
Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Programming as Cognition,
Programming as Politics
Amy J. Ko, Ph.D.
Professor
The Information School
University of Washington, Seattle

● Thank you so much for the invitation to speak; it’s such a pleasure to get to
stay connected during this pandemic, even if it is through the clumsy and
brittle infrastructure of the web.

● I’ve given a lot of talks recently, and many of them have been quite personal,
telling my story as a transgender person in computer science, and connecting
those experiences to the intersections of computing and justice.

● Today, I’m going to continue that theme of computing and justice, but instead
of centering on myself, I want to indulge in a more conventional talk that
centers my research.

● But I want to do this in an unconventional way. Rather than share a deep
summary of 2-3 discoveries and get into every nuance of their methods, I want
to share with you nearly all of my discoveries from the past 20 years about the
central focus of my work: programming.

● I’ll share this in three parts: a rapid tour through a synthesis of everything I’ve
learned about programming by studying it as a cognitive act, and then
everything I’ve learned about programming by studying it as a social and
political act. I’ll close by trying to bridge the two lenses, showing us how these
different analytical frames aren’t as far apart as we think.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● So why study programming?
● If it were still the 1950’s, it’d be a harder case to make. Computers filled

rooms, they were largely programmed by low-wage women mathematicians in
science and government, and while they played pivotal roles in wars and
business, they were still niche.

● Now, of course, computing is everywhere: in our pockets, in our homes, in our
cars, trains, and planes, on our bodies, in our bodies, and even in the invisible
infrastructure we rarely consider: energy, trade, law, justice, and politics.

● All of these systems exist because of one activity: programming, which
involves conceiving of some computational behavior we want a computer to
perform, and then carefully, and sometimes not so carefully, trying to translate
that behavior into logic, calculation, structure, and process.

● How and what we program has never been more central in shaping society.

https://unsplash.com/photos/YK0HPwWDJ1I

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● Who does it, how quickly, how carefully, how thoughtfully, and how inclusively,
no longer just shapes government and science, but nearly every dimension of
our lives.

● It determines who gets loans,
● Who goes to jail and for how long
● Who eats, who thrives, who dies.
● And so understanding how people do it, why it is hard, why we continue to

make the same mistakes after 70 years of progress, is of great consequence.

https://unsplash.com/photos/bAQH53VquTc
https://unsplash.com/photos/vrSKrUEZsDY
https://unsplash.com/photos/3k3l2brxmwQ

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● My own curiosity about programming began when I was 13, in middle school.
● I first learned about programming it in 7th grade pre-algebra, when our teacher

taught us how to write simple programs on our TI-82 graphing calculators.
● I found ways to create games and procedural art, and found it a incredibly fun,

hard, satisfying, and social way to express myself. This is a photograph of my
friends and I in our computer art club, which was just as much about art and
computers as it was using code to create art.

● When I got to college, though, I got more interested about what programming
is and how people do it, and stumbled into research.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● I first studied people programming spreadsheets for finance, simulation, and
grading, focusing on how they test and debug their formulas, or more often
don’t.

● I expanded my focus to professional software developers working alone and in
teams, at companies big and small.

● And to creative professionals harnessing obscure languages to create
interactive games and digital music

● I studied students learning to code in and out of school.
● And now I even study primary, secondary, and post-secondary teachers

learning to program, and learning to teach programming, in their classrooms.

https://unsplash.com/photos/gTs2w7bu3Qo
https://unsplash.com/photos/4nKOEAQaTgA
https://meowwolf.com

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● Throughout I’ve examined it from largely a distributed cognition lens,
considering not only what is happening in people’s minds, but what is
happening on their screens, on the websites they visit, in the tools they use,
and how all of these interact to produce programs, and defects in programs.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

● But over the past several years, I’ve also begun to examine it from a social
cognition lens, investigating how people who make software think and reason
about who they are making it for, and how they reason about the broader
social impacts of what they are making, as well as how they project and signal
who deserves to program and who is welcome in their communities.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Programming as
cognition

Programming as
politics

● [5 minute mark]
● So that brings me to the dichotomy in the title of this talk
● Programming as cognition
● Programming as politics
● These are the two lenses that dominate how I think about programming, and

that I hope to bridge by the end of this talk.
● But before we dive in, a few disclaimers...

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Prior work disclaimer
Research on the psychology of programming
began in about 1980, when I was zero years
old! Everything I’m about to present builds
upon a rich history of studies and theories.

However, much of this work stopped in the
mid 90’s when everyone started studying the
web; I started studying programming around
2000, and helped reboot discourse with new
methods, theories, and perspectives.

● First, I’m not the only one who’s studied programming.
● This work began in the early 1980’s, when psychologists and computer

scientists came together to study the dominant way that people interacted with
computers in the late 1970’s and early 1980’s: by writing programs

● [Read]
● I’ll focus on my own work in this talk, but it builds directly upon these

foundations.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Methods disclaimer
This is going to be a broad talk. I won’t
spend much time detailing methods,
sample sizes, measurements, or other
details. Everything I present is peer
reviewed, and many have been successfully
replicated.

I’ve used mixed methods lab and field
experiments that combine qualitative
observations with log and artifact analysis.

● Second…
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Collaboration disclaimer
I’ve done all of this work with an
amazing group of collaborators,
doctoral students, undergraduates,
and practitioners. They deserve as
much credit as I do for these
discoveries.

