
The
Promise and Problems

of CS for All
Amy J. Ko, Ph.D.

The Information School

University of Washington, Seattle

Follow along!
https://bit.ly/sfu22

https://bit.ly/sfu22

Computing is everywhere and

everything, for better and worse.

It’s transforming

health and medicine

It enables globalized private

surveillance infrastructure

https://unsplash.com/photos/v_2FRXEba94
https://unsplash.com/photos/yOd-gjE7D68

It enables creative
expression.

It isolates us.

https://unsplash.com/photos/JQ0YVavMKLo
https://unsplash.com/photos/fnYHoNUJUNQ

It empowers It disempowers

https://unsplash.com/photos/IgUR1iX0mqM
https://unsplash.com/photos/G6k_uEjXygE

Everyone should learn about this

fierce and fraught medium.

Amy J. Ko, Alannah Oleson, Mara Kirdani-Ryan, Yim Register, Benjamin Xie, Mina Tari, Matt Davidson, Stefania
Druga, Dastyni Loksa, Greg Nelson (2020). It’s Time for More Critical CS Education. Communications of the
ACM (CACM), 31-33. https://doi.org/10.1145/3424000

https://unsplash.com/photos/1LLh8k2_YFk
https://doi.org/10.1145/3424000

In post-secondary, many do.

● At some colleges and universities, 1/3rd of students
major in CS (!)

● Most CS departments are overwhelmed with demand
● Demand has led to secondary markets such as

bootcamps, corporate training, online degrees, etc.
● Scale has also exacerbated deeply rooted problems

with diversity, equity, and inclusion.

Computing Research Association (2017). Generation CS: Computer Science Undergraduate Enrollments
Surge Since 2006. http://cra.org/data/Generation-CS/

http://cra.org/data/Generation-CS/

But in primary and secondary, few do.

● Across the U.S., our best data shows that <30% of
schools offer CS electives

● … and <1% of students take a class.
● And most in North America who do are wealthy white,

Chinese, and Indian boys, many of whom have family
or friends in computing, or whose parents expect them
to pursue tech to support their families.

Code.org (2021). 2021 Annual Report. https://code.org/files/code.org-annual-report-2021.pdf

https://code.org/files/code.org-annual-report-2021.pdf

Why such disparities between

secondary and post-secondary?

Margolis, Jane. Stuck in the Shallow End: Education, Race, and Computing. MIT press, 2017.
https://dl.acm.org/doi/book/10.5555/3153292

https://dl.acm.org/doi/book/10.5555/3153292

It’s partly structural.

- Unequal paths to develop interest.

- Unequal capacity for CS in schools.

- Unequal pathways to college.

- Unequal access to the internet.

But it’s also pedagogical.

Despite teaching CS for decades, we don’t know how to

equitably and effectively teach, prepare teachers, make

students feel welcome, make CS relevant to everyone,

assess knowledge, scale learning, …

And thus the status quo…

● CS education tends to filter out diversity through
narrow notions of rigor and merit

● CS education concentrates power and wealth
amongst white and Asian men

● The public lacks basic literacy about CS and how it
concentrates power and wealth

● We lack sufficient research to inform change
● We lack sufficient capacity to implement change

But there is hope!

● 15+ years of research funding for basic and applied
research in the US, UK, EU, Japan, Korea, China...

● A global community of researchers, teachers, and
activists that has grown an order of magnitude in the
past decade.

● A public that is realizing the importance of CS literacy
and beginning to wonder why youth (and politicians…
even engineers) aren’t learning it.

Why I pivoted to
computing
education from
HCI.

What I’ve
discovered about
structural and
pedagogical issues
in teaching CS.

What grand
challenges remain
in research and
practice.

This talk

1. What is CS
knowledge?

2. How should we
teach it?

3. How do we include
everyone?

My quirky path to computing

education research.

I learned to code because of pre-algebra.

● My math teacher required us to have a TI-82
graphing calculator.

● A classmate showed me a version of Tetris his
older brother had acquired. But it was too slow!

● I spent a summer reading the manual, and
rewriting the renderer, so I could play in class.

● I shared with my classmates, became their hero,
was praised by my teacher, and fell in love with
computing’s capacity for creative expression.

