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Abstract

This research introduces the Multilevel Embedding Associa-
tion Test (ML-EAT), a method designed for interpretable and
transparent measurement of intrinsic bias in language tech-
nologies. The ML-EAT addresses issues of ambiguity and
difficulty in interpreting the traditional EAT measurement by
quantifying bias at three levels of increasing granularity: the
differential association between two target concepts with two
attribute concepts; the individual effect size of each target con-
cept with two attribute concepts; and the association between
each individual target concept and each individual attribute
concept. Using the ML-EAT, this research defines a taxon-
omy of EAT patterns describing the nine possible outcomes
of an embedding association test, each of which is associated
with a unique EAT-Map, a novel four-quadrant visualization
for interpreting the ML-EAT. Empirical analysis of static and
diachronic word embeddings, GPT-2 language models, and
a CLIP language-and-image model shows that EAT patterns
add otherwise unobservable information about the component
biases that make up an EAT; reveal the effects of prompting in
zero-shot models; and can also identify situations when cosine
similarity is an ineffective metric, rendering an EAT unreli-
able. Our work contributes a method for rendering bias more
observable and interpretable, improving the transparency of
computational investigations into human minds and societies.

Introduction

Computational methods that quantify societal biases using
language technologies like word embeddings (Mikolov et al.
2013), generative language models (Radford et al. 2018),
and multimodal language-and-image models (Radford et al.
2021) have been widely adopted by social scientists, who
leverage the reflection of society captured by these technolo-
gies to observe implicit and explicit societal biases where
human-subjects experiments are infeasible or prohibitively
expensive (Durrheim et al. 2023; Kennedy et al. 2021). Social
scientists have employed word embeddings in particular to
analyze diachronic historical changes in human biases and
norms (Garg et al. 2018), to study variations in gender biases
across numerous languages (Lewis and Lupyan 2020), to
compare implicit biases in adult and children’s language cor-
pora (Charlesworth et al. 2021), and to validate longstanding
theories about societal biases, such as the masculine default

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Caliskan et al. 2022; Bailey, Williams, and Cimpian 2022).
Bhatia and Walasek (2023) employ such techniques to pre-
dict human biases, potentially facilitating mitigations at the
societal scale. Among the most widely adopted bias measure-
ment methods in computational social science is the Word
Embedding Association Test (WEAT) (Caliskan, Bryson, and
Narayanan 2017), a statistical technique grounded in the Im-
plicit Association Test (IAT), a widely used measurement of
unconscious bias in human subjects (Greenwald, McGhee,
and Schwartz 1998). The WEAT quantifies bias based on the
differential cosine similarity of two target groups X and Y
(such as Science vs. Art) with two attribute groups A and B
(such as Male vs. Female, for a common test of gender bias).

Yet the WEAT also suffers from a limitation common in
Al evaluation: it is an aggregate metric (Burnell et al. 2023),
averaging over many sub-measurements between groups of
words to produce a single summary statistic. Explaining a
bias quantified by the WEAT is thus not straightforward. In
plain English, a statistically significant WEAT indicates that
the X target group is more associated with A relative to B
than the Y target group is more associated with A relative to
B. While effective for surfacing implicit biases, the method
also raises questions about whether and to what extent each
target group is individually associated with A or B. Con-
sider the test of age bias presented by Caliskan, Bryson, and
Narayanan (2017), which sets group A to Pleasantness, B to
Unpleasantness, X to Young Names, and Y to Old Names
and returns a large, statistically significant effect size of 1.21.
While one might intuitively interpret the result of the test to
mean that Young Names are associated with Pleasantness,
and Old Names with Unpleasantness, examining component
cosine similarities used to compute the WEAT reveals that
both Young Names (X) and Old Names (Y") are associated
with Pleasantness (A). On the other hand, consider the WEAT
setting A to Pleasantness, B to Unpleasantness, X to Instru-
ments, and Y to Weapons, which also returns a large, sig-
nificant effect size, of 1.53. Inspection of component cosine
similarities reveals that, in this case, Instruments are associ-
ated with Pleasantness, while Weapons are associated with
Unpleasantness. Though the two WEATSs return effect sizes
with the same sign and similarly large magnitudes, the char-
acteristics of their underlying biases, and the corresponding
sociological interpretations of the results, differ significantly.
Given the wide range of psychological and computational
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Figure 1: A visualization of the ML-EAT applied to the Career/Family and Young/Old EATs introduced by Caliskan, Bryson, and Narayanan
(2017). Where traditional EATs return a single effect size and p-value, the ML-EAT surfaces underlying patterns of bias in individual target

group associations with the A or B attribute. A taxonomy of EAT
vocabulary for describing differences between EATs.

studies in which WEAT scores are utilized, knowing the dif-
ference between these outcomes can be important - but they
are indistinguishable given a single WEAT d-score.

The present work provides a method and a vocabulary for
describing meaningful differences in the underlying biases
quantified by EATs (Embedding Association Tests, which
are now widely utilized beyond word embeddings (Steed and
Caliskan 2021)). We make the following contributions:

1. The MultiLevel Embedding Association Test (ML-
EAT), a formal, theoretically justified measure to dis-
ambiguate potential sources of bias in machine learned
representations. The ML-EAT quantifies bias at three lev-
els: Level 1, an effect size describing the differential as-
sociation between two target concepts with two attribute
concepts (equivalent to a traditional WEAT); Level 2, two
effect sizes describing the differential association of each
target group X and Y individually with the two attribute
groups A and B; and Level 3, the means and standard
deviations of the four underlying distributions of cosine
similarities (X, A), (X, B), (Y, A), (Y, B) that ultimately
compose an EAT measurement.

2. A taxonomy of EAT patterns for characterizing the nine
discrete outcomes of EAT's, each of which admits a dis-
tinct interpretation. The taxonomy provides a vocabulary
for the underlying associations that make up an EAT,
based on whether each of the target groups X and Y
individually exhibits a significant bias toward A or B.

. The EAT-Map, an intuitive visualization for interpret-
ing the ML-EAT. As illustrated near the bottom of Fig-

patterns and EAT-Map visualizations provide a categorical and visual

ure 1, the EAT-Map uses a four-quadrant square with
columns corresponding to the target groups X and Y and
rows corresponding to the attribute groups A and B, and
shades cells in order to denote associations between a
target group and an attribute. The EAT-Map provides a
visual vocabulary for the taxonomy of EAT patterns, as
each EAT pattern has a unique EAT-Map.

