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Me
• Professor for the last ~10 years at UW Seattle 

• Ph.D. from Carnegie Mellon’s HCI Institute 

• Background in CS, Psychology, and Design
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Code is the most powerful, least 
usable interface we’ve invented
• Everyone that wants to code should be able to 

• But there are immense learning barriers 

• I spent the first decade trying to lower these 
barriers by creating more usable interactive 
developer tools
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Skills > tools
• I spent 3 years as CTO 

managing ~8 developers at 
AnswerDash 

• What I saw: 

• Tools only amplify skills 

• Skills come from learning 

• Learning comes from teaching 

• I spent most of my time teaching
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Millions want to learn to code
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Millions want to learn to code

$1.3 billion
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Are people learning?
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we have (some) evidence



77% of Code.org's 500 million K-12 
learners complete 0-2 puzzles code.org
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Record enrollment in AP CS, but most 
don’t take exam, and 60% who do, fail it 
(especially underrepresented 
minorities) College Board
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After a year of intro courses, most 
undergrads can’t accurately predict the 
outcome of simple programs, or solve 
simple programming problems  McCracken et al. 2001, 
Lister et al. 2004 et al. 2013, Seppälä et al. 2015
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In 2017, 23,000 adults in 95 U.S. coding 
bootcamps; 24 report dropout rates of 
10-50% CourseReport.com
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62% of employers view applicants to entry-
level developer positions as lacking basic 
programming knowledge Career Advisory Board Survey 2016
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So I did some reading.
• Read seminal literature in learning science and 

education e.g. How people learn: Brain, mind, 
experience, and school 

• Read 30 years of computing education research: 

• ACM International Computing Education Research 
Conference (ICER) 

• ACM Transactions on Computing Education (TOCE) 

• SIGCSE Technical Symposium (SIGCSE)
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Why people fail to learn to code
1. People find computing boring, solitary, unwelcoming 

2. People struggle to learn their first programming language 

3. People struggle to solve programming problems 

4. Teachers struggle to teach these things 

5. Teachers blame learners for failure 

6. People lose confidence and quit
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My goal
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• Why are these hard? 
• What are effective, equitable, and scalable 

ways for people to learn these skills?



This talk
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• Why learning to program is hard (3 studies) 

• Making programs easier to read (1 theory, 3 ideas) 

• Making programs easier to write (1 theory, 1 idea)



Why is learning to 
program difficult?
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Study 1 — 70 high school teens



High school
Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software 
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER. 

Ko, A.J. et al. (2018). Informal Mentoring of Adolescents about 
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.
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• Many teens lacked feedback or support about their 
learning from teachers and family: 

• He do not spent much time with me to be able to 
understand my problem in the class or unable to help 
me on it... throughout the AP class I would cried myself 
to sleep in silent without letting my older brother know 
my struggle... (M, Asian, 17) 



High school
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• Some teens had informal computing mentors who 
provided encouraging instruction and feedback. 

• Associated with stronger interest in learning to code, 
independent of gender, socioeconomic status. 

• Teens sought teachers and mentors who: 

• Would not judge them for their failures 

• Would inspire them to learn 

• Had the expertise to guide them

Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software 
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER. 

Ko, A.J. et al. (2018). Informal Mentoring of Adolescents about 
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.



Study 2 — 26 Bootcamps attendees



Bootcamps
• Some bootcamps were inclusive and encouraging, 

but many offered no instruction or feedback: 

• So they’re trying to get you into this mentality of you 
have to read all the documentation. They sit back in the 
background [to let students read the documentation], 
and what annoys me is that I’ve paid a lot of money so 
that I could have somebody there to teach it to me.

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp 
Students. ACM ICER.
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Bootcamps
• Many bootcamps offered an unwelcoming culture 

for learners without prior knowledge: 

• It was divided, the class. Those with experience, I think, 
they were looking down at [those of us without 
experience] because maybe there were certain things 
we were supposed to know and we didn’t.