I studied CS + Psychology in the 90’s

● CS because I was poor and needed to make money
○ Most of what I learned was incredibly boring.
○ Classes leeched all of the joy from programming.
○ Most of my professors were unskilled teachers.
○ I watched most of my peers drop out

● Psychology because behavior was fascinating
○ I was captivated in every class.
○ It explained so much of the world.
○ But I couldn’t get paid to study it.

Or could I?

● I discovered research!
● I learned I could study programming for $.
● I blended human-computer interaction and

software engineering, studying struggles to
understand code and inventing ways to make it easier.

● I earned my PhD at Carnegie Mellon, inventing,
theorizing, observing, and writing about
programming, then continued as a professor.

After tenure, I co-founded a startup.

I learned two things as CTO managing 8 engineers:

● Understanding code is hard.
● But it’s hard because learning is hard.

Nearly every difficulty my engineers faced was because
they struggled to learn a new programming language,
API, platform, or how to collaborate. When I found ways of
teaching them well, they excelled.

So in ~2012, I pivoted to computing education

I found a growing, passionate, collaborative community of
computing education researchers who also wondered:

● Why is learning to code so hard?
● Why is CS mostly white and Asian boys?
● Why do so many students drop out of CS?
● How can we teach CS more equitably and inclusively?
● How can tools help with teaching + learning?

Here’s what my lab and I have

discovered in the past decade.

What is CS
knowledge?

It’s not what
you think.

We usually think of CS as:

● Programming languages

● Data structures

● Algorithms

● Theory of computation

● Artificial intelligence

● Systems, etc.

It is technical,
but it is also
far more
cognitive,
social, and
political than
we imagine.

Paul Li interviewed + surveyed
2,000+ software engineers, and
while they CS knowledge as core,
they often viewed it as less
important than the ability to make
complex technical decisions in
the context of organizational,
market, and social uncertainties.
Paul Luo Li, et al. (2019). What Distinguishes Great Software Engineers? Empirical
Software Engineering.

Paul Luo Li et al. (2017). Cross-Disciplinary Perspectives on Collaborations with
Software Engineers. IEEE CHASE.

Paul Luo Li, et al. (2015). What Makes a Great Software Engineer? ACM/IEEE ICSE.

https://doi.org/10.1007/s10664-019-09773-y
https://doi.org/10.1109/CHASE.2017.3
https://doi.org/10.1109/CHASE.2017.3
https://doi.org/10.1109/ICSE.2015.335

In practice, CS
is also more
about API
learning and
than algorithm
design.

Kyle Thayer studied students in
coding bootcamps and found that
API learning dominated their
time, far more than programming
language learning. He developed a
theory demonstrating that API
knowledge quite unlike other
kinds of learning, and often not
well supported in or out of school.
Kyle Thayer et al. (2021). A Theory of Robust API Knowledge. ACM TOCE.

Kyle Thayer et al. Barriers Faced by Coding Bootcamp Students. ACM ICER.

https://doi.org/10.1145/3444945
https://doi.org/10.1145/3105726.3106176

And despite
our best
efforts in CS
to teach
programming
languages,
we often fail.

Greg Nelson found that students’
programming language
semantics knowledge is often far
more brittle than we think, and
explains much of later failure in CS
education.
Greg Nelson et al. Towards Validity for a Formative Assessment for
Language-Specific Program Tracing Skills. ACM Koli Calling.

Benjamin Xie et al. (2019). A Theory of Instruction for Introductory Programming
Skills. Computer Science Education.

https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235

And in
primary and
secondary,
CS is
necessarily
broader.

Alannah Oleson analyzed CS
learning standards and curricula
and found that schools, teachers,
and instructional designers lean
hard on design education
because the creativity in design
resonates more with students
than algorithms and data
structures. But they call these
design skills “CS”.
Alannah Oleson et al. (2020). On the Role of Design in K-12 Computing Education.
ACM TOCE.

https://doi.org/10.1145/3427594

And CS
broadly
excludes
social,
ethical,
political, and
justice
aspects of
computing.

The past two decades of social
science has revealed many
structural forms of bias and
inequity, some amplified by
computing, some created by it.

But none of this is taught at any
level of education. Calls to teach it
have only just emerged.

So what is CS
knowledge?

Language semantics we rarely teach
well, but aggressively assess.

Problem solving skills we rarely teach at
all, but aggressively assess.