4. An empirical analysis of the ML-EAT applied to
static and diachronic word embeddings (Pennington,
Socher, and Manning 2014; Hamilton, Leskovec, and
Jurafsky 2016), GPT-2 generative language models
(Radford et al. 2019), and a CLIP language-and-image
model (Radford et al. 2021). Applying the ML-EAT
to the GloVe embeddings shows that five distinct EAT
patterns occur in the ten WEATSs performed by Caliskan,
Bryson, and Narayanan (2017), while using the test
with the HistWords embeddings (Hamilton, Leskovec,
and Jurafsky 2016) shows that EAT patterns help to
draw more complete conclusions about historical biases.
Analysis of GPT-2 and CLIP models further demonstrates
that the ML-EAT can surface the effects of prompting
in the zero-shot setting, as well as identify embedding
spaces unsuitable for analysis with cosine similarity.

The ML-EAT provides an expressive means to describe
bias in language technologies. As we will demonstrate,
even well-studied results, such as biases measured by
Caliskan, Bryson, and Narayanan (2017), yield new perspec-
tives with the ML-EAT. Our research code is available at
https://github.com/wolferobert3/ml-eat.



Related Work

In reviewing the related on work on Embedding Association
Tests (EAT's), we describe the models and domains in which
EATs are employed; then provide a detailed overview of
their applications in computational social science; and finally
review their limitations as described in prior work.

Embedding Association Tests

Caliskan, Bryson, and Narayanan (2017) introduce the Word
Embedding Association Test (WEAT), a measurement of in-
trinsic bias in word embeddings drawing on the design of
the Implicit Association Test (IAT), a method for studying
implicit (unconscious) bias in human subjects (Greenwald,
McGhee, and Schwartz 1998). The WEAT quantifies the rel-
ative association of two target groups (such as Science and
Art) with two attribute groups (such as Male and Female),
and, like the IAT, returns an effect size (Cohen’s d) and a
p-value. Caliskan, Bryson, and Narayanan (2017) used the
WEAT to replicate the results of ten IATs reflecting gender
and racial biases, among others, in the GloVe embeddings of
Pennington, Socher, and Manning (2014). Caliskan, Bryson,
and Narayanan (2017) also introduced the Single Category
SC-WEAT, which quantifies the differential association of a
single word with two attribute groups. The SC-WEAT was
introduced as part of a measurement called the Word Em-
bedding Factual Association Test, and further clarified in an
analysis of androcentric gender bias by Caliskan et al. (2022).

The WEAT was extended to transformer models by May
et al. (2019), who introduced the Sentence Embedding
Association Test (SEAT), a sentence-level WEAT employing
semantically neutral prompts, and by Kurita et al. (2019),
who tied bias measurement to the model’s pretraining objec-
tive. Guo and Caliskan (2021) introduced the Contextualized
Embedding Association Test (CEAT), which measured em-
bedding bias at the word level and modeled contextualization
as a random effect. EATS are also used in computer vision and
multimodal language-and-image models. Steed and Caliskan
(2021) introduced the Image Embedding Association Test
(iEAT), which quantified bias in self-supervised image
encoders such as SImCLR (Chen et al. 2020b) and iGPT
(Chen et al. 2020a). Ross, Katz, and Barbu (2020) introduced
the Grounded-WEAT for grounded language-and-image
models, while (Wolfe and Caliskan 2022a) use an EAT to
quantify bias in CLIP language-and-image models (Radford
et al. 2021), and Hausladen et al. (2023) employ the SC-EAT
to perform a causal analysis of social bias in language-and-
image models. Finally, Slaughter et al. (2023) introduce the
SpEAT, an EAT for quantifying intrinsic bias in pretained
speech processing models such as wav2vec2 (Baevski et al.
2020) and OpenAl Whisper (Radford et al. 2023).

While most EATs employ cosine similarity to measure
association between target and attribute stimuli, recent work
explores alternatives. Omrani Sabbaghi, Wolfe, and Caliskan
(2023) employ an algebraic definition of bias similar to that
of Bolukbasi et al. (2016), but use an EAT-based formula
to obtain an effect size and p-value. Bai et al. (2024) assess
implicit bias using the textual output of ostensibly debiased
generative language models by employing a prompt-based
analogue of the IAT.

Applications of EATs in Social Science

Social scientists use word embeddings and EATSs to study
phenomena that are impossible or financially infeasible to
measure solely through direct experimental methods. Many
studies leverage the societal scale of the data used for training
word embeddings to make broad inferences about society
that would be unavailable in a small-/NV psychological study.
Caliskan et al. (2022) demonstrate a masculine default in the
English-language internet using EATs computed for every
word in the vocabulary of pretrained GloVe and FastText
embeddings, while Bailey, Williams, and Cimpian (2022) use
word embeddings to demonstrate the implicit equivalence
of the concept of “person” with “men.” Napp (2023) use
EAT measurements to contend that gender stereotypes are
stronger in countries that are more economically developed
and individualistic. Finally, Schmahl et al. (2020) use the EAT
to study changes in gender bias on Wikipedia, informing their
suggestions for reducing bias on the platform. Other research
employs word embeddings for previously untenable cross-
cultural analyses of human attitudes. For example, Mukherjee
et al. (2023) employ EAT to measure biases related to albeism,
immigration, and education across 24 languages.
Embeddings of historical data have also provided a means
to study human societies that no longer exist and are thus
unavailable for direct study. Charlesworth, Caliskan, and
Banaji (2022) use word embeddings to measure changes in
stereotypes about social groups over 200 years. Borenstein
et al. (2023) use the EAT to study intersectional biases in
word embeddings trained on newspapers from the 18th and
19th century. Sunsay (2023) use the EAT to study the disease
avoidance theory of xenophobia, measuring EAT scores in
19th and 20th century travel literature to test western associa-
tions of indigenous people disgust words that would suggest
disease avoidance. Leach, Kitchin, and Sutton (2023) em-
ploy the EAT to argue that “language has changed in a way
that reflects greater concern for others,” supporting the idea
that the societal “moral circle” expanded during the 19th and
20th centuries to include more groups of people, in addition
animals and the environment. Guan et al. (2024) use cosine
similarities to measure the evolution of color associations
(e.g., association of the color red with heat) over 200 years,
while Betti, Abrate, and Kaltenbrunner (2023) use the EAT
to measure sexism in fifty years of English song lyrics. Fi-
nally, Wolfe, Banaji, and Caliskan (2022) find evidence of
the historical bias of hypodescent in CLIP models.
Research also employs EATs to study present-day bias
in domains such as law and medicine. Rios, Joshi, and Shin
(2020) use the WEAT to measure gender bias in biomedical
research, finding that traditional gender stereotypes have
declined over time, but that specific medical conditions like
body dysmorphia still exhibit high gender bias. Cobert et al.
(2024) use cosine similarities to measure implicit racial
biases in ICU notes. In the legal domain, Matthews, Hudzina,
and Sepehr (2022) use the EAT to study biases in word
embeddings trained on corpora of legal opinions, and Dutta
et al. (2023) use WEAT scores to quantify gender bias in
Indian divorce court proceedings. Moreover, amid increasing
interest in using Al to measure aspects of human society
(Park et al. 2023; Shanahan, McDonell, and Reynolds 2023;



Xu et al. 2023), scholars have used EATs in an attempt to
predict human attitudes. For example, Bhatia and Walasek
(2023) use WEAT scores and a novel Valence Estimation
Model (VEM) to predict human implicit biases. Similarly,
Morehouse et al. (2023) measure the relationship of implicit
and explicit human biases using the IAT, the WEAT, and the
Mean Average Cosine method (Manzini et al. 2019).

