
A human view of
programming languages

Andrew J. Ko, Ph.D.

• It’s been a great week at SPLASH

• One of the things I’ve enjoyed most is learning about the many valuable,

diverse perspectives on PL research.

• These perspectives are actually what I want to talk about today.

• In particular, I want to talk about how our perspectives on PL shape the PL

research we do, and in specifically the research we don’t do.

• I’d like to start on a somber note.

Seymour Papert 1928-2016 • Seymour Papert died three months ago.

Computers as thinking tools

Constructionism

Neural networks

One Laptop Per Child

• Did many incredible things for computing

• (Read)

Alan Kay
(OOP, GUIs, Smalltalk)

Terry Winograd
(Google, d.school)

Mitch Resnick
(Lego Mindstorms, Scratch)

• He also impacted generations of impactful researchers, including

• Alan Kay of Smalltalk and the Dynabook

• Terry Winograd who helped spawn Google

• Mitch Resnick who helped create Scratch, used by millions to learn to

code

• We have to step back and ask: where did all of this incredible impact

come from?,

• Papert wrote about this in the early nineties in his discussion of

epistemological pluralism with Sherry Turkle.

• His claim was as follows.

“The formal, mathematical
view of computing is
powerful, but insufficient ▶

• The formal, mathematical view of computing is powerful and necessary

• But it’s not sufficient

…equal access to even
the most basic elements
of computation requires
an epistemological
pluralism, accepting the
validity of multiple ways
of knowing and thinking.

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer culture. Signs, 16(1), 128-157.

“
• (Read)

• If we want to involve the world in computing, we have to accept the

multiple ways of knowing and thinking about computing

Computing
is math

Computing is a
thinking tool

? ? ?

?

?

??

?

?

?

?
What are these other views?

• In this talk, I want to talk about these other ways
• Most of us in this room take a formal view of computing

• Papert took a learning view of computing

• Wha are all of these other ways?

PL is math PL is a thinking tool

? ? ?

?

?

??

?

?

?

?
Today’s talk

• I’m not going to take on all of computing in this talk

• Instead, I’m going to take the slightly smaller topic of PL

• I want to support the following claims

• (Read claims)

• To discover these conceptions of PL, I’m going to do what Papert would do

There are multiple ways to view
programming languages (PL)
These views have a vast
potential for discovery

? ? ? ?
?

?Today’s talk
• I’m not going to take on all of computing in this talk

• Instead, I’m going to take the slightly smaller topic of PL

• I want to support the following claims

• (Read claims)

• To discover these conceptions of PL, I’m going to do what Papert would do

? ? ? ?
?

?Approach

Mine my experiences for
different views of PL
Explore these views as research
agendas

• (Should be at 5 minutes)

Middle school 1992
• To begin, I want to talk about the first program I ever encountered.

• I was 12 years old

• At the time, I was a typical adolescent: no status, no identity, no control
• My only passion was video games, because they gave me purpose

• I encountered my first program in a pre-algebra class

My TI-82
• Our teacher had required TI-82 graphing calculators

• He showed very little about how to program it other than giving us some

trigonometric functions to copy into the program editor

TI Tetris
• I had a classmate with an older brother who knew all about how to

program the thing

• He showed us a version of Tetris that rendered on the graph

• Tetris was one of my favorite games

• I cut out the card to mail order a link cable so I could transfer the program

to my device

• A month later, I got the cable and the program, and it was a beautiful,

functional replica of the Game Boy version that I adored

• But, IT WAS UNBEARABLY SLOW

TI-BASIC
• Disappointed that I couldn't play the game in class, I realized that it was a

program like the ones my teacher had shown us. I pressed edit, and was
faced with tens of thousands of lines of conditionals, gotos, variables, all
written in TI BASIC.

• Here was my first computer program, written in a programming language,
but rather than viewing it as gibberish, in this context, it was something
very different: it was a form of power that, if I acquired, would allow me to
bring my favorite game to school in disguise.