● Third…
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Narrative disclaimer
I won’t talk about my work in
chronological order. My theories and
hypotheses and programming span
two decades of interleaved ideas, and
they did not happen in a tidy order. I’ll
simplify this history to make theory
salient over sequence.

● Finally…
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Programming as
cognition

● [~6 minutes]
● With that, let’s start with what I’ve learned from a cognitive perspective.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Reading and writing code are distinct skills
Most people learn to code by writing a lot of
code and learning from failure. However, it’s not
clear that this is the most efficient way to learn.

We experimentally examined two ways of
sequencing learning:

1. Write lots of programs with feedback
2. Learn to read programs with feedback, then

learn to write them with feedback.

Learning to read first significantly improved the
quality of practice, depth of understanding, and
error rates.

Benjamin Xie, et al., (2019). A Theory of Instruction for
Introductory Programming Skills. Computer Science Education,
https://doi.org/10.1080/08993408.2019.1565235

● [Read]
● In doing this, we distinguished between tasks that involve reading the line by

line behavior of programs, reading the larger templates that achieve some
computational goal, and between writing these two different levels of code.

● This 2x2 table summarizes these four distinct skills.
● We found that sequencing learning by these four skills, reading semantics,

writing semantics, reading templates, writing templates, significantly improves
learning.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Language learning requires granular interactivity
Many people learn a programming language by
slowly infer its semantics through trial and error.
But many struggle, and develop brittle,
inaccurate language understandings, and often
quit out of frustration.

We’ve tried teaching languages with granular,
interactive examples that map syntax to
semantics, and then formatively assess
knowledge of that mapping.

Rank novice learning in 3-4 hours produced
better learning outcomes when compared to an
entire 6 weeks of classroom learning.

Greg Nelson, Benjamin Xie, Amy J. Ko (2017). Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program
Tracing in CS1. ACM ICER.
https://doi.org/10.1145/3105726.3106178

● When we drilled down into that first quadrant of reading semantics, we learned
something else:

● [Read]
● This image on the left shows our intervention, PLTutor, a kind of interactive

book that offers this granular interactive learning.
● This work suggests that difficulties with reading code, and learning to code in

general, are more dominated by inaccessible insights about how programs
execute, and the precise ways in which we explain and visualize semantics,
than anything intrinsically difficult about programming languages themselves.

● In other words, we’ve just been teaching them poorly.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Effective code reading is active and distributed
Even when separating reading from writing,
learners vary in the effectiveness of their reading.

We tried scaffolding reading by providing an
explicit step-by-step reading process and
structured format for externalizing program
state.

In an experiment, students in the treatment
group were more systematic, made fewer errors,
and scored a grade level higher on their midterm.

Benjamin Xie, Greg Nelson, Amy J. Ko (2018). An Explicit Strategy
to Scaffold Novice Program Tracing. ACM SIGCSE, Research Track,
344-349. https://doi.org/10.1145/3159450.3159527

● That close look at program reading also revealed another dimension
● [Read]
● You can see an example of the externalization we encouraged here, showing

variable names and values, and annotations for changing values.
● This insight, combined with the previous two studies, suggests that program

reading is not only an essential foundation for all program writing, but also one
that depends on external memory and self-regulation aids.

● When we turn our attention to writing, we see very different skills...

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Errors emerge from skill, bias, and tool
interactions I adapted research on human error to

programming, and empirically examined error
production across 100’s of hours of programming,
finding root causes of mistakes.

● Whether and when people notice their errors
is a function of their tool environment and
verification practices, which often fail to
reveal errors.

● Error diagnosis (i.e., debugging), suffers from
a recency bias (e.g., “It must be something I
just wrote”), and exacerbated by action bias
(e.g., diagnosing by implementing fixes that
introduce more defects).

Amy J. Ko, Brad A. Myers (2005). A Framework and
Methodology for Studying the Causes of Software Errors in
Programming Systems. Journal of Visual Languages and
Computing. http://dx.doi.org/10.1016/j.jvlc.2004.08.003

● [Read]
● This diagram on the left shows an example of a root cause analysis of errors,

where a series of false assumptions lead to a misinterpretation of a program’s
output, which lead to a false hypothesis, which led to an incorrect change, with
led to another error, and further confusion.

● This insight about false hypotheses led us to examine debugging more
closely...

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Debugging is driven by hypothesis testing
To find errors, most people haphazardly generate
hypotheses about errors based on superficial
features of the failure, and then spend most of their
time testing and rejecting false hypotheses.

We predicted that we could circumvent this vicious
cycle by inverting this process, having people work
backwards systematically from the failure to its root
cause, rather than guessing forwards.

Across a range of tasks and experience levels, this
approach reduced debugging time by a factor of
2-10 by eliminating fruitless hypotheses. Amy J. Ko, Brad A. Myers (2009). Finding Causes of Program

Output with the Java Whyline. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI), 1569-1578.
https://doi.org/10.1145/1518701.1518942

● What we found is that...
● [Read]
● This figure on the right is an example of the tools we invented to make this

possible: they gather a log about a program’s execution, and then let people
select the output that was wrong and ask questions about it directly. The
system then gives an answer as a chain of events that caused the wrong
output.

