
Amy J. Ko
Brad Myers

Asking and Answering
Why and Why Not Questions
about Program Behavior

and

Andrew J. Ko 2

... identifying and correcting defects
during the software development process
represents over half of development costs ...
and accounts for 30 to 90 percent of labor
expended to produce a working program.”

National Institute of Standards and Technology, 2002

Testing, debugging, deployment, maintenance...

Initial development

Andrew J. Ko 3

10 Alice developers in the lab and field

30 Java developers using Eclipse

30 students learning Visual Studio

18 software teams at Microsoft

why is debugging so difficult?
four studies to find out...

Andrew J. Ko 4

today’s tools require people to
guess what code is responsible

the problem

Andrew J. Ko 5

why is this stroke black?

why didn’t this color panel change?

one bug, two symptoms

a painting program

Andrew J. Ko 6

why is the stroke black?

maybe its a slider
initialization problem...

maybe the slider isn’t
connected to anything...

is the JSlider argument
incorrect?

maybe the color isn’t
computed properly...

breakpoint

println()

10 minutes 30× speed

✖

✖

✖

✓

debugging with current tools

Andrew J. Ko 7

reverse execution

visualizing execution

program slicing

asserting behavior

comparing executions

guess where to pause execution

guess what to look for

guess what code to slice on

guess what properties won’t hold

find successful execution

debugging with research tools

Andrew J. Ko

the whyline

8

what if people could
ask about output and

 see the code responsible?

Andrew J. Ko 9

whyline for Java

Andrew J. Ko 10

why was the line black?

record the problem

11

12

load the recording

why was the line color black?

13

14

code

executions of code
(execution events)

why was the line color black?

followup questions
about selected event

selected
dependency
highlighted in
source

why was the line color black?

why was the line color black?

why did color = black?
because gSlider
was used twice,
ignoring bSlider

Andrew J. Ko 17

why didn’t the panel repaint?

find the appropriate time

click on relevant output

objects
related to
rectangle

fields and
methods of
selected
object

it did paint...

this method did execute!

this method did execute!

where did black come from?

step forward to
getColor() call

found the bug

why did getColor()
return black?same buggy code

(gSlider used twice)

Andrew J. Ko 23

how does the Whyline work?

Andrew J. Ko

load

24

edit compile debugrecord askfix ...
1 2 3

instruments bytecode
records thread history

converts serial history to
random access

extracts questions from code

the whyline cycle

system...

developer...

25

drawString(x, y, string)

drawLine(x, y, width, height)

setColor(color)

find primitive output statements

extract primitive questions

26

drawString(x, y, string)

setColor(color) why did argument = value?

drawLine(x, y, width, height)

find output-invoking classes

27

class PencilPaint
draw() {

...
drawLine(x1, y1, x2, y2)

upstream
control
dependencies

extract output-invoking questions

28

why did subject get created?
why did variable have this value?
why didn’t variable change?

class PencilPaint
draw() {

...
drawLine(x1, y1, x2, y2)

find output-affecting fields

29

upstream data
dependencies

ComboBox combo = new
ComboBox(model)
...

extract output-affecting field questions

30

ComboBox combo = new
ComboBox(model)
...
paint() {

sorting field questions by type

31

i.e., three fields of
type Dimension2D

“clearButton”
has many
fields

questions organized by
primitives and superclass

filtering questions by familiarity

32

class Button
 paint() {
 lookandfeel.paint()

intermediaries,
delegates, proxies,
helpers, etc.
- may be unfamiliar

PencilPaint
ComponentU
I
PaintCanvas
ScrollPaneUI
JScrollPane
ComponentU
I
JPanel

all classes familiar classes
■ familiarity = classes...

- declared in editable code
- referenced in editable code

■ only include questions
about familiar classes

‘why did’ answers

33

answer derived with precise dynamic slicing

a timeline visualization of dependencies
control dependencies as nested blocks
data dependencies inside of blocks

time

th
re

ad
s

control event
data
event

data
event

‘why didn’t’ answers

34

answer with call graph reachability analysis

a visualization of a subgraph of the call graph, with

unexecuted methods and branches

misdirected calls and branches

unexecute
d method

unexecute
d method

misdirect
ed branch

misdirected execution events

how effective is the Whyline?

Andrew J. Ko 36

in a study of two ArgoUML bugs,
developers with the Whyline were ...

time (min)

0

19 whyline
control

successful

0
4
8

successful 3x as often2x as fast

effectiveness

Andrew J. Ko 37

memory and performance (see paper)
 slow to load traces
 fast to answer questions

infeasible for long executions
instrumenting real time software
changes behavior

performance

Andrew J. Ko 38

quality of question phrasing ∝
quality of identifiers
question and answer precision ∝
type information

limitations

Andrew J. Ko 39

good for causal explanations
not change suggestions

good for ‘where is the buggy code’
not ‘why is the code buggy’

limitations

Andrew J. Ko 40

today’s tools require guessing, costing
time, money and accuracy of knowledge

the whyline limits guesswork by
supporting queries on program output

the whyline saves time,
improves success rates

summary

This work was supported by the National Science Foundation under NSF grant
IIS-0329090 and the EUSES consortium under NSF grant ITR CCR-0324770.
The author is also supported by an NDSEG fellowship and by a NSF Graduate
Research Fellowship.

questions

http://faculty.washington.edu/ajko
 or Google “whyline”

download the Java whyline at

slowdown

42

program LOC events YourKit profiler
slowdown

Whyline
slowdown

Binclock 177 140K 2 2

jTidy 12K 16 million 4 15

javac 54K 35 million 2 7

jEdit 66K 9 million 2 8

ArgoUML 113
K

18 million 3 5

user interfaces are largely idle

trace size

43

program LOC events size
(mb)

zipped
(mb)

Binclock 177 140K 5 mb 2 mb

jTidy 12K 16 million 118 mb 14 mb

javac 54K 35 million 284 mb 51 mb

jEdit 66K 9 million 84 mb 12 mb

ArgoUM
L 113K 18 million 137 mb 18 mb

of events ∝ complexity of computation