The manual
• I got the instruction manual, read it back to back, and learned the

language, so I could understand how it expressed the rules of the a game

• A month later, I had removed the rules that slowly rendered on the plot and

instead rendered vertically on the text console, which was much faster.

• I had a playable version of Tetris that I immediately shared with everyone in

my class, bringing me fame, respect, and glory (at least in math class)

• (And a scolding from the teacher, who suddenly had to outlaw graphing

calculators from our class).

PL as power

• TI BASIC was a way for me to exert control over the game, to tell it to
behave differently.

• Also a way to exert control over the classroom, shifting my peers' attention
to a game instead of algebra.

• Throughout middle school, I saw PL as a form of power over my class, my
peers, my teachers, and my experiences at school.

If PL is power…
and with great power, comes great responsibility…

What responsibilities does knowing PL entail?

• If great power comes great responsibility, what responsibility does
knowing a PL bring?

• For example

• Why aren't software developers in the U.S. responsible for the failures

they cause?

If PL is power…
and power corrupts…

How does PL corrupt?

• If power corrupts, how does PL corrupt?

• For example, Mark Zuckerburg amassed great power at Facebook by

harnessing the power of programming languages to prototype social
experiences.

• He used this to try to reform Newark, New Jersey public schools

• Widely considered to have failed miserably, wasting $100 millions by

ignoring experts

• Perhaps PL provides so much power it blinds people

If PL is power…
and democracy distributes power…

Should democracies distribute PL?

• (Read)

• This is President Obama doing an hour of code in D.C.

• He announced the CS For All initiative this year, which is attempting to

bring computing education to every public school in the U.S.

• Should we be doing this? If so, how?

Rest of middle school was playing with code

(Unflattering photo warning)

My playground 1993
• Wow, look at that horrible posture!

• As I finished middle school, I learned, I primarily used my coding skills to

create.

• And this was my playground.

My creations
• I created animations

• I created interactive stories

• I created games with my friends

• I created games for myself

QBasic
• I wrote on my calculator

• Also Quick Basic on my PC

• But the language was not the subject of interest

PL as media

• PL was a way for me to express myself, my ideas, and share them with
my friends.

• It was a medium.

If PL is media…
and the medium is the message…

What messages does PL enable?

Marshall McLuhan

• McLuhan taught us that “the medium is the message”

• If this is true, PL shape, bias, and even warp the kinds of programs we

create

• How can we reason about the these biases on expression?

• Do these biases go beyond how programs are written to influence what

programs do in society?

If PL is media…
and media facilitates expression

How does PL facilitate expression?

Mitch Resnick

• If media determines what can be expressed, how does PL design affect
expression?

• This is Resnick, who created Scratch

• Alan Kay, who talked about computing as “Personal Dynamic Media” back

in 1976

• He’s spent the past decades trying to understand how PL fosters creativity,

but also limits it.

High school 1995
• PL was power in middle school

• Then is was an expressive medium.

• In high school, in transformed again.

My computer lab
• This was my computer lab at West Linn High School.

• I signed up for a zero period computer science class that started at 7 am.

• (Yes, that’s how passionate I was).

• There were 8 of us in there, 7 who just came early to play MUDs

• The class was taught by a student from the local community college.

• He brought his homework in, challenged us to solve it, and then he would

submit it in his class.

• We were using Pascal, because that's what the 386 PC's had installed

My hobby
• This was my passion: the “Computer Art Club”.

• These were my friends, artists, musicians, and other weirdos who liked to

do strange things with computers.

• At the time, I was obsessed with 3D rendering and all of the geometry it

entails

• I had read about a game that was trying to render scenes with ellipses

instead of polygons and I was curious if I could do the same.

Profiling
• My teacher asked what I was up to and I explained that the ellipses were

rendering too slowly to do anything interactive

• He suggested I profile it and we found out it my rendering algorithm was

spending 95% of its time on square roots

• He suggested that I talk to my math teacher to find out if she knew of any

ways of computing square roots faster, that maybe I could use instead of
the built in Pascal library

Mrs. Hudson
• Now, my teacher, Mrs. Hudson, was no regular teacher

• She had a Ph.D. in Math from Texas

• She didn’t know any algorithms, but she did dig up a fascinating book on

the history of Greek methods for computation from 1920's

• Through interlibrary loan, the little book showed up, she gave it to me

bursting with excitement, and I dashed home to read it.