● One of the more striking qualitative observations from this work was how
shocked some of the more experienced programmers were at its simplicity,
saying things like “I can’t ever go back to the way I used to debug, but I have
to, because these tools aren’t on the market yet!’

● But cognitively, it was also striking that this basic reversal fundamentally
changed the nature of debugging: it was no longer a game of guess and
check, but rather a systematic examination of evidence.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Tool efficacy is mediated by attention
It seemed to be that how these interventions
presented information greatly determined how
closely people attended to the information, and
thus how much the information influenced their
behavior.

We compared conventional tool messages (e.g.,
impersonal, technical language) with personal
messages (e.g., anthropomorphized). Giving
compilers eyes, having compilers use personal
pronouns, and representing data with
vertebrates significantly increases learning
outcomes and decreases debugging time over
inanimate, impersonal forms by guiding attention
to details in error messages.

Michael J. Lee, Amy J. Ko (2011). Personifying Programming Tool
Feedback Improves Novice Programmers' Learning. ACM
International Computing Education Research Conference (ICER),
109-116. https://doi.org/10.1145/2016911.2016934

● Throughout all of these efforts to examine program reading and
comprehension, we observed something else

● [Read]
● These images on the left show some of the simple changes we made that led

to dramatic changes how closely people read messages, and thus how well
they learned and performed on tasks.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Modern programming is driven by code reuse
Through a 15-week longitudinal study of
application development, we found that what
made programming hard was more than just
learning languages and debugging. It was also
finding, learning, evaluating, and coordinating
code that others had built — in libraries,
application programming interfaces (APIs), and
other projects — and that a lack of information
about this this reusable code often poses
insurmountable learning barriers.

Amy J. Ko, Brad A. Myers, Htet Htet Aung (2004). Six Learning
Barriers in End-User Programming Systems. IEEE Symposium on
Visual Languages and Human-Centered Computing (VL/HCC),
199-206. https://doi.org/10.1109/VLHCC.2004.47

● While we found that reading was largely dominated by people’s ability to
carefully and precisely attend to information about program behavior, our
examination of writing revealed something quite different.

● One of my earliest studies, for example, found that writing was much less a
process of careful reasoning and much more a process of reusing what others
have written

● [Read]
● This diagram on the right shows the common pattern we observed in this

work: someone would try to use some code they found, they would make a
series of assumptions about its behavior, and then reach an insurmountable
barrier to progress caused by that assumption.

● The only thing that helped them overcome it was correcting that assumption,
but it was quite rare that the tools, documentation, or other resources ever
helped reveal and check assumptions. In fact, these resources tended to
make numerous assumptions about the expertise of the person reusing the
code.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Reuse is about comprehending models
Learning application programming interfaces
(APIs) requires different knowledge than learning
programming languages:

1. Concepts in the domain that an API models
and how it (imperfectly) models them

2. Declarative facts about the execution
semantics of the API

3. The (ever growing) space of possible usage
patterns that the API supports

Documentation rarely makes 1) or 2) visible; in an
experiment, we showed that making all visible
improved task success, but overwhelmed
developers with learning.

Kyle Thayer, Sarah Chasins, Amy J. Ko (2021). A Theory of Robust
API Knowledge. ACM Transactions on Computing Education, 21(1),
Article 8. https://doi.org/10.1145/3444945

1

2
3

● When we considered this learning more directly, found that most of reuse is
about comprehending models that others had designed.

● We developed and tested a theory that argued that learning APIs reduces to
three essential types of knowledge, as portrayed in the figure on the left.

● [Read]
● In essence, learning to use others’ code seems to mirror some of the

challenges of understanding programming language’s and one’s own code —
they both require a careful, precise understanding of how a program executes
— but when a precise understanding isn’t available, it requires people to build
a more coarse mental model of that behavior using other concepts.

● This is a recipe for mistakes, misunderstanding, and frustration.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Reuse is about information seeking
Through a 3-month field study observing
professional software developers, we found that
most of their time was seeking information from
resources — sometimes documentation, but
mostly other developers — and that if they could
not find it, they often had to abandon some task.

And yet, few of the strategies that developers
used were effective because most of the systems
they used were not designed for information
retrieval and most of the people they consulted
did not have well-organized archives or could not
remember the necessary details.

Amy J. Ko, Rob DeLine, Gina Venolia (2007). Information Needs in
Collocated Software Development Teams. ACM/IEEE
International Conference on Software Engineering (ICSE),
344-353. http://dx.doi.org/10.1109/ICSE.2007.45

● And this is true not just in learning contexts, but in professional software
engineering as well, where we found that...

● [Read]
● This figure on the left shows about 2-hours of work by 17 different professional

software developers; their entire activity was structured by information
seeking. In fact, I don’t think there was a single person we observed write a
line of code: all of it was gathering enough information to make a decision
about what single line of code to modify in some very careful, surgical way.

● And so this study showed that whether novice or expert, the problems are the
same: understanding program behavior is central to fixing or changing it.
Experts just had more careful, systematic strategies for doing it, and had to
rely on others for information because of the scale of their projects.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Information from the crowd is of limited value
Through a field study of hundreds of thousands
of bug reports on the open source Mozilla Firefox
web browser, we found that extracting
meaningful signal from community contributions
— if there is a signal at all — is often so time
consuming that most of it is ignored. Instead,
most of the meaningful information came from
core developers on the project who had deep
knowledge of how the browser was built. This
created outrage amongst outsiders trying to
report and resolve problems, who felt ignored.

