
The
Promise and Problems

of CS for All
Amy J. Ko, Ph.D.

The Information School

University of Washington, Seattle

Computing is everywhere and

everything, for better and worse.

It’s transforming

health and medicine

It enables globalized private

surveillance infrastructure

https://unsplash.com/photos/v_2FRXEba94
https://unsplash.com/photos/yOd-gjE7D68

It enables creative
expression.

It isolates us.

https://unsplash.com/photos/JQ0YVavMKLo
https://unsplash.com/photos/fnYHoNUJUNQ

It empowers It disempowers

https://unsplash.com/photos/IgUR1iX0mqM
https://unsplash.com/photos/G6k_uEjXygE

Everyone should learn about this

fierce and fraught medium.

Amy J. Ko, Alannah Oleson, Mara Kirdani-Ryan, Yim Register, Benjamin Xie, Mina Tari, Matt Davidson, Stefania
Druga, Dastyni Loksa, Greg Nelson (2020). It’s Time for More Critical CS Education. Communications of the
ACM (CACM), 31-33. https://doi.org/10.1145/3424000

https://unsplash.com/photos/1LLh8k2_YFk
https://doi.org/10.1145/3424000

In higher education, many do.

● At some colleges and universities, 1/3rd of students
major in CS (!) — almost 20% at MIT

● Most CS departments are overwhelmed with demand
● Demand has led to secondary markets such as

bootcamps, corporate training, online degrees, etc.
● Scale, and a commitment to “merit” has also

exacerbated deeply rooted problems with diversity,
equity, and inclusion.
Computing Research Association (2017). Generation CS: Computer Science Undergraduate Enrollments
Surge Since 2006. http://cra.org/data/Generation-CS/

http://cra.org/data/Generation-CS/

But in K-12, few students learn computing.

● Across the U.S., our best data shows that <30% of
schools offer CS electives

● … and <1% of students take a class.
● And most in North America who do are wealthy white,

Chinese, and Indian boys, many of whom have family
or friends in computing, or whose parents expect them
to pursue tech to support their families.

Code.org (2021). 2021 Annual Report. https://code.org/files/code.org-annual-report-2021.pdf

https://code.org/files/code.org-annual-report-2021.pdf

Why such disparities between

higher ed and K-12?

Margolis, Jane. Stuck in the Shallow End: Education, Race, and Computing. MIT press, 2017.
https://dl.acm.org/doi/book/10.5555/3153292

https://dl.acm.org/doi/book/10.5555/3153292

It’s partly structural.

- Unequal paths to develop interest.

- Unequal capacity for CS in schools.

- Unequal pathways to college.

- Unequal access to the internet.

But it’s also pedagogical.

Despite teaching CS for decades, we don’t know how to

equitably and effectively teach, prepare teachers, make

students feel welcome, make CS relevant to everyone,

assess knowledge, scale learning, …

And thus the status quo…

● CS education tends to filter out diversity through
narrow notions of rigor and merit

● CS education concentrates power and wealth
amongst white and Asian men

● The public lacks basic literacy about CS and how it
concentrates power and wealth

● We lack sufficient research to inform change
● We lack sufficient capacity to implement change

But there is hope!

● 15+ years of research funding for basic and applied
research in the US, UK, EU, Japan, Korea, China...

● A global community of researchers, teachers, and
activists that has grown an order of magnitude in the
past decade.

● A public that is realizing the importance of CS literacy
and beginning to wonder why youth (and politicians…
even engineers) aren’t learning it.

Why I started
doing computing
education, after
15 years in HCI.

What I’ve
discovered about
structural and
pedagogical issues
in teaching CS.

What grand
challenges remain
in research and
practice.

This talk

1. What is CS
knowledge?

2. How should we
teach it?

3. How do we include
everyone?

My unexpected path to

computing education research.

I learned to code because of pre-algebra.

● My math teacher required us to have a TI-82
graphing calculator.

● A classmate showed me a version of Tetris his
older brother had acquired. But it was too slow!