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp 
Students. ACM ICER.
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Study 3 — 30 Coding Tutorials



Tutorials
• Four learning science principles 

1. Connect instruction to prior knowledge 

2. Organize declarative knowledge 

3. Offer personalized feedback on practice 

4. Foster self-regulation in problem solving 

• Ada completed all 30 tutorials across 100+ hours, 
judging every lesson against these principles

Kim, A. and Ko, A.J. (2017). A Pedagogical Analysis of Online 
Coding Tutorials. ACM SIGCSE.
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Tutorials
• Most tutorials failed to meet all them: 

1. No connection to prior knowledge 

2. No organization of declarative knowledge about 
programming languages 

3. No personalized feedback on program correctness or 
errors 

4. No instruction on how to solve programming 
problems.

Kim, A. and Ko, A.J. (2017). A Pedagogical Analysis of Online Coding Tutorials. ACM SIGCSE.
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Why is learning to 
program difficult?
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Few of these contexts actually teach 
programming. There are many 
opportunities to read and write code, but 
learners receive little feedback on whether 
they are reading or writing correctly.
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One theory, three ideas

Making programs 
easier to read



Extant theories about why 
understanding programs is hard
• Wrong programming language 

• Static typing, syntax, and errors matter, but only a little (e.g., 
Stefik & Siebert 2013) 

• Wrong IDE 

• Relative to text, drag and drop “blocks” editors reduce 
dropout, but don’t improve learning (Cooper et al. 2001) 

• Wrong biology 

• No evidence of “geek gene” or bimodal grade distributions 
(Patitsas et al. 2016)
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Wrong 
pedagogy



A new definition of PL knowledge

Knowing a PL means: 

1. Being able to reliably and accurately predict an arbitrary 
program’s operational semantics without the aid of a 
runtime environment. (Reading a program and knowing 
what it will do). 

2. Knowing how syntax maps onto operational semantics. 

Note that I’m excluding knowledge of common design 
patterns, architectures, tools, norms, etc. This strictly 
concerns the ability to accurately read programs.
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An example
Knowing a JavaScript if-statement means knowing:

if(dataIsValid	&&	serviceIsOnline)	{	
submit();	

}	
else	{	
	alert(“Bad	error	message!”);	
}

1 Condition is evaluated

2 If it’s true, all of the 
statements between the 
first set of braces are 
executed, and everything 
between the else braces 
are skipped.

3 Otherwise, the statements in the first 
set are skipped, and the statements in 
the second set are executed.
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Knowing a entire PL
• Knowing all of JavaScript means knowing all of the 

semantics for JavaScript’s entire grammar 

• That’s about 90 non-terminals in the grammar, each 
with its own semantic nuances 

• Most introductory programming courses never 
explain any of this: 

• In UW’s CS1 course, the 1st homework is to write a Java 
program with function declarations, function calls, string 
literals. None of the lectures explain any of this, and, not 
surprisingly, most students fail.
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Four major pedagogies
Learn formal semantics Explain via natural language

Write code Step through execution
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Four major pedagogies
Learn formal semantics Explain via natural language

Write code

No syntax mapping; 
Requires learning a notation

Ambiguous, weak 
syntax mapping

Requires learner to 
infer semantics

Step through execution

Masks semantics within a 
line of code
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How should we teach 
syntax semantics?
Teach a “notional machine” du Boulay 1989 

1. Show each step of semantics and their explicit 
effects on the program counter, call stack, and 
memory 

2. Map semantics to concrete syntax, creating an 
association between syntax and its side effects
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Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover 
semantics through 

debugging

Tutor explicitly 
teaches 

semantics

Learner 
reminded to 

follow semantics
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Gidget
• Frame coding as a collaboration 

between a person and computer 

• Give learner a sequence of 
debugging puzzles 

• Guide learners’ attention to 
contextualized instruction on 
syntax and semantics of it’s 
Pythonic language

helpgidget.org
Mike Lee
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Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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code 
editor

runtime 
state

explanation
test 

case

output
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37 levels teaching 12 semantics, including 
formative assessments to verify understanding
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level 20 teaches function calls

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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level 20 teaches function calls
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Gidget helpgidget.org
Mike Lee
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Function 
definition 
semantics



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget explains 
syntax and semantics



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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The green line 
and Gidget’s 

speech bubble 
maps syntax to 

semantics



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

42

The green line 
and Gidget’s 

speech bubble 
maps syntax to 

semantics



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

43



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget points 
out function 
definitions



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget explains 
name resolution 
semantics



Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC
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Gidget
• Four online controlled experiments with over 1,000 

adult learners: 

• Learning is 2x as fast as Codecademy tutorial, 2x as 
much as open-ended creative exploration Lee & Ko 2015 

• Assessment levels significantly increase learning 
efficiency Lee et al. 2013 

• Giving compiler a face and using personal pronouns 
(I, you, we) draws learner’s attention to semantics, 
doubling learning efficiency Lee & Ko 2011 

• Changes attitudes about difficulty of learning to 
code from negative to positive in 20 minutes Charters et 
al. 2014

Mike Lee
helpgidget.org
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Gidget

20,000+ have played via word of 
mouth, including Chicago Public 
Schools, many retirees (apparently 
including my mom) 

Directly impacted the design of 
code.org's CodeStudio and Apple’s 
Swift Playgrounds, used by 10+ million 
learners.

