
Searching for Justice
in Programming
Language Design
Amy J. Ko, Ph.D.
The Information School
University of Washington, Seattle

It’s great to be back!
Thank you so much for the time to visit,
reminisce, and reconnect with Pittsburgh. It’s
been a joy!

It’s reminded me a lot of my doctoral work
on human-centered programming tools,
and how much I’ve missed building things.

But I set building aside for good reasons…

A decade of computing education research
Back in ~2010, I saw a world that was increasingly computational,
but also increasingly complex, centralized, and colonial, “eating”
the world in both powerful and oppressive ways.

I wanted to help create a different world where a more critical
computing literacy was equitably available to everyone.

Public education is the biggest lever we have, and so I joined the
global CS for All movement to help broaden participation, dismantle
barriers, and address inequities in CS education.

From learning to justice
As my lab’s work progressed, my perspective shifted from the neoliberal
goals that dominate computing to one that centered justice:

• Our world is built to reinforce what Patricia Hill Collins called the matrix of
oppression — the social systems that entrench power hierarchies by erasing
intersecting identities.

• Computing and computing education reinforces this matrix, framing
computing and learning as tool of corporate profit.

• Justice, in my view, is dismantling this matrix, and creating one that
equitably works for everyone, instead of just those with power.

A justice-focused K-12
teacher education program
that frames CS concepts
sociotechnically (w/ studies
of how this shapes teacher
identity)

Books that prepare students
and teachers to see
computing through the lens
of justice, and discover their
own “limiting situations”

Studies of how bias hides in
CS assessments, creating
structural forms of
gatekeeping of CS literacies.

Studies of norms and fears
that deter CS teachers from
teaching about diversity,
equity, inclusion, accessibility,
and ethics.

“There's ACM guidelines
that sort of tell you
what you should be
covering... I've not
looked at those
guidelines in a while,
but I doubt that [it is].”

Teaching methods that
improve learning and self-
efficacy in programming by
resisting authoritative
framings of compilers.

Teaching methods for
surfacing assumptions about
identity and ability in
algorithms and data.

We’ve worked toward justice on many fronts

My lab and I take these
discoveries into the world,
shaping state and federal
policy, curricula, learning
technologies, and teacher
education pathways. Our work
has reached millions of youth
through curriculum, policy,
and learning technologies.

Despite all of this
work, however, the
tools of
computing still
stand in the way
of literacy.

I was in a south Seattle
math classroom last Spring.
Most were refugees, most
were learning English, and
many had disabilities,
including dyslexia, blindness,
low vision, and motor
impairments. The 25 kids
spoke 17 different languages.

(stock photo)

The teacher had
completed some equity-
centered CS professional
development and wanted
to integrate CS in some of
her algebra lessons in
culturally sustaining ways.
She had many questions…

(stock photo)

What platforms seriously
engage math and
computing, but make
aren’t boring?

What platforms can center
my student own languages
and cultures, instead of
Western, American ones?

What platforms would work
for my blind, low vision,
and/or motor impaired
students?

What would work for the 17
different languages in my
classroom, and for English-
language learners?

● Students can read English
● Students can see
● Students can use a mouse
● Students are interested in CS
● Students will persist

I had no answer.

This is because most of
our educational
programming languages
and tools are designed
with the same set of
assumptions… Most of these were not true for her

students. And of course, these aren’t true
for most students in the world. They’re really
only true for the tiny sliver of English-
speaking, normatively abled people who fall
in love with computing itself.

None of these structural forms ability,
culture, language, and identity exclusion
are surprising.

They are the consequence of ableist,
colonizing, hegemonic decisions made
by computer scientists from 1960’s to
today, centering white, Western, ability-
normative ideas of who CS is for in our
programming languages and tools.

The computing ed
community is just
starting to make
progress on breaking
these assumptions.

Bootstrap has deep integration with algebra,
and some focus on accessibility, but assumes
English and makes little room for identity work.

Quorum was designed to be screen readable
and keyboard accessible, but assumes English
and de-centers student culture, language, and
identity.

Scratch centers expression and is
localized in many languages, but requires
use of a mouse and isn’t screen readable.

Hedy embraces dozens of natural languages,
even down to the syntax level, but segregates
them, and leaves little room for expression.

Where are the creative coding
platforms that celebrate the
beauty of computing, but also
center disability justice and
decolonization?

I decided to make one
● Sabbatical gifted me ~1,000 hours over ~15 months to build
● I’ve approached the work as art therapy, not design (because

academic leadership, pandemics, and gender transitions are stressful)
● I’ve had so many ideas about programming languages that I

haven’t had time to explore in the past 20 years. This was my chance!
● As a typography nerd, I was excited about the new Noto font, which

supports nearly all of the languages in Unicode. It was my muse.
● I explicitly deferred evaluation, and so view the work as generating

new questions, not answers.