● I spent a summer reading the manual, and
rewriting the renderer, so I could play in class.

● I shared with my classmates, became their hero,
was praised by my teacher, and fell in love with
computing’s capacity for creative expression.

I studied CS + Psychology in the 90’s

● CS because I was poor and needed to make money
○ Most of what I learned was incredibly boring.
○ Classes leeched all of the joy from programming.
○ Most of my professors were unskilled teachers.
○ I watched many peers drop out out of boredom, confusion

● Psychology because behavior was fascinating
○ I was captivated in every class.
○ It explained so much of the world.
○ But I couldn’t get paid to study it.

Or could I?

● I discovered research!
● I learned I could study programming for $.
● I blended human-computer interaction and

software engineering, studying struggles to
understand code and inventing ways to make it easier.

● I earned my PhD at Carnegie Mellon, inventing,
theorizing, observing, and writing about
programming, then continued as a professor.

After tenure, I co-founded a startup.

I learned two things as CTO managing 8 engineers:

● Understanding code is hard.
● But it’s hard because learning is hard.

Nearly every difficulty my engineers faced was because
they struggled to learn a new programming language,
API, platform, or how to collaborate. When I found ways of
teaching them well, they excelled.

So in ~2012, I pivoted to computing education

I found a growing, passionate, collaborative community of
computing education researchers who also wondered:

● Why is learning to code so hard?
● Why is CS mostly white and Asian boys?
● Why do so many students drop out of CS?
● How can we teach CS more equitably and inclusively?
● How can tools help with teaching + learning?

Here’s what my lab and I have

discovered in the past decade.

What is CS
knowledge?

It’s not what
you think.

We in higher education usually
think of CS as:

● Programming languages

● Data structures

● Algorithms

● Theory of computation

● Artificial intelligence

● Systems, etc.

It is technical,
but it is also
cognitive,
social, and
political.
Paul Luo Li, et al. (2019). What
Distinguishes Great Software Engineers?
Empirical Software Engineering.

Paul Luo Li et al. (2017).
Cross-Disciplinary Perspectives on
Collaborations with Software Engineers.
IEEE CHASE.

Paul Luo Li, et al. (2015). What Makes a
Great Software Engineer? ACM/IEEE ICSE.

Paul Li interviewed + surveyed
2,000+ software engineers, and
while they viewed CS knowledge
as core, they often viewed it as
less important than the ability to
make complex technical
decisions in the context of
organizational, market, and
political uncertainties.

https://doi.org/10.1007/s10664-019-09773-y
https://doi.org/10.1007/s10664-019-09773-y
https://doi.org/10.1109/CHASE.2017.3
https://doi.org/10.1109/CHASE.2017.3
https://doi.org/10.1109/ICSE.2015.335
https://doi.org/10.1109/ICSE.2015.335

In practice, CS
is also more
about API
learning and
than algorithm
design.
Kyle Thayer et al. (2021). A Theory of Robust
API Knowledge. ACM TOCE.

Kyle Thayer et al. (2020) Barriers Faced by
Coding Bootcamp Students. ACM ICER.

Kyle Thayer studied students in
coding bootcamps and found that
API learning dominated their
time, far more than programming
language learning. He developed a
theory demonstrating that API
knowledge quite unlike other
kinds of learning, and often not
well supported in or out of school

https://doi.org/10.1145/3444945
https://doi.org/10.1145/3444945
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3105726.3106176

And despite
our best
efforts in CS
to teach
programming
languages,
we often fail.
Greg Nelson et al. (2020) Towards Validity
for a Formative Assessment for
Language-Specific Program Tracing Skills.
ACM Koli Calling.

Benjamin Xie et al. (2019). A Theory of
Instruction for Introductory Programming
Skills. Computer Science Education.

Greg Nelson found that students’
programming language
semantics knowledge is often far
more brittle than we think, and
predicts and explains much of
later failure in CS education.

https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235

And in K-12,
CS is being
embraced
framed more
broadly.
Alannah Oleson et al. (2020). On the Role
of Design in K-12 Computing Education.
ACM TOCE.

