE(RFE −

δ∆E
µE

)
,

which is negative by Assumption 1. Labeling this negative object as −ρ simplifies (A.22) to ∆P >

∆I + µEρ
δ . �

35Numerical analyses suggest that conditions (A.19) and (A.20) are satisfied for a large class of valuation distributions
Gj . For instance, if GE(xE) = xE , condition (A.19) holds for any GI , and condition (A.20) holds for GI that is relatively
skewed to the left; i.e., the incumbent is “strong” in the sense that it is likely to have high valuation (see Figure 4). This

includes the “power distributions” GI(xI) =
(
xI
vI

)3

for all vI ≥ 3/2.
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A.9 Proof of Proposition 6

Consider the entrant’s payoff:

πE =


ãE −max[bI , R] + δ

∫ 1
aI
aE − aI dF̃ if bE > max[bI , R],

0 + δ(ãE − aI)+ if bE ≤ max[bI , R].

The entrant’s weakly dominant bid is b∗E = ãE+δ
(∫ 1

0 (aE − aI)+ dF̃ − (ãE − aI)+
)

. Since (aE−aI)+ is

convex in aE , Jensen’s inequality implies that
∫ 1

0 (aE −aI)+ dF̃ − (ãE −aI)+ ≥ 0; therefore, the entrant

bids above its average Stage 1 per-impression valuation, ãE .

Finally, consider the incumbent’s payoff:

πI =


aI − bE + δ(aI − ãE)+ if bI ≥ max[bE , R],

0 + δ
∫ 1

0 (aI −max[aE , R])+ dF̃ if bI < max[bE , R], bE ≥ R,

0 + δ(aI − ãE)+ if bI < max[bE , R], bE < R.

(A.23)

Following the reasoning from the proof of Lemma 2 in Section A.3, we obtain that the incumbent’s

weakly dominant bid is

b∗I = aI + δ

(
(aI − ãE)+ −

∫ 1

0
(aI −max[aE , R])+ dF̃

)
. (A.24)

First, note that if aI ≤ ãE , then b∗I = aI−δ
∫ 1

0 (aI−max[aE , R])+ dF̃ ≤ aI ; i.e., the incumbent underbids

for low aI . Second, consider aI > ãE . We have that b∗I is strictly increasing in aI in this region because

∂b∗I
∂aI

= ∂
∂aI

(
aI + δ

(
aI − ãE −

∫ 1
0 (aI −max[aE , R])+ dF̃

))
= 1 + δ(1− F̃ (aI)) > 0.

Finally, b∗I > aI at aI = 1, because 1
δ (b∗I − aI) is equal to (1 − ãE) −

∫ 1
0 (1 − max[aE , R])+ dF̃ =

1−ãE−
∫ R

0 1−RdF̃−
∫ 1
R 1−aE dF̃ = 1−

(∫ R
0 1 + aE −RdF̃ + (1− F̃ (R))

)
= F̃ (R)−

∫ R
0 1+aE−RdF̃ ≥

F̃ (R) − (1 + R − R)F̃ (R) = 0. In sum, b∗I is less than aI at aI = ãE , greater than aI at aI = 1, and

strictly increasing in aI . Therefore, by the Intermediate Value Theorem, there exists a unique root

ã ∈ (ãE , 1) such that b∗I < aI for all aI < ã, and b∗I > aI for all aI > ã.
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A.10 Proof of Proposition 7

We start by deriving the entrant’s weakly dominant bid. Consider the entrant’s payoff in Stage 1:

πE =


µE

(
1− max[c̃IbI ,R]

µE

)
+ δ

∫ 1
R

(∫ 1
cI
cE − cI dFE

)
dFI if µEbE > c̃IbI ,

0 + δ
∫ 1
R(µE − cI)+ dFI if µEbE ≤ c̃IbI ,

where c̃I is a random variable which follows FI . Even if the entrant does not know the realization of

c̃I , its weakly dominant bid is

b∗E = 1 +
δ

µE

∫ 1

R

(∫ 1

0
(cE − cI)+ dFE

)
− (µE − cI)+ dFI . (A.25)

And since (cE − cI)+ is convex in cE for all realizations of cI , Jensen’s inequality implies that
∫ 1

0 (cE −

cI)
+ dFE − (µE − cI)+ ≥ 0 for all cI . Hence, b∗E ≥ 1; i.e., the entrant overbids.

A.11 Proof of Proposition 8

Proof. Following the argument in the main model, whether the incumbent bids below or above valua-

tion depends on the sign of
∫
x∈X

(
(cI −max[µx, R])+ −

∫ 1
0 (cI −max[cE , R])+ dFx

)
dP (x). But we have

shown in the main model that for any distribution Fx of cE , there exists a pair of thresholds (c̃1(x), c̃2(x))

such that the incumbent underbids for all cI < c̃1(x) and overbids for all cI > c̃2(x) (see proof of Propo-

sition 2 in Section A.4). It follows that the integral above is negative for all cI < c′ ≡ infx∈X c̃1(x) and

positive for all cI > c′ ≡ supx∈X c̃2(x). This completes the proof. �

A.12 Proof of Proposition 9

Proof. From (A.1), we have

E[πE ] =


µE

(
1− max[cIbI1,R]

µE

)
+ δ

∫ 1
cI
cE

(
1− cI

cE

)
dFE + α if bE1 >

max[cIbI1,R]
µE

,

δµE

(
1− cI

µE

)+
if bE1 ≤ max[cIbI1,R]

µE
.

Thus, a weakly dominant Stage 1 bid is b∗E1(α) = 1 + δ
µE

(∫ 1
cI
cE − cI dFE − (µE − cI)+

)
+ α

µE
. �
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A.13 Proof of Proposition 10

Proof. First, we establish that from the publisher’s profit perspective, offering ad credit α is equivalent

to artificially increasing the entrant’s effective bid by α.

Consider the latter mechanism. The Stage 2 outcomes are identical for both cases. In Stage 1, the

advertisers’ weakly dominants can be easily verified to be the same as the main model; i.e., the entrant

bids b∗E1 as in (3.2) and the incumbent bids b∗I1 as in (3.1). Note that this implies that the effective bids

are the same as the former mechanism where the publisher gives free ad credit α if the entrant wins.