EXTRACTION OF THE SQUARE ROOT 61

Eucl. II. 4. The highest possible denomination (i.e. power
of 10) in the square root is 10 ; 10 2 subtracted from 144 leaves

44, and this must contain, not only twice the product of 10

and the next term of the square root, but also the square of

the next term itself. Now twice 1.10 itself produces 20, and
the division of 44 by 20 suggests 2 as the next term of the

square root ; this turns out to be the exact figure required, since

2.20 + 22 = 44.

The same procedure is illustrated by Theon's explanation

of Ptolemy's method of extracting square roots according to

the sexagesimal system of fractions. The problem is to find

approximately the square root of 4500 fioipoa or degrees, and

K

67

H

67°

4489

F

4'

268'

55"

b

00
00
CD
CO

4-' 268' 16

55" 3688" 40 "' L

a geometrical figure is used which proves beyond doubt the
essentially Euclidean basis of the whole method. The follow-

ing arithmetical representation of the purport of the passage,

when looked at in the light of the figure, will make the
matter clear. Ptolemy has first found the integral part of

7(4500) to be 67. Now 67 2 = 4489, so that the remainder is

1 1 . Suppose now that the rest of the square root is expressed
by means of sexagesimal fractions, and that we may therefore

write

7(4500)= 6 7 + — + -^-
,v ; 60 602

where x, y are yet to be found. Thus x must be such that
2 . 67x/60 is somewhat less than 11, or x must be somewhat

62 GREEK NUMERICAL NOTATION

less than —-— or - , which is at the same time greater than
2.67 67 ' s

4. On trial it turns out that 4 will satisfy the conditions of

/ 4 \
2

the problem, namely that (67 + --
) must be less than 4500,

so that a remainder will be left by means of which y can be

found.

2.67.4 / 4 \2

Now this remainder is 1 1 — (—) j and this is
60 ^60/

equal to 11 . 602 -2 . 67 . 4 . 60-16 7424
~602~ 01

* ~t¥"

Thus we must suppose that 2 (67 -\ j -~ approximates to

7424-^z > or that 8048^/ is approximately equal to 7424.60.

Therefore y is approximately equal to 55.

/ 4 \ 55 /55 \ 2

We have then to subtract 2(67H) —„ + (^^) » or
V 60/ 602 \602/

442640 3025 „ .. . , 7424 . , 3—^i—H -zr^r ' irom the remainder - above found.
60" 604 602

™ ,, ,. „ 442640, 7424 . 2800 46 40
The subtraction of -^- from_ gives -^ or — +—3 ;

but Theon does not go further and subtract the remaining

—-4-
; he merely remarks that the square of -—

2
approximates

to —^ + —To. As a matter of fact, if we deduct the „. from
602 603 604

—— , so as to obtain the correct remainder, it is found
60* '

, 164975
tobe "60\-

Theon' s plan does not work conveniently, so far as the

determination of the first fractional term (the first-sixtieths)

is concerned, unless the integral term in the square root is
9X / 0C \"

large relatively to—- ; if this is not the case, the term (-*—
j is

not comparatively negligible, and the tentative ascertainment

of x is more difficult. Take the case of Vs, the value of which,
43 55 23

in Ptolemy's Table of Chords, is equal to 1 -\ 1 n -\ »•J ' ^ 60 602 60-3

62 GREEK NUMERICAL NOTATION

less than —-— or - , which is at the same time greater than
2.67 67 ' s

4. On trial it turns out that 4 will satisfy the conditions of

/ 4 \
2

the problem, namely that (67 + --
) must be less than 4500,

so that a remainder will be left by means of which y can be

found.

