
Amy J. Ko, PhD, University of Washington
Carlos Aldana Lira, Middle Tennessee State University
Isabel Amaya, University of Washington
 and featuring… Adrienne Gifford, middle school CS teacher extraordinaire!

Wordplay:  
 Accessible, 
 Multilingual,  
 Interactive  
 Typography

Amy

Programming languages (PL) are a foundational way
people interact with computers. But learning them is
hard…

They often aren’t
designed for
learning.

They are hard to
teach, because
programming is a
complex skill.

They are often used to
teach CS in ways that
exclude youth,
marginalizing them by
their identities.

Carlos

Two forms of PL marginalization are particularly
egregious…

Language

PL are often English- and
Western-centric, requiring
English learning before CS
learning and ignoring the
fluidly multilingual,
multicultural world.

Ability

PL are often inaccessible, with
syntax, tools, and docs that are
not screen-readable, ignore
neurodiversity, or require fine-
motor movements, like pointing.

code コード شفرة código ኮድ 代码 kodo ⌨ 🖱 🎤 🗣 👆 🦽

Carlos

Prior work has made some progress on these two
inequities, but in isolation.

e.g., Scratch can be localized
to non-English languages, but
is inaccessible.

Quorum is designed to be
highly screen readable, but is
English only.

Can’t use a
mouse?
Can’t use
Scratch.

Can’t read
English?
Can’t use
Quorum.

Language Ability

Carlos

Can educational PL be designed to be both multilingual
and accessible?

What design, engineering, and pedagogical
challenges arise in designing at this intersection?

e.g., is it just a matter of WCAG compliance and
monolingual localization, or are their deeper
tensions between the two?

Carlos

Our approach
• 30 months of community-engaged PL design and

development:
• Partnering with teachers to understand the challenges of

teaching multilingual youth and youth with disabilities.
• Engaging multilingual youth and youth with

disabilities to understand tensions with existing
multilingual and accessible platforms.

• Consulting with other educational PL designers on how
they managed language and accessibility.

• To evaluate our progress and surface new challenges, we
convened a summer focus group of youth and teachers.

Amy

Wordplay!
try it at wordplay.dev

An educational programming
language for creating
interactive, multilingual,
accessible typography.

Let’s briefly consider 5 major
design choices, and then hear
what youth and teachers think
about them.

Amy

1. Output is typographic
• Most educational PL use graphics, which are

inaccessible without image descriptions, and
image descriptions are usually monolingual.

• Wordplay, in contrast, uses text, which can
be web accessible and engage culture and
identity.

• Programs can generate multilingual text
output, building localization into the PL
itself.

• Text is also very low overhead, minimizing
internet bandwidth requirements.

Amy

2. Code is symbolic and multilingual
• Using keywords in a PL embeds a

particular language in all programs.
• Wordplay only uses punctuation

and multilingual text, allowing
youth to embed multiple
translations of text,
documentation, and identifiers in
code.

• The editor can screen read all
punctuation for accessibility.

• The editor can translate code into
other languages, and render code
in one or more languages for
multilingual reading.

Amy

3. Code is functional and reactive
• Imperative code is verbose and does not

explicitly describe its purpose, potentially
creating friction in screen reading.

• Wordplay is functional and reactive, so
its code is declarative, shorter, and
achieves rich interactivity with minimal
code, indirectly benefitting accessibility
and language inclusion by reducing
syntactic complexity.

• This example translates a stream of pixels
from a camera into a typographic grid of
colored letter a’s, with just a few function
calls.

Amy

4. Accessible, multilingual time travel
• Debugging tools are often

monolingual and inaccessible.
• Wordplay allows for instant, random

access, multilingual, WCAG-
compliant time travel through
program evaluation history.

• This is possible only because of it’s
purely functional nature: it’s only
necessary to record a history of
inputs, and the rest can be
recomputed.

Amy

5. Governance is student and teacher led
• The project is open source, free, and

facilitated by researchers.
• Teachers and youth, however, set design

priorities, and curate design feedback.
• An undergraduate community of open

source contributors help realize their
feedback in a community of peer
learning and teaching.

Amy

Evaluation
• These and other design choices are not

necessarily good design choices.
• To evaluate them, Carlos and Isabel,

undergraduate community members
convened a focus group of 2 teachers, 3
middle-school students, and 1 undergraduate
to examine the platform’s design tradeoffs.

• We held 5 sessions, asking the group to
examine Wordplay relative to other
educational PLs, using the design principles
that emerged from our design process.

Isabel

7 design principles from the community
We structured the sessions around 7 principles that had emerged from our 30 months
of design work with teachers and students.
The community believed educational PL should:
• Accessible — be usable by all students with whatever abilities they have.
• Liberatory — be about the “what” and “why” of computation, not just “how”.
• Transparent — offer debuggers that fosters self-efficacy for how programs work.
• Cultural — enable teaching that is responsive to students’ identity.
• Obtainable — be free and compatible with the devices and internet they have.
• Democratic — be led by students and teachers to shape the platform’s design.
• Enduring — be supported long term to enable long-term investments in teaching.

Isabel

Focus group critiques

❌ It’s only partially usable without internet access ❌ Youth are unsure about the benefits of functional code

❌ Smartphone layout and speed is inadequate ❌ It needs to support multilingual collaboration

❌ It needs more customizability for access needs ❌ It should frame youth as shaping future of computing

❌ It needs more diverse youth governance ❌ Not using keywords may disadvantage everyone

❌ Youth can’t use GitHub due to privacy policy ❌ There should be multiple ways to learn the PL

The group affirmed the goals of being web-based, screen-readable, usable offline, broadly
multilingual, but also noted several gaps in Wordplay’s multilingual accessibility.

✅

Adrienne

Tensions between accessibility and language

Aspiring for both accessibility and language inclusion
may trade off against simplicity, make PL more
complex to build, learn, configure, use and teach:
• If everything has a description for access,

everything must have thousands of descriptions
for every language and reading level.

• Focusing on text may increase accessibility and
language inclusivity within the domain of
interactive type, but at the expense of other kinds
of culture and identity (e.g., music, imagery).

• Balancing power through youth governance of
an open source project raises numerous tensions
between self-efficacy and expertise.

Adrienne

Amy J. Ko, PhD, University of Washington
Carlos Aldana Lira, Middle Tennessee State University
Isabel Amaya, University of Washington

Key insights

• It is possible to build an accessible, multilingual
educational PL.

• Doing that universally surfaces real tensions
between youth, teachers, and their language
and access needs. Everything required to
overcome those tensions — diverse, sustainable
governance, engineering agility — require
resources that EPLs often do not have.

A big thanks to our teacher partner
Adrienne Gifford, and to the National
Science Foundation! This work was
supported by grants 2318257, 2137312,
2122950, and 2031265.

Carlos