Alannah Oleson analyzed CS
learning standards and curricula
and found that schools, teachers,
and instructional designers lean
hard on design skills because
creativity resonates more with
students than algorithms and
data structures. But they call
design skills “CS”.

https://doi.org/10.1145/3427594
https://doi.org/10.1145/3427594

CS broadly
excludes
social,
ethical,
political, and
justice
aspects of
computing.
Amy J. Ko , et al. (2020). It’s Time for More
Critical CS Education. CACM.

The past two decades of social
science has revealed many
structural forms of bias and
inequity, some amplified by
computing, some created by it.

But none of this is taught at any
level of education. Calls to teach it
have only just emerged, first by
social scientists, then education
researchers. My lab has brought
that call to CS more broadly.

https://doi.org/10.1145/3424000
https://doi.org/10.1145/3424000

So what is CS
knowledge?

The usual topics, but also…

● Language semantics we rarely
teach well, but aggressively assess.

● Problem solving skills we rarely
teach at all, but aggressively assess.

● API learning skills we assume are
trivial.

● Design skills that resonate deeply
with youth, but that deemphasize.

● Decision making skills we rarely
teach or assess, but are crucial in
industry.

● Diversity literacy that is essentially
ignored, perpetuating oppression.

How should we
teach CS?

The typical
pedagogy in
CS classes
involves…

● Teacher explains concepts,
expects transfer to programming
skills.

● Transfer does not happen, so
students learn skills
independently, with each other,
online, and/or in office hours.

● Students are often punished for
this behavior under the guise of
academic misconduct.

● The only students who survive
this process are ones who arrive
with prior knowledge.

We’ve known
this doesn’t
work for
decades. So
what does?
Greg Nelson et al. (2019). Towards Validity for a
Formative Assessment for Language-Specific
Program Tracing Skills. ACM Koli Calling.

Benjamin Xie et al. (2019). A Theory of
Instruction for Introductory Programming
Skills. Computer Science Education.

Michael J. Lee, et al. (2015). Comparing the
Effectiveness of Online Learning Approaches
on CS1 Learning Outcomes. ACM ICER.

Michael J. Lee, et al. (2014). Principles of a
Debugging-First Puzzle Game for Computing
Education. IEEE VL/HCC.

Mike Lee, Benji Xie, and Greg Nelson
found that teaching program
reading before writing, and
explicitly assessing reading skills,
can be effective at promoting
robust writing skills.

https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
http://dx.doi.org/10.1145/2787622.2787709
http://dx.doi.org/10.1145/2787622.2787709
http://dx.doi.org/10.1145/2787622.2787709
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1109/VLHCC.2014.6883023

Teaching
explicit
programming
strategies
can help too.
Thomas D. LaToza et al. (2020). Explicit
Programming Strategies. Empirical
Software Engineering.

Maryam Arab et al. (2021). HowToo: A
Platform for Sharing, Finding, and Using
Programming Strategies. IEEE VL/HCC.

Maryam Arab et al. (2022). An Exploratory
Study of Sharing Strategic Programming
Knowledge. ACM CHI.

Benjamin Xie et al. (2018). An Explicit
Strategy to Scaffold Novice Program
Tracing. SIGCSE.

Thomas Lazota and Maryam Arab,
we’ve found that scaffolding
problem solving with
step-by-step procedures can
help novices match the
performance of experts.

https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1109/VL/HCC51201.2021.9576337
https://doi.org/10.1109/VL/HCC51201.2021.9576337
https://doi.org/10.1109/VL/HCC51201.2021.9576337
https://doi.org/10.1145/3491102.3502070
https://doi.org/10.1145/3491102.3502070
https://doi.org/10.1145/3491102.3502070
https://doi.org/10.1145/3159450.3159527
https://doi.org/10.1145/3159450.3159527
https://doi.org/10.1145/3159450.3159527

Mike Lee and Yim Register found
that subtle changes in feedback
— using personal pronouns,
redirecting blame to the machine,
using personal data, even giving
compilers eyes — causes students
to attend more carefully to
instruction, improving learning.

