
Big ideas
behind the Whyline
Andy J. Ko, Ph.D. Associate Professor

ICSE 2018
Gothenburg, Sweden

Andrew J. Ko

Thanks Peggy
• My undergrad research mentor

Margaret Burnett introduced me to
HCI and software engineering

• She taught me how think, how to
read, and to develop scientific
arguments

• She helped me navigate to graduate
school, to connect with other mentors

• I wouldn’t be here if she hadn’t
mentored me for the past 20 years

 2

Andrew J. Ko

Thanks Brad
• My Ph.D. advisor, Brad Myers,

taught me how to choose great
projects, how to convey the
essence of their insights

• He seeded me with the
intriguing idea of asking systems
to explain themselves

• His relentless constructive
critique but unbounded
availability helped me learn fast

 3

Andrew J. Ko

Thank you
• This community taught me

technical rigor, tested the
limits of my humanism

• You provided a (then) 30-year
history of powerful ideas
about dependencies, analysis,
architecture, program
comprehension, and
encapsulation

 4

Andrew J. Ko

Thank you
academia
• I’ve been fortunate to have

dozens of outstanding teachers
across my life, spanning math,
physics, sociology, psychology,
neuroscience, business, English,
philosophy, design, art, learning,
and chemical engineering

• My ideas are mere
compositions of those I’ve
learned from my teachers

 5

Andrew J. Ko

Big ideas
in the Whyline

 6

Andrew J. Ko 7

Ko, A. J., & Myers, B. A. (2008)
Debugging reinvented: asking and answering why
and why not questions about program behavior.
International Conference on Software Engineering

Andrew J. Ko 8

Ko, A. J., & Myers, B. A. (2008). Debugging
reinvented: asking and answering why and why not
questions about program behavior. ICSE.

Ko, A.J. and Myers, B.A. (2009)
Finding Causes of Program Output with the Java
Whyline. ACM CHI.

Ko, A.J. and Myers, B.A. (2004) . Designing the
Whyline: A Debugging Interface for Asking
Questions About Program Failures. ACM CHI.

Ko, A.J. and Myers, B.A. (2010). Extracting and
Answering Why and Why Not Questions about Java
Program Output. ACM TOSEM.

Andy J. Ko

Key theoretical insight
• Debugging is slow because

developers iteratively test brittle
hypotheses about what caused a
failure by manually collecting
runtime data

• Debugging would be faster if
developers worked backwards
from well-understood failure to
cause, relying on dynamic
dependencies precisely gathered
by a tool

 9

root cause analysis

scientific method

 10

• Record an execution
trace, reproducing
an interactive
timeline of program
output

• Allow developers to
select questions
about properties of
output they know to
be wrong

The tool

 11

• Answer questions with
precise backwards
dynamic slicing on output
properties

• Present slice interactively,
allowing developers to
navigate causes to isolate
the defect, using their
knowledge of architecture
and requirements to
identify defects

The tool

Andy J. Ko

Key results
• Novices with the Whyline debug 8x faster than

novices without it Ko & Myers 2004

• Novices with the Whyline 2x faster than experts
without it Ko & Myers 2008

• Experts with the Whyline were 3x more successful
and 2x faster than experts without it Ko & Myers 2009

 12

Andy J. Ko

Academic impact
• Across 4 papers and many citations:

• Influenced the design of dozens of other interactive
developer tools in SE and HCI

• Inspired dozens of empirical studies about other hard
questions to answer about software behavior in SE

• Replicated and extended on dozens of other platforms
and languages in SE, HCI, CSEd, Databases

• Helped trigger a resurgence of research on trace-based
debugging tools in SE, HCI, PL

 13

Andy J. Ko

Industry impact
• Caused Adobe to investigate debugging tools for

Flash and other design tools

• Influenced Microsoft’s efforts at building .NET
execution tracing infrastructure, Debugger
Canvas, ChakraCore

• Influencing Apple’s Safari developer tools

• Influencing code.org's K-12 tools for learning to
code

 14

http://code.org

Andrew J. Ko

Big ideas
about scientific practice

 15

Andy J. Ko

Reading accelerates innovation
• “The way to get good ideas is to get lots of

ideas and throw the bad ones away” — Linus
Pauling, Nobel laureate, Chemistry

• One way I took this was to never forget that there are
hundreds of thousands of papers full of powerful
ideas, and we should use them

• I spent 3 months reading 900+ papers about
debugging, diagnostics, human error, root cause
analysis, well beyond the boundaries of CS

 16

1

Andy J. Ko

Reading accelerates innovation
• The work that most influenced me was a paper that

Mark Weiser cited in his Program Slicing paper:

• Gould, J. D., & Drongowski, P. (1974). An exploratory study
of computer program debugging. Human Factors, 16(3).

