
Andrew J. Ko

defect detection for the
wayward web

2

software is a
fascinating medium
for human expression

I want to make it
easier to express
and understand
ideas as code

01001
10100
10101

3

research I’ve done

debugging
tools

programming
tools

studies of software
development as if it
were created by people credit

to Rob
DeLine
at MSR

of debugging

of teamwork

of API learning

of open source

4

research I’m doing

toolsstudies

with the

open bug reporting

bug triage meetings

Stack Overflow

diagnostic thinking

next generation help

automating bug severity measurements

improved API documentation

teaching debugging skills

defect detection for the web

5

defect detection for the web

an increasingly
popular platform for
interactive software
applications

platform-independent

information rich

highly flexible

6

defect detection for the web

the very languages that enable
this flexibility also impose some
serious tradeoffs...

8

dynamic typing means that
many errors aren’t found
until runtime

8

JavaScript’s flexibility in constructing user
interfaces dynamically makes it easy to
overlook broken execution contexts without
significant testing

9

despite all of the variation in how
web applications are written

there is uniformity in
developers’ mistakes that
we can detect and highlight

10

Cleanroom
statically detecting a large
class of JavaScript errors at
edit time

FeedLack
verifying the presence of
feedback in response to
user input

11

Cleanroom
with
Jacob Wobbrock
Assistant Professor
The Information School

12

the web is great for rapid
prototyping ...

13

the web is great for rapid
prototyping ...

14

5 minutes later ...

of testing

of debugging

of reviewing my code

15

dynamic languages strike again...

16

only after testing was this typo
apparent...

17

current tools do
not detect these
name errors...

HTML/CSS validators don’t catch them

JSLint doesn’t catch them

Google’s Closure compiler doesn’t catch them

code completion can help prevent them, but
type inference isn’t always possible...

18

spell checking?

text entry error detection?

fancy static type inference? (DoctorJS)

what can we do about them?

we tried all of these...

19

in any programming language, names are
used to uniquely refer to data and
behavior

human motor performance with keyboards
is prone to duplication, omission,
transposition, and substitution errors leading
to “off-by-one” errors in names

the resulting hypothesis

 frequency(name) ∝ validity(name)

two observations

20

the uniqueness heuristic

any name or name sequence that
appears once in a program is wrong

e.g., claculatorBody, consloe.log()

how often is this right?

would warnings based on it be useful?

21

highlights violations of the uniqueness
heuristic after each keystrokeCleanroom

22

if declared, developer
developer gets
confirmation

if it’s an unused variable,
developer is reminded

interaction design

during typing,
validation that name
isn’t complete

if it’s an error,
developer is warned

23

interaction design

file-level counts
updated on each
keystroke to notify of
cross-file changes

24

interaction design

alternate names are suggested using
Levenstein string distance

25

incremental tokenization

identifiers tagged with one or more
token types

HTMLTag
HTMLAttributeName
HTMLClass
HTMLID
CSSPropertyName
CSSValue
JSFunction
JSProperty
JSVariable
JSLiteral

implementation

after each keystroke

26

string literals are tagged as
JavaScript identifiers, HTML ids,
HTML classes, CSS values since they
are often used to refer to identifiers

Cleanroom has a dictionary of
W3C standard API names

works even in the presence of
parsing errors

implementation

...

27

table of name tokens by tag is created

table of adjacent two name sequences
is created.

names or pairs of names that appear
once are selected for warnings

names for which Levenshtein string
distance from warned name < 1 are
suggested as alternatives

implementation

...

28

evaluation

online experiment

Cleanroom + JSlint versus JSLint only

developers asked to finish

Cleanroom warnings were tracked in JSLint
condition, but not displayed

29

participants asked to finish...

