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Abstract

We look at the problem of pricing in a duopoly with observational learning. Prior literature

shows that when the number of customers in a monopoly is sufficiently large and the monopolist

is sufficiently patient, an informational cascade always happens; furthermore, the probability

that the cascade is wrong, i.e., virtually all customers receive negative utility ex post, is always

positive. We find similar results in a duopoly with static pricing. Interestingly, and in contrast

to the previous literature, we show that in a duopoly with dynamic pricing, there are equilibria

in which no cascade happens. More importantly, we show that a wrong cascade cannot happen

in equilibrium. Our results could explain why, in practice, cascades, and specifically wrong

cascades, are not as common as prior literature has predicted.

1 Introduction

Observational learning is learning the fundamental value of an object, e.g., product quality, by

observing other decision-makers’ actions, e.g., purchase decisions. It happens when customers

can observe information regarding best selling, popular and trending products. Customers who

engage in observational learning infer product qualities from other customers’ choices; as such,

popular products are perceived to be of high quality. For example, book buyers pursue bestsellers,

restaurants with a long waiting list are often perceived to be of high quality, and Internet surfers

want to watch trending videos or read trending articles.

Prior research shows that observational learning leads to informational cascades where virtually

all customers make the same decision (Bikhchandani et al., 1992; Banerjee, 1992). Informational

cascades occur when it is optimal for a customer, having observed the actions of those ahead of

him, to follow the behavior of the preceding customers without regard to his own (incomplete and
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noisy) information. For example, a customer may choose to buy a best-seller book rather than a

book with mediocre sales even if he has a higher prior expectation for the latter. Interestingly,

informational cascades can sometimes be wrong (Bikhchandani et al., 1992; Banerjee, 1992; Welch

1992), i.e., customers’ ex post utility from purchasing the product may be negative.

Previous literature on observational learning has primarily focused on customers’ decision mak-

ing process, and, with the exception of a few papers, has paid little attention to how observational

learning affects firms’ strategies such as pricing. Welch (1992), in the context of a sequential IPO,

shows that observational learning can lead to a cascade among the investors; as such, in presence

of observational learning, the issuer lowers the price to avoid a failure. The price in Welch (1992)

is static. Bose et al. (2008) consider observational learning in a monopoly with dynamic pricing.

In both papers, if the seller is patient enough and the number of customers is sufficiently large, a

cascade always happens; furthermore, the cascade is wrong with a positive probability.

In this paper, we extend this literature to pricing decisions in a duopoly. In a duopoly with static

pricing, our results are similar to those of a monopoly (Welch 1992); the presence of observational

learning makes the demand more elastic and leads to lower equilibrium prices. Furthermore, a

cascade always happens, and the probability that a wrong cascade emerges is positive. Interestingly,

in a duopoly with dynamic pricing, we obtain very different results. First, we show that there

are equilibria in which no cascade happens. More importantly, we find that in a duopoly with

dynamic pricing, a wrong cascade cannot happen anymore. Our results could explain why, in

practice, cascades, and specifically wrong cascades, are not as common as theory has predicted.

Furthermore, they could explain why customer herding behavior is more commonly observed for

product categories with static prices such as movies, music and books, compared to those with

dynamic prices.

The rest of this paper is structured as follows. First, we review the related literature. In

Section 2, we present the model. In Section 3, we present the results in a model with static pricing,

and in Section 4, we discuss dynamic pricing. We conclude the paper and discuss the managerial

implications in Section 5. All proofs are relegated to the appendix.
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Related Literature

Much of the earlier work on observational learning focuses on showing the existence of informa-

tional cascades in certain domains (e.g. Bikhchandani et al. 1998), or measuring its effects by

separating it from other confounding factors (e.g., Chen et al. 2010). Zhang (2010) studies how

observational learning affects kidney transplant market. The author shows that observational learn-

ing and information sharing shape consumer choices in different ways. Chen et al. (2010) compare

word-of-mouth to observational learning by studying their effects on sales and their interactions.

In the context of microloan markets, Zhang and Liu (2012) show that observational learning leads

to rational herding, and discuss how the herding behavior relates to observable characteristics of a

product. Carare (2012) uses Apple’s App Store data to show that consumers’ willingness to pay for

an app ranked as best seller is $4.5 higher than the same unranked app. Lee et al. (2015) show that

informational cascades can affect a consumer’s decision on how to rate a product post-purchase.

Tucker et al. (2013) show that, because of observational learning, the number of days that a home

has been on the market negatively affects buyers’ willingness to pay. Ameri et al. (2016) study

the effects of observational learning versus word-of-mouth on an anime platform with endogenous

network formation. Cai et al. (2009) measure the effect of observational learning on consumers’

choices using a natural field experiment conducted in a restaurant dining setting. They show that

when customers are given ranking information of the five most popular dishes, the demand for

those dishes increases by 13 to 20 percent, and that dining satisfaction also increases. Salganik et

al. (2006) show that observational learning leads to informational cascades in an artificial music

market. They use the results to explain why despite the fact that hit songs, books and movies

are many times more successful than average, experts routinely fail to predict which products will

succeed.

Another stream of research within this literature investigates how observational learning is

affected by other parameters in the market. Tucker and Zhang (2011), using a field experiment,

show that observational learning may benefit niche products with narrow appeal more than broad-

appeal products. Zhang et al. (2015) study how network structures of friends versus strangers affect

consumers’ product choice and informational cascades. Hendricks et al. (2012) study observational

learning when there is a search cost, and show that a wrong cascade, where a high quality product
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gets virtually zero sales, could happen with a positive probability. Our paper is different from the

above papers as instead of focusing on customers’ side, we explore how existence of observational

learning affects the sellers’ decisions. In particular, we look at how product prices are affected by

existence of observational learning.

The question of how observational learning affects marketing decisions has been raised in the

previous literature. Zhang (2010) makes an important distinction between observational learning,

where customers only observe the actions and do not know the reason for other customers’ deci-

sions, and information sharing, where customers know the reasons for other customers’ actions.

Zhang (2010) suggests that “optimal marketing strategies should take into account how consumers

learn from others.” Godes (2016) and Jiang and Yang (2016) partially address this problem by

studying how information sharing affects firms’ product quality and pricing decisions. Our results

complement their findings by analyzing how observational learning affects firms’ pricing decisions.

Milkos-Thal and Zhang (2013) study how observational learning affects a firm’s “marketing

efforts.” The authors show that a seller can benefit from de-marketing its product by toning down

its marketing efforts. The managerial question addressed by Miklos-Thal and Zhang (2013) is

similar to ours as both papers investigate the effects of observational learning on sellers’ marketing

decisions. However, marketing efforts in Miklos-Thal and Zhang (2013) correspond to promotional

activities, timing of release, location, and ease of access. These factors influence the fraction of

early customers who consider buying the product, and are different from price in their model. In

contrast, the focus of our paper is to explore how observational learning affects pricing decisions.