Mike Lee
helpgidget.org Lee et al. 2014, VL/HCC
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http://code.org
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PLTutor
• Convert operational semantics into 

an interactive textbook to be read 
before learning to write programs 

• Covers the entire JavaScript 
semantics in about 3 hours of 
practice 

• Learner should be able to 
accurately predict the behavior of 
any JavaScript program

Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.
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PLTutor
Greg Nelson
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Each chapter covers a set of semantics through a 
series of programs



PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.
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Program links 
syntax to semantics

Lesson explains 
purpose of 
semantics

State explains 
semantics
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purpose of 
semantics



PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.

53

purpose of 
semantics



PLTutor
Greg Nelson
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System for Program Tracing in CS1. ACM ICER.
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Next moves through both program 
execution trace and instruction.
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Next moves through both program 
execution trace and instruction.



PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.
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State teaches semantics in a runtime context, 
Lesson generalizes back to purpose
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State teaches semantics in a runtime context, 
Lesson generalizes back to purpose



PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.
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Reverse execution allows learner to review 
instruction they didn’t understand.
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Lesson explains 
the side effect of 
the semantics 
before proceeding 
to further 
examples.
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Assessments embedded in execution trace require 
learners to predict side effects of semantics.
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Assessments embedded in execution trace require 
learners to predict side effects of semantics.
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• Required complete re-
architecting of language stack 

• Must preserve provenance of 
all compiler and runtime state 
to facilitate reversibility and 
embedded explanations 

• Redesigned grammar to 
facilitate granular explanations
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PLTutor
Greg Nelson

• Compared PLTutor to Codecademy 
in a 4-hour controlled experiment 
with 40 CS1 students 

• Measured learning with SCS1, a 
validated assessment of CS1 
learning 

• PLTutor had 60% higher learning 
gains, learning gains predicted 
midterm scores

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). 
Comprehension First: Evaluating a Novel Pedagogy and Tutoring 
System for Program Tracing in CS1. ACM ICER.
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Strategy
Benji Xie

STRATEGY: Understanding  the  Problem; 
  Run  the  Code  (like  a  computer). 

 

UNDERSTAND THE PROBLEM 

1. Read  question: Understand  what you  are  being  asked  to  do. At the  end  of the problem 
instructions, write  a  check mark: ✔ 

2. Find where  the  program begins  executing. At the  start of that line, draw an  arrow: → 
RUN THE CODE 

3. Execute  each  line  according  to  the  rules of Java: 

a. From the  syntax, determine  the  rule  for each  part of the  line. 

b. Follow the  rules. 

c. Update  memory table(s). 

d. Find  the  code  for the  next part. 

e. Repeat until  the  program terminates. 

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An 
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

• When learners have brittle 
knowledge of semantics, 
they often guess how 
programs will execute 

• An explicit strategy for 
reading programs should 
outperform guessing
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Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An 
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.
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Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.



Strategy
• In a controlled experiment with 15 minutes of 

practice, 12 students who learned the strategy 
were more systematic than 12 who didn’t, 
resulting in: 

• 15% higher performance on problems in 
the lab 

• 7% higher on midterm that was mostly 
writing focused 

• No midterm failures (compared to 25% 
failure in control)

Benji Xie

STRATEGY: Understanding  the  Problem; 
  Run  the  Code  (like  a  computer). 

 

UNDERSTAND THE PROBLEM 

1. Read question: Understand what you are being asked  to  do. At the  end  of the problem 
instructions, write  a  check mark: ✔ 

2. Find where  the program begins executing. At the start of that line, draw an arrow: → 
RUN THE CODE 

3. Execute  each line according to the rules of Java: 

a. From the syntax, determine the  rule  for each  part of the line. 

b. Follow the  rules. 

c. Update memory table(s). 

d. Find the  code for the next part. 

e. Repeat until  the program terminates. 
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Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An 
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.
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Requiring learners to directly observe 
operational semantics and map them to 
syntax can significantly increase 
learning outcomes.