Prosocial
feedback is
key to
self-efficacy.
Yim Register et al. (2020). Learning Machine
Learning with Personal Data Helps
Stakeholders Ground Advocacy Arguments in
Model Mechanics. ACM ICER.

Michael J. Lee et al. (2013). In-Game
Assessments Increase Novice Programmers'
Engagement and Learning Efficiency. ACM
ICER.

Michael J. Lee et al. (2012). Investigating the
Role of Purposeful Goals on Novices'
Engagement in a Programming Game. IEEE
VL/HCC.

Michael J. Lee et al. (2011). Personifying
Programming Tool Feedback Improves Novice
Programmers' Learning. ACM ICER.

https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/3372782.3406252
https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1109/VLHCC.2012.6344507
https://doi.org/10.1109/VLHCC.2012.6344507
https://doi.org/10.1109/VLHCC.2012.6344507
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/2016911.2016934

Engaging
youth in
creating with
AI, especially
in with family,
quickly dispels
AI hype.
Stefania Druga, Amy J. Ko (2021). How Do
Children’s Perceptions of Machine
Intelligence Change when Training & Coding
Smart Programs? ACM IDC.

Stefania Druga, Fee Christoph, Amy J. Ko
(2022). Family as a Third Space for AI
Literacies: How Do Children and Parents
Learn about AI Together? ACM CHI.

Stefania Druga has found that
when youth collaborate with
family to train classifiers, they
quickly come to see how brittle AI
be, and how responsible its
creators are for deciding who it
does and doesn’t serve.

https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3491102.3502031
https://doi.org/10.1145/3491102.3502031
https://doi.org/10.1145/3491102.3502031

Alannah Oleson designed the
CIDER teaching method, which
systematically develops students’
ability to identify assumptions
made in a software design by
showing them assumptions that
they didn’t notice that other
students did.

Teaching
design skills
can benefit
greatly from
focusing on
assumptions.
Alannah Oleson, Meron Solomon,
Christopher Perdriau, Amy J. Ko (2022).
Teaching inclusive design skills with the
CIDER assumption elicitation technique.
ACM ToCHI.

Want to try it in your
class? Sign up for Al’s
study!

https://doi.org/10.1145/3549074
https://doi.org/10.1145/3549074

So how
should we
teach CS?

Quite differently than we do now:

● Use active learning, with
targeted, personalized, in situ
direct instruction on skills

● More formative feedback to
diagnose what students do and
don’t know; less summative.

● More explicit scaffolding of
programming skills, less “figure it
out yourself, alone.”

● Centering design and diversity
in how we define and
contextualize CS foundations.

How do we include
everyone?

It’s more than
just adding
outreach
programs,
and tweaking
curricula. It
requires
reconsidering
foundations.

CS has notions of rigor (merit)
and epistemology (positivism)
that cause exclusion.

Some in CS also have political
opposition to notions of equity ,
viewing any effort to ensure
students have what they need to
learn as “coddling” or “lowering
standards”.

Here are a few examples of these
deep cultural tensions…

Peer
mentorship is
fundamental
to developing
belonging and
identity in CS
Amy J. Ko et al. (2018). Informal Mentoring
of Adolescents about Computing:
Relationships, Roles, Qualities, and Impact.
ACM SIGCSE.

Amy J. Ko et al. (2017). Computing
Mentorship in a Software Boomtown:
Relationships to Adolescent Interest and
Beliefs. ACM ICER.

Harrison Kwik et al. (2018). Experiences of
Computer Science Transfer Students. ACM
ICER.