Limitations of EATSs

The EAT faces challenges related both to its mathematical
definition and its predictive value in NLP applications. Social
scientists who choose not to use the EAT sometimes note that
its design, which mimics the differential construction of the
IAT, can cause difficulties in observing and interpreting bias.
Bailey, Williams, and Cimpian (2022) use the difference in
raw cosine similarities to observe asymmetrical gender biases,
noting that the WEAT is better applied to symmetrical pat-
terns of association. Ethayarajh, Duvenaud, and Hirst (2019)
contend that the standardization of the WEAT, in dividing
by the joint standard deviation of word associations, can ob-
scure differences in underlying cosine similarities. Moreover,
anisotropy (directional uniformity) in deep learning models
(Mu and Viswanath 2018) can distort intrinsic semantic mea-
surements (Timkey and van Schijndel 2021), necessitating
postprocessing of EATs (Wolfe and Caliskan 2022b).

Recent work suggests that EATs have limited predictive
value for bias in downstream NLP tasks. Goldfarb-Tarrant
et al. (2020) find that biases observed with the WEAT are
not correlated with application biases in tasks like corefer-
ence resolution. In a study of downstream propagation using
transformer language models, Orgad, Goldfarb-Tarrant, and
Belinkov (2022) propose an information-theoretic framework
rather than an EAT. Cabello, Jgrgensen, and Sggaard (2023)
show that association bias and fairness are uncorrelated, but
also provide sociological evidence that the two kinds of met-
rics should be expected to be independent of each other.

We are concerned with uses of the EAT in social science to
study human attitudes. To that end, we design an interpretable
EAT, rather than an EAT predictive of downstream bias.

Models and Data

This research introduces the ML-EAT and applies it to word
embeddings, GPT-2, and CLIP, adapting stimuli from prior
studies of implicit bias in NLP and computer vision.

Pretrained Models
We apply the ML-EAT to the below language technologies.

* GloVe Word Embeddings: Global Vectors for word
representation (GloVe) train on the co-occurrence matrix
of a text corpus, such that the vector representation of a
word is learned based on the words it is most likely to
occur around (Pennington, Socher, and Manning 2014).
Caliskan, Bryson, and Narayanan (2017) introduced the
WEAT by presenting results on 300-dimensional GloVe
vectors trained on the 840-billion token Common Crawl.

¢ HistWords Embeddings: HistWords refers to sets of 20
word embeddings in four languages trained on ten-year
slices of historical language corpora ranging between

the years 1800 and 2000 (Hamilton, Leskovec, and
Jurafsky 2016). Hamilton, Leskovec, and Jurafsky (2016)
introduced HistWords to prove that more frequently used
words exhibit less semantic change over time, and that
polysemous words exhibit faster semantic change. We
apply the ML-EAT to the English language HistWords
embeddings trained using Word2Vec (SGNS) (Mikolov
et al. 2013) on Google books (all genres) (Lin et al. 2012).

* GPT-2 Language Models: GPT-2 (“Generative Pre-
trained Transformer”) is a causally masked transformer
(Vaswani et al. 2017) language model trained to predict
the next word in a sequence (Radford et al. 2019). This
research studies the four pretrained GPT-2 models (Base,
Medium, Large, and XL) available via the Transformers
library (Wolf et al. 2020), which were pretrained on
OpenAl’s WebText dataset, a collection of webpages
scraped from highly rated outbound links on Reddit.

* CLIP Language-and-Image Models: CLIP (“Con-
trastive Language Image Pretraining”) is a multimodal
language-and-image model, which classifies images based
on their cosine similarity with text labels (Radford et al.
2021). This research reports results under varying prompts
from the CLIP-ViT-L14-336 model, the best performing
OpenAl-trained CLIP model available. CLIP-ViT-L14-
336 is trained on OpenAI’s WebImageText (WIT) dataset,
a collection of 400 million pairs of web-scraped images
and accompanying captions (Radford et al. 2021).

GPT-2 embeddings are obtained from the model’s top layer,
consistent with both May et al. (2019) and Guo and Caliskan
(2021). CLIP embeddings are collected after projection to
the model’s multimodal text-and-image latent space.

EAT Stimuli

An EAT employs four groups of words or images (called
“stimuli”, drawing on the test’s psychological foundations in
the IAT (Greenwald, McGhee, and Schwartz 1998)), each
representing a concept. For example, the EAT demonstrat-
ing that flowers are favored over insects uses word lists to
represent the concepts of Flowers, Insects, Pleasant, and Un-
pleasant. Each EAT includes two “target” groups, X and Y
(Flowers and Insects), which are tested for association with
two “attribute” groups, A and B (Pleasant and Unpleasant)
(Caliskan, Bryson, and Narayanan 2017). The two target
groups contain the same number of stimuli, as do the two
attribute groups. Groups must contain at least eight stimuli
to adequately represent a concept (Caliskan et al. 2022).

We use the stimuli for the tests of implicit bias specified
by Caliskan, Bryson, and Narayanan (2017) when applying
the ML-EAT to GloVe and GPT-2. We applied the Math/Arts
Male/Female EAT to the HistWords embeddings, replacing
three stimuli because their L2 norms were zero-valued (pre-
venting the computation of cosine similarity) in several Hist-
Words embeddings. We substituted “music” for “symphony”;
“mathematics” for “math”; and “calculation” for “calculus.”
Tests of bias in CLIP utilize the word stimuli of Caliskan,
Bryson, and Narayanan (2017) to represent Pleasant and Un-
pleasant, and image stimuli from Steed and Caliskan (2021).