2.67.4 / 4 \2

Now this remainder is 1 1 — (—) j and this is
60 ^60/

equal to 11 . 602 -2 . 67 . 4 . 60-16 7424
~602~ 01

* ~t¥"

Thus we must suppose that 2 (67 -\ j -~ approximates to

7424-^z > or that 8048^/ is approximately equal to 7424.60.

Therefore y is approximately equal to 55.

/ 4 \ 55 /55 \ 2

We have then to subtract 2(67H) —„ + (^^) » or
V 60/ 602 \602/

442640 3025 „ .. . , 7424 . , 3—^i—H -zr^r ' irom the remainder - above found.
60" 604 602

™ ,, ,. „ 442640, 7424 . 2800 46 40
The subtraction of -^- from_ gives -^ or — +—3 ;

but Theon does not go further and subtract the remaining

—-4-
; he merely remarks that the square of -—

2
approximates

to —^ + —To. As a matter of fact, if we deduct the „. from
602 603 604

—— , so as to obtain the correct remainder, it is found
60* '

, 164975
tobe "60\-

Theon' s plan does not work conveniently, so far as the

determination of the first fractional term (the first-sixtieths)

is concerned, unless the integral term in the square root is
9X / 0C \"

large relatively to—- ; if this is not the case, the term (-*—
j is

not comparatively negligible, and the tentative ascertainment

of x is more difficult. Take the case of Vs, the value of which,
43 55 23

in Ptolemy's Table of Chords, is equal to 1 -\ 1 n -\ »•J ' ^ 60 602 60-3

A History of Greek Mathematics
• Inside was everything I wanted: square roots, cube roots, nth roots, a

whole bunch of algorithms for optimizing root computation.

• But the notation in this 1920's book was far from Pascal, and far from even

math. It was its own notation for computation, a mixture of math, natural
language, and other invented symbols.

• Translating from the book's programming language to Pascal required me
to learn a new language to a level of depth that I could understand its
semantics.

• I eventually translated the algorithm and greatly accelerated my ellipse
rendering.

PL as notation
• Notations for modeling abstract ideas, like the rules of Tetris, or the

concept of roots

• This view of PL as notations for modeling has many implications

If PL is notation…
and notations model reality

What can’t PL model?

• What can’t our PL model?

• For example, how close can abstract logic get to representing the

dynamics of trade?

• Do we need a different type of logic to model this?

If PL is notation…
and notations help share information…

What info can’t PL share?

• Are there kinds of information that simply can’t reduced to 1’s and 0’s?

If PL is notation…
and notations must be learned…

What makes a PL learnable?

• There’s nothing about syntax and semantics that is “natural”

• What about these language design choices affect how we learn these

notations?

CS @ Oregon State University 1998
• After five years of obsession with code and art

• I found myself in college as a CS major.

• (I was also a Psychology major)

• PL was power, it was was media, it was notation

• I was eager to discover what else PL might be

Margaret Burnett
• My mentor Margaret Burnett was the one who taught me.

• I met Margaret after seeing a flyer for an undergraduate RA position in the

hallway

• It paid (almost) as much as the other summer job, and made a good pitch

for the life of a professor

• I was sold.

• Not only did she taught me how to do research about PL

• But she also taught my PL course

PL parade
* She framed it as a tour through a dozen languages

* Dissecting the tradeoffs of all of the different design choices they make.

* We wrote the same programs a dozen times over, understanding the

design space

* She helped me see that PLs come from people. They design them.

PL as designs

• And as designs, each design has

• tradeoffs

• flaws

• principles

• values

• priorities

• A whole process and set of people behind these decisions.

If PL are designs…
and designs require tradeoffs…

What tradeoffs do PLs make?

• How do we model this tradeoff space?

• Which qualities trade off with one another?

• What parts of the design space have we not explored?

and designs comes from process…

What is “good” PL design process?

If PL are designs…
• This is a picture of David Kelly teaching a class the d.school at Stanford

• He teaches a process

• When we teach our graduate students to design programming languages,

what process do we teach them?

and design requires prototyping…

How can we rapidly prototype PL?