With many undergrads, I have
shown that peer relationships
are essential. Students report that
strict rules against collaboration,
designed to “accurately measure
merit”, disrupt their ability to form
community by creating a culture
of competition and peer
comparison.

https://doi.org/10.1145/3159450.3159475
https://doi.org/10.1145/3159450.3159475
https://doi.org/10.1145/3159450.3159475
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3105726.3106177
https://doi.org/10.1145/3230977.3231004
https://doi.org/10.1145/3230977.3231004

Assessments in
CS are often
biased in ways
difficult to see
without
psychometrics
expertise.
Benjamin Xie et al. (2021). Domain Experts’
Interpretations of Assessment Bias in a
Scaled, Online Computer Science Curriculum.
ACM Learning at Scale.

Benjamin Xie et al. (2019). An Item Response
Theory Evaluation of a Language-Independent
CS1 Knowledge Assessment. ACM SIGCSE.

Matt Davidson et al. (2021). Investigating Item
Bias in a CS1 exam with Differential Item
Functioning. ACM SIGCSE.

Benji Xie and Matt Davidson have
shown how tests used in CS
classes are viewed as objective,
but actually have systematic
racial and gender biases that
impose structural disadvantages
to students with marginalized
identities.

https://doi.org/10.1145/3430895.3460141
https://doi.org/10.1145/3430895.3460141
https://doi.org/10.1145/3430895.3460141
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3408877.3432397
https://doi.org/10.1145/3408877.3432397
https://doi.org/10.1145/3408877.3432397

Integrating
social,
ethical, and
political
topics can
engage
marginalized
students.
Mara Kirdani-Ryan et al. (2022). The House of
Computing: Integrating Counternarratives into
Computer Systems Education. ACM SIGCSE.

Mara Kirdani-Ryan et al. (in review). “Taught to
be automata”: Examining the departmental
role in shaping initial career choices of
computing students

But Mara Kirdani-Ryan has found
that students with dominant
identities are often resistant to
such learning, deeming it off topic,
irrelevant to jobs. But these
sentiments come from faculty.

https://doi.org/10.1145/3478431.3499394
https://doi.org/10.1145/3478431.3499394
https://doi.org/10.1145/3478431.3499394

Jayne Everson and Megumi
Kivuva found in one study that a
class of adolescents marginalized
in CS didn’t feel safe talking
about CS critically until they were
confident that teachers respected
their lived experiences and shared
their values about schools, CS,
and technology.

Talking about
CS in social,
political, and
ethical terms
requires a
sense of
safety.
Jayne Everson et al. (2022). “A key to
reducing inequities in like, AI, is by
reducing inequities everywhere first”:
Emerging Critical Consciousness in a
Co-Constructed Secondary CS
Classroom. ACM SIGCSE.

https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395
https://doi.org/10.1145/3478431.3499395

Jayne also found that a key
barrier to aspiring teachers
wanting to teach CS is a sense
that they would not belong, they
would be judged, and worse yet,
they would end up perpetuating
the same negative learning
cultures they had experienced in
CS in college.

Prospective
CS teachers
internalize
fears about
CS, rigor, and
failure.
Jayne Everson et al. (2022). “I would be
afraid to be a bad CS teacher”: Factors
Influencing Participation in Pre-Service
Secondary CS Teacher Education. ACM
ICER.

https://doi.org/10.1145/3501385.3543966
https://doi.org/10.1145/3501385.3543966
https://doi.org/10.1145/3501385.3543966
https://doi.org/10.1145/3501385.3543966

We also have
to explore how
to teach CS in
sociopolitical
ways.
Amy J. Ko , Anne Beitlers, Brett Wortzman ,
Matt Davidson , Alannah Oleson , Mara
Kirdani-Ryan , Stefania Druga , Jayne
Everson (2021). Critically Conscious
Computing: Methods for Secondary
Education .
https://criticallyconsciouscomputing.org

We wrote a book,
Critically Conscious
Computing: Methods
for Secondary
Education, to support
our teacher education
efforts.