• It showed that

• Debugging required analyzing data flow

• Developers satisficed their data flow analysis

• Developers analyzed many more irrelevant than relevant
statements

 17

1

Andy J. Ko

Observation develops insight
• “A few observations and much reasoning

lead to error; many observations and a little
reasoning lead to truth” — Alexis Carrel,
Nobel laureate, Physiology

• As an HCI researcher, I took this to mean that if I
didn’t deeply understand the experience of
debugging, I could not simplify it, no matter how
much I reasoned about it.

 18

2

Andy J. Ko

Observation develops insight
• I spent another 3 months after reading observing

people debug: hundreds of novices, experts, and
myself.

• Led to a rich intuition about debugging that helped
me predict the utility of design choices I made in
the Whyline

• I still use this intuition today to judge the utility of
my research ideas and the ideas published in this
community

 19

2

Andy J. Ko

Explain why, not just how
• “He who loves practice without theory is like the

sailor who boards ship without a rudder and
compass and never knows where he may cast” —
Leonardo da Vinci

• I took this to mean that the true value of inventions is
not in explaining how they work, but why they work.

• These explanations are the generalizable knowledge
that stands the test of time, that transfer from tool to
tool

 20

3

Andy J. Ko

Explain why, not just how
• The key thing that made the Whyline work was

that I synthesized my intuition about debugging
into an theory of how people debug and how
tools mediate their strategies.

• It was this theory, and not the tool itself, that was
the core of the Whyline’s innovation.

• The tool was merely an embodiment of that
theory, helping me test and refine the theory.

 21

3

Andrew J. Ko

Big ideas
about automation

 22

Andy J. Ko

Automation is insufficient
• “…in practice slicing is fairly fast, and can often

eliminate large numbers of unnecessary
statements from slices of programs” – Mark
Weiser, “Program slicing.” ICSE.

• He did not claim that it was useful.

• And yet, of 4,500 papers that have investigated slicing,
only 3 evaluated developers’ use of slicing tools, all
finding that slices are too large, hard to navigate, and
incomprehensible at scale.

 23

4

Andy J. Ko

Automation is insufficient
• Our field’s key mistake was assuming that

1. Useful slices are trivial for developers to express

2. The size of a slice determines its comprehensibility

• The Whyline showed neither are true. Making slicing useful
required:

• A new paradigm for expressing a slice (output interrogation)

• A new paradigm for navigating a slice (one dependency at a time)

• Re-architecting of slicing algorithms themselves to align with
these new paradigms

 24

4

Andy J. Ko

Automation is insufficient
• Since the Whyline, others have shown that

automation is also insufficient for other
technologies to be useful:

• Refactoring (e.g., Murphy-Hill)

• Static analysis (e.g., Pugh; Ernst)

• Machine learning (e.g., Burnett; Fogarty)

• Probably also true for formal verification, program
synthesis, testing tools, bug patching, etc.

 25

4

Andy J. Ko

Augmentation > automation
• We like to believe that with enough data and the

right algorithms, our tools can outperform humans

• The Whyline showed that this overlooks the power
of developers’ knowledge and intuition

• In the evaluations of the Whyline, participants
interacted with slices with 50,000+ LOC

• By leveraging their knowledge, expertise, and intuition,
developers only ever looked at a few dozen LOC, and
still found the defects

 26

5

Andy J. Ko

Augmentation > automation
• Two consequences of ignoring developer

knowledge:

1. Our innovations often aren’t useful at all, because
they don’t account for what developers know

2. We miss opportunities to combine human and
machine insights to achieve even greater power

• We must invent for the entire system of
tools+developers+teams+organizations

 27

5

Andy J. Ko

Wisdom old and new
1. Accelerate progress by reading

2. Develop a personal intuition for SE practice

3. Explain why your tools work

4. Automation is insufficient

5. Augmentation > automation

 28

4

3

2

1

5

Andy J. Ko

Thank you.

 29

1. Accelerate progress by reading

2. Develop a personal intuition for SE practice

3. Explain why your tools work

4. Automation is insufficient

5. Augmentation > automation

4

3

2

1

5