My aesthetic goals

🌍 Global — Celebrate
the diversity of the
world’s languages

🤪 Playful — Embrace the

silliness of adolescence,

not CS seriousness.

⌨ Accessible — Center
ability diversity and
neurodiversity, and their
tensions

🤗 Simple — Ruthlessly
avoid complexity

wordplay.dev
A web-based creative
coding platform for
creating interactive
typographic experiences
with the world’s
languages. Unicode is
the palette, code is the
brush.

examples

https://test.wordplay.dev/projects

This is a glimpse of what
can be made. Now let’s
discuss how, and what it has
to do with justice, and why
justice is so hard to achieve.

global
embracing the
world’s languages

problem: English all the way down
Most programming languages are
designed to mimic English. English
keywords, English grammar, English
concepts. They aren’t designed to
be translated, and have no built-in
support for translating their output.

This is not an accident: it is the
direct result of winner-takes-all
settler colonialism.

idea: translation all the way down
Linguistic justice (e.g., Baker-Bell 2020) might mean that
all languages are supported, and none privileged.

Wordplay operationalizes this by:

1. Only using abstract symbols for the syntax — no words
(e.g., function, for)

2. Viewing names, documentation, and output as a set of
language tagged aliases

30 symbols/pairs that aspire to be global

() [] {} ⎡⎦ <> ⸨⸩ , / \ _

ƒ ? ø ⊤ ⊥ “«「 ← → ↑ ↓

^ # • | & . : ∆ … ``

It’s hard to choose symbols that don’t have deeply situated
culture meaning. e.g., false often translates to “lie” or
“deception”. Choosing symbols (⊤, ⊥) helps avoid cultural
assumptions, at the possible expense of clarity.

all other symbols are names

+ – × ÷ √

⚡ ☇ ♺ ⌘ ✗
✼ ▶ ⦿ ☞ ␣

infix operators can be any
non-emoji character in the
symbols category, e.g.:

names can be any
sequence of non-reserved,
non-operator characters.

حصيلة אָבֵד

😀😀😀 pony

⽟明 अभय

numbers from across the world, intermingled

Arabic, Japanese, Roman, Greek, and more — Wordplay
embraces all of the world’s number systems and numerals
and allows them to be mixed together.

names and documentation are translations

data structures are typographically
spare, avoiding culturally bound keywords

a functional grammar
Wordplay blends Smalltalk’s
love of objects, Lisp’s love
of parentheses, APL’s love
of symbols, and functional
programming’s love of
expressions, while avoiding
natural language mimicry to
avoid privileging a
grammar.

All of these ideas
enable 1) instant
localization of
code and output
and the use of 2)
multiple
languages in code.

● What is gained and lost with this “deep” localization of a
programming system, in learning, teaching, play (e.g.,
shared language for concepts)?

● What are the opportunities for 1) student translanguaging,
and 2) teacher facilitation with English-language learners?

● What can be taught about localization itself by building
concepts of localization directly into a language?

● How do English learners’ perceptions of CS change when
they see CS concepts in their languages instead of English?

questions about being global

Is this justice?
Perhaps in a mundane way. It feels to me like the least
programming languages could do.

In particular, it leaves a mountain of translation labor to do,
in the language and documentation, but also in every program.

It leaves intact the broader forces that privilege English and
western civilization, including those in the very machine
translation tools that might help address these gaps.

playful
centering
silliness

problem: PL indirectly out-groups
Community is often the first thing that
learners experience — it’s signaled in
tooling, documentation, learning
materials, and more, and conveys group
membership in ways shape who codes
and how they do it.

This is not an accident: dominant groups
in CS uphold an epistemic hegemony
that privileges western rationality and
rejects subjectivity.

idea: computational ideas as social beings
Epistemic justice (Fricker 2007) might mean actively resisting
the idea that programming languages and their designers are
the sole sources of authority, truth, and objectivity.

Wordplay operationalizes this by anthropomorphizing
computing concepts through lore, offering building a world in
which computing concepts interact, have conflict, and
collaborate.

A community of characters
● The verse is a place with ~150,000 residents,

spanning 161 scripts.
● Each resident is a character, corresponding to a

Unicode code point.
● Characters like to put on elaborate performances

(programs) in collaboration with choreographers
(programmers)

● Some characters like to be on stage (output), but
some like to choreograph (code), doing set
design, controlling lighting, etc.