Across 25 chapters, oit
reframes CS in technical
and sociopolitical terms
(e.g, how if-statements
perpetuate poverty)

https://criticallyconsciouscomputing.org

None of this
happens
without
excellent
teachers.
Amy J. Ko et al. (2023, to appear).
Proposing, Preparing, and Teaching an
Equity- and Justice-Centered Secondary
Pre-Service CS Teacher Education Program.
SIGCSE.

Anne Beitlers and I launched STEP
CS last Spring, a teacher
certification program that prepares
equity and justice-centered
secondary CS educators:

https://computinged.uw.edu/stepcs/

https://computinged.uw.edu/stepcs/

Teachers —
including
those of us in
higher
education —
also need
ongoing
professional
development.

Alannah, Richard Ladner, and I are
co-editing a new book, Teaching
Accessible Computing, which
teaches CS faculty how to
integrate accessibility topics into
all areas of CS teaching.

● Do you want to help write it?
Email me.

● Do want to read it? We hope to
release in Autumn 2023.

On sabbatical, I am designing a new
language, editor, and platform that includes
all abilities and all natural languages.
This requires a new language, editor,
debugger, documentation, etc., as current
ones often ignore accessibility, Unicode,
and the ways that these interact with
culture, ethnicity, and expression.

… and none of
this happens
without new
languages and
tools, as
current ones
exclude people
with disabilities
or who aren’t
English fluent.

So how do we
include
everyone?

Fundamentally, it means:

● Replacing notions of rigor and merit
in CS with more pluralist
epistemologies

● Abandoning anti-collaborative
assessment practices, which are
systematically biased against
marginalized students

● Centering identity, equity,
inclusion, and politics in teaching

● Creating CS teacher education
pathways and opportunities

● Building more inclusive
programming language stacks

What’s next?

These are just the things my lab has learned.

There are hundreds of computing education research
papers published every year that deepen our knowledge of
problems in CS and ways to address them.

Some of these discoveries are reshaping how we think
about what and who computing education is for…

… so what is CS for, if not supporting industry?

● Ensuring our future politicians, doctors, and HR
managers know that AI isn’t infallible magic.

● Educating a public that knows when and when not to
use data and algorithms to solve problems

● Educating engineers that have a deep humility about
their ignorance about how everyone else lives and
what everyone else values.

These visions raise questions about school

● What kind of literacies about computing are needed
and possible for a functioning democracy?

● How do we prepare not only more CS teachers, but
excellent, equity and justice-focused CS teachers, at
all levels?

● What knowledge do educators need to bring racial,
gender, and ability justice to their computing
classrooms?

These visions raise questions about capitalism

● Who does industry involvement in the CS curricula
benefit and what other ways might we resource and
shape school?

● What role might automation play in all of this, if any?
Or is automation inherently problematic in learning?

● What incentive does industry have to support any
equity goals in CS education, other than superficially
bolstering their reputation?

Are you CS faculty?

● Join us! It took me years to gain competence in
education + learning sciences, but a pivot is possible
and fun. There’s lots of $, wonderful students, and
endless challenging, open research questions.

● But come with humility. There are a hundred years of
scholarship about teaching, learning, and education,
and most CS faculty know little of it (and often believe
long disproved myths about about learning).

Are you education faculty?

● Although CS is not yet compulsory in schools, it is less
ignorable every day. Now is the time to shift some of
our precious attention — and money — to promoting
computing literacy.

● Hire tenure-track CS education faculty, integrate CS
into teacher education programs, and grow a robust
community of scholars. The University of Washington,
Seattle is doing it, why aren’t you? 😉

Are you a CS student?

We need contributions at all levels:

● Teachers and school leaders at all levels
● Instructional and curriculum designers
● Designers and engineers of CS ed tech
● Policy experts
● Computing education researchers

Pathways for all of these careers are emerging now.

Thank you! Summary

● CS isn’t what you think it is.
● If you teach CS, you probably

are doing it poorly without
knowing it.

● Including everyone means
reinventing CS, rigor, merit,
progress, purpose, and tools.

● Come join us! We throw good
parties :)