EAT Pattern EAT-Map Direction Associations WEAT Example
AB-Divergent E Divergent X->A,Y->B Flowers/Insects, P/U25
BA-Divergent ! Divergent X->B, Y->A N/A

A-Uniform m Uniform X->A,Y->A Young/Old, P/U25
B-Uniform m Uniform X->B, Y->B N/A
AX-Singular E Singular X->A Science/Arts, Male/Female
BX-Singular E Singular X->B N/A
AY-Singular E Singular Y->A N/A
BY-Singular E Singular Y->B Male/Female, Career/Family
Non-Directional E None None Math/Arts, Male/Female

Figure 2: A taxonomy of EAT patterns to describe the associations of an EAT’s target groups with its two attribute groups. Each pattern has
a unique EAT-Map formed by shading cells corresponding to significant Level 2 tests, with target groups on the X-axis and attributes on the Y.

Approach

The ML-EAT is defined using three levels of measurement,
with a taxonomy of nine EAT patterns for describing biases
it quantifies. We first describe the test itself, then introduce
the EAT-Map visualization and EAT pattern taxonomy.

Defining the ML-EAT

The ML-EAT computes bias at three levels of increasing
granularity. Level 1 returns the traditional standardized ef-
fect size quantifying the differential association between two
target concepts with two attribute concepts; Level 2 returns
two effect sizes quantifying the differential association of
each target group individually with the two attribute groups;
and Level 3 returns four means and corresponding standard
deviations describing the non-differential association of each
target group and attribute group.

Level 1 The first level of the ML-EAT is equivalent to the
WEAT, as given by Caliskan, Bryson, and Narayanan (2017):

mean,c xs(z, A, B) — meany,cys(y, A, B)
StCLdveeXuyS(w7 A, B)

ey

where A and B are attributes, X and Y are target groups, and
association s() for an embedding 0 is:

mean,e 4cos(w, @) — meanye gcos(w, 5) 2)
This means that the association s() for each target stimulus
represented by 0 is equal to its average association with the
attribute stimuli in A, minus its average association with the
attribute stimuli in B. The EAT returns an effect size (Cohen’s
d (Cohen 1992)), and a p-value from a permutation test:

Pr;[s(Xi,Yi, A, B) > s(X,Y, A, B)] 3)

which shuffles the words of the target groups to determine
the unlikeliness of the test statistic s(X,Y, A, B), given by:

Zs(xaAvB)_Zs(yvAvB) 4

zeX yey

Level 2 We introduce Level 2 of the ML-EAT, which quan-
tifies the differential association of a single Target concept 7'
with attributes A and B:

mean, e 4u(T, a) — meanye gu (T, b)
std_-dev,ec aupu(T, )

dapr = &)
where the association u() for an attribute embedding @ with
the target group 7' is given by:

mean, ccos(t, @) (6)

Like Level 1, Level 2 returns an effect size (Cohen’s d (Cohen
1992)) and a p-value from a permutation test:

Pr;[u(Ai, Bi, T) > u(A, B,T)) @)

which shuffles the words of the attribute groups to determine
the unlikeliness of the test statistic, defined as:

> u(T,a) = u(T,b) (8)

a€A beB

Note that Level 2 computes the differential association
between a target group and two attributes, rather than an at-
tribute and two targets. This design is intentional, as it allows
the ML-EAT to answer whether a target group like Young
names, for example, is associated with pleasantness or un-
pleasantness, without reference to another target group, such



as Old names. In this way, Level 2 generalizes the Single-
Category Embedding Association Test (SC-EAT), with which
Caliskan, Bryson, and Narayanan (2017) compute the dif-
ferential association of a single word w (such as a job title)
with two attributes (such as male female words). Consider
the formula for the SC-EAT:

mean,e 4cos(w, @) — meanye gcos(w, b)

(€]

std_dev,c aupcos(W, )

When the number of words in a target group 7" is equal to
1, the mean of its cosine similarities with an attribute word x
is necessarily equal to the only cosine similarity computed,
such that (7, z) reduces to cos(w, ), and the formula for
Level 2 reduces to that of the SC-EAT. This suggests that
Level 2 can be used in ways analogous to the SC-EAT, and
may be more robustly representative of a concept because it
uses a target group 7', rather than a single word w.

Level 3 Level 3 describes the distribution of cosine similar-
ities between a target group 7" and an attribute A in terms of
the mean T'A and standard deviation o7 4:

TA= iiicos(ﬁi,fj) (10)

an

Level 3 surfaces the magnitude of absolute (non-
standardized) differences between groups. Including a non-
standardized component in the ML-EAT provides two im-
portant insights for social scientists. First, it transparently
surfaces underlying cosine similarities, which may be posi-
tive (indicating similarity between the groups), negative (in-
dicating dissimilarity between the groups), or zero. Second,
it reveals when cosine similarity may not be a meaningful
measurement for an embedding space, as in the case of an
anisotropic (directionally uniform) embedding (Timkey and
van Schijndel 2021), wherein all vectors point in the same
direction, usually due to a few especially high-magnitude
dimensions (Mu and Viswanath 2018). While Level 2 per-
mits more direct comparison between two groups of cosine
similarities (e.g., (X, A) and (Y, A)), it still subtracts and
standardizes them, rendering unavailable any interpretation
that might draw on the cosine similarities themselves.

EAT-Maps

We introduce the EAT-Map, which visualizes EAT results us-
ing a four-quadrant square. Columns correspond to the EAT
target groups, with X corresponding to the first column and
Y to the second. Rows correspond to the attributes, with A
corresponding to the first row and B to the second. Level 2 re-
sults determine the shading of the EAT-map. For example, the
upper right quadrant, associated with row A and column Y,
is shaded red if d 4 g,y > 0.2 (the minimal level defined by
Cohen (1992) for a “small” effect) with a p-value > 0.05. If
the X target group is differentially associated with A, the top
left cell is shaded red, and the bottom left cell is shaded gray;

conversely, if X is differentially associated with B, the bot-
tom left cell is shaded red, and the top left is shaded gray. If X
is associated with neither A nor B, both cells of the left col-
umn (corresponding to X) are shaded gray. This is repeated
for the right column, corresponding to the Y target group.
The EAT-Map intuitively visualizes a taxonomy of EAT pat-
terns, discussed next. Figure 2 illustrates the nine possible
EAT-Maps, each corresponding to a distinct EAT pattern.