All Unicode glyphs (Credit: Ian Albert)

Every character has
a personality and
positionality.

Program nodes, for
example are
presented by ƒ, who
is always excited
about planning a
performance.

Some characters convey
epistemic struggles with their
computational purpose.
These are conveyed in diaries
(documentation), where
language concepts project
their purpose, values, and
concerns.

Here, conditional (represented
by ?) wrestles existentially with
binary decision making and
their skepticism of
dichotomous truth values.

Wordplay frames “errors”
as conflicts between
characters that need to be
resolved before a
performance can proceed.

Here, a function definition
and a function evaluation
have a conflict about the
type of an input, and it’s
up to the choreographer
to resolve it.

questions about being playful
● What effect does anthropomorphization of

programming language concepts have on learning,
self-efficacy, theory of intelligence?

● How might lore be written to align with different
cultural values and ideas?

● What effect does silliness have on how youth perceive
computer science as a discipline?

Is this justice?
It is certainly resistance. It is one language amongst
thousands, and perhaps the only one that explicitly
questions the epistemic claims of computing directly inside
a computing medium.

But justice might mean all programming languages and
their communities centering humility about computing and
its uses, even advocating for refusal (e.g., not building).

accessible
all abilities, no
exceptions

problem: PL stacks are inaccessible
People are immensely diverse in their abilities
and cognition, but programming languages
tend to work for a narrow band of human
ability, forcing mouse or keyboard use, visual
output, complex language.

This is not an accident: PL is just one example
of the broader ignorance and disregard for
disability in computing and the world, and one
that is now self-reinforcing.

idea: multiple representations of code and output

Disability justice means many things (e.g., Berne 2018), but
particularly agency amidst broader ideas of collective
access, interdependence, cross-disability solidarity.

In Wordplay, this might mean flexibility: multiple modalities
for input, output when reading, writing, and evaluating code,
but also control over time, color, and other details typically
under the control of a computer, runtime, or designer.

Wordplay offers the
world’s first hybrid text
and block-based editors,
providing options:
• Quick but error prone

typing
• Slow but error preventing

drag and
Creators can choose how
to edit based on their
abilities, knowledge, and
risk aversion, without the
stigma of segregation.

The editor allows for
visual and audio
navigation of program
structure via keyboard,
climbing the tree, moving
to siblings and children.

The screen reader reads a
localized description of
each node in this abstract
syntax tree instead of
reading program text
verbatim.

Output is a scene of
phrases that enter,
change, and exit stage.

Phrases are both visual
and textual, as are
changes to phrases.

The declarative nature of
functional code enables a
kind of live captioning.

Timing and animation are
globally configurable —
without requiring program-
level support.

Here, a catch-the-mouse
game moves a bit too fast,
but slowing down time can
make the game more
tractable.

Turning off animations
altogether can address
motion sensitivity.

questions about accessibility
● What tradeoffs does Wordplay’s accessible hybrid editor

pose to complexity, scalability, error-proneness?
● What might students learn about accessible computing

by creating programs that are accessible by default?
● What are other forms of input and output are possible

with multiple representations? (e.g., speech input, tactile
output?)

Is this justice?
Only in the most prosaic sense. It is the bare minimum
of access, opening up input, output, and code to more
abilities, and not yet all, and only for this one language.

True disability justice would mean not only having all of
these features be standard in all programming languages,
but also centering intersectional disabled communities in
envisioning these standards. We are far from that.

simplicity
reducing
complexity

problem: complexity causes difficulty
Understanding and debugging code has always been the
central difficulty, and much of this stems from language
features such as mutability, but also a lack of tool support,
exacerbating language and accessibility barriers.

This is not an accident. Computing has long prized
performance over comprehensibility, as part of a broader
project of capitalism, burdening programmer’s with
cognitive labor to buy speed. Educational programming
languages inherit these priorities, placing learners in the
same bind, limiting participation in computing.

idea: A purely functional, stream-based design
An anti-capitalist (e.g., Tormey 2013) programming language
might mean liberating learners from these capitalist cognitive
burdens, at the expense of speed.

Wordplay operationalizes this with pure functions, immutable
data, and stream-based reactions, in an attempt to simplify
program comprehension. These features mean only one source
of change in program behavior, input, and that program
output is completely determined by code, not runtime state.

Programs can make and
react to streams of input
that trigger program re-
evaluation each time they
change. This means that
every program is therefore a
recurrence relation on
stream input and prior
values.

Here, we use a time stream
to create different kinds of
timers.

Because program
evaluation is just function
evaluation, we can step
through evaluation one
expression at a time,
seeing how the program is
translated into a value.