We should also note that the setting in Miklos-Thal and Zhang (2013) is a monopoly, whereas ours

is a duopoly.

A few papers in the literature have studied the effects of observational learning on pricing

decisions. Welch (1992) shows that when IPO shares are sold sequentially, observational learning

can lead to informational cascade among the investors. As such, Welch (1992) shows that demand

can be so elastic that even risk-neutral issuers underprice to avoid failure. In Welch (1992), price

is static and the seller is a monopolist. While we extend the result of Welch (1992) to a duopoly

setting, we also analyze a duopoly market with dynamic pricing.

Bose et al. (2008) consider observational learning in a monopoly with dynamic pricing. The

main difference between their model and ours is that their setting is a monopoly whereas ours is
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a duopoly. In their model, an informational cascade always happens. However, we show that in a

duopoly setting, under certain conditions, firms change their prices such that a cascade does not

happen. Furthermore, contrary to the monopoly setting of Bose et al. (2008), we show that a wrong

cascade, wherein customers regret their decisions, cannot emerge in equilibrium in a duopoly.

Garcia and Shelegia (2015) use a model of consumer search to show that observational learning

increases price competition. In their model, consumers always start the search from the lowest

priced firm, price cannot be used for signaling, and consumers only observe the decisions of a limited

number of predecessors. Caminal and Vives (1996) examine a duopoly market where customers can

infer product quality from market share, and where sellers secretly cut price to compete for market

share. In contrast, we allow customers to fully observe prices, which distinguishes our model from

the signal jamming mechanism that underlies Caminal and Vives (1996).

2 Model

The market consists of infinitely many homogenous customers and two firms, Firm 1 and Firm 2.

Customers arrive sequentially with Customer t arriving at time t. Firms have the same discount

factor δ which we assume is sufficiently large (close to 1). Firm i, i ∈ {L,H}, produces one product

which we refer to as Product i. Firm i, decides the price pi,t of its product for Customer t before

the arrival of the customer. One of the firms is high-type and the other is low-type. The quality of

the product of the high-type firm, which we sometimes refer to as Firm H, is qH , and the product

quality of the low-type firm, which we refer to as Firm L, is qL, where qH > qL. Customers know

the values of qL and qH , but do not know the type of each firm.

To model observational learning, we use to the original model of Bikhchandani et al. (1992).1

Customers arrive sequentially in an exogenous order, and cannot postpone their purchase decisions.

Each Customer t has a unit demand, and buys the product that maximizes his expected utility.

The expected utility of Customer t from purchasing the product of Firm i, is q̄i,t − pi,t, where q̄i,t

is the inferred expected quality of Product i, and pi,t is the price at time t. If q̄i,t − pi,t < 0 for

both products, i ∈ {1, 2}, the customer does not purchase anything. Customers do not know the

firms’ types. However, each Customer t gets an independent noisy private signal st ∈ {1, 2} before

1Our model is also similar to a special case of Banerjee (1992).
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purchasing the product. This signal indicates which of the two products has higher quality. We

assume that

Pr(st = H) = ρ. (1)

In other words, the probability that a customer’s signal indicates the high-type firm is ρ > 1
2 . Note

that as ρ increases, the noise in the signal decreases, and if ρ = 1, each customer can identify the

high-type firm with no uncertainty. While the realization of each signal st is private information

to Customer t, the distribution in Equation (1) is common knowledge.

To study the effect of observational learning on the firms’ strategies, we compare the situation

in which customers cannot observe prior customers’ decisions (e.g., because they cannot observe

popularity information), as a benchmark, to the situation in which they know the decisions of the

previous customers. Each customer gets his private signal, and observes the purchase decisions

of all customers who arrived before him as well as all previous prices. The customer calculates

the expected quality of each product and decides which product to buy, if any. If a customer is

indifferent between the two products, he breaks the tie by purchasing the product that is indicated

by his own private signal (Banerjee 1992; Bikhchandani et al. 1992).

The timing of the game is as follows. At time 0, the nature randomly assigns qualities qH and qL

to q1 and q2. Firms observe each others’ qi’s at time 0. At time t, firms simultaneously choose their

prices p1,t and p2,t. Then, Customer t arrives, and observes his own private noisy signal. When

observational learning is possible, the customer also observes previous customers’ decisions and all

previous prices. The customer makes a rational inference about the quality of the products, and

decides which product to purchase (if any). Firms observe Customer t’s decision before moving to

round t+ 1.

Since we are interested in the long-term effect of observational learning on firms’ profits, we

assume that δ → 1 in our analysis. The total profit of Firm i is

πi = lim
δ→1

(1− δ)
∞∑
t=1

δtπi,t

where πi,t, the profit of Firm i from Customer t, is πi,t = pi,t if the customer purchases the product

from Firm i, and πi,t = 0 otherwise.

We consider three different scenarios in our analysis: exogenous prices, endogenous static prices,
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and endogenous dynamic prices. To denote equilibrium prices, we use pABi,t where i ∈ {1, 2} indicates

the index of the firm, A ∈ {X,S,D} denotes whether price is exogenous (X), endogenous static

(S), or endogenous dynamic (D), and B ∈ {B,O} denotes whether the analysis is for benchmark

case (B) or for when observational learning is possible (O). For example, pSB1,t is the equilibrium

price set by Firm 1 for Customer t when price is static and observational learning is not possible

(benchmark). We also use subscripts H and L to refer to high-type (high-quality) and low-type

(low-quality) firms, respectively. For example, pDOH,t is the equilibrium price that the high-quality

firm sets for Customer t when price is dynamic and observational learning is possible. We solve for

pure-strategy sub-game perfect equilibria of the game.

3 Static Pricing

In this section, we consider the situation in which the prices are static, i.e., the firms cannot

change their prices after consumers start making purchase decisions. But before solving for firms’

equilibrium pricing decisions, we discuss consumers’ decision when prices are exogenously given.

3.1 Exogenous Price

We begin the analysis by assuming that both firms have the same exogenous price p, i.e., pi,t = p

for all i ∈ {1, 2} and t ≥ 0. We assume that p is sufficiently low so that all customers purchase a

product. Note that firms do not make any decisions when prices are exogenous; we simply provide

the analysis to, first, build intuition for the effect of observational learning on customers’ behavior.

Second, this is a sub-game of the case with static endogenous prices that we will analyze in the next

section; in other words, the results of this section will be used for calculating firms’ equilibrium

strategies in the next section.

Benchmark

In the benchmark model, each customer only observes his own private signal before deciding which

product to purchase. It is easy to see that in this case, a customer’s optimal decision is to purchase

the product indicated by his signal. A fraction ρ of the customers purchase the product from

Firm H and a fraction 1− ρ purchase from Firm L. The expected revenue of Firm H is πXBH = ρp

7



and, the expected revenue of Firm L is πXBL = (1− ρ)p.