To see this, under the former mechanism, the entrant’s effective bid is µEb
∗
E1(α) as in (5.1). But from

(5.1), we have µEb
∗
E1(α) = µEb

∗
E1 + α, which is equivalent to entrant’s effective bid under the artificial

additive boosting mechanism. The incumbent’s effective bids are trivially the same. Therefore, the

mechanisms have the same allocation rule.

Moreover, the payoffs of the two mechanisms are identical. If the incumbent wins in Stage 1, the

publisher’s Stage 1 profit is µEb
∗
E1 + α in both cases, and if the entrant wins, it is max[cIb

∗
I1] − α in

both cases. In sum, the two mechanism yield the same profit for the publisher.

Now, consider the boosting multiplier β. For any given additive term α, if the publisher sets β(α) =

1 + α
µEb

∗
E1

, then the advertisers’ effective bids are the same as in the mechanism wherein the publisher

adds α to the entrant’s effective bid. Therefore, the two mechanisms have the same allocation rule.

Furthermore, note that the advertisers’ bids are the same for both mechanisms: the incumbent (entrant)

bids b∗I1 (b∗E1). This means that both mechanisms can be cast as a “direct mechanism” where advertisers

bid their true “type.” Therefore, by the Revenue Equivalence principle (Myerson, 1981), the two

mechanisms yield the same expected profit up to a constant. �

A.14 Proof of Proposition 11

Proof. From the derivation of the LREF Stage 1 bids (see Section OA2 of the online appendix), we see

that an important condition that shapes the outcome of the auction is

δ
(
E[πlE ]−

(
E[π0

i ]− E[πli]
))
≤ θ(ci − µE). (A.26)
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We can write this condition in terms of the reserve price R. First, note that E[πlE ] =
∫ cI
ci
θ(cE−ci) dFE+∫ cI

ci
(cE − cI) + θ(cI − ci) dFE is independent of R, and

E[π0
i ]− E[πli] = cI − µE −

∫ 1

0
(ci −max[cE , R])+ dFE

=

∫ 1

0
cI − cE dFE −

∫ 1

0
(ci −max[cE , R])+ dFE

=

∫ R

0
R− cE dFE −

∫ 1

ci

cE − ci dFE . (A.27)

Second, since (A.27) is strictly increasing in R, we obtain that (A.26) is equivalent to R ≥ R̂, where R̂

solves δ
(
E[πlE ]−

(
E[π0

i ]− E[πli]
))

= θ(ci − µE).

Case 1: Suppose µE ≤ ci < cI . Following the derivation of LREF bids in Section OA2.2, if R > R̂,

then the LREF equilibrium is [I, i, e] and the entrant bids b∗E(δ) = 1 + δ
θµE

E[πlE ]. Therefore,

b∗E(δ) ≥ b∗E(0) for all δ > 0. For the weak incumbent, we obtain b∗i (δ) = 1 − θ + θµE
ci
b∗E(δ);

therefore b∗i (δ) > b∗i (0) for all δ > 0.

If R < R̂, then the LREF equilibrium is [I, E, i] and b∗E(δ) = 1 − θ + θ
µE

max[cib
∗
i (δ), R]

and b∗i (δ) =
(

1 + δ
θci

(
E[π0

i ]− E[πli]
))+

. To determine whether the advertisers bid below or

above their learning-free benchmarks, we need to determine the sign of E[π0
i ] − E[πli]. Since

(i) ∂(A.27)
∂R > 0, (ii) (A.27) = −

∫ 1
ci
cE − ci dFE < 0 at R = 0, and (iii) (A.27) = ci − µE > 0

at R = ci, there exists a unique R̃ ∈ (0, ci) such that E[π0
i ] − E[πli] < 0 for all R < R̃ and

E[π0
i ]− E[πli] > 0 for all R > R̃. Thus, R < R̃⇒ b∗E(δ) ≤ b∗E(0) and b∗i (δ) ≤ b∗i (0) for all δ > 0;

and R > R̃⇒ E[π0
i ]− E[πli] > 0, so that b∗E(δ) ≥ b∗E(0) and b∗i (δ) ≥ b∗i (0) for all δ > 0.

Case 2: Suppose ci < µE ≤ cI . The LREF equilibrium is [I, E, i].

The EF conditions for the strong incumbent and the entrant are cI(1 − max[µEbE , R]/cI) +

δE[πli] ≥ θcI(1−max[cibi, R]/cI) + δE[πli] ⇐⇒ µEbE ≤ (1− θ)cI + θmax[cibi, R] and µE(1−

max[µEbE , R]/µE) + δE[πlE ] ≤ θµE(1 −max[cibi, R]/µE) + δE[πlE ] ⇐⇒ µEbE ≥ (1 − θ)µE +

θmax[cibi, R]. Therefore, the entrant’s LREF bid is b∗E(δ) = 1− θ + θ
µE

max[cib
∗
i , R].

The EF conditions for the the weak incumbent and the entrant are θci(1 −max[cibi, R]/ci) +

δE[π0
i ] ≤ δE[πli] ⇐⇒ θci − δE[πli] ≤ θmax[cibi, R] and θµE(1 −max[cibi, R]/µE) + δE[πlE ] ≥

δE[π0
E ] ⇐⇒ θmax[cibi, R] ≤ θµE + δ(E[πlE ]− E[π0

E ]). Since the LREF bid binds at the lower-

bound, we have max[cib
∗
i , R] = ci − δ

θE[πli]. Thus, R < ci − δ
θE[πli] ⇒ b∗i (δ) = 1 − δ

θci
E[πli] and

56



b∗E(δ) = 1− θ + θ
µE

(
ci − δ

θE[πli]
)
, such that b∗E(δ) ≤ b∗E(0) and b∗i (δ) ≤ b∗i (0) for all δ > 0.

On the other hand, if R ≥ ci − δ
θE[πli], then the lowest bid bi that satisfies the EF condition,

ci − δ
θE[πli] ≤ max[cibi, R] ≤ µE + δ

θ (E[πlE ]− E[π0
E ]), is b∗i = 0. In this case, the LREF bids are

b∗E(δ) = 1− θ + θ
µE
R and b∗I(δ) = 0, such that the bids are the same across environments with

and without learning. For this to hold for all δ > 0, we must have R ≥ ci.