EAT Patterns

We introduce EAT patterns to provide a taxonomy for de-
scribing biases quantified by Level 2. EAT patterns define
EAT measurements in terms of Direction, based on whether
the target groups in an EAT are individually associated (i.e.,
exhibit a significant p-value and at least a small positive effect
size) with the same attribute group, or with differing attribute
groups. An EAT exhibits one of the following four categories
of Direction:

* Divergent: X and Y are associated with differing at-
tributes (e.g., X with A, Y with B).

e Uniform: X and Y are associated with the same attribute
(e.g., X with A, and Y with A).

* Singular: Either X or Y is associated with an attribute,
while the other target group is not (e.g., X with A, Y with
neither A nor B).

¢ Non-Directional: neither X nor Y is associated with
either A or B.

EAT Patterns describe an EAT’s target-attribute associations
by prepending them to the Direction. An EAT with Singular
Direction wherein the only significant Level 2 association
occurs between Target Y and Attribute B exhibits a BY -
Singular EAT pattern. An EAT with Uniform Direction and
significant Level 2 associations both between X and A and
between Y and A exhibits an A-Uniform EAT pattern. De-
scribing an EAT that exhibits a Divergent pattern is slightly
different: if significant Level 2 associations occur between
X and A and between Y and B, the EAT exhibits an AB-
Divergent pattern; if associations occur between X and B and
between Y and A, the EAT exhibits a BA-Divergent pattern.

Societal biases quantified using Embedding Association
Tests can be described more transparently by employing the
vocabulary of EAT patterns; for example, describing the out-
come of the Male/Female, Science/Arts EAT as AX-Singular
communicates that Science (X) is differentially associated
with Male (A), but Arts (Y) is associated neither with Male
(A) nor with Female (B). The granular information provided
by EAT patterns allows social scientists to observe more
about the nature of a bias than can be interpreted via the sin-
gle effect size and p-value returned by a traditional EAT. As
demonstrated in the Results section and illustrated in Figure
2, nearly all EAT patterns consistent with a positively signed
Level 1 effect size do in fact occur in the tests performed
by Caliskan, Bryson, and Narayanan (2017), indicating that
the ML-EAT can provide additional insights about diverse
forms of societal bias, even where EATs have been taken
previously.



Multilevel Embedding Association Test: GloVe Embeddings

Level Level 1 Level 2 Level 3

EAT (Targets X/Y Attributes A/B) || A.B,X.Y | A B.X | AB,Y AX B, X AY B)Y
Flower/Insect P/U25 1.50* 0.60*| —0.69%| .10 (.10) | .06 (.08) .08 (.10) | .13 (.10)
Instrument/Weapon P/U25 1.53* 1.15%| —0.59*| .11 (.08) | .05 (.06) 12 (.08) | .16 (.10)
EA/AA32 P/U25 1.40* 0.46 | —0.31 | .12(.10) | .09 (.08) | -.01 (.08) | .00 (.07)
EA/AA16 P/U25 1.49%* 0.35 | —0.39 | .11 (.10) | .08 (.08) .00 (.08) | .01 (.08)
EA/AA16 P/US 1.28* 1.12* 0.63 | .18 (.09) | .10 (.06) .02 (.07) | .00 (.07)
Male/Female Career/Family 1.81% 0.31 —1.39*%| .18 (.09) | .16 (.05) .09 (.09) | .23 (.06)
Math/Arts Male/Female 1.05* 0.38 | —0.33 | .10(.09) | .09 (.09) 23 (.07) | .24 (.08)
Science/Arts Male/Female 1.23%* 0.83*%| —0.05 | .15(.07) | .11 (.08) 22 (.06) | .22 (.08)
Mental/Physical Temp/Perm 1.38*% | —0.65 | —1.20*%| .24 (.12) | .29 (.12) A8 ((10) | .32 (.15)
Young/Old P/U8 1.21%* 1.09%* 0.94*| .20 (.09) | .11 (.08) .07 (.08) | .02 (.07)

Table 1: The ML-EAT reveals five EAT patterns in the tests of Caliskan, Bryson, and Narayanan (2017): AB-Divergent (Flower/Insect;
Instrument/Weapon); Non-Directional (first two European/African American; Math/Arts); AX-Singular (third EA/AA; Science/Arts); BY-
Singular (Career/Family; Mental/Physical); and A-Uniform (Young/Old). Level 2 shading describes significance and sign: red denotes
significant, positive; blue significant, negative; gray non-significant.

Results

We apply the ML-EAT to three language technologies: static
and diachronic word embeddings, GPT-2 language models
and CLIP language-and-image models. Our analysis shows
that a wide variety of EAT patterns occur even when Level
1 effect sizes are uniformly large, positive, and statistically
significant; that Level 2 effect sizes can inform the inter-
pretation of historical biases; and that Levels 2 and 3 of the
ML-EAT can provide insight into the effects of prompting,
and can surface anisotropy that may render EATSs unreliable.

Empirical Analysis: GloVe Embeddings

Table 1 presents the results of the ML-EAT applied to the
ten word embedding association tests of Caliskan, Bryson,
and Narayanan (2017) and demonstrates that a wide variety
of EAT patterns can result in a large, statistically significant
Level 1 effect size (equivalent to the traditional WEAT effect
size). Four tests exhibit Singular Direction:

* The EA/AA 16 P/U 8 test exhibits an [J§ AX-Singular pat-
tern, indicating that European-American is significantly
associated with Pleasantness, and African-American with
neither Pleasantness nor Unpleasantness.

¢ The Science/Arts Male/Female test exhibits an E AX-
Singular pattern, indicating that Science is associated
with Male, and Arts with neither Male nor Female.

* The Mental/Physical Temporary/Permanent test exhibits a
HH BY-Singular pattern, indicating that Physical is associ-
ated with Permanent, and Mental with neither Temporary
nor Permanent.

* The Male/Female Career/Family test exhibits a Ff BY-
Singular pattern, indicating that Female is associated with
Family, and Male with neither Career nor Family.

The Young/Old test exhibits an m A-Uniform pattern, indi-
cating that Young and Old are both differentially associated
with Pleasantness; however the magnitude of association is
greater for Young (1.09 vs. 0.94). The most common EAT
pattern observed is [ Non-Directional, exhibited by the
first two European American/African American PU/25 tests

and the Math/Arts Male/Female test. Only the Flowers/In-
sects P/U25 and Instruments/Weapons P/U25 tests exhibit an
FH AB-Divergent EAT pattern, a notable finding given that
discussions of EAT results often suggest this pattern (i.e., X
is differentially associated with A, while Y is differentially
with B). That none of the results of the social bias tests in
the GloVe embeddings exhibit an AB-Divergent EAT pattern
highlights the need for descriptive reporting of EATs.