Amy J. Ko, Parmit K. Chilana (2010). How Power Users Help and
Hinder Open Bug Reporting. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI), 1665-1674.
https://doi.org/10.1145/1753326.1753576

“Over two months ago I gave complete information on
when and how I got the error AND spent a great deal of
time isolating the messages that caused it… Which part of
that is just saying “me too”? For crying out loud, I’m a
nursing student, not a programmer. Do you do your own
x-rays before going to the doctor?”

● We considered some types of information seeking more closely.
● For example, one common type of information gathered by software

engineering teams is from users themselves, reporting defects and problems
with programs.

● But we found that…
● [Read]
● Here we see 10 years of information gathering from different groups of

contributors; most contributions were from active contributors to the project,
and the very few that came from users were mostly ignored.

● This quote conveys some of the challenges in sharing meaningful information
about program behavior

● [Read]
● And so talking about code and its behavior was not straightforward at all.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Expertise is also social and organizational
In a study of more than 3,000 developers’
perceptions of programming expertise, we found
that programming was about more than just
languages, tools, debugging, reuse, and
information. In fact, we found more than 50
attributes that developers viewed as essential,
including:

● Personality characteristics
● Decision making skills
● Interpersonal teamwork skills
● Product management skills

Paul Luo Li, Amy J. Ko, Jiamin Zhu (2015). What Makes a Great
Software Engineer? ACM/IEEE International Conference on
Software Engineering (ICSE), 700-710.
https://doi.org/10.1109/ICSE.2015.335

● As we considered information seeking more broadly, we found that much of
the need for information emerged not from inherent complexities in programs
themselves, but from the social and organizational context of the teams that
maintained them.

● [Read]
● This figure on the left shows the 53 attributes that experts identified
● That small box in the lower right is about programming. Everything else is

about higher level decision making skills and how they interact with the
broader social context of teams and organizations.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Self-regulation is a central programming skill
In a survey and interview of 700+ developers, we
further investigated how these skills ranked in
their significance to expertise, finding that most
of the “must have” skills were self-regulation
skills:

● Systematic attention to detail in code
● Metacognition about skills and context
● Proactive efforts to correct conceptions
● Awareness of when to analyze vs. act
● Ability to manage time, tasks, resources

Paul Luo Li, Amy J. Ko, Andrew Begel (2019). What Distinguishes
Great Software Engineers? Empirical Software Engineering, 1-31.
https://doi.org/10.1007/s10664-019-09773-y

● We followed up this work by asking hundreds of developers to rank the
importance of these different skills.

● We expected programming skills to be central, and they were number one.
● But to our surprise, most of the “must have” skills were self-regulation skills.
● [Read bullets]
● This painted a picture of programming as an act of cognitive self-control:

always monitoring what you need, how problem solving is proceeding, and
when information and comprehension is sufficient to take action.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Self-regulation is rare
We empirically examined the planning, process
monitoring, comprehension monitoring, reflection
on cognition, and self-explanation of several
novice programmers, and found planning,
process monitoring, and comprehension
monitoring activities to be strongly
anti-correlated with errors and learning
outcomes.

In general, all activities were infrequent, and this
frequency explained most of the variation in
programming skill.

Dastyni Loksa, Amy J. Ko (2016). The Role of Self-Regulation in
Programming Problem Solving Process and Success. ACM
International Computing Education Research Conference (ICER),
83-91. https://doi.org/10.1145/2960310.2960334

● But when we examined self-regulation more closely, we found that it was quite
rare.

● [Read]
● So the professionals’ instincts were right: self-control in problem solving was

one of the single most important factors in success.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Self-regulation is hard
We had several dozen students attempt to
purposefully self-regulate in work diaries, but
nearly all reported significant difficulties:

● Some were completely unaware of their
process or decisions

● Some struggled to integrate reflection into
their process

● Some found reflection distracting,
perceiving that it interfered with progress Dastyni Loksa, Benjamin Xie, Harrison Kwik, Amy J. Ko (2020).

Investigating Novices' In Situ Reflections on Their Programming
Process. ACM Technical Symposium on Computer Science
Education (SIGCSE), Research Track, 149-155.
https://doi.org/10.1145/3328778.3366846

“When I hit really difficult bugs, I don’t
want to reflect on them or journal, I just
want to look at my code and chase them
down.”

“It was really difficult to remove myself
from my workflow and constantly having
to switch between my journal and my
code; it broke my workflow and made me
work slower.”

● Why is it so rare?
● [Read]
● These findings suggest that it may not be that core metacognitive skills were

the barrier, but rather the immersive, absorbing nature of programming, the
way that it fully consumes all of working memory, crowds out the need for
self-regulation — at least until the lack of it leads to enough failures that they
eventually make room for it, as we saw with professionals.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Self-regulation requires impulse control
In a classroom of adolescent novice
programmers, we offered a set of step-by-step
programming strategy scaffolds to help with
some of the harder tasks in programming (e.g.,
planning an algorithm, debugging a defect).