Observational Learning

Following the previous literature on observational learning, we assume that customers arrive sequen-

tially in an exogenous order. Each customer observes the decisions made by the previous customers,

gets his private signal, and using all that information, decides which product to purchase.

Lemma 1 If a customer has inferred/observed k signals, he purchases the product indicated by

the majority of the signals. In case of a tie, he purchases the product indicated by his own private

signal. (Bikhchandani et al., 1992)

The First Customer: The first customer cannot observe the decisions of any other customers.

Therefore, he can only use his private signal to decide which product to purchase. Using Lemma 1,

we can see that the first customer purchases the product that his private signal indicates.

The Second Customer: The second customer can observe the first customer’s purchase decision.

Furthermore, he can infer the first customer’s private signal from his decision. Therefore, the second

customer can base his decision on two signals. If both of these signals are the same, using the same

argument as in Lemma 1, he purchases the product indicated by those signals. However, if the two

signals are different, the customer will be indifferent between the two products. In this case, the

customer breaks the tie in favor of his own signal. Therefore, the second customer always purchases

the product indicated by his own signal. In other words, the purchase decision of the first customer

does not affect the decision of the second customer.

The Third Customer: The third customer observes the decisions of the first and the second

customers. Furthermore, he can infer both the first and the second customers’ signals based on

their purchase decisions (each of the first and the second customers purchases the product indicated

by their own private signals). Therefore, the third customer can base his decision on three signals.

Using Lemma 1, it is easy to see that the third customer’s optimal decision is to purchase the

product that is indicated by the majority of the three signals.

8



If the first and the second customers got the same signal (i.e., made the same decision), the

third customer follows their decision, regardless of his own private signal. If the signals of the first

and the second customers are different, the third customer purchases the product indicated by his

own signal.

The Fourth Customer and Beyond: Note that if the first and the second customers get

the same signal, and make the same decision, the third customer also makes the same decision,

regardless of his own private signal. The fourth customer cannot infer the private signal of the

third customer, however, similar to the third customer, he also follows the decision of the previous

customers, regardless of his own private signal. In other words, if the first and the second customers

make the same decision, all other customers will follow that decision. As we show in the following

lemma, if at any point in time, the difference between the number of customers who purchased

each product becomes at least 2, a cascade happens.

Lemma 2 A cascade happens if and only if at any point in time, the difference between the number

of customers who purchased from each firm becomes 2. (Bikhchandani et al., 1992)

Note that if the number of customers in the market is sufficiently large, a cascade happens with

probability 1. Furthermore, it happens early enough such that the firm’s profit only depends on

the type of cascade.

Lemma 3 A cascade happens with probability 1. With probability ρ2

ρ2+(1−ρ)2 Firm H wins in the

cascade, the profit of Firm H becomes p and the profit of Firm L becomes 0. With probability

(1−ρ)2
ρ2+(1−ρ)2 Firm L wins in the cascade, the profit of Firm H becomes 0 and the profit of Firm L

becomes p.

Lemma 3 shows that, in expectation, a cascade happens early enough such that the firms’ profits

only depend on who wins the cascade, and not on what happens before the cascade. The expected

profits of the firms are as follows.

πXOH =
ρ2p

ρ2 + (1− ρ)2

πXOL =
(1− ρ)2p

ρ2 + (1− ρ)2
.
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Note that, since ρ > 1
2 , the expected profit of the low-type (high-type) firm is lower (higher) when

observational learning exists than when it does not; in other words, πXOL < πXBL and πXOH > πXBH .

3.2 Endogenous Pricing

In this section, we consider the situation in which the firms choose their prices endogenously, but

prices are static. In other words, firms cannot change their prices after they set their prices in

period 0, i.e., pi,t = pi,0 for all i ∈ {1, 2} and t ≥ 0. Customers observe the prices, but do not know

the types. However, they may be able to infer the types from the prices. In other words, price can

potentially be used to signal quality.

In a separating equilibrium, customers will infer the firms’ types, and thus their qualities, from

the observed prices. Since customers are homogenous, given the qualities and prices, they will

all buy from the same producer—the producer that offers higher utility. This suggests that, if a

separating equilibrium exists, one firm gets zero sales. The losing firm benefits from deviating by

either lowering its price or mimicking the other firm’s price. Therefore, as we show in Lemma 4, a

separating equilibrium cannot exist.

Lemma 4 When prices are static, a separating equilibrium (where the two firms set different prices)

does not exist.

Lemma 4 shows that a separating equilibrium where the two firms set two different prices cannot

exist. Next, we show that a pooling equilibrium always exists. Among all pooling equilibria of the

game, we select the one with the highest price since it is the “payoff dominant” (also known as

“Pareto superior”) equilibrium as it is preferred by both firms to any other equilibrium. Customers’

belief is that any out-of-equilibrium deviation is made by a low-type firm. A necessary condition for

a given price to be a pooling equilibrium is that the low-type firm cannot benefit from deviating to

a sufficiently lower price such that all customers, despite knowing the type, buy from the low-type

firm.

In a pooling equilibrium, customers cannot infer the firms’ types from the price. Therefore,

similar to the case with exogenous price, they use their private signals, and other customers’

decisions when observational learning is possible, to choose between the two products.
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Benchmark

When observational learning is not possible, using the benchmark case of Section 3.1, we know that

the expected revenue of Firm i is ρp, where p is the equilibrium price in the pooling equilibrium.

If the low-type firm wants to deviate to a lower price and win all the customers, for a possibly

higher revenue, it has to set the price to at most qL− qH +p, otherwise, the customers will not buy

from him. For this deviation to be unprofitable, we need the profit after deviation to be less than

or equal to the profit before deviation, i.e., qL − qH + p ≤ (1 − ρ)p, which reduces to p ≤ qH−qL
ρ .

Furthermore, the price p should be such that a customer’s expected utility from purchasing the

product is non-negative. Therefore, p ≤ ρqH+(1−ρ)qL. In Lemma 5, we show that these conditions

are also sufficient for a pooling equilibrium to exist.

Lemma 5 When observational learning is not possible, in the unique payoff-dominant equilibrium,

both firms set their prices to pSB1 = pSB2 = min( qH−qLρ , ρqH + (1− ρ)qL).

Lemma 5 presents the unique payoff-dominant equilibrium of the game when observational learning

does not exist.

Observational Learning

When observational learning is possible, using Lemma 3, we know that the expected revenue of Firm

i is ρ2p
ρ2+(1−ρ)2 where p is the equilibrium price in the pooling equilibrium. If the low-type firm wants

to deviate to a lower price and win all the customers, for a possibly higher revenue, it has to set the

price to at most qL − qH + p, otherwise, the customers will not buy from him. For this deviation

to be unprofitable, we need qL − qH + p ≤ (1−ρ)2p
ρ2+(1−ρ)2 , which reduces to p ≤ (qH−qL)(ρ2+(1−ρ)2)

ρ2
.