Taken together, we can define the threshold for the reserve price R above which the stated result holds:

R equals min
[
R̂, R̃

]+
if µE ≤ ci, and equals ci otherwise. �

A.15 Proof of Lemma 4

Entrant

Proof. If µE ≤ ci, then the entrant clearly wants to reveal its CTR, for otherwise, it would have no

chance of winning in the Stage 2. If ci < µE ≤ cI , then the difference between its payoffs when its CTR

is revealed and concealed is

∆1 ≡
∫ cI

ci

θ(cE − ci) dFE +

∫ 1

cI

cE − cI + θ(cI − ci) dFE − θ(µE − ci)

= −
∫ ci

0
θ(cE − ci) dFE +

∫ ci

0
θ(cE − ci) dFE +

∫ cI

ci

θ(cE − ci) dFE +

∫ 1

cI

cE − cI + θ(cI − ci) dFE

− θ(µE − ci)

= −
∫ ci

0
θ(cE − ci) dFE +

∫ ci

0
θ(cE − ci)− θ(cE − ci) dFE +

∫ cI

ci

θ(cE − ci)− θ(cE − ci) dFE

+

∫ 1

cI

cE − cI + θ(cI − ci)− θ(cE − ci) dFE

=

∫ ci

0
θ(ci − cE) dFE +

∫ 1

cI

(1− θ)(cE − cI) dFE > 0. (A.28)

Therefore, the entrant is better off revealing its CTR when ci < µE ≤ cI .

Finally, if cI < µE , then the difference between its payoffs when its CTR is revealed and concealed is

∆2 ≡
∫ cI
ci
θ(cE−ci) dFE+

∫ 1
cI

(cE−cI)+θ(cI−ci) dFE−((µE−cI)+θ(cI−ci)), and differentiating ∆2 with

respect to θ yields ∂∆2
∂θ = ci−cI+

∫ cI
ci
cE−cI dFE−

∫ 1
cI
ci−cI dFE =

∫ ci
0 ci−cI dFE+

∫ cI
ci
cE−cI dFE < 0.

Since ∆2 is decreasing in θ, it suffices to show that ∆2 > 0 at θ = 1 to prove that ∆2 > 0 for all θ ∈ (0, 1).

But the positivity holds at θ = 1 because ∆2|θ=1=
∫ cI
ci
cE − cI dFE +

∫ 1
cI
cE − cI + cI − cidFE −

∫ 1
0 cE −
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cI + cI − cI dFE =
∫ ci

0 ci − cE dFE > 0. This completes the proof. �

Incumbent with Lower CTR

Proof. First, if µE > ci, then it is clearly better for the incumbent with the lower CTR if the entrant’s

CTR is learned because only then does it have a chance of winning the second ad slot. Second, suppose

µE ≤ ci. The difference between its payoffs when the entrant’s CTR is revealed and concealed is

∆3 ≡
∫ ci

0 θ(ci − cE) dFE − θ(ci − µE) = −
∫ 1
ci
θ(ci − cE) dFE ≥ 0. This completes the proof. �

Incumbent with Higher CTR

Proof. Suppose µE ≤ ci. Then the difference between the payoffs of the incumbent with the higher

CTR when the entrant’s CTR is revealed and when it is not is ∆4 ≡ FE(ci)(cI − ci) +
∫ ci

0 θ(ci −

cE) dFE+
∫ cI
ci

(cI−cE)+θ(cE−ci) dFE+(1−FE(cI))θ(cI−ci)−((cI − ci) + θ(ci − µE)) . Differentiating

∆4 with respect to θ yields ∂∆4
∂θ = −ci +

∫ ci
0 ci − cE dFE +

∫ cI
ci
cE − cI dFE +

∫ 1
cI
cI − cI dFE + µE =∫ ci

0 ci−cE−ci+cE dFE+
∫ cI
ci
cE−ci−ci+cE dFE+

∫ 1
cI
cI−ci−ci+cE dFE = 2

∫ cI
ci
cE−cI dFE+

∫ 1
cI
cI−

cI dFE+
∫ 1
cI
cE−cI dFE > 0, where the last positivity follows from the positivity of each term in the sum

in the line before. Therefore, ∆4 is strictly increasing in θ. At the end points of θ, we have ∆4 < 0 and

∆4 > 0, respectively: ∆4|θ=0= ci−cI+
∫ ci

0 cI−cI dFE+
∫ cI
ci
cI−cE dFE =

∫ cI
ci
ci−cE dFE+

∫ 1
cI
ci−cI dFE <

0, and ∆4|θ=1= µE − cI +
∫ ci

0 cI − cI dFE +
∫ 1
cI
cI − cI dFE +

∫ ci
0 ci − cE dFE +

∫ cI
ci
cI − cI dFE =∫ 1

cI
cE − cI dFE +

∫ cI
ci
cE − cI dFE > 0. Therefore, by the IVT, there exists a unique θ̂ ∈ (0, 1) that solves

∆4(θ) = 0 such that ∆4 < 0 for θ < θ̂ and ∆4 > 0 for θ > θ̂. This means that the incumbent with the

higher CTR wants the entrant’s CTR to be learned if and only if the position-CTR of the second slot

is sufficiently large.

Next, suppose ci < µE ≤ cI . Then the difference between the payoffs of the incumbent with the higher

CTR when the entrant’s CTR is revealed and when it is not is ∆5 ≡ FE(ci)(cI−ci)+
∫ ci

0 θ(ci−cE) dFE+∫ cI
ci

(cI − cE) + θ(cE − ci) dFE + (1 − FE(cI))θ(cI − ci) − ((cI − µE) + θ(µE − ci)). The difference ∆5

strictly decreases with cI because ∂∆5
∂cI

= −1 + FE(cI) + θ(1 − FE(cI)) = −(1 − θ)(1 − FE(cI)) < 0.

Next, we examine the sign of ∆5 at the endpoints cI = µE and cI = 1. At cI = 1, we have ∆5|cI=1=∫ ci
0 1−ci+θ(ci−cE) dFE +

∫ 1
ci

1−cE +θ(cE−ci) dFE−((1−µE)+θ(µE−ci)) = (2θ−1)
∫ ci

0 ci−cE dFE .

Therefore, ∆5|cI=1 is positive if θ ≥ 1
2 and negative otherwise. And since ∆5 is decreasing in cI , we
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obtain ∆5 ≥ 0 for all cI if θ ≥ 1
2 .