Inspection of Level 3 results reveals that small differences
in cosine similarity distributions can yield large, statistically
significant Level 1 effect sizes. Consider EAT's exhibiting a
Non-Directional pattern: in the Math/Arts, Male/Female test,
the absolute difference in mean cosine similarity for Math is
.01 greater with the Male attribute group (.10 vs. .09), while
the absolute difference in mean cosine similarity for Arts
is .01 greater with the Female attribute group (.23 vs. .24).
Similarly, the mean cosine similarity for an African American
names target group (Y in tests 3, 4, and 5) with any attribute
group never exceeds .02 or falls below -.01, suggesting a
paucity of co-occurrence data for African American names
due to under-representation in the training data. This is also
reflected in the non-significant Level 2 effect size A, B,Y
for the African-American names target group. Nonetheless,
Level 1 returns a large, significant effect size for these EATs.

That Level 1 picks up on small differences is a benefit of
the EAT, and Level 1 is often consistent with tests of implicit
bias in humans (Caliskan, Bryson, and Narayanan 2017).
However, interpreting Level 1 without reference to Level 2 or
3 could lead to inaccurate conclusions about the direction of
bias and the magnitude of absolute differences in underlying
similarities between target and attribute groups.

Empirical Analysis: HistWords Embeddings

Among the most common uses of the EAT in computational
social science is to observe change in societal biases over
time (Charlesworth, Caliskan, and Banaji 2022; Borenstein
et al. 2023; Betti, Abrate, and Kaltenbrunner 2023). To
illustrate how the ML-EAT can inform such studies, we
quantified gender bias using the Math/Arts Male/Female
EAT in the HistWords embeddings (Hamilton, Leskovec,
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Figure 3: The ML-EAT can clarify underlying patterns of bias in studies of historical bias. While Math/Arts gender bias in the 1990s appears
to return to 1920s magnitudes based on Level 1 effect sizes, Level 2 makes clear that the underlying bias pattern (Nondirectional, with two
small, non-significant effect sizes) has not changed - although Math does exhibit a small, non-significant effect with Male in the 1990s.

and Jurafsky 2016) from the 1810s through the 1990s (we
excluded 1800 because many stimuli had zero-norm vectors,
indicating insufficient co-occurrences for analysis). Figure
3 describes Level 1 effect sizes as well as Level 2 X, A, B
and Y, A, B effect sizes. Note that HistWords embeddings
are titled with the year that starts the decade on which they
train (the 1990 embedding trains on text from 1990-1999).
By relying only on Level 1 (the traditional EAT), one might
conclude that Science/Arts gender bias declined to its lowest
level around 1960 (d = .07), only to increase sharply in the
1990s (d = 1.25) to a degree not observed since the 1920s.
Measuring Level 2 effect sizes adds significant context: from
the 1810s through the 1890s and the 1910s through the 1930s,
Arts exhibits a large, statistically significant association with
Female, while Math is significantly associated with neither
Male nor Female - a §§ BY-Singular EAT pattern. The lone
outlier is the 1900s, which exhibits an E AB-Divergent EAT
pattern (Math is significantly associated with Male, Arts with
Female). Starting in the 1940s, Arts is no longer significantly
associated with Female, and every EAT pattern measured
thereafter corresponds to [ Non-Directional. While the
association of Math with Male does increase to d = 0.38 in
1990, the effect is small and not significant; Arts remains not
significantly associated with either Male or Female, with d =
—0.18. The increased observability afforded by the ML-EAT
both helps to interpret changes in bias and to prevent drawing
incomplete conclusions based on the Level 1 effect size.

Empirical Analysis: Prompting in CLIP

In modern zero-shot language-and-image models like CLIP,
the choice of prompt can impact the cosine similarities re-
turned by the model. For example, Radford et al. (2021) sug-
gested adding the prefix “a photo of a class” to prompts when
using CLIP in the zero-shot setting to improve performance
when classifying images. Following the IAT, wherein human
reaction times are measured in response to the appearance of
pairs of individual words on a screen (Greenwald, McGhee,
and Schwartz 1998), EATs typically add little context when
measuring semantic associations in language technologies,

and usually attempt to measure associations between individ-
ual words or images. However, some recent research using
language-and-image models departs from this (Wolfe et al.
2023), employing longer prompts like that recommended by
Radford et al. (2021) in order to use the model as close to the
way it was intended as possible.

Level 3 of the ML-EAT can surface the impact of prompts
by revealing underlying CLIP cosine similarities. We study
five positively-signed, statistically significant EATs obtained
from the CLIP-ViT-L14-336 model using the language stim-
uli of Caliskan, Bryson, and Narayanan (2017) and the image
stimuli Steed and Caliskan (2021), with results in Table 2.
These EATs include a Flowers-Insects P/U25 test exhibiting
the ff§ AB-Divergent EAT pattern (i.e., Flowers associated
with Pleasantness, Insects with Unpleasantness); a test of
White/Black P/U25 racial bias exhibiting the [ B-Uniform
EAT pattern (i.e., both White and Black associated with Un-
pleasantness); a Thin/Heavy P/U25 test of weight bias exhibit-
ing a ff BY-Singular EAT pattern (i.e., Heavy associated
with Unpleasantness, Thin with neither Pleasant nor Unpleas-
ant); a Male/Female Career/Family test of gender bias ex-
hibiting an ff A-Uniform EAT pattern (i.e., both Male and
Female associated with Career); and a Science/Arts Male/Fe-
male test of gender bias exhibiting a [ Non-Directional
EAT pattern (neither target associated with an attribute).

Using prompts with CLIP can affect these measurements.
In accordance with the suggestion of Radford et al. (2021)
and in keeping with the the IAT, we used “a picture that
brings to mind [word]” as the prompt for word stimuli in
both the A and B attribute groups (not all image stimuli
are photographs, so we prompted with “picture” instead
of “photo”). With the prompt, the mean cosine similarity
increases for every target-attribute pairing. Observing the
impact of prompting helps to understand the variance
induced by a particular prompt, and reinforces that these
EATs measure implicit bias: if the stimuli described exactly
what was in the image, the cosine similarities would be
higher, as they are proportional to probabilities in CLIP.