Furthermore, we need p ≤ ρqH + (1− ρ)qL, otherwise, the first customer does not buy the product,

and a cascade in which no one buys the product happens. In Lemma 6, we show that these

conditions are also sufficient for a pooling equilibrium at price p.

Lemma 6 When observational learning is possible, in the unique payoff-dominant equilibrium, both

firms set their prices to pSOH = pSOL = min( (qH−qL)(ρ
2+(1−ρ)2)
ρ2

, ρqH + (1− ρ)qL).

Lemma 6 characterizes the payoff-dominant equilibrium price of the game when observational

learning exists. By comparing the price to the result of Lemma 5, we show in Proposition 1 that
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when price is static, observational learning weakly lowers the equilibrium price.

Proposition 1 The price that the firms set when observational learning exists is less than or equal

to the price that they set when observational learning does not exist; i.e., pSOi ≤ pSBi for i ∈ {1, 2}.

Proposition 1 shows that observational learning weakly lowers the equilibrium price. Intuitively,

observational learning lowers the expected market share of the low-type firm. Therefore, in presence

of observational learning, the low-type firm has more incentive to deviate to a lower its price to get

the whole market. When the pooling price p decreases, the low-type firm’s incentive to deviate to a

lower price decreases. Therefore, the equilibrium pooling price when observational learning exists

is lower than when it does not. This result extends the findings of Welch (1992) from a monopoly

to a duopoly.

4 Dynamic Pricing

In this section, we assume that the firms can change their prices as customers make purchase

decisions. Before any customer makes any purchase decision, firms set their initial prices. After

each customer purchases the product, both firms observe the customer’s decision and can change

their prices. Each customer observes the new price before making a decision. When observational

learning exists, each customer also observes all previous customers’ decisions and previous prices.

In general, customers can have beliefs about any price strategy that a firm can use, without

regard to their own signals or inferences of other customers’ signals. For example, customers may

believe that any firm that ever chooses a price different from a given price x is a low-type firm. This

belief could induce an equilibrium wherein both firms set their prices to x, which in turn makes

the belief consistent with the firms’ equilibrium behavior. We exclude such equilibria by assuming

that the customers only use their private signals and the decisions of the previous customers for

inferring the firms’ types; in other words, we assume that customers have the same ex ante beliefs

for all price strategies.2

Let pi,t be the price of Firm i at time t. Suppose that the first t−1 customers have purchased a

product, and consider the decision of customer t. First, note that the signal of a previous customer

2We do not need this assumption for Proposition 2.
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cannot necessarily be inferred from his decision. Intuitively, if the price of Firm i is very low, and

a customer buys from that firm, future customers cannot infer the signal of this customer from his

decision. Let ni,t be the number of customers in {1, . . . , t− 1} whose signals can be inferred, given

their decisions and previous prices, and whose signals indicate Firm i. In Lemma 7, we characterize

the decision of customer t as a function of pi,t and ni,t.

Lemma 7 Let indices i, j ∈ {1, 2} be such that ni,t ≥ nj,t. Also, assume that prices pi,t and pj,t

are sufficiently small such that customer t buys a product. We have

• If

pi,t − pj,t <
ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH − qL)

then customer t purchases the product of Firm i regardless of his own private signal.

• If

pi,t − pj,t >
ρni,t−nj,t+1

ρni,t−nj,t+1 + (1− ρ)ni,t−nj,t+1 (qH − qL)

then customer t purchases the product of Firm j regardless of his own signal.

• If

ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH−qL) ≤ pi,t−pj,t ≤
ρni,t−nj,t+1

ρni,t−nj,t+1 + (1− ρ)ni,t−nj,t+1 (qH−qL)

then customer t purchases the product that is indicated by his own private signal.

Lemma 7 shows how prices p1,t and p2,t affect the purchase decision of customer t. The lemma

has two important implications. First, it shows that in our dynamic setting, the state of the game

only depends on ni,t − nj,t. In other words, the continuation game for two different price histories

that lead to the same ni,t − nj,t is the same. We extensively use this property in the proofs of the

following propositions.

Second, Lemma 7 shows that any firm can break a cascade at any point in time. A cascade

happens when customer t, and all following customers, purchase from Firm i regardless of their

own private signals. Since the firms can anticipate a cascade, using Lemma 7, a firm that is losing

in a cascade can always break the cascade by lowering its price. In particular, if at any point in
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time, Firm j is about to lose in a cascade, i.e., ni,t, nj,t, pi,t and pj,t are such that

pi,t − pj,t <
ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH − qL)

the firm can lower its price to

pj,t = pi,t −
ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH − qL)

to break the cascade, so that customer t purchases the product indicated by his own private signal.

It is worth noting that by doing so, if customer t’s signal happens to indicate Firm j, not only

Firm j could benefit from the purchase of customer t, it also indirectly benefits from the signal of

customer t being revealed to the future customers (i.e., improving the state of the game).

4.1 Equilibria with No Cascades

In this section, we show that the duopoly game with dynamic pricing has an equilibrium with no

cascade. Note that this is distinct from both a monopoly with dynamic pricing, and a duopoly

with static pricing. In other words, we need both competition and dynamic pricing in order to get

this result.

Using Bayes’ rule, the expected quality of customer t for Firm i, before the customer observes

his own signal, is

qL +
ρni,t−nj,t(qH − qL)

(1− ρ)ni,t−nj,t + ρni,t−nj,t
,

and if customer t’s signal indicates Firm i, the expected quality increases to

qL +
ρni,t−nj,t+1(qH − qL)

(1− ρ)ni,t−nj,t+1 + ρni,t−nj,t+1 .

Now, suppose that both firms set their prices to this value, i.e.,

pi,t = qL +
ρni,t−nj,t+1(qH − qL)

(1− ρ)ni,t−nj,t+1 + ρni,t−nj,t+1 .

At this price, customer t, before he observes his own signal, is indifferent between from Firm 1 and

Firm 2, but has negative expected utility for both, i.e., he strictly prefers not to buy. However, after
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(b) Equilibrium prices using randomly generated cus-
tomer signals

Figure 1: An equilibrium with no cascade: Figure (a) shows the expected trajectory of equilibrium
prices, and Figure (b) shows an example of actual equilibrium prices when customers’ private signals
are randomly generated. In both figures, the high-type firm’s prices are shown in black, and the
low-type firm’s prices are shown in gray. The parameters are set to ρ = 0.6, qL = 1

2 , and pH = 2.

the customer observes his private signal, depending on the signal, he prefers one firm to the other,

and becomes indifferent between buying from his preferred firm and not buying.3 In Proposition 2,

we show that this pricing strategy is indeed an equilibrium.

Proposition 2 There exists a sub-game perfect equilibrium of the game with no cascade.

Proposition 2 shows that dynamic pricing allows the firms to coordinate on prices, and avoid the

high demand elasticity that is otherwise created by informational cascades. In equilibrium, both

firms set prices that are reflective of the customers’ past purchase decisions. In the long-run, i.e.,

as t grows, nH,t − nL,t grows unboundedly. As a result, the price of the high-type firm converges

to qH and the price of the low-type firm converges to qL.

