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Thanks Peggy
• My undergrad research mentor 

Margaret Burnett introduced me to 
HCI and software engineering 

• She taught me how think, how to 
read, and to develop scientific 
arguments 

• She helped me navigate to graduate 
school, to connect with other mentors 

• I wouldn’t be here if she hadn’t 
mentored me for the past 20 years

 2



Andrew J. Ko

Thanks Brad
• My Ph.D. advisor, Brad Myers, 

taught me how to choose great 
projects, how to convey the 
essence of their insights 

• He seeded me with the 
intriguing idea of asking systems 
to explain themselves 

• His relentless constructive 
critique but unbounded 
availability helped me learn fast
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Thank you
• This community taught me 

technical rigor, tested the 
limits of my humanism 

• You provided a (then) 30-year 
history of powerful ideas 
about dependencies, analysis, 
architecture, program 
comprehension, and 
encapsulation
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Thank you 
academia
• I’ve been fortunate to have 

dozens of outstanding teachers 
across my life, spanning math, 
physics, sociology, psychology, 
neuroscience, business, English, 
philosophy, design, art, learning, 
and chemical engineering 

• My ideas are mere 
compositions of those I’ve 
learned from my teachers
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Big ideas 
in the Whyline
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Key theoretical insight
• Debugging is slow because 

developers iteratively test brittle 
hypotheses about what caused a 
failure by manually collecting 
runtime data 

• Debugging would be faster if 
developers worked backwards 
from well-understood failure to 
cause, relying on dynamic 
dependencies precisely gathered 
by a tool
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root cause analysis

scientific method
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• Record an execution 
trace, reproducing 
an interactive 
timeline of program 
output 

• Allow developers to 
select questions 
about properties of 
output they know to 
be wrong

The tool
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• Answer questions with 
precise backwards 
dynamic slicing on output 
properties 

• Present slice interactively, 
allowing developers to 
navigate causes to isolate 
the defect, using their 
knowledge of architecture 
and requirements to 
identify defects

The tool 
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Key results
• Novices with the Whyline debug 8x faster than 

novices without it Ko & Myers 2004 

• Novices with the Whyline 2x faster than experts 
without it Ko & Myers 2008 

• Experts with the Whyline were 3x more successful 
and 2x faster than experts without it Ko & Myers 2009
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Academic impact
• Across 4 papers and many citations: 

• Influenced the design of dozens of other interactive 
developer tools in SE and HCI 

• Inspired dozens of empirical studies about other hard 
questions to answer about software behavior in SE 

• Replicated and extended on dozens of other platforms 
and languages in SE, HCI, CSEd, Databases 

• Helped trigger a resurgence of research on trace-based 
debugging tools in SE, HCI, PL
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Industry impact
• Caused Adobe to investigate debugging tools for 

Flash and other design tools 

• Influenced Microsoft’s efforts at building .NET 
execution tracing infrastructure, Debugger 
Canvas, ChakraCore 

• Influencing Apple’s Safari developer tools 

• Influencing code.org's K-12 tools for learning to 
code
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http://code.org
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Big ideas 
about scientific practice
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Reading accelerates innovation
• “The way to get good ideas is to get lots of 

ideas and throw the bad ones away” — Linus 
Pauling, Nobel laureate, Chemistry 

• One way I took this was to never forget that there are 
hundreds of thousands of papers full of powerful 
ideas, and we should use them 

• I spent 3 months reading 900+ papers about 
debugging, diagnostics, human error, root cause 
analysis, well beyond the boundaries of CS
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Reading accelerates innovation
• The work that most influenced me was a paper that 

Mark Weiser cited in his Program Slicing paper: 

• Gould, J. D., & Drongowski, P. (1974). An exploratory study 
of computer program debugging. Human Factors, 16(3). 

• It showed that 

• Debugging required analyzing data flow 

• Developers satisficed their data flow analysis 

• Developers analyzed many more irrelevant than relevant 
statements
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Observation develops insight
• “A few observations and much reasoning 

lead to error; many observations and a little 
reasoning lead to truth” — Alexis Carrel, 
Nobel laureate, Physiology 

• As an HCI researcher, I took this to mean that if I 
didn’t deeply understand the experience of 
debugging, I could not simplify it, no matter how 
much I reasoned about it.
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Observation develops insight
• I spent another 3 months after reading observing 

people debug: hundreds of novices, experts, and 
myself. 

• Led to a rich intuition about debugging that helped 
me predict the utility of design choices I made in 
the Whyline 

• I still use this intuition today to judge the utility of 
my research ideas and the ideas published in this 
community
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Explain why, not just how
• “He who loves practice without theory is like the 

sailor who boards ship without a rudder and 
compass and never knows where he may cast” — 
Leonardo da Vinci 

• I took this to mean that the true value of inventions is 
not in explaining how they work, but why they work. 

• These explanations are the generalizable knowledge 
that stands the test of time, that transfer from tool to 
tool
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Explain why, not just how
• The key thing that made the Whyline work was 

that I synthesized my intuition about debugging 
into an theory of how people debug and how 
tools mediate their strategies. 

• It was this theory, and not the tool itself, that was 
the core of the Whyline’s innovation. 

• The tool was merely an embodiment of that 
theory, helping me test and refine the theory.
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Big ideas 
about automation
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Automation is insufficient
• “…in practice slicing is fairly fast, and can often 

eliminate large numbers of unnecessary 
statements from slices of programs” – Mark 
Weiser, “Program slicing.” ICSE. 

• He did not claim that it was useful.  

• And yet, of 4,500 papers that have investigated slicing, 
only 3 evaluated developers’ use of slicing tools, all 
finding that slices are too large, hard to navigate, and 
incomprehensible at scale.
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Automation is insufficient
• Our field’s key mistake was assuming that  

1. Useful slices are trivial for developers to express 

2. The size of a slice determines its comprehensibility 

• The Whyline showed neither are true. Making slicing useful 
required: 

• A new paradigm for expressing a slice (output interrogation) 

• A new paradigm for navigating a slice (one dependency at a time) 

• Re-architecting of slicing algorithms themselves to align with 
these new paradigms
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Automation is insufficient
• Since the Whyline, others have shown that 

automation is also insufficient for other 
technologies to be useful: 

• Refactoring (e.g., Murphy-Hill) 

• Static analysis (e.g., Pugh; Ernst) 

• Machine learning (e.g., Burnett; Fogarty) 

• Probably also true for formal verification, program 
synthesis, testing tools, bug patching, etc.
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Augmentation > automation
• We like to believe that with enough data and the 

right algorithms, our tools can outperform humans 

• The Whyline showed that this overlooks the power 
of developers’ knowledge and intuition 

• In the evaluations of the Whyline, participants 
interacted with slices with 50,000+ LOC 

• By leveraging their knowledge, expertise, and intuition, 
developers only ever looked at a few dozen LOC, and 
still found the defects
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Augmentation > automation
• Two consequences of ignoring developer 

knowledge: 

1. Our innovations often aren’t useful at all, because 
they don’t account for what developers know 

2. We miss opportunities to combine human and 
machine insights to achieve even greater power 

• We must invent for the entire system of 
tools+developers+teams+organizations
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Wisdom old and new
1. Accelerate progress by reading 

2. Develop a personal intuition for SE practice 

3. Explain why your tools work 

4. Automation is insufficient 

5. Augmentation > automation
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Thank you.
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