Students reported:

1. Believing that the strategies were helpful,
2. Trying to follow the strategies, but
3. Succumbing to the inability to control

their impulses
4. Regretting following their impulses, and

eventually having to be systematic

Amy J. Ko, Thomas D. LaToza, Stephen Hull, Ellen Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, Rishin Pandit (2019). Teaching Explicit
Programming Strategies to Adolescents. ACM Technical Symposium on Computer
Science Education (SIGCSE), Research Track, 469-475.
https://doi.org/10.1145/3287324.3287371

● One of our attempts to help scaffold self-regulation was promising.
● [Read]
● This screenshot on the left shows the tool we gave them to help track and

regulate their problem solving progress.
● And while these strategies we gave them we reliably successful, and these

externalizations did help them track their problem solving, students only used
them after slowly and begrudgingly accepting that their impulsive, uninformed,
haphazard strategies were just not working.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Self-regulation can be learned
In another intervention, we instead tried
scaffolding self-regulation by promoting
reflection during help seeking. Each time a
student asked for help, we asked them:

● What are you doing?
● Why are you doing it?
● Is it helping?
● What could you do differently?

Over two weeks, they eventually started asking
these questions of themselves, and were more
successful, independent, and confident than
students in a control who did not receive these
reflection prompts.

Dastyni Loksa, Amy J. Ko, William Jernigan, Alannah Oleson, Chris
Mendez, Margaret M. Burnett (2016). Programming, Problem
Solving, and Self-Awareness: Effects of Explicit Guidance. ACM
SIGCHI Conference on Human Factors in Computing Systems
(CHI), 1449-1461. https://doi.org/10.1145/2858036.2858252

● Another attempt at scaffolding self-regulation was more successful.
● [Read]
● What seemed to work better about this approach was actually a psychosocial

effect: students quickly gained a sense of independence and confidence when
they no longer needed to ask for help, and that promoted self-regulation
practice, which developed skill, which was self-reinforcing.

● This was in contrast to the attempt on the previous slide, which only seemed
to shame them for being impulsive.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Programming is dominated by strategy
While self-regulation is clearly critical, how
someone approaches a problem appears to be
even more critical, and not wholly dependent on
expertise.

We experimented with a set of explicit expert
programming strategies with professional
software developers, and found that when they
used the strategies instead of their own skills,
they were significantly more successful,
independent of their skills. In fact, novices who
used the strategy did better than experts who
didn’t.

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, Amy J. Ko (2020).
Explicit Programming Strategies. Empirical Software Engineering,
2416–2449. https://doi.org/10.1007/s10664-020-09810-1

“I don’t typically do the due diligence of reading all of
the variable names and function names when I’m
dealing with this sort of thing. And it seemed pretty
clear to me that this is maybe a really good idea.
Because one thing I noticed was that my initial
instinct was to try to really close[ly] read the flow of
the program. Then, when I remembered that the task
was actually just to read the variable names and
function names, I was able to get through it much
much faster. I still had a pretty good idea of actually
how it worked without getting quite as in detail with
the rest of the flow of the program...”

● Despite all of this work that demonstrated the importance of self-regulation,
one thing became clear

● No matter how carefully someone reads or writes code, or thoughtfully
regulates their attention, the dominant factor in success was more strategic
than cognitive

● [Read]
● Here is a quote from one of our participants
● [Read]
● When they followed strategies known to be effective, they were more

successful; self-regulation was an essential skill for following those strategies.
But strong self-regulation on bad strategies did not help.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

What is programming, cognitively?
A social, distributed, and cognitively immersive form of surgical
“sculpting” with logic, structure, and data that requires frequent
learning, reasoning, externalization, about program execution;
immense persistence, patience, precision, and growth mindset; and a
robust capacity for self-regulation and metacognition, cognitively,
socially, and organizationally.

No wonder it’s so hard to learn and teach!

● So that was 20 years of research on programming.
● To summarize it one sentence, I would argue that the activity, at least

cognitively, is
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Programming as
politics

[25 minutes]

I’m proud on of our work to explaining programming. The work has been highly
impactful, shaping developer tools, curriculum, software engineering methods, and
even hiring practices in the software industry. I think it’s good work.

But there was always something that bothered me about it; it never really considered
what people program, or why they program it. These things matter immensely, even in
low level decisions about how programs are constructed, and yet too often, they are
afterthoughts when people write code.

This brings is to my second topic: programming as politics.

I first started thinking about this more intentionally when when I finally accepted that I
was transgender about five years ago. My every attempt to live in a digital world
started breaking: databases were designed in ways that prevented me from changing
my name, doctors made medical errors because data schemas couldn’t accurately
encode my anatomy and physiology, automated marketing platforms deadnamed me
a dozen times a day and gave me no power to stop them. It was hard to see software
as anything but a tool of capitalism designed for the cisgender majority, at my
expense.

And so I began to ask: how is it that this fascinating skill of programming so often
leads to the oppression of me, of my communities, and so many other marginalized

groups?

Building on countless works from those that came before me, here’s what I’ve learned
so far.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

CS education is usually apolitical
I wrote a critique of CS education, arguing that
it’s apolitical stance is harmful, because it ignores
the complicity of algorithms, data, and software
developers in amplifying systems of oppression,
and even in creating new ones.

I called for educators and researchers to begin to
examine the limits of data and computation and
the responsibility of programmers, and to
explore how to teach these limits and
responsibilities to future generations of
engineers.