In this equilibrium, customers’ uncertainty about the firms’ types becomes smaller as t increases;

however, since the firms adjust their prices, customers’ expected utility also shrinks to zero. It is

worth noting that in this equilibrium, while some customers have negative utility ex post, this

negative amount converges to zero as t increases. In other words, even though the total customer

surplus converges to zero, customer regret also converges to zero. This is an appealing property

of this equilibrium that does not exists in other settings (e.g., monopoly or static pricing) of

observational learning where wrong cascades can happen.

3We break the tie by assuming that when a customer is indifferent between buying and not buying he buys;
otherwise, the firms lower their prices by a sufficiently small ε > 0.
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Figure 1 shows an example of equilibrium prices for ρ = 0.6, pL = 1
2 , and pH = 2. As we see

in Figrue 1(a), the expected price of each firm converges to its quality as t increases. Figure 1(b)

shows that, while due to the noisy signals, the low-type firm may initially set a higher price than

the high-type firm, as t increases, the prices converge to actual qualities. Customers’ signals in

Figure 1(b) could have led to a wrong cascade if the prices were not dynamic.

The equilibrium discussed in this section is not the only equilibrium with no cascades. However,

it has two interesting properties. First, it is a symmetric equilibrium; in other words, firms’

strategies only depend on past customers’ decisions, and not on the firms’ types. Second, this is a

Pareto optimal equilibrium, meaning that there is no other equilibrium in which both firms have

higher profits.

Before wrapping up this section, we should note that, while folk theorems intuitively suggest

that firms should be able to cooperate to soften competition when they are sufficiently patient (i.e.,

δ → 1), the result of Proposition 2 cannot be directly derived from the variant of folk theorem for

dynamic games (Dutta 1995). Basically, the requirements in Dutta (1995) for admissible punish-

ments are too strong to allow us to use it in our setting. As such, we have provided a complete

analysis of the equilibrium.

4.2 Wrong Cascades

So far we have shown the existence of equilibria with no cascades, but we have not discussed whether

equilibria with (correct or wrong) cascades exist or not. In this section, we show that in a duopoly

with dynamic pricing, equilibria with wrong cascades do not exist. As in Section 4.1, this result is

unique to dynamic settings with competition; in other words, in a monopoly with dynamic pricing,

or in a duopoly with static pricing, wrong cascades can happen in equilibrium.

From Lemma 7 we know that a firm can break a cascade at any point in time by sufficiently

lowering its price. Therefore, a cascade could emerge in equilibrium only if the firm that loses, say

Firm j, does not want to break the cascade. Note that breaking the cascade has two potential

benefits for Firm j. First, the firm could benefit from selling its product to the current customer

with a positive probability. Second, breaking the cascade could reveal the private signal of the

current customer to all future customers, potentially improving the future expected revenue of

Firm j. Therefore, for Firm j not to benefit from breaking the cascade, both of these effects have
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to be sufficiently small. In particular, Firm j must have to set a negative price4 in order to break the

cascade, otherwise, since it has 0 profit when losing in a cascade, it always benefits from breaking

it.

If the expected revenue of future customers for Firm j is sufficiently large, the firm benefits

from breaking the cascade even at a negative price. Therefore, for a cascade to exist, not only

the price for Firm j to break it should be negative, the firm’s expected profit (conditional on

breaking the cascade) from future customers should also be sufficiently small. The latter condition

is particularly important because it creates a distinction between a high-type firm and a low-type

firm: since ρ > 1
2 , there could be a situation in which a low-type firm does not benefit from breaking

a cascade because its expected revenue from future customers is not sufficiently large, whereas a

high-type firm benefits from breaking the cascade. In Proposition 3, we show that the high-type

firm always benefits from breaking a cascade in which it is losing; however, as we later show in

Section 4.3, this is not always the case for the low-type firm.

Proposition 3 No sub-game perfect equilibrium of the game has a wrong cascade.

Proposition 3 shows that the high-type firm always benefits from breaking a cascade in which

it is losing. Intuitively, the high-type firm breaks the cascade by setting a sufficiently low (possibly

negative) price such that the next customer purchases the product indicated by his own signal. The

immediate effect of this on the high-type firm’s profit could be negative. However, since ρ > 1
2 , the

value of nH,t − nL,t increases in expectation; this has a positive long-term effect on the high-type

firm’s profit. In fact, if the high-type firm does this for a sufficiently large (but finite) number of

customers, nH,t − nL,t becomes sufficiently large. Since δ → 1, the negative short-term impact of

breaking the cascade for a finite number of customers converges to zero, whereas the long-term

impact of increasing nH,t−nL,t remains. As such, the high-type firm always benefits from breaking

a cascade in which it is losing.

4.3 Correct Cascades

So far, we have shown that a duopoly with dynamic pricing has equilibria with no cascades, and

does not have any equilibria with wrong cascades. It remains to discuss the possibility of equilibria

4In a model with non-zero marginal cost of production, this translates into a price below the marginal cost of
production.
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with correct cascades, i.e., cascades in which almost all customers purchase from the high-type

firm. In this section, we show that equilibria with correct cascades exist.

While there are many equilibria with correct cascades, in the equilibrium that we discuss, the

low-type firm’s price is always 0, i.e., pL,t = 0 for all t. The price of the high-type firm has two

phases. In the first phase, the high-type firm sets its price such that each customer purchases the

product indicated by his private signal. This reveals the private signal of each customer to all

future customers, and increases the expected value of nH,t − nL,t. The second phase begins when

the value of nH,t − nL,t becomes sufficiently large. In this phase, the high-type firm “settles” on a

sufficiently low price such that all customers purchase from the high-type firm regardless of their

private signals (the price in the second phase remains constant). Since nH,t − nL,t could be made

sufficiently large in the first phase, the price that the high-type firm settles on in the second phase

could be made arbitrarily close to qH − qL. A correct cascade occurs in the second phase.

In the first phase, assuming that the price of the low-type firm is 0, the high-type firm chooses

the lowest possible price at which the current customer purchases the product indicated by his own

signal. Using Lemma 7, this price when nH,t < nL,t is given by

pH,t = − ρnL,t−nH,t+1(qH − qL)

(1− ρ)nL,t−nH,t+1 + ρnL,t−nH,t+1

and when nH,t ≥ nL,t is

pH,t =
ρnH,t−nL,t−1(qH − qL)

(1− ρ)nH,t−nL,t−1 + ρnH,t−nL,t−1

Note that this strategy prevents the low-type firm from being able to profitably deviate to a higher

price. As the first phase continues, since ρ > 1
2 , the expected value of nH,t−nL,t increases. At any

point in time, the high-type firm can start the second phase by settling on price

pH,t =
ρnH,t−nL,t−1(qH − qL)

(1− ρ)nH,t−nL,t−1 + ρnH,t−nL,t−1 − ε

for a sufficiently small ε > 0. By doing so, the next customer purchases the product of the high-

type firm regardless of his private signal. This increases the short-term profit of the high-type firm

because it increases the probability of selling to customer t from ρ to 1. However, the customer’s

private signal does not become revealed to the future customers, i.e., nH,t− nL,t does not increase;
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(b) Equilibrium prices using randomly generated cus-
tomer signals

Figure 2: An equilibrium with a correct cascade: Figure (a) shows the expected trajectory of
equilibrium prices, and Figure (b) shows an example of actual equilibrium prices when customers’
private signals are randomly generated. In both figures, the high-type firm’s prices are shown in
black, and the low-type firm’s prices are shown in gray. The parameters are set to ρ = 0.6, qL = 1

2 ,
and pH = 2.

this negatively affects the high-type firm’s long-term profit.