API learning skills we assume are trivial
to learn.

Design skills that resonate deeply with
youth, but that deemphasize.

Decision making skills we rarely teach
or assess, but are crucial in industry.

Diversity literacy that is essentially
ignored, perpetuating oppression.

How should we
teach CS?

The typical
pedagogy in
CS classes
involves…

● Teacher explains concepts,
expects “osmosis” to
programming skills.

● Transfer does not happen, so
students learn skills
independently, with each other
or in office hours.

● Students are often punished for
this behavior under the guise of
academic misconduct.

● The only students who survive
this process are ones who arrive
with prior knowledge (like me).

We’ve known
this doesn’t
work for
decades. So
what does?

Through a series of projects,
students Mike, Benji, and Greg
found that teaching program
reading before writing, and
explicitly assessing reading
skills, can be effective at
promoting robust writing skills.
Greg Nelson et al. (2019). Towards Validity for a Formative Assessment for
Language-Specific Program Tracing Skills. ACM Koli Calling.

Benjamin Xie et al. (2019). A Theory of Instruction for Introductory Programming
Skills. Computer Science Education.

Michael J. Lee, et al. (2015). Comparing the Effectiveness of Online Learning
Approaches on CS1 Learning Outcomes. ACM ICER.

Michael J. Lee, et al. (2014). Principles of a Debugging-First Puzzle Game for
Computing Education. IEEE VL/HCC.

https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
http://dx.doi.org/10.1145/2787622.2787709
http://dx.doi.org/10.1145/2787622.2787709
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1109/VLHCC.2014.6883023

Teaching
explicit
programming
strategies
can help too.

With collaborator Thomas Lazota
and student Maryam Arab, we’ve
found that scaffolding problem
solving with step-by-step
procedures can help novices
match the performance of
experts.
Thomas D. LaToza et al. (2020). Explicit Programming Strategies. Empirical
Software Engineering.

Maryam Arab et al. (2021). HowToo: A Platform for Sharing, Finding, and Using
Programming Strategies. IEEE VL/HCC.

Maryam Arab et al. (2022). An Exploratory Study of Sharing Strategic Programming
Knowledge. ACM CHI.

https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1109/VL/HCC51201.2021.9576337
https://doi.org/10.1109/VL/HCC51201.2021.9576337
https://doi.org/10.1145/3491102.3502070
https://doi.org/10.1145/3491102.3502070

Prosocial
feedback is
key to
preserving
precious
self-efficacy
and
motivation.

Many subtle changes in
presentation of feedback — using
personal pronouns, redirecting
blame towards the machine, using
personal data, even giving
compilers eyes — can lead
students to attend more carefully
to instruction, improving learning.
Yim Register et al. (2020). Learning Machine Learning with Personal Data Helps Stakeholders Ground
Advocacy Arguments in Model Mechanics. ACM ICER.

Michael J. Lee et al. (2013). In-Game Assessments Increase Novice Programmers' Engagement and
Learning Efficiency. ACM ICER.

Michael J. Lee et al. (2012). Investigating the Role of Purposeful Goals on Novices' Engagement in a
Programming Game. IEEE VL/HCC.

Michael J. Lee et al. (2011). Personifying Programming Tool Feedback Improves Novice Programmers'
Learning. ACM ICER.

https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1109/VLHCC.2012.6344507
https://doi.org/10.1109/VLHCC.2012.6344507
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/2016911.2016934

Engaging
youth in
creating with
AI, especially
in with family,
quickly dispels
AI hype.

Through a series of studies,
Stefania Druga has found that
when youth make with classifiers,
they quickly come to see how
brittle AI can be, and how
responsible its creators are for
deciding who it serves and who it
doesn’t.
Stefania Druga, Amy J. Ko (2021). How Do Children’s Perceptions of Machine
Intelligence Change when Training & Coding Smart Programs? ACM IDC.

Stefania Druga, Fee Christoph, Amy J. Ko (2022). Family as a Third Space for AI
Literacies: How Do Children and Parents Learn about AI Together? ACM CHI.

https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3491102.3502031
https://doi.org/10.1145/3491102.3502031

Teaching
design skills
can benefit
greatly from
focusing on
assumptions.