If PL are designs…
• Is it enough to jot down a sketch of a program in a syntax?

• Or do we need to be able to execute sketches?

• If it was trivial to prototype a PL, how would that transform our discoveries

of new PL?

and design leverages aesthetics…

What are PL aesthetics?

If PL are designs…
• Why don’t we have a formal semantics of beauty, parsimony, brevity?

The HCI Institute 2002
• My time at Oregon State with Margaret introduced me to HCI, and the PL.

• But my passions in design and human behavior were equally strong.

• The HCI Institute at Carnegie Mellon was a natural place to get my Ph.D.

• I brought my curiosity about design, expression, notation, and power, and

hoped to find yet more ways of seeing PL.

Building Virtual Words Brad Myers

Randy Pausch

• And I did, thanks to several mentors.

• I was advised by Brad Myers, who had been working on the foundations of

user interface toolkits

• And I also spent time with the late Randy Pausch, who had worked on

Alice and ran an incredibly fun interdisciplinary course, Building Virtual
Worlds

• Brad had encouraged me to study the programming happening in the
course, to find interesting problems to solve

Debugging Alice
• While I expected to see expression, most of what I saw was usability

breakdown after usability breakdown

• Students expressed what they wanted, but never got it quite right, leading

to hours and hours of unproductive tweaking and debugging

• From my HCI-lens, the students' lack of understanding of the semantics of

the language, and their inability to see those semantics execute, were
fundamental user interface problems.

PL as interface
• This view was inevitable, and not only because I was an institute primarily

concerned with interface.

• It was because computers, and programming languages in particular, were

the first interface to computers. It’s how we operated them.

• This view of PL as interface has many implications.

If PL are interfaces…
and interfaces must be usable

How do we make PL usable?

Andy Stefik

• Andy Stefik has recently been doing some fantastic work in this area

• For example, he’s found that

• Statically typed languages reduce debugging time

• Transactional memory prevents synchronization bugs

• Notations used greatly impact novice learning

• Inheritance depth doesn’t impact maintenance effort

• He’s embodied these and other discoveries into the design of Quorum, a
language that aims to be the most accessible and usable language ever
invented.

If PL are interfaces…
and interfaces must provide feedback

What feedback must PL provide?

• What makes a good error message?

• One of my Ph.D. students did a great study a few years ago that found that

just by using personal pronouns like “I” and “We” made novices read error
messages more closely.

If PL are interfaces…
and interfaces convey what’s possible

How can PL convey what’s possible?

• Is Stack Overflow really the best we can do?

• Are a bunch of examples really good enough?

• Why can’t we provide much richer, more robust articulations of what’s

possible with a programming language?

• But also what’s not possible

ICSE 2006
• Now, you might be wondering: why haven’t I talked about the formal,

logical view of PL that we all use in this room?

• That’s because I didn’t encounter it until I started coming to conferences

like SPLASH, ICSE, and FSE.

• This is me at my first ICSE, four years in to my Ph.D., after several years of

publishing exclusively at HCI conferences.

• I must say, this was a shock. I’d spent my whole life thinking of PL as

interface, as media, as designs, as notation, and as power.

• And here was a community, our community here in fact, that viewed PL as

math.

PL as math
• Now, I realize ICSE is not really the home of PL as math (that would be

PLDI or POPL)

• But back in 2006, a large proportion of the work was formal methods, with

only a tiny fraction of empirical work.

• In most of these papers, programs weren’t expression, they were

propositions

• This was the “computing culture” that Papert had talked above.

• And what I learned was that PL as math had many implications that most

people in the room already know.

If PL is math…
and math has correctness

What does PL correctness mean?

• This is basically much of the history of PL and software engineering
research.

If PL is math…
and math can be proven correct

How do we prove programs correct?

• This is expressed in research on proof assistants like Coq, which leverage
the Curry-Howard correspondence

If PL is math…
and math concerns identity

What in PL is equivalent?