In the first phase, as nH,t − nL,t grows, pH,t becomes very close qH − qL, and therefore, the

marginal benefit of increasing nH,t − nL,t diminishes. However, the short-term loss of selling only

with probability ρ, instead of probability 1, increases because the price increases. As such, when

nH,t−nL,t becomes sufficiently large, the firm benefits from transitioning to the second phase, and

triggering a cascade. This result is formally presented in the following proposition.

Proposition 4 There exists a sub-game perfect equilibrium of the game with a correct cascade.

The equilibrium prices in Proposition 4 are depicted in Figure 2 for ρ = 0.6, pL = 1
2 , and pH = 2.

As we see in Figure 2(a), the expected price of the high-type firm increases in equilibrium until it

becomes very close qH − qL = 1.5, whereas the price of the low-type firm remains 0. Figure 2(b)

shows an example of equilibrium prices when customers’ signals are randomly generated.5 The

figure shows that, due to the noisy signals of the first few customers, the high-type firm may

initially set a negative price; however, as t increases, the price of the high-type firm increases, and

eventually becomes very close to qH − qL.

5Customers’ private signals in Figure 2(b) are the same as those in Figure 1(b).
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5 Conclusion

In this paper, we study the effects of observational learning among customers on firms’ pricing

decisions. Previous literature shows that observational learning leads to informational cascades

wherein all customers purchase the same product. The effect of this herding behavior on firms’

pricing strategies has been studied in the prior literature only when the seller is a monopolist.

We extend this literature by analyzing how firms’ pricing decisions are affected by observational

learning, under dynamic and static pricing, in a duopoly.

When prices are static, i.e., firms cannot change their prices after customers start purchasing,

our findings are inline with those of the previous literature. We extend the results of Welch (1992)

from a monopoly to a duopoly by showing that observational learning makes the demand more elas-

tic; as such, firms set lower prices when observational learning exists than when it does not. This

result has implications for platforms managers as they could influence the degree of observational

learning on their platforms. For example, releasing best-seller and trending products information

increases the strength of observational learning, and the likelihood of informational cascades. In

situations with static pricing (e.g., music and movies), our results indicate that observational learn-

ing lowers the equilibrium price of these products and increases the expected market share of the

high-quality product.

Under dynamic pricing, i.e., when firms can adjust their prices in response to customers’ pur-

chase decisions, our findings depart from the previous literature in two respects. First, we show

that observational does not necessarily lead to informational cascades. Second, we find that a

wrong cascade, where customers regret their purchase decisions, does not happen in equilibrium.

It is important to note that, for these findings to hold, both dynamic pricing and competition are

required. These results are particularly relevant for managers of two-sided retail platforms (e.g.,

Amazon) as we show that, when observational learning exists, the equilibrium outcome could be

drastically different from what the previous literature has suggested. For example, if Amazon allows

observational learning, e.g., by providing best-seller and trending products information, since the

sellers can change their prices dynamically, the outcome will not necessarily be a winner-takes-all

competition. Furthermore, the platform does not have to be as concerned about a wrong cascade

as prior literature has suggested. Finally, our results could explain why informational cascades, and
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customer herding behavior, have not been observed in two-sided platforms with dynamic pricing

(e.g., eBay and Amazon) as commonly as in markets with static pricing (e.g., music and movies).
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A Appendix: Proofs

Proof of Lemma 1

Suppose that k1 signals indicate Product 1 and k2 signals indicate Product 2, where k1 + k2 = k.

Using the Bayes’ rule, the probability that Product i is the better product, i.e., H = i, is

Pr(H = i) =
ρki(1− ρ)kj

ρki(1− ρ)kj + ρkj (1− ρ)ki

where j = 2 − i is the index of the other firm. Since ρ > 1
2 , it is easy to see that Pr(H = i) ≥

Pr(H = j) if and only if ki ≥ kj . When ki = kj , we have Pr(H = i) = Pr(H = j). In this case,

as we assumed in the model, the tie is broken in favor of the product indicated by the customer’s

own private signal.
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Proof of Lemma 2

Let n1t and n2t denote the number of customers who have purchased Product 1 and Product 2,

respectively, by time t (i.e., n1t +n2t = t, for any t ≥ 1). We prove the lemma in two parts. First, we

prove that as long as |n1t − n2t | ≤ 1 all customers purchase according to their own private signals.

In the second part, we prove that if |n1t − n2t | = 2 for some t, a cascade emerges, i.e., all of the

following customers purchase the same product.

To prove the first part, we use induction on k, number of customers visited so far. Assume that

for all customers t ∈ {1, . . . , k} we have |n1t − n2t | ≤ 1. Using the induction hypothesis, each of the

customers t ∈ {1, . . . , k} acts according to his private signal, i.e., purchases from Firm st. Now,

consider customer k + 1. This customer can infer the private signals of all previous customers. He

observers a total of k+ 1 signals, and since |n1k−n2k| ≤ 1, at least half of the k+ 1 signals are equal

to his own private signal. Therefore, since he breaks the tie in favor of his own private signal, he

acts according to his own private signal, i.e., purchases from Firm sk+1.

To prove the second part, assume that k is the first customer (lowest index) for which |n1k−n2k| =

2. Customer k+1 can infer the private signals of all customers 1, . . . , k. He also gets his own private

signal. Since |n1k − n2k| = 2, the majority of the total k+ 1 signals will be the same as the majority

of the first k signals, i.e., sk. Therefore, customer k+1 purchases the product of Firm sk regardless

of his own signal. Customer k + 2 can infer the signals of customer 1, . . . , k, but cannot infer the

signal of customer k + 1. Therefore, similar to customer k + 1, he also bases his decisions on a

total of k+ 1 signals (his own, and those of the first k customers) majority of which is sk. As such,

customer k + 2 also purchases the product of Firm sk. Using the same argument, it is easy to see

that all of the following customers will make the same decision and purchase from Firm sk.

Proof of Lemma 3

Variable nHt − nLt can be interpreted as a random walk that starts from 0 at t = 0, and increases

or decreases by 1 for every increment of t. Using Lemma 2, if the variable ever becomes 2 (or

−2), a cascade occurs where the variable keeps increasing (or decreasing). Before that, the variable

increases by 1 with probability ρ, and decreases by 1 with probability 1− ρ.