The sign of ∆5 is only inconclusive for θ < 1
2 , so we examine this case next. If ∆5|cI=µE≤ 0 under

θ < 1
2 , then by the decreasing property of ∆5 we would obtain ∆5 ≤ 0 for all cI . On the other hand, if

∆5|cI=µE> 0, then by the IVT, there would exist a unique zero c̃I such that ∆5 > 0 for all cI < c̃I , and

∆5 < 0 for all cI > c̃I . We will show that the latter holds; i.e., ∆5|cI=µE> 0:

∆5|cI=µE =

∫ ci

0
µE − ci + θ(ci − cE) dFE +

∫ µE

ci

µE − cE + θ(cE − ci) dFE +

∫ 1

µE

θ(µE − ci) dFE

− θ(µE − ci)

=

∫ ci

0
(2θ − 1)(ci − cE) dFE +

∫ 1

µE

(1− θ)(cE − µE) dFE .

Since this is a linear function of θ, to show that ∆5|cI=µE> 0 for all θ ∈
(
0, 1

2

)
, it suffices to show that

∆5|cI=µE> 0 at the endpoints θ = 0 and θ = 1
2 . At θ = 1

2 , we have ∆5|cI=µE= 1
2

∫ 1
µE
cE − µE dFE > 0.

At θ = 0, we have ∆5|cI=µE (θ = 0) =
∫ 1
µE
cE − µE dFE −

∫ ci
0 ci − cE dFE =

∫ ci
0 µE − cI dFE +

∫ µE
ci

µE −

cE dFE > 0, where the last positivity follows from µE > ci. Thus, we have shown that ∆5|cI=µE> 0 for

all θ < 1
2 . Combined with the fact that ∆5|cI=1< 0 for θ < 1

2 , the IVT implies the unique existence of

c̃I ∈ (µE , 1) such that ∆5 > 0 for all cI < c̃I , and ∆5 < 0 for all cI > c̃I .

In summary, if ci < µE ≤ cI , then ∆5 is negative if θ < 1
2 and cI > c̃I , and it is positive otherwise.

We consider the last case of cI < µE . The difference between the payoffs of the incumbent with the

higher CTR when the entrant’s CTR is revealed and when it is not is ∆6 ≡ FE(ci)(cI − ci) +
∫ ci

0 θ(ci −

cE) dFE +
∫ cI
ci

(cI − cE) + θ(cE − ci) dFE + (1− FE(cI))θ(cI − ci)− θ(cI − ci). Differentiating ∆6 with

respect to cI yields ∂∆6
∂cI

= FE(cI)− θFE(cI) = (1− θ)FE(cI) > 0. Since ∆6 is increasing in cI , to show

∆6 > 0 for all cI , it suffices to show positivity only at the lowest value cI = ci. But if cI = ci, then ∆6

simplifies to
∫ ci

0 θ(ci − cE) dFE , which is clearly positive. Therefore, ∆6 > 0 if cI < µE . �
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Online Appendix to “Learning in Online Advertising”

OA1 Extended Discussion of Ad Credit

The following proposition states the condition under which offering ad credit is profitable for the pub-

lisher.

Proposition OA1. If the probability of the incumbent’s CTR being high, P{cI > c̃} (where c̃ is defined

in the proof), is sufficiently high, then offering ad credit increases the publisher’s revenue.

Proof. We will derive a condition equivalent to ∂
∂αE[πP (α)]|α=0> 0, which is a sufficient condition for

the publisher to provide positive ad credit.

First, to simplify notation, let b̃E ≡ µE + δ
(∫ 1

cI
(cE − cI) dFE − (µE − cI)+

)
, so that the entrant’s

first stage effective bid is µEb
∗
E1 = α + b̃E . Based on this, denote the terms in the publisher’s revenue

expression that are independent of α by ξ1 ≡ b̃E + δmax[min[cI , µE ], R] and ξ2 ≡ max[cIb
∗
I1, R] +

δ
(∫ cI

0 max[cE , R] dFE + (1− FE(cI))cI
)
. Then, we have ΠP (α, cI) equal to α + ξ1 if cI ≥ min[ĉ(α), 1],

and equal to −α + ξ2 otherwise, where ĉ(α) is the value such that cIb
∗
I1 ≥ µEb

∗
E1(α) for all cI ≥ ĉ(α),

and cIb
∗
I1 < µEb

∗
E1(α) for all cI < ĉ(α). Note that we can show the unique existence of such threshold

following a similar reasoning as in the first part of the proof of Proposition 3. Using these notations, we

can re-write the publisher’s revenue as follows: E[πP (α)] =
∫ 1

0 ΠP (α, cI) dFI =
∫ min[ĉ(α),1]

0 −α+ξ2 dFI +∫ 1
min[ĉ(α),1] α+ ξ1 dFI . Therefore, if ĉ(α) > 1, which occurs if and only if α > 1−µE + δ

∫ 1
0 max[cE , R]−

cE dFE , then the derivative with respect to α is ∂
∂αE[πP (α)] = ∂

∂α

∫ 1
0 −α+ ξ2 dFI = ∂

∂α(−α) = −1. On

the other hand, if ĉ(α) ≤ 1, then ∂
∂αE[πP (α)] = ∂

∂α

∫ ĉ(α)
0 −α+ ξ2 dFI + ∂

∂α

∫ 1
ĉ(α) α+ ξ1 dFI

= fI (ĉ(α)) ĉ′(α)(−2α− ξ1 + ξ2) + 1− 2FI (ĉ(α)). Rearranging terms, we obtain that ∂
∂αE[πP (α)] > 0 if

and only if

α ≤ 1− µE + δ

∫ 1

0
max[cE , R]− cE dFE (OA1)

and

P{cI > ĉ(α)} > 1− fI (ĉ(α)) ĉ′(α)(−2α− ξ1 + ξ2)

2
. (OA2)

Substituting α = 0, condition OA1 holds and condition OA2 simplifies as stated in the proposition with

c̃ ≡ ĉ(0). �

An important implication of Proposition OA1 is that the publisher should consider offering ad credit if

the incumbent’s CTR is likely to be high. The reason is that if the incumbent is strong, the positive

1



effects associated with extraction and learning effects are large while the negative cost effect is small.

Put together, the three forces create strong incentives for the publisher to provide ad credit to new

advertisers. Next, we characterize the three effects as a function of the ad credit level.