• This is the history of theory of computation, with its focus on complexity
equivalence, problem equivalence

UW iSchool 2008–present
• My last stop was the University of Washington Information School

• It is an exceptionally interdisciplinary place

• Nothing more has stretched my epistemological stance, my understanding

of knowledge, and my perspectives on PL.

• Here are some of the many perspectives I’ve encountered.

PL as language
Do PL have ambiguities?
Do PL shape how we computationally think?

• What if programming languages are like natural languages, which are
about exchange?

• This is, after all, why we use words such as “syntax”, “grammar”, and
“semantics” to specify their rules.

• Do they follow the same evolutionary patterns as natural languages?

• What kind of ambiguities do PL have?

• Sapir-Whorf hypothesis: does PL determine how we computationally think?

PL as communication
Should PL model developer intent?
Should PL express intent to developers?

• We "tell" a computer what to do with PL

• So what if PL is communication?

• Communication, which is about understanding and common ground

• What should PL do to verify developer intent?

• What should PL do to express it’s intent to developers?

PL as glue
What makes PL a good adhesive?
What materials do PL adhere to?

• Four years ago I co-founded a startup called AnswerDash and spent 3
years as its CTO and lead engineer.

• In my time as a developer, it was hard to think of PL as anything more than
glue between APIs, frameworks, libraries, and platforms.

• Languages just weren’t that useful for routine web applications for which
there was already so much built. We didn’t use much more than function
calls and conditionals.

• So perhaps PL is just glue, which is about connection.

• What makes PL a good adhesive?

• What materials do certain PLs adhere to better?

PL as legalese

Who should interpret code legally?

Are programmers lawyers?

• In software engineering, programs are often agreements between parties
about what an application must, should, and must not do.

• If programs are contracts, than programming languages “legalese”, the
formal and technical language of legal documents, which are essentially
about promises.

• If this is true

• Who should legally interpret code?

• Are programmers lawyers?

PL as infrastructure
How do PL decay?
How should we maintain PL?
Is PL a public good?

• We can view programs as conduits for information, funneling, filtering, and
distributing data that ultimately has meaning

• If we build roads with concrete and nails

• We build information systems with programming languages

• If programs do the transmission, than programming languages are

information infrastructure, creating the shared systems that allow society
to operate

• How do PL decay?

• How should we maintain PL?

• Is PL a public good?

UW Upward Bound 2016
• Here’s my most recent perspective.

• I taught a class of 11 south Seattle high school students this past summer

while I was on sabbatical.

• Few of them had ever encountered code, or had any interest in learning to

code

• But they were in my web design course nonetheless, because many of

them would rather take that then ballroom dance in their summer college
prep curriculum.

“What’s a PL?”
• I asked them, what is a programming language?

• One of them said, "A way out of poverty"

• Now, that definition is clearly pretty far from the ones we've discussed so

far, but let’s consider it.

PL is a path out of poverty
• In this way, programming languages are a path from poverty

• This notion of PL was entirely reasonable

• In her world,

• Surrounded by Seattle software companies,

• By wealthy Bay Area entrepreneurs in the news

• By constant non-profit advocacy as learning to code

• And as teens with parents who did not finish high school

• In fact, this view may actually be the most dominant view of PL in the world
today

• And given this, there are many important implications:

and governments create paths from poverty

Should our governments create these paths?

If PL is path…
• The world is beginning to answer these questions

• Rise of MOOCs that only reach the privileged

• Coding bootcamps that again only reach the privileged

• The White House’s CS for All

• Britain’s CS For All for K-12 CS education

and paths must be equitable

If PL is path…

How do we make PL equitable?

• Should it be the obligation of PL designers to make PL accessible?

• If governments fund PL as infrastructure, should this funding be contingent

on accessibility, as is law in United States government IT projects?

and paths can only fit so many people

If PL is path…

Who should be led down it?

• In today’s world, we don’t really choose

• We let our culture determine interest

• We let our ideas exclude

• How do we choose?

• Is their innate aptitude to code?

• Can everyone learn?

• By what principles to we selectively encourage, especially in the context

of universal access to computing education.