Using random walks theory (e.g., see Ross 1996, page 188), we know that the expected number
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of steps before a cascade happens is 2
ρ2+(1−ρ)2 which is less than 4. Furthermore, the probability

that a cascade does not happen in the first 2k steps is (2ρ(1− ρ))k which is less than 2−k. Therefore,

the firms’ average long-term profits converge to their profits in the cascade. The probability that

the random walk hits +2 first (Firm H winning the cascade) is

(
1−ρ
ρ

)2
− 1(

1−ρ
ρ

)4
− 1

=
ρ2

ρ2 + (1− ρ)2
.

Similarly, the probability that the random walk hits −2 first (Firm 2 winning the cascade) is

(1−ρ)2
ρ2+(1−ρ)2 .

Proof of Lemma 4

Assume for sake of contradiction that the two firms set different prices p1 and p2. Given that this

is a separating equilibrium, customers can infer the firms’ qualities q1 and q2 in equilibrium.

First, consider the case where q1 − p1 6= q2 − p2. In this case, all customers buy from the firm

that offers higher utility, arg maxi qi − pi. If the firm with zero sales is the high type firm, he

benefits from lowering its price to below the price of the low type firm, even if it leads to him being

perceived as low type due to customers’ beliefs. Since this is a profitable deviation, the high type

firm cannot be the one who has zero sales in equilibrium. If the low type firm has zero sales, he

could benefit from changing its price to the price of the other firm, pretending to be high type,

where it would have positive expected sales. Therefore, a separating equilibrium in which the low

type has zero sales is not possible either.

Finally, consider the case where q1 − p1 = q2 − p2, and assume that a non-zero fraction of

customers purchase from each firm. In this case, the low type firm can lower its price by ε, for

sufficiently small ε, so that all of the customers strictly prefer the low type firm. Note that since

the low type firm is making the deviation, the deviation is profitable for any customers’ belief on

the new price pi − ε. Therefore, a separating equilibrium where q1 − p1 = q2 − p2 and customers

purchase from both firms cannot exist.
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Proof of Lemma 5

Since observational learning is not possible, the revenue of Firm H is ρp and the revenue of Firm L

is (1−ρ)p, where p is the equilibrium price in the pooling equilibrium. We want to find the highest

price p that satisfies equilibrium conditions.

For price p to be a pooling equilibrium, customers’ belief on any other (out-of-equilibrium)

price should be that a firm making such deviation is low type. Since the low-type firm has lower

expected revenue in this pooling equilibrium, any out-of-equilibrium deviation that is profitable for

the high type would also be profitable for the low-type. Therefore, for p to be the price in a pooling

equilibrium, the only necessary condition is that the low-type cannot benefit from deviating.

If the low-type firm deviates to a price p′, customers would know that he is low type. Therefore,

they would be able to infer his product quality qL. Furthermore, customers also learn that the other

firm is high type, and, therefore, has quality qH . As such, Firm L’s deviation to price p′ could

only be profitable if customers choose him because of low price p′, even though they know that

it has lower quality. In other words, unless p′ ≤ qL − qH + p, Firm L would have zero sale after

deviation. Therefore, price p is a pooling equilibrium, if and only if Firm L’s expected profit in

the pooling equilibrium with price p is greater than or equal to its profit when it sells the product

to all customers at price p′. In other words, the necessary and sufficient condition for p to be a

pooling equilibrium is

qL − qH + p ≤ (1− ρ)p

which simplifies to

p ≤ qH − qL
ρ

.

We also need the price p be such that customers expected utility from purchasing a product is

non-negative. The expected quality of a product is (1−ρ)qL+ρqH , therefore, price p has to be less

than or equal to that. The equilibrium is payoff-dominant (Pareto-superior) when p is maximized;

therefore, we have

pSB1 = pSB2 = min

(
qH − qL

ρ
, (1− ρ)qL + ρqH

)
.
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Proof of Lemma 6

The proof is very similar to the proof of Lemma 5. Since observational learning is possible, using

Lemma 3, the expected revenue of Firm H is ρ2

ρ2+(1−ρ)2 p and the expected revenue of Firm L is

(1−ρ)2
ρ2+(1−ρ)2 p, where p is the equilibrium price in the pooling equilibrium. We want to find the highest

price p that satisfies equilibrium conditions.

For price p to be a pooling equilibrium, customers’ belief on any other (out-of-equilibrium)

price should be that a firm making such deviation is low type. Since the low type (low quality)

firm has lower expected revenue in this pooling equilibrium, any out-of-equilibrium deviation that

is profitable for the high type would also be profitable for the low type. Therefore, for p to be

the price in a pooling equilibrium, the only necessary condition is that the low type cannot benefit

from deviating.

If the low-type firm deviates to a price p′, customers would know that he is low type. Therefore,

they would be able to infer his product quality qL. Furthermore, customers also learn that the other

firm is high type, and, therefore, has quality qH . As such, Firm L’s deviation to price p′ could

only be profitable if customers choose him because of low price p′, even though they know that

it has lower quality. In other words, unless p′ ≤ qL − qH + p, Firm L would have zero sale after

deviation. Therefore, price p is a pooling equilibrium, if and only if Firm L’s expected profit in

the pooling equilibrium with price p is greater than or equal to its profit when it sells the product

to all customers at price p′. In other words, the necessary and sufficient condition for p to be a

pooling equilibrium is

qL − qH + p ≤ (1− ρ)2

ρ2 + (1− ρ)2
p

which simplifies to

p ≤ (qH − qL)(ρ2 + (1− ρ)2)

ρ2
.

We also need the price p be such that customers expected utility from purchasing a product is

non-negative. The expected quality of a product for the first customer (t = 1) is (1− ρ)qL + ρqH ;

unless price p is less than that, the first customer, and consequently all following customers do not

purchase any product. The equilibrium is payoff dominant (Pareto superior) when p is maximized;
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therefore, we have

pSOH = pSOL = min

(
(qH − qL)(ρ2 + (1− ρ)2)

ρ2
, ρqH + (1− ρ)qL

)
.

Proof of Proposition 1

Using basic algebra, we can verify that

qH − qL
ρ

≥ (qH − qL)(ρ2 + (1− ρ)2)

ρ2
.

Therefore, we have

pSBi = min

(
qH − qL

ρ
, (1− ρ)qL + ρqH

)
≥ min

(
(qH − qL)(ρ2 + (1− ρ)2)

ρ2
, ρqH + (1− ρ)qL

)
= pSOi .