18 inline onclick event handlers

~76 lines of calculator function
implementations

30

the tests

automated test launched the web site
and tested whether programmatic
clicks on the the calculator would
provide correct answers for

clear → 0

9 + 5

9 – 5

9 x 5

9 / 5

31

the participants

94 visited

40 started task

22 typed for more than 3 minutes

16 made substantial progress on the task

8 Cleanroom and 8 control participants

no significant difference in JavaScript
experience

“In the past month, I’ve written JavaScript weekly”

32

data collected

whether a warning was active after the
last recorded keystroke

the duration a warning was active

the kind of token warned

whether the warning was on a declaration

whether the warning disappeared
because of a direct edit on the name

how many times a warning was executed
while active

33

results
warnings were active for significantly less time
in the Cleanroom condition (p < .01)

0 sec

50 sec

100 sec

150 sec

200 sec

250 sec

Cleanroom control

median warning duration

34

results
Cleanroom developers executed warned
names significantly fewer times (p < .01)

0 executions

2 executions

4 executions

6 executions

8 executions

Cleanroom control

median warning executions

35

results
errors that Cleanroom developers fixed

undeclared names

unused names

typos (e.g., parseFLoat, getElementByID, onlcick, alert_box)

syntax from other languages (e.g., dim from Visual Basic)

APIs from other languages (e.g., sum instead of add)

type declarations (e.g., int)

36

results
none of the warnings in the program were
false positives

some of the warnings were not severe
e.g., unused variables had no consequence on behavior

37

limitations
can’t detect errors that occur more than
once

can’t detect errors in dynamically
generated names

there are bound to be a variety of false
positives in the wild

e.g., pre- and postfix literals of dynamically generated names,
as in (“week” + number)

38

Cleanroom
statically detecting a large
class of JavaScript errors at
edit time

FeedLack
verifying the presence of
feedback in response to
user input

39

all over the web, apps are ignoring people

click!
click!
click!

click!click!click!click!
click!

click!click!
click!click!click!

where’s the feedback?

40

if(everything is normal) {

provideFeedback();

} else {} // TODO

web apps are full of flaws like these

and the TODO is rarely done

41

FeedLack
with
Xing Zhang
undergraduate
University of Washington

42

verifies thatFeedLack
all control flow paths
originating from user input
produce output

for example...

43

FeedLack
<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

for example...

here’s a form that posts the value
of a comment field when enter is
typed or submit is clicked.

onsubmit="post(form.comment.value)

onclick=post(form.comment.value)

when post() is called, the
comment is posted if valid;
otherwise, an alert is shown.

44

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

for example...

 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';

isValid() provides feedback on
empty comments.

45

FeedLack for example...

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

what’s wrong?

46

FeedLack for example...

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

47

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

FeedLack found to
events handlers
that invoke the
same function function isValid(comment) {

 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

48

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

post() handles
the input function isValid(comment) {

 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

49

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

isValid() might
affect input...

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

50

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

isValid() has to
be entered to
affect input

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

51

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

if the
comment is
not empty, it
will skip output

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

52

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

if the comment is
valid (which it will be,
given the previous
condition)

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

53

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))
 $.get("comment.php", { comment: text });
 else
 alert("Your comment is invalid.");
 }

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

and assuming $.get()
produces no output...

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

54

FeedLack

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

the input handler will
exit without producing
feedback

 else
 alert("Your comment is invalid.");
 }

 $.get("comment.php", { comment: text });

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

55

the obvious
solution is to
add feedback
on success

<script type='text/javascript'>
 function post(text) {
 if(isValid(comment))

<form id='form' onsubmit="post(form.comment.value)">
 <input id='comment' type='text' />
 <input onclick=post(form.comment.value)”>
</form>

 else
 alert("Your comment is invalid.");
 }

 $.get("comment.php", { comment: text })
 .success(function() { alert(“submitted!”); }
 .error(function() { alert(“didn’t work.”); })

{

}

 function isValid(comment) {
 if(comment == '')
 $('#comment').text('write something!');
 return comment != '';
 }
</script>

56

implementation
ten steps

1) identifying and naming functions
2) generating function control flow graphs
3) propagating type information
4) resolving function calls
5) identifying output-affecting statements
6) identifying input-handling functions
7) enumerating paths through input handlers
8) expanding paths through input handlers
9) Identifying output-lacking paths
10) clustering output-lacking paths

57

implementation
1) identifying and naming functions

only analyze client side JavaScript and HTML

all feedback is ultimately displayed by client

all functions are found

except those generated dynamically

58

implementation
2) generating function control flow graphs

standard CFGs are created for each function

for example, post() from earlier

enter isValid() if

$.get()

alert()

endif return

true

false

59

implementation
3) propagating type information

types of variables and properties are
propagated through ASTs from literals, W3C
DOM API properties and functions, and object
literal declarations

e.g., document.getElementById() is assumed
to return an HTMLElement

60

implementation
4) resolving function calls

all function calls are resolved using inferred
type information

when types aren’t available, all functions
are searched

to mitigate false positives

apply() and call() are assumed to
produce output

asynchronous calls are are treated as
synchronous

61

implementation
5) identifying output-affecting statements

output-affecting statements include

assignments to W3C DOM properties

e.g., document.location, el.style.top

jQuery, Prototype, and W3C DOM calls with
DOM side effects

e.g., $(this).hide(), el.removeChild()