• Or, perhaps everyone can be on this path, because everyone will be doing

some kind of programming.

Definition
PL is math

PL is interface
PL is design

PL is notation
PL is media
PL is power

PL is language
PL is communication

PL is glue
PL is legalese

PL is infrastructure
PL is path

• Across the past 17 years of research, it is clear to me now that all of these
views of PL have value.

• They were productive in my life

• They were productive in my research.

• But also that each view had values

Definition
PL is math

PL is interface
PL is design

PL is notation
PL is media
PL is power

PL is language
PL is communication

PL is glue
PL is legalese

PL is infrastructure
PL is path

→

→

→

→

→

→

→

→

→

→

→

→

→

certainty
Value

efficiency
utility
sharing
expression
control
exchange
understanding
connection
promise
fellowship
equity

• Each of these fundamentally prioritizes different human values

• (Read examples)

• Inside each of these values, however, is also a research agenda.

• And each of these research agendas therefore expresses a different value

Definition
PL is math

PL is interface
PL is design

PL is notation
PL is media
PL is power

PL is language
PL is communication

PL is glue
PL is legalese

PL is infrastructure
PL is path

→

→

→

→

→

→

→

→

→

→

→

→

→

Discoveries (my impression)
certainty
Value

efficiency
utility
sharing
expression
control
exchange
understanding
connection
promise
fellowship
equity

• This is my impression of the number of discoveries that explore these
perspectives

• Some of these agendas are already deeply explored

• Others, particular those that probe the human, social, societal, and ethical

dimensions of programming languages, are hardly explored at all.

• If we look at these as a space of values…

Values

certainty

efficiency

utility

sharing

expression

exchange

understanding

controlconnection

promise

fellowship

equity

• We can see that some are about computing and some are about people

• And we’ve spent most of our time understanding computing

• How do we investigate all of these other values?

Three examples

certainty

efficiency

utility

sharing

expression

exchange

understanding

controlconnection

promise

fellowship

equity

• I’ll give three examples from my own work to illustrate

PL as communication understanding
• I’ll start with one of my earlier attempts from my dissertation work

• I started with the idea that programming languages are ways that we tell

computers what to do.
• But after they do something, we also inquire why they did what they do

PL as communication

How can we interrogate program behavior?

• Research question: how can we interrogate program behavior?

PL as communication

Whyline for Alice 2004
(novices debug 8x faster)

How can we interrogate program behavior?

• This led to my early work on the Whyline for Alice, where novices could
ask “why” questions about program behavior

• Dramatic acceleration of debugging times

PL as communication

Whyline for Java 2008
(experts debug 2x faster)

How can we interrogate program behavior?

• And then Whyline for Java, which showed how the work could scale to
large Java programs and accelerate expert developers’ debugging

PL as communication
Timelapse + Scry 2015
(time-travel debugging +
reverse engineering)How can we interrogate program behavior?

• This led to my Ph.D. student Brian Burg’s work on Timelapse and Scry

• Time-travel debugging and reverse engineering

• He joined Apple and has begun upstreaming much of this to WebKit

• Bringing this back to values

understanding

• This means millions of developers will better understand how browsers
are executing code.

PL as notation exchange
• Another perspective, this time from the perspective of notation, which

focuses on the value of exchange

PL as notation

How we make programs readable?

• The question I investigated was ultimately about readability

PL as notation

How we make programs readable?

Barista 2006
Code as rich text

• One project about 10 years ago looked at how to render code to be more
readable

How we make programs readable?

Jasper 2006
Views on concerns

• Another project at the same time with Michael Coblenz (who’s now a
Ph.D. student at Carnegie Mellon) looked at how to make cross-cutting
concerns readable

How we make programs readable?

PLTutor 2016
Learn to read a PL
in 3-5 hours in hours

• Most recently, my students Greg Nelson and Benji Xie are looking at how
to teach people how to read programming language notations

• Idea is to rapidly teach the operational semantics of a PL, ensuring learners
can reliably predict the behavior of each of it’s execution rules

• In preliminary work, can teach a PL in 3-5 hours to a rank novice

exchange

• Our work on programming language tutors is only just beginning.