Three Forces

First, the extraction effect is defined as the expected increase in the publisher’s Stage 1 payoff due to

the ad credit when the incumbent wins:
∫ 1
R(µEb

∗
E1(α)−µEb∗E1(0))I{cIb∗I1≥µEb∗E1(α)} dFI , which simplifies

to αP{cIb∗I1 ≥ µEb
∗
E1(α)}. Second, the learning effect is defined as the additional Stage 2 revenue the

publisher gains from offering ad credit, compared to the Stage 2 payoff when it does not offer any; i.e.,

δ (πP2(α)− πP2(0)) where

πP2(α) =

∫
cIb
∗
I1≥µEb

∗
E1(α)

min[cI , µE ] dFI +

∫
cIb
∗
I1<µEb

∗
E1(α)

(∫ cI

0
max[cE , R] dFE + (1− FE(cI))cI

)
dFI .

Proposition OA2 (Three Forces Generated by Ad Credit). Suppose cI and cE are distributed according

to FI(c) = cn and FE(c) = c, respectively, for c ∈ [0, 1], and R ≥
√

1+δ−1
δ . Then the extraction effect

is concave in α, and the expected cost of ad credit increases monotonically in α. The learning effect

increases convexly in α for α ≤ 1+R2δ
2 , and plateaus thereafter.

Proof. Extraction effect : From the proof of Proposition 3, we obtained the unique existence of ĉ > µE =

1
2 such that the entrant wins the first stage auction for all cI < ĉ and the incumbent wins for all cI ≥ ĉ.

Since this result holds without ad credit (i.e., α = 0), it must be that when the publisher offers positive

ad credit to the entrant, the threshold cI after which the incumbent wins must be at least as large as

ĉ. For otherwise, it would imply that the incumbent wins for a larger interval of cI even if the ad credit

makes the entrant’s ad score more competitive (see Proposition 9), which cannot be true. Therefore,

we obtain that if the publisher offers non-zero ad credit, the entrant wins the first stage auction for all

cI < µE = 1
2 . This property helps simplify the expression for the two positive forces generated by the

ad credit. The extraction effect can be written as

∫ 1

0
(µEb

∗
E1(α)− µEb∗E1(0))I{cIb∗I1≥µEb∗E1(α)} dFI = α

∫
cIb
∗
I1≥µEb

∗
E1(α)

dFI

= α

∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

ncn−1
I dcI (OA3)

Next, we will express the set {cI : cI ≥ 1
2 , cIb

∗
I1 ≥ µEb∗E1(α)} in terms of cI . To that end, we have cIb

∗
I1 =

cI

(
1 + δ

((
1− µE

cI

)+
−
∫ 1

0

(
1− max[cE ,R]

cI

)+
dFE

))
= cI + δ

(
cI − 1

2 +
R2−c2I

2

)
and µEb

∗
E1(α) =

µE

(
1 + α

µE
+ δ

µE

(∫ 1
cI

(cE − cI) dFE − (µE − cI)+
))

= 1
2 + α+ δ

2(1− cI)2, which implies that the con-

2



dition “cI ≥ 1
2 and cIb

∗
I1 ≥ µEb∗E1(α)” is equivalent to

α ≤ 2δ + 2δ2R2 + 1

4δ
and cI ≥ max

(
1

2
,
2δ −

√
−4αδ + 2δ + 2δ2R2 + 1 + 1

2δ

)
≡ c̃3.

Therefore, we have

(OA3) =


α(1− FI(c̃3)) if α ≤ 2δ+2δ2R2+1

4δ ,

0 if α > 2δ+2δ2R2+1
4δ .

Finally, to show that (OA3) is concave in α for α ≤ 2δ+2δ2R2+1
4δ , it suffices to establish that 1−FI(c̃3) is

decreasing and concave in α. For then, ∂2α(1−FI(c̃3))
∂α2 = 2(1− FI(c̃3))′ + α(1− FI(c̃3))′′ < 0. But the de-

creasing property and concavity hold because (1−FI(c̃3))′ = (1−(c̃3)n)′ = −
n

(
2δ−
√
−4αδ+2δ+2δ2R2+1+1

2δ

)n−1

√
−4αδ+2δ+2δ2R2+1

<

0 and (1− FI(c̃3))′′ = (1− (c̃3)n)′′, which in turn equals to

−
n4δ2

(
q1(α,δ,n,R)

2δ

)n
q2(α, δ, n,R)

(−4αδ + 2δ + 2δ2R2 + 1)3/2 q1(α, δ, n,R)2

∝ −q1(α, δ, n,R)nq2(α, δ, n,R)

= −q1(α, δ, n,R)n+1 − q1(α, δ, n,R)n(n− 1)
√
−4αδ + 2δ + 2δ2R2 + 1

≤ −q1(α, δ, n,R)n+1 < 0,

where

q1(α, δ, n,R) = 2δ −
√
−4αδ + 2δ + 2δ2R2 + 1 + 1,

q2(α, δ, n,R) = 2δ + n
√
−4αδ + 2δ + 2δ2R2 + 1− 2

√
−4αδ + 2δ + 2δ2R2 + 1 + 1.

The last inequality −q1(α, δ, n,R)n+1 < 0 follows from

−
(

2δ −
√
−4αδ + 2δ + 2δ2R2 + 1 + 1

)n+1
< 0 ⇐= 2δ −

√
−4αδ + 2δ + 2δ2R2 + 1 + 1 > 0

⇐⇒ α > −1

2
− δ

(
1− R2

2

)
⇐= 0 > −1

2
− δ

(
1− R2

2

)
⇐= δ ≥ 0, R ≤ 1.

Expected cost : Recall that the entrant wins in Stage 1 for cI ≤ 1
2 , so the expected ad cost is increasing

in α for this region. We will show that the expected cost for cI >
1
2 is also increasing in α. To that end,

3



it suffices to show that
∂

∂α

∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

dFI ≤ 0. (OA4)

For then,

∂

∂α
α

∫
cI≥ 1

2
,cIb
∗
I1<µEb

∗
E1(α)

dFI =
∂

∂α
α

(
1−

∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

dFI

)

= 1−
∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

dFI︸ ︷︷ ︸
+ by probability measure

−α ∂

∂α

∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

dFI︸ ︷︷ ︸
− by hypothesis

≥ 0.