Amy J. Ko, Alannah Oleson, Mara Kirdani-Ryan, Yim Register, Benjamin
Xie, Mina Tari, Matt Davidson, Stefania Druga, Dastyni Loksa, Greg Nelson
(2020). It’s Time for More Critical CS Education. Communications of the
ACM (CACM), 31-33. https://doi.org/10.1145/3424000

● I started with observing that
● [Read]
● And then I got to work trying to answer my call.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Overcoming misplaced faith in the authority of
code requires exposure
Many people, especially children, perceive
computers and software as magical and
authoritative, willfully granting them power over
their lives and communities. Why?

But when we engaged several dozen youth in
creative applications of simple machine learned
programs over the course of several weeks, we
found that their perceptions of machine
intelligence rapidly shifted from unquestioned
faith in the computers as authoritative to
skepticism in their severe limits.

Stefania Druga, Amy J. Ko (2021). How Do Children’s Perceptions of
Machine Intelligence Change when Training & Coding Smart
Programs? ACM Interaction Design for Children, 49-61.
https://doi.org/10.1145/3459990.3460712

● One thing we examined was why people have such faith in computing to be
correct and “smart”

● It turns out that...
● [Read]
● So this faith ubiquitous but is brittle: even a little bit of programming breaks the

spell quite quickly.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Comprehension is mediated by egocentricity
We experimentally compared learning basic
machine learning concepts from 1) concrete
impersonal datasets, and 2) concrete personal
datasets, against their impact on learners’ ability
to advocate for or against machine learning in
social contexts in technical terms.

Personal data sets were superior at promoting
not only learning of the concepts, but also near
transfer to model analysis tasks, and far transfer
in machine learning advocacy tasks. Yim Register, Amy J. Ko (2020). Learning Machine Learning with

Personal Data Helps Stakeholders Ground Advocacy Arguments in
Model Mechanics. ACM International Computing Education
Research Conference (ICER), 67–78.
https://doi.org/10.1145/3372782.3406252

● But how that exposure happens appears to matter too.
● For example, we examined machine learning in the context of political

advocacy.
● The tutorial shown here varied only in whether learners were using generic

data sets or data from their own lives.
● [Read]
● And so centering people’s own lived experiences when learning about

computation appears to not only lead to better learning, but more forceful and
convincing advocacy against harmful applications of machine learning.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Design and development are different
Much of the public and the software industry
conflate these two things:

● Design. Deciding what to build.
● Development. Deciding how to build it.

For example, we analyzed several national
curricula, and found that most conflated these
these two skills, and framed programming as
design, but only taught development.

Professional software developers are often
portrayed as doing both, and often do both in
reality because people give them that power.

Alannah Oleson, Amy J. Ko, Brett Wortzman (2020). On the Role of
Design in K-12 Computing Education. ACM Transactions on
Computing Education, Article 2. https://doi.org/10.1145/3427594

● Dispelling myths about programming is one thing; helping people understand
what programming is and isn’t is also critical.

● In particular, we observed that...
● [Read]
● In away, this conflation is an irresponsible power grab: if programming also

design, but then we don’t teach design purposefully and thoughtfully to ensure
that people don’t design harmful, exclusionary, oppressive things, then when
will anyone ever learn to do otherwise?

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Who learns is shaped by stereotypes, stigma
I solicited several dozen “code autobiographies”
from students who did and did not succeed in
learning to code. Their lifetime of experiences
revealed that:

● First encounters are often inaccessible,
unsupported, stigmatized

● Mentorship was a critical factor in building
resilience to programming difficulties

● Toxic computer science cultures could
quickly erase an entire lifetime of positive
experiences.

Amy J. Ko (2009). Attitudes and Self-Efficacy in Young Adults'
Computing Autobiographies. IEEE Symposium on Visual
Languages and Human-Centered Computing (VL/HCC), 67-74.
http://dx.doi.org/10.1109/VLHCC.2009.5295297

“This carried me through high school into
college where my love of programming has
been brutally murdered by out of control CS
Monsters. I said earlier that my love of the
subject matter was inspired through
socialization. Well, many of the people I have
met in the CS major have grated on my
nerves like a cheese grater. They are possibly
the most proud people I have ever met.”

● So not only are most people not learning about programming, not learning
about it effectively, not learning about it correctly

● But who is learning about it is highly skewed towards those at the top of our
social hierarchies.

● I found that… [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Second chances are rife with similar barriers
We interviewed dozens of adults, mostly women
of color, who pursued coding bootcamps to pivot
into software development careers. They
reported similar issues as students entering
higher education CS learning contexts, but also
faced:

● Stigma from family
● Heavy financial burdens
● Lost relationships due to toxic work/life

culture in bootcamps and industry
● Humiliation from instructors and peers

Most quit and failed to get a job.

Kyle Thayer, Amy J. Ko (2017). Barriers Faced by Coding Bootcamp
Students. ACM International Computing Education Research
Conference (ICER), 245-253.
https://doi.org/10.1145/3105726.3106176

“There was this one
time where my
database wouldn’t
work because I hadn’t
capitalized a letter
and I asked one of the
assistant teachers
about that and he
thought it was
ridiculous that I
made a mistake about
this capital letter.”
(Black woman)

● Industry perpetuates these toxic cultures in retraining efforts.
● For example, [Read]
● Some of these negative encounters are structural barriers imposed by

corporations and capitalism, which have committed to myths of meritocracy
tied to proxy indicators of programming skill, like puzzles, gender, or where
someone graduated.