Alannah Oleson developed and
tested the CIDER technique,
which systematically develops
students’ ability to identify
assumptions made in a software
design by showing them
assumptions that they didn’t
notice that other students did.
Alannah Oleson, Meron Solomon, Christopher Perdriau, Amy J. Ko (2022). Teaching inclusive design
skills with the CIDER assumption elicitation technique. ACM ToCHI.

Want to try it in your class?
Sign up for Al’s study!

https://doi.org/10.1145/3549074
https://doi.org/10.1145/3549074

So how
should we
teach CS?

Quite differently than we do now:

● Use active learning, with
targeted, personalized, in situ
direct instruction

● More formative feedback to
diagnose what students do and
don’t know; less summative.

● More explicit scaffolding of
programming skills, less “figure it
out yourself, alone.”

● Centering design and diversity
in how we define and
contextualize CS foundations.

How do we include
everyone?

It’s more than
just adding
outreach
programs,
and tweaking
curricula. It
requires
reconsidering
foundations.

CS has notions of rigor and
epistemological commitments
that are counter to inclusion.

Some members in CS also have
fundamental political opposition
to notions of equity (the goal of
ensuring students have what they
need to learn, even if some need
more than others).

Here are a few examples of these
deep cultural tensions…

Peer
mentorship is
fundamental
to developing
belonging and
identity in CS

We’ve shown that peer
relationships are essential.
Students report that strict rules
against collaboration disrupt their
ability to form community by
creating a culture of competition
and peer comparison.
Amy J. Ko et al. (2018). Informal Mentoring of Adolescents about Computing:
Relationships, Roles, Qualities, and Impact. ACM SIGCSE.

Amy J. Ko et al. (2017). Computing Mentorship in a Software Boomtown:
Relationships to Adolescent Interest and Beliefs. ACM ICER.

Harrison Kwik et al. (2018). Experiences of Computer Science Transfer Students.
ACM ICER.

https://doi.org/10.1145/3159450.3159475
https://doi.org/10.1145/3159450.3159475
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3230977.3231004

CS
assessments
are often biased
in ways difficult
to see without
psychometrics
expertise.

Benji Xie and Matt Davidson have
shown how tests used in CS
classes are viewed as objective,
but actually have systematic
racial and gender biases that
impose structural disadvantages
to students with marginalized
identities.
Benjamin Xie et al. (2021). Domain Experts’ Interpretations of Assessment Bias in a
Scaled, Online Computer Science Curriculum. ACM Learning at Scale.

Benjamin Xie et al. (2019). An Item Response Theory Evaluation of a
Language-Independent CS1 Knowledge Assessment. ACM SIGCSE.

Matt Davidson et al. (2021). Investigating Item Bias in a CS1 exam with Differential
Item Functioning. ACM SIGCSE.

https://doi.org/10.1145/3430895.3460141
https://doi.org/10.1145/3430895.3460141
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3408877.3432397
https://doi.org/10.1145/3408877.3432397

Integrating
social,
ethical, and
political
topics into CS
can engage
marginalized
students.

But Mara Kirdani-Ryan has found
that students with dominant
identities are often resistant to
such learning, deeming it off topic,
irrelevant to jobs. But these
sentiments come from faculty.
Mara Kirdani-Ryan et al. (2022). The House of Computing: Integrating
Counternarratives into Computer Systems Education. ACM SIGCSE.

Mara Kirdani-Ryan et al. (in review). “Taught to be automata”: Examining the
departmental role in shaping initial career choices of computing students

https://doi.org/10.1145/3478431.3499394
https://doi.org/10.1145/3478431.3499394

And talking
about
computing in
social,
political, and
ethical terms
requires a
sense of
safety.

Jayne Everson and Megumi
Kivuva found in one study that a
class of adolescents marginalized
in CS didn’t feel safe talking
about CS critically until they were
confident that teachers respected
their lived experiences and shared
their values about schools, CS,
and technology.
Jayne Everson et al. (2022). “A key to reducing inequities in like, AI, is by reducing
inequities everywhere first”: Emerging Critical Consciousness in a Co-Constructed
Secondary CS Classroom. ACM SIGCSE.

https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395

Jayne also found that a key
barrier to aspiring teachers
wanting to teach CS is a sense
that they would not belong, they
would be judged, and worse yet,
they would end up perpetuating
the same negative learning
cultures they had experienced in
CS in college.
Jayne Everson et al. (2022). “I would be afraid to be a bad CS teacher”: Factors
Influencing Participation in Pre-Service Secondary CS Teacher Education. ACM
ICER.