But the desired inequality (OA4) holds because

∂

∂α

∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

dFI =
∂

∂α


1− FI(c̃3) if α ≤ 2δ+2δ2R2+1

4δ ,

0 if α > 2δ+2δ2R2+1
4δ

=


−fI(c̃3)∂c̃3∂α if α ≤ 2δ+2δ2R2+1

4δ ,

0 if α > 2δ+2δ2R2+1
4δ

≤ 0,

where the last inequality holds because fI(·) ≥ 0 and

∂c̃3

∂α
=


(
−4αδ + 2δ + 2δ2R2 + 1

)− 1
2 if δ + 1 ≥

√
−4αδ + 2δ + 2δ2R2 + 1,

0 otherwise,

≥ 0.

Learning effect : Since the entrant wins the first stage auction for all α ≥ 0 if cI <
1
2 , the publisher’s

Stage 2 payoff depends on α only for cI ≥ 1
2 . Therefore, ∂(πS2(α)−πS2(0))

∂α = ∂πS2(α)
∂α , which in turn is

equal to

∂

∂α

(∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

1

2
dFI +

∫
cI≥ 1

2
,cIb
∗
I1<µEb

∗
E1(α)

(∫ cI

0
max[cE , R] dFE + (1− FE(cI))cI

)
dFI

)
,

which simplifies to

(OA5)
∂

∂α

(∫
cI≥ 1

2
,cIb
∗
I1≥µEb

∗
E1(α)

1

2
dFI +

∫
cI≥ 1

2
,cIb
∗
I1<µEb

∗
E1(α)

(
R2 − c2

I

2
+ cI

)
dFI

)
.

Recall from the proof of Proposition 3 that there exists a unique c > µE = 1
2 such that the entrant wins

the first stage auction for all cI < c and the incumbent wins for all cI ≥ c. Therefore, we can find a

threshold ad credit level α̃ such that for all α > α̃, the entrant wins in Stage 1 for all cI . For this range

of α, the learning value would be zero because the entrant’s CTR would have been revealed regardless

4



of the incumbent’s CTR. By monotonicity, the threshold α̃ must occur at the α such that the effective

bids of the two advertisers coincide for cI = 1. Simple algebra yields α̃ = 1+δR2

2 . Therefore,

(OA5) =


∂
∂α

(∫ 1
c̃4

1
2nc

n−1
I dcI +

∫ c̃4
1
2

(
R2−c2I

2 + cI

)
ncn−1

I dcI

)
if α ≤ 1+δR2

2 ,

0 if α > 1+δR2

2 ,

=


∂
∂α

(
−1

2 c̃
n
4 +

(
R2

2 c̃
n
4 − 1

2
n
n+2 c̃

n+2
4 + n

n+1 c̃
n+1
4

))
if α ≤ 1+δR2

2 ,

0 if α > 1+δR2

2 .

where c̃4 ≡ 2δ−
√
−4αδ+2δ+2δ2R2+1+1

2δ . By explicitly solving the derivative in the top branch, it can be

shown that the derivative is proportional to

(OA6)2αδ − δ +
√
−4αδ + 2δ + 2δ2R2 + 1 + δ2R2 − 1.

Therefore, using the fact that the (OA6) is increasing in R, we obtain the following learning effect

pattern for general range of R: (OA6) is positive if 1
2 < α ≤ 1+R2δ

2 or α ≤ 1
2 , R > r′ and negative

otherwise, where r′ =

√
1+(1−2α)δ−1

δ . With the added assumption that R ≥
√

1+δ−1
δ , we obtain that the

derivative is always positive for α ≤ 1+R2δ
2 and zero for α > 1+R2δ

2 . To establish convexity, we need only

differentiate (OA6) with respect to α once more. This yields that the second derivative of the learning

effect is ∂(OA6)
∂α = 2δ + 1

2

(
−4αδ + 2δ + 2δ2R2 + 1

)− 1
2 (−4δ) ∝ 1 −

(
−4αδ + 2δ + 2δ2R2 + 1

)− 1
2 ≥ 0,

where the last inequality follows from the fact that α ≤ 1+δR2

2 =⇒ −4αδ + 2δ + 2δ2R2 + 1 ≥ 1 ⇐⇒

1−
(
−4αδ + 2δ + 2δ2R2 + 1

)− 1
2 ≥ 0. �

Optimal Ad Credit

A closed-form analytical expression for optimal α is not tractable with general CTR functional forms FI

and FE . In this section, we provide numerical plots for specific functional forms and parameter values

to better understand the forces that determine the publisher’s optimal ad credit level.

Figure OA9 plots the optimal ad credit with respect to the Stage 2 weight parameter δ and the incumbent

CTR strength parameter n. Figure OA9a reveals an interesting relationship between the optimal ad

credit level and δ. When n is small such that the incumbent is likely to be weak, the publisher lowers

the level of ad credit as δ increases (n = 1 and n = 2 in Figure OA9a). On the other hand, when n

is large, then the ad credit increases with δ (n = 4 and n = 8 in Figure OA9a). This pattern can be

understood based on the insights obtained in the main model.

Intuitively, when the incumbent is likely to be weak, the entrant is more likely to win in Stage 1. This

5
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Figure OA9: Optimal Ad Credit; R = 1
4 , FE(c) = c, FI(c) = cn

means that if the publisher offers ad credit, it is likely to be transferred to the entrant, costing the

publisher money. Thus, the publisher lowers the ad credit level for smaller values of n. Furthermore,

as δ increases, the entrant has stronger incentives to overbid to capitalize on the Stage 2 benefits of

revealing its CTR. This increases the probability of the entrant winning in Stage 1. Therefore, the

publisher lowers α∗ accordingly as δ increases.

Next, consider the case when the incumbent is likely to be strong (i.e., n is large). Then, the entrant

bids close to valuation, whereas the incumbent likely overbids (see Lemma 2). And since the magnitude

of the incumbent’s overbidding pattern increases with δ, the publisher anticipates that the entrant’s

CTR will likely be masked for high δ. In response, the publisher offers larger ad credit to the entrant

(when n is large) as δ increases, in order to both learn the entrant’s CTR more quickly and also extract

more surplus from the incumbent.

In sum, we find two patterns of the optimal ad credit level which are consistent with the discussion

of Proposition OA1. First, the higher the likelihood of the incumbent being strong, the larger the ad

credit offered to the entrant. Second, this relationship is strengthened by the Stage 2 weight parameter

δ; that is, if δ is high, then the search offers a much smaller (larger) ad credit when the incumbent is

likely to be weak (strong). This latter phenomenon is depicted in Figure OA9b through the increasing

steepness of the ad credit curve as δ increases.