62

implementation
6) identifying input-handling functions

any function directly invoked by W3C input
event handlers

includes assignments to properties that
represent input handlers

e.g., el.onclick = goHome

also includes jQuery and Prototype bindings

e.g., $(this).click(goHome)

63

implementation
7) enumerating paths through input handlers

depth-first traversal through each input
handler’s CFG

only includes calls, returns, conditionals, and
output-affecting statements

blocks that do not contain output-affecting
statement are ignored

enter isValid() return

enter isValid() if alert() return
false

if
true

64

implementation
8) expanding paths through input handlers

all calls in the resulting paths through input
handlers are expanded to all possible resolved
functions

enter isValid() returnif text()true return

enter isValid() if
false

return

enter isValid() if text()
true

return

enter isValid() if
false

return

if alert() return
false

if alert() return
false

onclick post() enter

enter

enter

enteronclick post()

onclick post()

onclick post() return

return

return

return

return

onsubmit

if
true

if true

65

implementation
9) Identifying output-lacking paths

enter isValid() returnif text()true return

enter isValid() if
false

return

enter isValid() if text()
true

return

enter isValid() if
false

return

if alert() return
false

if alert() return
false

onclick post() enter

enter

enter

enteronclick post()

onclick post()

onclick post() return

return

return

return

return

onsubmit

if
true

if true

paths lacking an output affecting
statement are marked as output lacking

✕

✓
✓
✓

66

implementation
10) clustering output-lacking paths

because handlers often reuse functions
that produce output, paths with similar
critical paths are clustered by identifying
largest common subsequences

↓

enter isValid() if
false

returnenteronclick post() return returnif
true

enter isValid() if
false

returnenteronsubmit post() return returnif
true

onclick post() return

enter isValid() if
false

returnenter

onsubmit post()

return

return

if
true

67

evaluation
are FeedLack’s warnings legitimate?

sampled 129 web application’s client-side code

14 failed due to path explosion

33/115 applications had no warnings

the 82 remaining had 647 output-lacking paths

68

evaluation
classified each of the 647 warnings as one of

infeasible paths

output-producing false positives

output-missing true positives that followed
standard UI conventions

e.g., buttons that appeared disabled but
did not produce feedback

output-deserving true positives that violated
standard UI conventions

12%

18%

34%

36%

69

0%#

20%#

40%#

60%#

80%#

100%#

0"

10"

20"

30"

40"

50"

60"

deserving" missing" producing" infeasible"

proportion of warning types per app

70

0"

10"

20"

30"

40"

50"

60"

deserving" missing" producing" infeasible"

absolute warning counts per app

71

evaluation
how severe were the true positives?

buttons that ignored input in certain modes

text controls that ignored keystrokes

dead links

silent errors

silent success

missing hover feedback

significantly delayed asynchronous feedback

72

limitations
many false positives

due primarily to imprecision in type inference
and call graph construction

many true negatives

paths that produce output that is imperceptible

there is uniformity in
developers’ mistakes that
we can detect and highlight

73

despite all of the variation in how
web applications are written

74

there is uniformity in
developers’ mistakes that
we can detect and highlight

developers mistype names

developers overlook execution contexts that
deserve user feedback

developers rarely comprehend the full extent of
contexts in which their programs execute

75

control flow paths they’ve never executed

the full set of dependencies on the code
they’re changing

silent failure of changes to the DOM

the device an app is being viewed on

the vision impairments of app users

the context in which user interface string
literals appear

variations in the meaning of data

user interface dead ends

what other details do developers
overlook in web development?

76

defect detection for the web

the very languages that enable
this flexibility also impose some
serious tradeoffs...

the result may be dynamic
languages that have some of
the benefits of static ones

without imposing undue
burden on developers

acceptable

...

77

questions?
Cleanroom

FeedLack

etc.