The CLIP measurements make clear another benefit of the



CLIP-ViT-L14-336 EAT Results - No Prompt

Level Level 1 Level 2 Level 3

EAT (Targets X/Y Attributes A/B) |[ A,B.X,)Y | AB.X | AB,Y AX B,X AY B)Y
Flower/Insect P/U25 1.88%* 0.87* —1.03* .15(.02) | .14 (.02) | .13 (.02) | .15(.02)
White/Black P/U25 1.05* | —1.27*%| —1.40*%| .16 (.01) | .18 (.01) | .14 (.02) | .16 (.02)
Thin/Heavy P/U25 1.58* | —0.44 | —0.90*| .15(.01) | .16 (.01) | .14 (.02) | .15(.01)
Male/Female Career/Family 0.46* 1.66%* 1.54*| .16 (.02) | .13(.02) | .15(.02) | .13 (.02)
Science/Arts Male/Female 0.81%* 0.19 | —0.33 | .12(.02) | .12(.02) | .12(.02) | .12 (.02)

CLIP-ViT-L14-336 EAT Results - With Prompt

Level Level 1 Level 2 Level 3

EAT (Targets X/Y Attributes A/B) || A,B.X,)Y | ABX | AB)Y AX B.X AY B)Y
Flower/Insect P/U25 1.84%* 1.04*| —0.74*| .16 (.02) | .15(02) | .15(.02) | .16 (.02)
White/Black P/U25 —1.20* | —0.94* —0.87*| .17 (.01) | .18 (.01) | .15(.01) | .16 (.01)
Thin/Heavy P/U25 1.42* | —0.24 | —0.51*| .16 (.01) | .16 (.01) | .16 (.01) | .16 (.01)
Male/Female Career/Family 0.29 1.25% 1.09%| .17 (.02) | .15(.02) | .16 (.02) | .15(.02)
Science/Arts Male/Female 0.49 —0.53 | —0.80 | .13(.02) | .14 (.02) | .14 (.02) | .15(.02)

Table 2: ML-EAT results on CLIP-ViT-L14-336 demonstrate that changing the prompt can change the sign of the Level 1 effect size, even
while EAT patterns (defined by Level 2 effect sizes) remain unchanged. Note that target groups are images and attribute groups are text.

ML-EAT. Of the five Level 1 measurements, two are signif-
icant only in the absence of the prompt, and the White/Black
P/U25 test changes the direction of association. Without
the prompt, Level 1 indicates a large, significant valence
bias favoring White over Black; with the prompt, Level 1
indicates a large, significant valence bias favoring Black over
White. However, the EAT patterns for all five tests, which
are based on Level 2 effect sizes, remain the same regardless
of whether the prompt is present. This may not always be the
case, but it illustrates the importance of being able to observe
the measurements that underlie the top level EAT d-score.

Empirical Analysis: Anisotropy in GPT-2

Table 3 describes results of the ML-EAT in both the GPT-
2 Base model (124 million parameters) and the GPT-2 XL
model (1.5 billion parameters) measured using the prompting
approach of May et al. (2019), wherein the model receives
the prompt “This is [stimulus]” to accord with its training
objective. We focus not on the EAT patterns in this case, but
on the Level 3 results, which provide evidence of anisotropy
(directional uniformity, based on cosine similarity close to
1.0). Given that prior work finds that high anisotropy obscures
the semantic properties of contextual word embeddings (Mu
and Viswanath 2018; Timkey and van Schijndel 2021), one
might avoid relying on the Level 1 and Level 2 measurements
for which these cosine similarities are components. Cosine
similarities in GPT-2 XL, on the other hand, may exhibit
mild anisotropy, but they also exhibit more variance than the
smaller GPT-2 model. While EAT patterns are mostly nondi-
rectional, Level 1 effects are large and significant in the XL
model, consistent with results from static word embeddings
and with the studies of implicit bias in human subjects.

Discussion

Reporting outcomes using the ML-EAT can increase the
transparency of research that employs EATs. Rather than at-
tempting to explain the meaning of a single summary statistic
and significance test, researchers can drawn on a categorical
and visual vocabulary with which to communicate the find-

ings of their work. Given the variance observed in the Level
2 results obtained using stimuli employed in prior studies
(even with uniformly large Level 1 effect sizes), describing
intermediate results via the ML-EAT might be adopted as a
best practice when reporting the outcome of an EAT.

Motivating Interpretable Bias Measurement

Studies employing the EAT inform how social scientists un-
derstand human attitudes (Charlesworth, Caliskan, and Ba-
naji 2022), and ongoing work uses these measurements to
predict human bias (Bhatia and Walasek 2023). Ensuring
that findings related to societal or domain-specific (e.g., legal,
medical, etc.) bias are well-understood is essential not only
for the integrity of the scientific record but for the decisions
societies may make on the basis of that data. Scholars in-
cluding Greenwald et al. (2022) have suggested that implicit
bias might be approached as a public health problem, and
mitigated using preventative approaches “to disable the path
from implicit biases to discriminatory outcomes.” Where an
EAT is presented as evidence of an implicit bias in need of
redress through public health measures, researchers would
be well-served by transparent and interpretable methods.
Where the ML-EAT informs how intrinsic bias is inter-
preted, it may also provide information for how bias might be
addressed in the embedding itself. In the case of the tests of
racial bias (EA/AA Names) in the GloVe embeddings, Level
2 indicates that there is no significant association of African
American names with pleasantness or unpleasantness, and
Level 3 indicates that this results from a lack of similarity
(due to lack of co-occurrence) with words in either attribute
A or B. This suggests that bias quantified by the EAT might
be mitigated via more diverse and representative training data,
rather than by aggressively pruning the dataset, a process
which can exclude diverse voices (Dodge et al. 2021).

Improving the Robustness of the EAT

The ML-EAT also helps to improve the robustness of EAT-
based measurements by introducing a generalization of the
SC-EAT in Level 2. Generalizing this test such that the target



GPT-2 Base Full EAT Results

Level Level 1 Level 2 Level 3

EAT (Targets X/Y Attributes A/B) ABX)Y | ABX | AB)Y AX B, X AY B,Y
Flower/Insect P/U25 0.42 —0.30 | —0.54*| .99 (.01) | .99 (.01) | .99 (.00) | .99 (.00)
Instrument/Weapon P/U25 —0.20 —0.16 —0.01 | .99 (.00) | .99 (.00) | .99 (.01) | .99 (.01)
EA/AA32 P/U25 0.23 0.27 0.30 | .97 (.01) | .97 (.01) | .98 (.01) | .98 (.01)
EA/AA16 P/U25 —-0.19 0.18 0.37 | 97(.01) | .97 (.01) | .98 (.01) | .98 (.01)
EA/AA16 P/U8 0.04 —0.22 | —0.34 | .97 (.01) | .97 (01) | .98 (.01) | .98 (.01)
Male/Female Career/Family 0.08 1.31%* 1.30*| .98 (.01) | .97 (.01) | .98 (.01) | .97 (.01)
Math/Arts Male/Female —-0.17 —0.58 | —0.46 | .99 (.01) | .99 (.01) | .99 (.01) | .99 (.00)
Science/Arts Male/Female —0.44 —0.24 | —0.18 | .99 (.01) | .99 (.01) | .99 (.01) | .99 (.00)
Mental/Physical Temporary/Permanent —1.20* 0.81 0.67 | .99 (.00) | .99 (.01) | .99 (.00) | .98 (.01)
Young/Old P/U8 —0.44 —0.31 —0.20 | .97 (.01) | .97 (.01) | .98 (.01) | .98 (.01)