OA2 Lemmas for GSP Extension

OA2.1 LREF Stage 2 Payoffs

Lemma OA1 (Assortative Matching). In any LREF equilibrium, the resulting ad slot allocation is

assortative; i.e., the advertiser in position i has higher CTR than the advertiser in position i+ 1.

6



Proof. Let c(i), b(i), and p(i), respectively, denote the CTR, bid, and payment of the advertiser in position

i. The envy-free conditions are αic(i) − p(i) ≥ αi+1c(i) − p(i+1) and αi+1c(i+1) − p(i+1) ≥ αic(i+1) − p(i).

Rearranging and combining the inequalities yield (αi − αi+1)c(i) ≥ p(i) − p(i+1) ≥ (αi − αi+1)c(i+1),

which together with the fact that αi > αi+1 imply c(i) ≥ c(i+1). �

Lemma OA2 (LREF Stage 2 Payoffs). Let I(i) denote the incumbent with the higher (lower) CTR. If

the entrant’s CTR is learned, then the advertisers’ expected Stage 2 payoffs are

E[πli] = FE(ci)(cI − ci) +

∫ ci

0
θ(ci − cE) dFE +

∫ cI

ci

(cI − cE) + θ(cE − ci) dFE + (1− FE(cI))θ(cI − ci),

E[πli] =

∫ ci

0
θ(ci − cE) dFE ,

E[πlE ] =

∫ cI

ci

θ(cE − ci) dFE +

∫ 1

cI

(cE − cI) + θ(cI − ci) dFE .

If the entrant’s CTR is not learned, then the expected payoffs are

µE ≤ ci < cI ci < µE ≤ cI ci < cI < µE
E[π0

i ] (cI − ci) + θ(ci − µE) (cI − µE) + θ(µE − ci) θ(cI − ci)
E[π0

i ] θ(ci − µE) 0 0
E[π0

E ] 0 θ(µE − ci) (µE − cI) + θ(cI − ci)

Proof. First, consider the advertisers in positions 2 and 3, where the “third position” is the no-display

slot with a position-CTR of 0. The envy-free conditions imply α2c(2)

(
1− c(3)b(3)

c(2)

)
≥ 0 and 0 ≥

α2c(3)

(
1− c(3)b(3)

c(3)

)
, which simplify to 1 ≤ b(3) ≤ c(2)/c(3). Note that there exist values of b(3) that satisfy

this inequality because Lemma OA1 implies that c(2)/c(3) ≥ 1. And since we choose the lowest revenue

envy-free (LREF) equilibrium, we have that b(3) = 1; i.e., the losing advertiser bids truthfully. Next, we

find the LREF bid of advertiser (2) by recursion. Again, the envy-free conditions between advertisers (1)

and (2) imply α1c(1)

(
1− c(2)b(2)

c(1)

)
≥ α2c(1)

(
1− c(3)b(3)

c(1)

)
and α2c(2)

(
1− c(3)b(3)

c(2)

)
≥ α1c(2)

(
1− c(2)b(2)

c(2)

)
.

Substituting b(3) = 1 and simplifying yields

c(2) −
α2

α1
(c(2) − c(3)) ≤ c(2)b(2) ≤ c(1) −

α2

α1
(c(1) − c(3)). (OA1)

Using Lemma OA1 and α1 > α2, it can be easily shown that the lower bound of (OA1) is indeed smaller

than the upper bound; i.e., c(2)− α2
α1

(c(2)− c(3)) < c(1)− α2
α1

(c(1)− c(3)); that is, there exist values of b(2)

that satisfy the envy-free conditions. In LREF equilibrium, we have b(2) = 1− α2/α1

(
1− c(3)/c(2)

)
.

The profits for advertisers (1), (2), and (3), respectively, are π(1) = α1c(1)

(
1−

c(2)−
α2
α1

(c(2)−c(3))

c(1)

)
,

7



π(2) = α2c(2)

(
1− c(3)

c(2)

)
, and π(3) = 0. Using these expressions, combined with the assumptions that

α1 = 1, α2 = θ, we can write the advertisers’ payoffs when cE is learned (i.e., entrant won in Stage 1):

cE ≤ ci < cI ci < cE ≤ cI ci < cI < cE
πI (cI − ci) + θ(ci − cE) (cI − cE) + θ(cE − ci) θ(cI − ci)
πi θ(ci − cE) 0 0
πE 0 θ(cE − ci) (cE − cI) + θ(cI − ci)

The payoffs when the cE is not learned and is thus assigned µE follow immediately. �

OA2.2 LREF Stage 1 Bids

We denote by [a1, a2, a3] the locally envy-free equilibrium candidate where advertiser a1 gets the first

slot, advertiser a2 the second, and advertiser a3 the third (null) slot.

Case 1: Suppose µE ≤ ci < cI .

(i) [I, i, E]

Envy-free (EF) condition for E: θµE(1 − µEbE/µE) + δE[πlE ] ≤ 0 ⇐⇒ bE ≥ 1 + δ
θµE

E[πlE ];

EF condition for i: θci(1 − µEbE/ci) + δE[π0
i ] ≥ δE[πli] ⇐⇒ bE ≤ ci

µE
+ δ

θµE
(E[π0

i ] − E[πli]) and

θci(1− µEbE/ci) + δE[π0
i ] ≥ ci(1− cibi/ci) + δE[π0

i ] ⇐⇒ cibi ≥ (1− θ)ci + θµEbE ; EF condition

for I: cI(1 − cibi/cI) + δE[π0
i ] ≥ θcI(1 − µEbE/cI) + δE[π0

i ] ⇐⇒ cibi ≤ (1 − θ)cI + θµEbE .

Given bE , there always exist non-negative bi such that EF conditions are satisfied, because we

need (1− θ)ci + θµEbE ≤ cibi ≤ (1− θ)cI + θµEbE but ci < cI . On the other hand, there does not

always exist non-negative bE that satisfies EF conditions: note that we must have

1 +
δ

θµE
E[πlE ] ≤ ci

µE
+

δ

θµE
(E[π0

i ]− E[πli]) (OA2)

for E to set envy-free bids. Using the fact that E[π0
i ]− E[πli] = θ(ci − µE)−

∫ ci
0 θ(ci − cE) dFE =∫ 1

ci
θ(ci − cE) dFE < 0, it can be shown that the inequality (OA2) holds if and only if

δ ≤ θ(ci − µE)

E[πlE ]− (E[π0
i ]− E[πli])

. (OA3)

In summary, [I, i, E] is an envy-free equilibrium if and only if δ is sufficiently small (OA3); the

corresponding lowest revenue equilibrium bids are b∗E = 1 + δ
θµE

E[πlE ] and b∗i = 1− θ + θµE
ci
b∗E .