• Many of these ideas about reading code have made it into widely used

programming and debugging tools

• This transfer has led to each of these environments embracing a value of

exchange, ensuring that programming is framed not just as a writing task,
but a reading task as well

PL as power control
• Another perspective, this time from the perspective of power

• This was led by my student Michael Lee

PL as power

What effect does the power
relationship between a novice
and a compiler have on learning?

• Mike wondered: what effect does the power relationship have?

• Most compilers frame an authoritative relationship, telling the learner what

they’ve done wrong

• Creates a dynamic of constant failure

What effect does the power
relationship between a novice
and a compiler have on learning?

Gidget 2012
• This led to a game called Gidget, which framed the compiler as a reliable

but unintelligent collaborator, placing the learner in the role as creative
problem solver.

2x faster learning

2x more engagement

• This led to a series of studies that showed that very subtle design choices
about error messages, data representation, and assessment have very
powerful effects on learning and engagement.

2x faster learning helpgidget.org 2015
10,000+ learners age 8-80

2x more engagement

• Mike deployed the game, reaching more than 10,000 learners

helpgidget.org
10,000+ learners

10 million learners

• Code.org incorporated these design principles

10 million learners control

• And, in turn, these 10 million learners have a deeper sense of control over
their ability to shape computer behavior though code.

Definition
PL is math

PL is interface
PL is design

PL is notation
PL is media
PL is power

PL as language
PL as communication

PL as glue
PL as legalese

PL as infrastructure
PL as path

Discoveries
certainty
Value

efficiency
utility
sharing
expression
control
exchange
understanding
connection
promise
fellowship
equity

→

→

→

→

→

→

→

→

→

→

→

→

→

• Work like this is changing the distribution of what we know

• But it’s also changing the values that the work disseminates to the world

• And this new values are engaging new people in computing, computer

science, and computer science research

• This, in turn, is changing the values of our research community

• These are good things, but it begs several important questions

Definition
PL is math

PL is interface
PL is design

PL is notation
PL is media
PL is power

PL as language
PL as communication

PL as glue
PL as legalese

PL as infrastructure
PL as path

?
CS Psychology

Economics

Information Science

Sociology

Design

Communicationcertainty
Value

efficiency
utility
sharing
expression
control
exchange
understanding
connection
promise
fellowship
equity

→

→

→

→

→

→

→

→

→

→

→

→

→

• What should the distribution be?

• Who should be doing this research?

• Will this research happen if we don’t explicitly embrace it as a community?

• Here’s where we have these conversations

• As a discipline, CS doesn’t have
to explore all of these views.

• But CS should encourage the
exploration of these views,
supporting and collaborating
with other disciplines.

• And to equitably engage
everyone, CS does have to
embrace these views, showing
that CS is more than logic.

?
CS Psychology

Economics

Information Science

Sociology

Design

Communication

• Here’s what I think
• (Read)

• How can we do this?

Consider a new view of PL

When choosing a new question
• Are their views that draw upon expertise and skills that you have?

Be explicit about your views of PL

When writing a paper
• What epistemology are you using?

• Perhaps you’re using multiple distinct epistemologies?

Evaluate it against the paper’s view of PL, not yours

When reviewing a paper
• Recognize that each view demands different methods, different theories,

and ultimately, different epistemologies

Explain multiple views on PL

When teaching PL

Shriram Krishnamurthi

• Be pluralistic in your claims about truth

• Expose students to these views

• Be explicit about which views you subscribe to

PL is math
PL is interface

PL is design
PL is notation

PL is media
PL is power

PL as language
PL as communication

PL as glue
PL as legalese

PL as infrastructure
PL as path

• If we do these things, we'll not only approach the inclusive computing
culture that Papert dreamt of

• But we’ll also create a more inclusive world in general, in which everyone's
perspectives, everyone’s values on computation is reflected in our work,
and in our society.

• Thank you.