Here, we create a list of
greetings in different
languages by appending
a greeting function’s
random value three times.

But program output is just
a time series of values,
and we can recreate any
program state from the
stream history. This makes
time travel trivial.

Let’s find each time the
cat collides with the ‘o’ by
stepping backwards to
time, by scrubbing,
stepping to prior inputs,
and stepping to prior
expression evaluation.

Wordplay retains value
provenance, linking
values to the expressions
that created them.

This, and the declarative
nature of functional
code, enables
bidirectional editing,
enabling direct
manipulation of output,
despite the lack of
mutable state.

questions about complexity
● Is the lack of mutable state in functional programming

an inherent difficulty, or just a property of poor tooling and
lack of interactivity in classic functional languages?

● How does the ability to manipulate time change the
difficulties of debugging?

● Does stream input add complexity relative to stateful
event-based interactivity, or reduce it, relative to event-
based or constraint-based models?

Is this justice?
Hardly. It is the smallest form of liberation from capitalist
obsession with productivity, and does little to change these
broader systems. It is an equitable refuge, surrounded by
inescapable forces of labor exploitation.

A broader goal might be economic justice (Hahnel, 2005),
where programming languages are tools of liberation,
creativity, and community, and a source of empowerment for
learners to demand and make change.

Wordplay is many things

A purely
functional,
stream-
based,
reactive
programming
language

A new
medium for
creating
interactive,
multilingual,
accessible
typographic
media

A fantasy world
in which
characters
collaborate with
people and
resolve conflicts
to create
typographic
performances

A cultural
mashup of
language,
typography,
interactivity,
and logic

A small form
of resistance
to the
overwhelming
domination of
computing
ideals in
society.

I said I was seeking
questions, not answers,
but I do have some
emerging insights.

localization + accessibility = ❤
● Requiring descriptions of everything and requiring

translations of everything are very similar
requirements

● I frequently found that designing something to be
accessible made it easier to localize, since
description infrastructure came for free

● But localization also enables multiple alternate
descriptions as well, e.g., to support plain language

accessibility + functional languages = ❤
● Functional code can often be a description of what it

computes, which means it easier to provide high level
descriptions of code for screen readers

● Functional programs also tend to be shorter, reducing the
amount of interface to navigate and describe

● Because output, animation, interactivity, and
documentation are declaratively expressed as code, these
benefits carry over

accessibility + standards = 😭
● For conventional interfaces, standards are essential
● But for unconventional interfaces (e.g., many of

Wordplay’s interfaces), standards force shoehorning
into old conventions, preventing clarity.

● Access technologies such as screen readers need
much richer customizability to enable higher forms of
access and usability

deep integration = ☯
● Most of the features I showed today deeply integrate

the compiler, runtime, and user interface
● This is a contrast to most programming language

implementations, which prioritize modularity and
interchangeability of components

● I’m not sure it’s possible to have both, and raises
questions about the feasibility of these features for
general purpose languages

language implementation = 😱
● Wordplay is 100,000+ lines of TypeScript, HTML, and CSS,

spanning a lexer, parser, type system, program analysis
engine, runtime, code editor, output engine, documentation
system, input streams

● One locale is 1,000+ string templates and growing
● Where will I find contributors who are comfortable with PL

language architectures, can read/write the world’s languages,
who want to contribute to Wordplay (instead of Rust, for
example), and who have time? How do I compensate them?

functional programming can be 🤪
I’ve personally found popular purely functional
programming languages to be complicated and … boring.

But writing Wordplay programs is surprisingly joyous.
Every little bit of progress feels immediate, and it can feel
like I’m doing it with a community of weird little
characters, each with their own quirks.

Is all of this enough support
the teacher and students I
mentioned earlier?

No. A platform is key, but
we also need teacher
education, curriculum,
community, and more.

(stock photo)

Is this really justice?

No. That would require reimagining
far more than programming
languages, including CS culture,
classrooms, curricula, and the
broader systems in which CS are
embedded.

But we can’t let that stop us…

“We must learn that passively to accept an unjust system is
to cooperate with that system, and thereby to become a
participant in its evil.” — MLK

Wordplay

Thank you!
I hope to release in Fall 2023.
Let me know if you’d like to help!
There’s much to do…

Wordplay is a purely functional reactive
programming language for bringing
words to life in accessible, global ways.

It is one small part of making computing
work for everyone, but wholly inadequate
for true justice.

This work was supported by the University of Washington,
National Science Foundation, unrestricted gifts from Google,
Microsoft, and Adobe. Thanks also to the Svelte community for
making an outstanding modern platform for richly interactive web
applications.