Making programs 
easier to read



Making programs 
easier to write

68

One theory, one idea



Program writing
• Little prior work theorizing about what 

program writing skills actually are 

• Most prior work compares to expert and novices, 
showing that novices are unsystematic, 
speculative, and ineffective 

• A few papers show that the more developers 
“self-regulate” their problem solving, the more 
productive they are
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Self-regulation
• From educational psychology, refers to one’s 

ability to reflect on, critique, and control one’s 
thoughts and behaviors during problem solving: 

• Explicit planning skills 

• Explicit monitoring of one’s process 

• Explicit monitoring of one’s comprehension 

• Reflection on one’s cognition 

• Self-explanation of decisions

Schraw, Crippen,, & Hartley (2006). Promoting 
self - regulation in science education. Research 
in Science Education 36, 1-2, 111 - 139.
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Great engineers are 
highly self-regulating
• Interviewed 59 senior developers at Microsoft and 

surveyed 1,926 about what makes a great software 
engineer: 

• Top attributes included: 

• Resourceful 

• Persistent 

• Self-regulating

Paul Li

71

Li, P., Ko, A.J., & Zhu, J. (2015) 
What Makes a Great Software 
Engineer? ICSE.



Dastyni’s theory of 
program writing
• Programming involves iteration 

through 6 key activities: 

• Interpreting problems 

• Searching for similar problems 

• Searching for solutions 

• Evaluating solutions 

• Implementing solutions 

• Evaluating implementations

• Programming requires: 

• A knowledge repository of 
problems and solutions (in 
memory or elsewhere) 

• Self-regulation skills to help 
a programmer: 

• Select strategies for 
completing activity 

• Deciding when a strategy 
is failing or successful

Dastyni Loksa
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Self-regulation is 
related to success
• Observed think aloud of 37 novices in CS1 and 

CS2 writing solutions to several programming 
problems. 

• Most novices engaged in self-regulation, but 
infrequently and superficially 

• Self-regulation related to fewer errors, but only for 
novices with sufficient prior knowledge to solve 
problems

Dastyni Loksa
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Can we teach it?
• Taught 48 high schoolers with no prior programming 

experience HTML, CSS, JavaScript and React for 1 
week, then had them build personal web sites for 1 
more week 

• Treatment group received: 

• Learned Dastyni’s theory of program writing 

• Before receiving help, required to practice self-regulation, 
explaining which activity they were doing, what their 
strategy was, and whether it was working
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Yes!
Dastyni Loksa

More productive

More self-defined work

Higher programming self-efficacy

No growth mindset erosion
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Teaching programming 
self-regulation promotes 
independence, increased 
productivity, and higher 
self-efficacy.

Making programs 
easier to write



What’s next?
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CS1 mastery 
New NSF Cyberlearning

• Prior work shows increased learning, but not mastery, 
which requires personalized content and feedback 

• Human tutors can provide this, but can’t scale it 

• We’re building a tutor that provides infinite 
personalized practice by applying program synthesis 
and our theories of programming knowledge 

• Goal: every student masters CS1 content in 10 hours

Benji Xie
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Strategies 
New NSF SHF Medium

• Self-regulation is only useful with good strategies 

• Defining 1) what programming strategies are, 2) how 
to describe them, 3) which ones exist, 4) when they’re 
effective, 5) support for learning and executing them. 

• Goal: A new science of programming strategies 
analogous to other disciplines’ “engineering 
handbooks,” which show how to solve problems in a 
discipline

Thomas LaToza
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Robust API learning

• New theory of API knowledge as domain concepts, 
design templates, and API execution semantics 

• Techniques to automatically extract this knowledge 
from API implementations 

• Building a tutor that generates on-demand API 
tutorials using this extracted knowledge. 

• Goal: rapid, robust API learning at scale

Kyle Thayer
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Can’t do it alone…
• Many great faculty contributing to computing 

education research from PL, Software Engineering, 
and HCI. Join us! 

• Our doctoral students need tenure-track positions to 
continue their work. Hire them!
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Millions try to learn to code, but fail. 

Explicit instruction and feedback on semantics is key. 

Learning tech like Gidget and PLTutor are scalable and effective 

Pedagogies like tracing strategies and self-regulation 
prompting are effective and immediately adoptable

Thanks!

Supported by NSF, Google, Microsoft, Adobe, the 
University of Washington. 

Thanks to my wonderful doctoral and 
undergraduate students, and the hundreds of 
participants in our studies!
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