Proof of Lemma 7

Let indices i, j ∈ {1, 2} be such that ni,t ≥ nj,t. Using Bayes’ rule, the probability that Firm i is

high-type, i.e., H = i, is

Pr(H = i) =
ρni,t−nj,t

ρni,t−nj,t + (1− ρ)ni,t−nj,t

Consequently,

Pr(H = i|st = j) =
ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1

and

Pr(H = i|st = i) =
ρni,t−nj,t+1

ρni,t−nj,t+1 + (1− ρ)ni,t−nj,t+1

The expected quality of product i for customer t is Pr(H = i|st)qH + (1 − Pr(H = i|st))qL =

qL + Pr(H = i|st)(qH − qL). The expected utility of customer t, for product i, minus his expected

utility for product j is

Pr(H = i|st)(qH − qL)− pi,t + pj,t

Customer t purchases product i if and only if the above expression is positive. This reduces to

• If

pi,t − pj,t <
ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH − qL)
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then customer t purchases the product of Firm i regardless of his own private signal.

• If

pi,t − pj,t >
ρni,t−nj,t+1

ρni,t−nj,t+1 + (1− ρ)ni,t−nj,t+1 (qH − qL)

then customer t purchases the product of Firm j regardless of his own signal.

• If

ρni,t−nj,t−1

ρni,t−nj,t−1 + (1− ρ)ni,t−nj,t−1 (qH−qL) ≤ pi,t−pj,t ≤
ρni,t−nj,t+1

ρni,t−nj,t+1 + (1− ρ)ni,t−nj,t+1 (qH−qL)

then customer t purchases the product that is indicated by his own private signal.

Proof of Proposition 2

Let indices i, j ∈ {1, 2} be such that ni,t ≥ nj,t. Firm i and j set prices

pi,t = qL +
ρni,t−nj,t+1(qH − qL)

(1− ρ)ni,t−nj,t+1 + ρni,t−nj,t+1

and

pj,t = qL +
(1− ρ)ni,t−nj,t−1(qH − qL)

(1− ρ)ni,t−nj,t−1 + ρni,t−nj,t−1 .

As t grows, the prices of the low-type and high-type firms converge to qL and qH , respectively.

The expected revenue of the low-type firm converges to (1− ρ)qL and the expected revenue of the

high-type firm converges to ρqH .

The price of each firm, for each customer, is set such that if the customer only uses the signals

of the previous customers to calculate the probability of each firm being high-type (i.e., before the

customer receives his own signal), he would be indifferent between buying from either firm, but

would strictly prefer not to buy. However, when the customer observes his own private signal, he

strictly prefers to purchase from the firm indicated by his signal, and becomes indifferent between

buying from that firm and not buying (we break the tie by assuming that he buys). Therefore, all

following customers who observe this customer’s decision can infer his signal. The expected value

of nH,t − nL,t is (ρ− (1− ρ))t = (2ρ− 1)t. As t grows, since ρ > 1
2 , the value of nH,t − nL,t grows

unboundedly, and therefore, pH,t converges to qH and pL,t converges to qL. The revenue of the
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high-type firm converges to ρqH , and the revenue of the low-type firm converges to (1− ρ)qL.

In this equilibrium, the signal of each customer is revealed to all future customers. A firm may

only benefit from a deviation in one stage if it sets a sufficiently low price in that stage so that

the customer buys from him. Therefore, a deviation cannot improve the state of the game the

deviating firm. Furthermore, note that the expected payoff of each firm in each round is strictly

positive, whereas the minmax payoff of each player is zero (when the competitors sets a sufficiently

low, possibly negative, price). Therefore, since δ → 1, each firm can punish a deviation by the other

firm (by minmaxing the other firm for a finite number of periods) to make a deviation unprofitable.

Proof of Proposition 3

Sketch of the proof: We prove that for any nH,t, nL,t and pL,t, the high-type firm’s expected profit

from breaking a cascade in which it is losing is positive. Consider the strategy where the high-type

firm sets its price such that every customer purchases the product indicated by his private signal.

When nH,t < nL,t, the high-type firm loses at most pL,t − qH + qL each time a customer purchases

its product. Random variable nH,t−nL,t increases by 1 with probability ρ and decreases by 1 with

probability 1 − ρ. Since ρ > 1
2 , Blackwell’s theorem (see Ross 1996, pages 349-352) implies that

for any n̂, the expected number of customers for which nH,t − nL,t < n̂ is finite. Therefore, in the

limit (limδ→1), the revenue associated with customers for whom nH,t − nL,t < n̂ converges to 0.

This implies that the expected revenue of the high-type firm from future customers converges to

ρ( ¯pL,t + qH − qL), where ¯pL,t is the average price set by the low-type firm. Since ¯pL,t cannot be

negative (otherwise, the low-type firm would have negative total revenue which would violate the

sub-game perfect assumption), the expected profit of the high-type firm when breaking the cascade

is always positive, regardless of nH,t, nL,t and pL,t.

Proof of Proposition 4

Sketch of the proof: Consider the following strategies:

If nH,t < nL,t, the high-type firm sets its price to

pH,t = − ρnL,t−nH,t+1(qH − qL)

(1− ρ)nL,t−nH,t+1 + ρnL,t−nH,t+1
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if nH,t ≥ nL,t the high-type firm sets its price to

pH,t = min

(
ρnH,t−nL,t−1(qH − qL)

(1− ρ)nH,t−nL,t−1 + ρnH,t−nL,t−1 , pδ

)

and

pL,t = 0.

for any t ≥ 1, where pδ is defined below. At price pH,t = pδ, a cascade in which all customers

purchase the product from the high-type firm happens. Note that as long as pH,t < pδ, each

customer buys the product indicated by his private signal. Therefore, as t increases, nH,t − nL,t

grows. When a new customer arrives, the high-type firm could set the price low enough such that

the customer purchases the product with probability 1 or could keep it high enough so that the

customer purchases the product indicated by his private signal (i.e., purchases from the high-type

firm with probability ρ). The upside of the lower price this is that the sale happens with probability

1 (instead of probability ρ); the downside is that with the lower price nH,t − nL,t does not increase

(it increases with probability ρ with the higher price, which leads to higher long-term revenue). It

is easy to see that as nH,t−nL,t increases, the long-term benefit of increasing nH,t−nL,t diminishes

(as ρ
nH,t−nL,t−1

(qH−qL)
(1−ρ)nH,t−nL,t−1

+ρ
nH,t−nL,t−1 becomes sufficiently close to qH − qL) whereas the short-term loss

(of the purchase happening with probability ρ instead of 1) remains constant. Therefore, for any

value of δ, there exists a pδ (an increasing function of δ that converges to qH − qL as δ approaches

1) such that at pδ the high-type firm prefers to keep the price constant and get all customers (i.e.,

triggering a cascade) than to increase the price for higher long-term revenue. This shows that the

high-type firm does not want to deviate from this equilibrium. The low-type firm’s probability

of selling drops to zero if it increases its price to any pL,t > 0. Lowering the price to pL,t < 0

could increase the probability of selling, however, it leads to negative profit and does not increase

nL,t − nH,t. As such, the low-type firm cannot benefit from deviating either.
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