GPT-2 XL Full EAT Results

Level Level 1 Level 2 Level 3

EAT (Targets X/Y Attributes A/B) ABX)Y | ABX AB)Y AX B,X AY B,Y
Flower/Insect P/U25 1.65% 0.04 | —0.69*% .29 (.05) | .29 (.06) | .28 (.06) | .31 (.07)
Instrument/Weapon P/U25 0.95*% | —0.02 —0.28 | .28 (.05) | .28 (.05) | .31 (.06) | .32 (.07)
EA/AA32 P/U25 0.91* 0.37 0.24 | .23 (.06) | .21 (.05) | .21 (.06) | .20 (.06)
EA/AA16 P/U25 0.64* 0.28 0.18 | .22 (.05) | .21 (.05) | .22 (.07) | .21 (.06)
EA/AA16 P/U8 0.65* 0.14 | —0.11 | .25(.04) | .25(.03) | .24 (.06) | .25 (.06)
Male/Female Work/Home 1.17% | —0.81 —1.02*% .18 (.04) | .22 (.06) | .18 (.05) | .23 (.06)
Math/Arts Male/Female 0.19 —0.57 | —0.56 | .31(.06) | .34 (.06) | .33(.07) | .36 (.07)
Science/Arts Male/Female 0.33 —0.36 —0.40 | .31 (.06) | .33(.06) | .31(.07) | .34 (.07)
Mental/Physical Temporary/Permanent 1.52% 0.75 0.46 | .49(.09) | 41(.10) | .34 (.07) | .32 (.05)
Young/Old P/U8 1.27%* 0.56 0.00 | .27 (.04) | .25(.03) | .24 (.05) | .24 (.04)

Table 3:

Level 3 of the ML-EAT surfaces the directional uniformity of contextualized embeddings in GPT-2 base, which results in low variance

in cosine similarity and inconsistent Level 1 measurements. However, Level 1 measurements are consistent with societal biases in the XL model,
which does not exhibit directional uniformity and has variance in cosine similarities comparable to that observed in static word embeddings.

group can be defined with additional words improves the
robustness of single-target tests, which are otherwise depen-
dent on the conceptual representativeness of a single word.
Moreover, the ML-EAT is modular enough to use definitions
of association other than cosine similarity. For example,
one could adopt algebraic definition, following Bolukbasi
et al. (2016), but still use the framework of the ML-EAT to
provide transparency at multiple levels of measurement.

Intrinsic Bias and Application Bias

Prior work documenting limitations of EAT's has largely fo-
cused on evidence that intrinsic biases do not transfer to
downstream tasks (Goldfarb-Tarrant et al. 2020). While it is
not our central concern, we note that, in cases where cosine
similarity has an explicitly defined function in a model, bi-
ases measured transparently using well-designed EAT's will
necessarily transfer downstream. This occurs when models
like CLIP are used in a zero-shot setting, such that a cosine
similarity between text and image is converted into a prob-
ability for use in classification (Radford et al. 2021). While
intrinsic measurements may not predict application bias in
many cases, there remain NLP applications that motivate the
transparency and interpretability of EAT measurements.

Limitations and Future Work

While the ML-EAT renders bias more observable, careful
curation of stimuli remains necessary to ensure validity
(Caliskan et al. 2022). Ensuring that those stimuli are globally
representative is an ongoing challenge for studies employing

EATsS, as recent research contends that stimuli used in most
EATs reflect a western-centric bias that fails to capture biases
faced by indigenous populations around the world (Yogara-
jan, Dobbie, and Gouk 2023). Moreover, while the ML-EAT
is modular with differing mathematical definitions of bias,
its levels are not adaptable for some modified versions of
the EAT, such as the CEAT, which computes associations us-
ing thousands of sentences (Guo and Caliskan 2021). Future
work might extend the ML-EAT to such tests and uncover
new patterns of bias. Finally, our research addresses limita-
tions of observability of bias in EATS, rather than downstream
propagation of intrinsic bias. Future work might explore
whether ML-EAT measurements can predict application bias.

Conclusion

We introduced the ML-EAT, a three-level measurement
of intrinsic bias intended to improve the transparency and
observability of bias measurement in social science, and
appropriate for technologies ranging from static and di-
achronic word embeddings to zero-shot language-and-image
models. We further introduced a taxonomy of nine distinct
EAT patterns which we showed occur in prior EATs applied
to word embeddings, alongside the EAT-Map, an intuitive
visualization for EAT patterns. The ML-EAT provides
greater transparency when employing language technologies
to understand human minds and societies, an increasing
concern as such measurements are used not only to observe
human bias, but to predict it (Bhatia and Walasek 2023), and
perhaps even to try to prevent it (Greenwald et al. 2022).



Researcher Positionality

Two of the authors of this research have an extensive back-
ground in machine learning and quantitative studies of Al
bias, and a third author has extensive experience with human-
computer interaction, including statistical studies of decep-
tive design. We sought to include a variety of perspectives
on this project, as the method we intended to develop needed
to be both statistically rigorous, yet also approachable and
interpretable for researchers hoping to study bias in Al

Ethical Considerations

We note that, while we believe reporting results using the
ML-EAT will help to make bias research more transparent
and interpretable, simply using the ML-EAT rather than the
WEAT will not guarantee full transparency in research prac-
tices. Researchers must also choose ethical ways of selecting
stimuli for WEAT tests, and for determining the number of
stimuli to include, which can impact the statistical power of
the test. Though pre-registration is sometimes employed for
psychological experiments, including those involving word
embeddings, the easy availability of language models may
render this approach less effective than it is with human sub-
jects experiments, which carry much more notable startup
costs. Future work might consider ethical approaches to so-
cial scientific experiment design with modern language tech-
nologies.

Adverse Impacts

While we have not produced any new technology in this work,
individuals could use our method for ends we have not in-
tended, such as exploiting biases identified with the ML-EAT
to further marketing campaigns or to produce misinformation
targeted to societal vulnerabilities. We hope and expect that
most uses of the method will be to support more transparent
and interpretable studies of bias in Al
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