(ii) [I, E, i]

EF condition for i: θci(1 − cibi/ci) + δE[π0
i ] ≤ δE[πli] ⇐⇒ 1 + δ

θci
(E[π0

i ] − E[πli]) ≤ bi; EF

8



condition for E: θµE(1− cibi/µE) + δE[πlE ] ≥ 0 ⇐⇒ bi ≤ µE
ci

+ δ
θci

E[πlE ] and θµE(1− cibi/µE) +

δE[πlE ] ≥ µE(1 − µEbE/µE) + δE[πlE ] ⇐⇒ µEbE ≥ (1 − θ)µE + θcibi; EF condition for I:

cI(1 − µEbE/cI) + δE[πli] ≥ θcI(1 − cibi/cI) + δE[πli] ⇐⇒ µEbE ≤ (1 − θ)cI + θcibi. Given

bi, there always exist non-negative bE such that EF conditions are satisfied, because we need

(1 − θ)µE + θcibi ≤ µEbE ≤ (1 − θ)cI + θcibi but µE < cI . On the other hand, there does not

always exist non-negative bi that satisfies EF conditions. To see this, note that we must have

1 +
δ

θci
(E[π0

i ]− E[πli]) ≤
µE
ci

+
δ

θci
E[πlE ] (OA4)

for i to set envy-free bids. Again, using the fact that E[π0
i ]− E[πli] < 0, it can be shown that the

inequality (OA4) holds if and only if

δ ≥ θ(ci − µE)

E[πlE ]− (E[π0
i ]− E[πli])

. (OA5)

In summary, [I, E, i] is an envy-free equilibrium if and only if δ is sufficiently large (OA5); the

corresponding lowest revenue equilibrium bids are b∗i = 1+ δ
θci

(E[π0
i ]−E[πli]) and b∗E = 1−θ+ θci

µE
b∗i .

(iii) [E, I, i]

This cannot be an envy-free equilibrium because the EF conditions for I and E are

θcI(1− cibi/cI) + δE[πli] ≥ cI(1− cIbI/cI) + δE[πli] ⇐⇒ cIbI ≥ (1− θ)cI + θcibi,

µE(1− cIbI/µE) + δE[πlE ] ≥ θµE(1− cibi/µE) + δE[πlE ] ⇐⇒ cIbI ≤ (1− θ)µE + θcibi.

And since µE < cI , there does not exist any bI for any bi such that I and E are envy-free.

Case 2: Suppose ci < µE ≤ cI .

(i) [I, i, E]

This cannot be an envy-free equilibrium because the EF conditions for E and i are θµE(1 −

µEbE/µE) + δE[πlE ] ≤ δE[π0
E ] ⇐⇒ θµEbE ≥ θµE + δ(E[πlE ] − E[π0

E ]) and θci(1 − µEbE/ci) +

δE[π0
i ] ≥ δE[πli] ⇐⇒ θµEbE ≤ θci−δE[πli], where we have used the fact that E[π0

i ] = 0 if ci < µE .

Since E[πlE ]− E[π0
E ] ≥ 0 from (A.28), it follows that θµE + δ(E[πlE ]− E[π0

E ]) > θci − δE[πli]. This

implies that there does not exist any bE such that E and i are envy-free.

(ii) [I, E, i]

EF conditions for i and E: θci(1 − cibi/ci) + δE[π0
i ] ≤ δE[πli] ⇐⇒ θci − δE[πli] ≤ θcibi and

θµE(1 − cibi/µE) + δE[πlE ] ≥ δE[π0
E ] ⇐⇒ θcibi ≤ θµE + δ(E[πlE ] − E[π0

E ]); EF conditions for
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E and I: cI(1 − µEbE/cI) + δE[πli] ≥ θcI(1 − cibi/cI) + δE[πli] ⇐⇒ µEbE ≤ (1 − θ)cI + θcibi

and µE(1 − µEbE/µE) + δE[πlE ] ≤ θµE(1 − cibi/µE) + δE[πlE ] ⇐⇒ µEbE ≥ (1 − θ)µE + θcibi.

Therefore, the lowest revenue envy-free equilibrium bids are b∗i = max
[
1− δ

∫ ci
0 1− cE

ci
dFE , 0

]
and

b∗E = 1− θ + θci
µE
b∗i .

(iii) [E, I, i]

This cannot be an envy-free equilibrium because the EF conditions for I and E are cI(1−cIbI/cI)+

δE[πli] ≤ θcI(1−cibi/cI)+δE[πli] ⇐⇒ cIbI ≥ (1−θ)cI+θcibi and and µE(1−cIbI/µE)+δE[πlE ] ≥

θµE(1− cibi/µE) + δE[πlE ] ⇐⇒ cIbI ≤ (1− θ)µE + θcibi. And since µE ≤ cI , there does not exist

any bI for any bi such that I and E are envy-free.

OA3 Entry May Reduce Incumbent’s CTR

Suppose entry exogenously reduces the incumbent’s CTR by a stochastic factor γ which has c.d.f. Fγ

with support [0, 1].36 We will show that the entrant overbidding and the weak (strong) incumbent

under(over)bidding results carry over. We have

b∗E = 1 +
δ

µE

∫ 1

0

(∫ 1

max[γcI ,R]
cE −max[γcI , R] dFE − (µE −max[γcI , R])+

)
dFγ .

Since (cE −max[γcI , R])+ is convex in cE for all γ, it follows that regardless of the realization of γ,∫ 1
max[γcI ,R] cE − max[γcI , R] dFE − (µE − max[γcI , R])+ is always non-negative. This proves that the

entrant always overbids. Similarly, whether the incumbent bids below or above valuation depends on

the sign of ∫ 1

0

(
(γcI −max[µE , R])+ −

∫ 1

0
(γcI −max[cE , R])+ dFE

)
dFγ .

Applying the machinery from the proof of Proposition 8 in Section 5.2.2, there exists a pair of thresholds

such that the incumbent underbids for cI below the low threshold and overbids for cI above the high

threshold.

36Since Fγ is general, this subsumes the case where entry reduces cI by some deterministic factor.
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