● [Read quote]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Structural inequities limit learning
We studied hundreds of students who
transferred from 2-year colleges to our university
to study computer science. Most struggled to
earn comparable grades to their “native” peers,
but attributed those differences to:

● Longer commutes
● Greater caregiving responsibilities
● Being excluded from study groups due to

age, availability
● Lack of faculty awareness and

accommodation of inequities.
Harrison Kwik, Benjamin Xie, Amy J. Ko (2018). Experiences of
Computer Science Transfer Students. ACM International
Computing Education Research Conference (ICER), 115-123.
https://doi.org/10.1145/3230977.3231004

“I feel like there is a big culture of people
working together to understand material.
In some ways, I feel like that’s a good thing,
and in other ways I feel like that’s not
really fair to a lot of students. If you work
by yourself, you won’t understand as much
as if you work with other students. If you
commute, you can’t work with other
students.”

● We saw similar disregard for students of color transferring to our own
institution to study computer science, where...

● [Read]
● And so the broader context of learning disregards differences in resources and

capacity to learn, only supporting students who have everything they need.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Assessments embed gender, racial bias
In a series of studies, including one on a corpus
of ~140,000 responses from 20,000 students
across the U.S., we’ve used psychometric
techniques to examine the bias in programming
assessments, finding that:

● Many items have systematic bias against
women and marginalized racial groups

● Which items have bias is unpredictable and
often unexplainable by item designers

● Psychometric analysis require
insurmountable expertise for designers to
interpret, limiting their actionability.

Matt Davidson, Amy J. Ko, Brett Wortzman (2021). Investigating
Item Bias in a CS1 exam with Differential Item Functioning. ACM
Technical Symposium on Computer Science Education (SIGCSE),
Research Track, 1142-1148.
https://doi.org/10.1145/3408877.3432397

Benjamin Xie, Matt Davidson, Baker Franke, Emily McLeod, Min Li,
Amy J. Ko (2021). Domain Experts’ Interpretations of Assessment
Bias in a Scaled, Online Computer Science Curriculum. ACM
Learning at Scale, 77-89. https://doi.org/10.1145/3430895.3460141

● We’ve found the same disregard for diversity appear in assessments
● [Read]
● This plots on the right show some of the gender differences in some

assessments that we’ve found
● The designers of these don’t even know what their doing to create these

differences; they seem to just be deeply implicit stereotypes that shape the
choice of problems, and then because those assessments are used in
summative ways as a supposedly objective measure of “meritocracy”, they
end up excluding in ways consistent with gender stereotypes.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Mentorship helps, but doesn’t fix oppressive
structures Across two summer high school programming

courses, we examined the social networks of
students who had learned to code, finding a rich
diversity of informal mentoring relationships.

● Mentors were teachers, friends, siblings.
● Having an informal mentor strongly

mediated increases in interest in
programming after the course.

● Students who shared the identity of the
instructor had higher interest in code after
the course, viewing her as a role model.

● Having a mentor was not enough to help
students persist when they encountered
exclusionary, toxic learning communities.

Amy J. Ko, Katie Davis (2017). Computing Mentorship in a Software Boomtown: Relationships to
Adolescent Interest and Beliefs. ACM International Computing Education Research Conference
(ICER), 236-244. https://doi.org/10.1145/3105726.3106177

Amy J. Ko, Leanne Hwa, Katie Davis, Jason Yip (2018). Informal Mentoring of Adolescents about
Computing: Relationships, Roles, Qualities, and Impact. ACM Technical Symposium on
Computer Science Education (SIGCSE), Research Track, 236-244.
https://doi.org/10.1145/3159450.3159475

“My neighbor Laura who did APCS and really
enjoyed it and introduced me to it.” (SY,
Hispanic female, 15)

“My dad is a software engineer and he
frequently talks to me about his job. He has
enrolled me in several classes and in our free
time, he often teaches me.” (SY, Asian female,
14)

● And so teaching ignores politics at the expense of learning, it demphasizes
impact at the expense of marginalized groups, and it systematically excludes
those who are harmed through disregard and ignorance.

● Does anything help?
● Mentorship, but only a little.
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Teaching programming as a political act grows
communities of support
We taught a summer course to marginalized
youth of color and rather than focus on purely
technical aspects of programming, we focused on
the sociopolitical aspects of programming: how
it is used to create and reinforce systems of
oppression in broader society.

Students reported leaving the class with an
entire community of peers with a shared mission
of harnessing code for justice.

Jayne Everson, Megumi Kivuva, Amy J. Ko (2022). “A key to
reducing inequities in like, AI, is by reducing inequities everywhere
first”: Emerging critical consciousness in a co-constructed
secondary CS classroom. ACM SIGCSE, to appear.

“i think a key to reducing inequalities of like,
AI, is by reducing inequalities everywhere else
first/cause ultimately its humans designing all
of these digital systems and basing all of their
datasets and machine learning off of existing
human systems/so without first breaking down
the human systems that cause inequality we’ll
always be producing machines that reinforce
that” – student

● But centering politics in programming can actually help a lot
● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Dominant groups resist learning programming
sociopolitically We revised a required CS course on computer

architecture, linking the history of decisions
underlying computers and operating systems to
world wars, wars on drugs, anti-Black policing
projects, corporate monopoly, and neoliberalism.