Prospective
CS teachers
internalize
fears about
CS, rigor, and
failure.

https://doi.org/10.1145/3501385.3543966
https://doi.org/10.1145/3501385.3543966

None of this
happens
without
excellent
teachers.

We need pathways that prepare a
diversity of CS educators
passionate about teaching not only
CS, but the intersections between
CS and every other discipline.

We just launch our new STEP CS
program at the University of
Washington, preparing equity and
justice-centered secondary
educators:

https://computinged.uw.edu/stepcs/

https://computinged.uw.edu/stepcs/

We can teach
diversity,
equity, justice
by reframing
CS as a
sociopolitical
discipline.

We wrote a 25 chapter
book, Critically
Conscious Computing,
to support our teacher
education efforts.

Reframes computing in
both technical and
sociopolitical terms,
helping teachers
develop youth literacy
about computing and
society.

Critically
Conscious
Computing
.org

https://criticallyconsciouscomputing.org
https://criticallyconsciouscomputing.org
https://criticallyconsciouscomputing.org
https://criticallyconsciouscomputing.org

Students who are blind, low vision,
have motor impairments, speak
languages other than English, don’t
have devices have been
systematically excluded.

In my sabbatical project, I’m building
a creative programming system
works for all abilities, all natural
languages, all devices, ensuring
everyone can learn. This requires an
entirely new language, runtime,
editor, debugger, APIs, docs, tutorials,
etc.

… and none of
this happens
works with our
current
programming
languages and
tools.

So how do we
include
everyone?

Fundamentally, it means:

● Abandoning narrow notions in CS
of rigor and merit

● Abandoning anti-collaborative
assessment practices, which are
systematically biased against
marginalized students

● Signaling the centrality of identity,
inclusion, and politics in CS

● Creating equity-centered teacher
education pathways

● Reinventing our computing
infrastructure for inclusion

What’s next?

These are just the things my lab has learned.

There are hundreds of computing education research
papers published every year that deepen our knowledge of
problems in CS and ways to address them.

Some of these discoveries are reshaping how we think
about what and who computing education is for…

… so what is CS for, if not supporting industry?

● Ensuring our future politicians, doctors, and HR
managers know that AI isn’t infallible magic.

● Educating a public that knows when and when not to
use data and algorithms to solve problems

● Educating engineers that have a deep humility about
their ignorance about how everyone else lives and
what everyone else values.

These visions raise questions about school

● What kind of literacies about computing are needed
and possible for a functioning democracy?

● How do we prepare not only more CS teachers, but
excellent, equity and justice-focused CS teachers, at
all levels?

● What knowledge do educators need to bring racial,
gender, and ability justice to their computing
classrooms?

These visions raise questions about capitalism

● Who does industry involvement in the CS curricula
benefit and what other ways might we resource and
shape school?

● What role might automation play in all of this, if any?
Or is automation inherently problematic in learning?

● What incentive does industry have to support any
equity goals in CS education, other than superficially
bolstering their reputation?

Are you CS faculty?

● Join us! It took me several years to gain competence in
education + learning sciences, but a pivot is possible
and fun. There’s lots of funding, wonderful students,
and endless challenging, open research questions.

● But come with humility. There are a hundred years of
scholarship about teaching, learning, and education,
and most CS faculty know little of it (and often believe
long disproved myths about about learning).

Are you education faculty?

● Although CS is not yet compulsory in schools, it is less
ignorable every day. Now is the time to shift some of
our precious attention — and money — to promoting
computing literacy.

● Hire tenure-track CS education faculty, integrate CS
into teacher education programs, and grow a robust
community of scholars. The University of Washington,
Seattle is doing it, why aren’t you? 😉

Are you a student?

We need contributions at all levels:

● Teachers and school leaders at all levels
● Instructional and curriculum designers
● Designers and engineers of CS ed tech
● Policy experts
● Computing education researchers

Pathways for all of these careers are emerging now.

Thank you! Summary

● CS isn’t what you think it is.
● If you teach CS, you probably

are doing it poorly without
knowing it.

● Including everyone means no
less than redefining CS, rigor,
merit, progress, and purpose.

● Come join us! We throw good
parties :)

