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Programming languages (PL) are a foundational way 
people interact with computers. But learning them is 
hard…

They often aren’t 
designed for 
learning.

They are hard to 
teach, because 
programming is a 
complex skill.

They are often used to 
teach CS in ways that 
exclude youth, 
marginalizing them by 
their identities.
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Two forms of PL marginalization are particularly 
egregious… 

Language

PL are often English- and 
Western-centric, requiring 
English learning before CS 
learning and ignoring the 
fluidly multilingual, 
multicultural world.

Ability

PL are often inaccessible, with 
syntax, tools, and docs that are 
not screen-readable, ignore 
neurodiversity, or require fine-
motor movements, like pointing.
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Prior work has made some progress on these two 
inequities, but in isolation.

e.g., Scratch can be localized 
to non-English languages, but 
is inaccessible.

Quorum is designed to be 
highly screen readable, but is 
English only.

Can’t use a 
mouse? 
Can’t use 
Scratch.

Can’t read 
English? 
Can’t use 
Quorum.

Language Ability
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Can educational PL be designed to be both multilingual 
and accessible?

What design, engineering, and pedagogical 
challenges arise in designing at this intersection?

e.g., is it just a matter of WCAG compliance and 
monolingual localization, or are their deeper 
tensions between the two?
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Our approach
• 30 months of community-engaged PL design and 

development: 
• Partnering with teachers to understand the challenges of 

teaching multilingual youth and youth with disabilities. 
• Engaging multilingual youth and youth with 

disabilities to understand tensions with existing 
multilingual and accessible platforms. 

• Consulting with other educational PL designers on how 
they managed language and accessibility. 

• To evaluate our progress and surface new challenges, we 
convened a summer focus group of youth and teachers.
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Wordplay!
try it at wordplay.dev

An educational programming 
language for creating 
interactive, multilingual, 
accessible typography. 

Let’s briefly consider 5 major 
design choices, and then hear 
what youth and teachers think 
about them.
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1. Output is typographic
• Most educational PL use graphics, which are 

inaccessible without image descriptions, and 
image descriptions are usually monolingual. 

• Wordplay, in contrast, uses text, which can 
be web accessible and engage culture and 
identity. 

• Programs can generate multilingual text 
output, building localization into the PL 
itself. 

• Text is also very low overhead, minimizing 
internet bandwidth requirements.
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2. Code is symbolic and multilingual
• Using keywords in a PL embeds a 

particular language in all programs. 
• Wordplay only uses punctuation 

and multilingual text, allowing 
youth to embed multiple 
translations of text, 
documentation, and identifiers in 
code. 

• The editor can screen read all 
punctuation for accessibility. 

• The editor can translate code into  
other languages, and render code 
in one or more languages for 
multilingual reading.
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3. Code is functional and reactive
• Imperative code is verbose and does not 

explicitly describe its purpose, potentially 
creating friction in screen reading. 

• Wordplay is functional and reactive, so 
its code is declarative, shorter, and 
achieves rich interactivity with minimal 
code, indirectly benefitting accessibility 
and language inclusion by reducing 
syntactic complexity. 

• This example translates a stream of pixels 
from a camera into a typographic grid of 
colored letter a’s, with just a few function 
calls.
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4. Accessible, multilingual time travel
• Debugging tools are often 

monolingual and inaccessible. 
• Wordplay allows for instant, random 

access, multilingual, WCAG-
compliant time travel through 
program evaluation history. 

• This is possible only because of it’s 
purely functional nature: it’s only 
necessary to record a history of 
inputs, and the rest can be 
recomputed.
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5. Governance is student and teacher led
• The project is open source, free, and 

facilitated by researchers. 
• Teachers and youth, however, set design 

priorities, and curate design feedback. 
• An undergraduate community of open 

source contributors help realize their 
feedback in a community of peer 
learning and teaching. 

Amy



Evaluation
• These and other design choices are not 

necessarily good design choices. 
• To evaluate them, Carlos and Isabel, 

undergraduate community members 
convened a focus group of 2 teachers, 3 
middle-school students, and 1 undergraduate 
to examine the platform’s design tradeoffs. 

• We held 5 sessions, asking the group to 
examine Wordplay relative to other 
educational PLs, using the design principles 
that emerged from our design process.
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7 design principles from the community
We structured the sessions around 7 principles that had emerged from our 30 months 
of design work with teachers and students. 
The community believed educational PL should: 
• Accessible — be usable by all students with whatever abilities they have. 
• Liberatory — be about the “what” and “why” of computation, not just “how”. 
• Transparent — offer debuggers that fosters self-efficacy for how programs work. 
• Cultural — enable teaching that is responsive to students’ identity. 
• Obtainable — be free and compatible with the devices and internet they have. 
• Democratic — be led by students and teachers to shape the platform’s design. 
• Enduring — be supported long term to enable long-term investments in teaching. 
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Focus group critiques

❌ It’s only partially usable without internet access ❌ Youth are unsure about the benefits of functional code

❌ Smartphone layout and speed is inadequate ❌ It needs to support multilingual collaboration

❌ It needs more customizability for access needs ❌ It should frame youth as shaping future of computing

❌ It needs more diverse youth governance ❌ Not using keywords may disadvantage everyone

❌ Youth can’t use GitHub due to privacy policy ❌ There should be multiple ways to learn the PL

The group affirmed the goals of being web-based, screen-readable, usable offline, broadly 
multilingual, but also noted several gaps in Wordplay’s multilingual accessibility.

✅
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Tensions between accessibility and language

Aspiring for both accessibility and language inclusion 
may trade off against simplicity, make PL more 
complex to build, learn, configure, use and teach: 
• If everything has a description for access, 

everything must have thousands of descriptions 
for every language and reading level. 

• Focusing on text may increase accessibility and 
language inclusivity within the domain of 
interactive type, but at the expense of other kinds 
of culture and identity (e.g., music, imagery). 

• Balancing power through youth governance of 
an open source project raises numerous tensions 
between self-efficacy and expertise.
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Key insights 

• It is possible to build an accessible, multilingual 
educational PL. 

• Doing that universally surfaces real tensions 
between youth, teachers, and their language 
and access needs. Everything required to 
overcome those tensions — diverse, sustainable 
governance, engineering agility — require 
resources that EPLs often do not have.

A big thanks to our teacher partner 
Adrienne Gifford, and to the National 
Science Foundation! This work was 
supported by grants 2318257, 2137312, 
2122950, and 2031265.
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