● All students expressed surprising and newfound
awareness of the historical social context of
programming

● Marginalized students in the class resonated
with links to oppression, justice

● Some students from dominant groups found it
distracting and irrelevant; others worked hard
to integrate it into their sense of self

Mara Kirdani-Ryan, Amy J. Ko (2022). The House of Computing:
Integrating Counternarratives into Computer Systems Education.
ACM SIGCSE, to appear.

“[as a] CS-minded person who believes
efficiency more than anything, this unit
alters my mind...” (Asian woman)

“Everything I’m learning in this course is
excellent, but the socio-technical content is
boring [and] unnecessary.” (White man)

● Unfortunately, when you bring the white kids into the picture, the resistance is
strong

● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

What is programming, politically?
Mostly White and Asian men making harmful design choices about
how our digital world should work, often from a place of ignorance
and disregard of the diversity of human values and experiences,
and with a commitment to exploitative, extractive, normative,
capitalist, meritocratic goals of efficiency, convenience, and profit.

Faculty, students, and professionals from these dominant groups
systematically exclude others and resist any change in culture or
curriculum that might threaten the status quo.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Reconciliation

● [~40 minutes]
● It’s easy to see these two threads of scholarship as irreconcilable.
● After all, one paints a picture of a very hard cognitive task, completely agnostic

to who is doing it. That account of programming might view anyone who
succeeds at learning to program as demonstrating great merit and overcoming
great odds. And this is generally how scientists have treated it.

● But lurking beneath that narrative is a often a darker assumption: that there is
something inherent, intrinsic, or natural about a predisposition to program
successfully, that it is determined by personality. Taking only a cognitive view,
even a socially distributed cognitive view of programming, ignores the broader
cultural and political forces at play in this increasingly critical and contested
skill.

● The sociopolitical view of programming simply examines and acknowledges
these forces. It accepts that programming is hard, but also says that it is made
much harder for marginalized groups by both explicit and implicit choices by
dominant groups to exclude them. And it is made harder by refusing to allow
for programming to be viewed as anything but a strictly cognitive, technical
activity.

● And so reconciliation then, to me, does not seem like such a difficult
intellectual task.

● Here’s what I think it takes.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

1. Accept that programming is cognitive and political

Treating them as a dichotomy is
unhelpful and incorrect. Programming
is both at the same time, and can and
should be taught, discussed, and
performed accordingly.

● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

2. Examine the interactions between the
cognitive and political in programming

That means examining ideas from
critical race theory, which imply that
racist (and sexist, ableist, and
transphobic) ideas and outcomes are
encoded into computer programs just
as they are in law.

● [Read]

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

3. Begin to examine “political cognition” as a
central part of programming skill

When someone is writing a line of
code, how do we help them reason
about it in political terms, and weave
that into the other more strictly
technical and cognitive challenges in
programming?

● [Read]

https://unsplash.com/photos/Agx5_TLsIf4

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Twenty chapters that
weave together
foundations of
computing, foundations
of social justice, and
methods for teaching at
this intersection in
secondary and
post-secondary settings.

● My lab is just beginning to explore these three in a new book, Critically
Conscious Computing, which we will release next month

● It’s primary audience is secondary and post-secondary CS educators
● It tries to do three things:

○ It makes the case for CS education not just as a pathway to good
paying jobs, or a means to personal expression, but as one of the most
important fronts in preserving democratic norms and institutions
throughout society

○ It teaches foundations of CS in sociotechnical and sociopolitical terms.
For example, it doesn’t just explain the syntax and semantics of an if
statement, but also the social and political consequences of if
statements when deployed into the world.

○ It offers new teaching methods for teaching CS in these terms, building
on Paulo Freire’s notion of dialogic teaching, which centers discourse
aimed at helping students recognizing their limiting situations in
society, and their power to organize and act against their oppressors.
Code, after all, isn’t just a tool for those with power, but also a tool for
the powerless.

● We launch online on December 6th. The book is free, built for the web, and
will be a living document that evolves with community feedback.

Programming as Cognition, Programming as Politics — Dr. Amy J. Ko, Ph.D.

Thank you!
Key ideas:

● Programming is a social, distributed, and immersive “sculpting”
with logic that requires learning, reasoning, externalization,
persistence, patience, precision, and self-regulation.

● Programming is mostly White and Asian men making harmful
design choices about our world, often from a place of ignorance
and disregard of the diversity of human values and experiences,
and prioritizing exploitative, extractive, normative capitalist
goals of efficiency, convenience, and profit.

● We must accept that programming is both of these things,
examine how these two dimensions interact, and deepen our
understanding of the “political cognition” at play in
programming to imagine more just applications of computing in
the world.

This material is based upon work supported
by the National Science Foundation, and
Google, Microsoft, Adobe, Any opinions,
findings, and conclusions or
recommendations expressed in this material
are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

● [~40 min]
● Thank you for your time and attention
● Here are the key ideas from the talk
● I’m happy to take any questions

https://unsplash.com/photos/3tyDyCUF4OU

