
AMY J. KO

JUSTICE-CENTERED
EDUCATIONAL
PROGRAMMING
LANGUAGES

Professor
The Information School
University of Washington

ME AT 15, A
CLOSETED
TRANS GIRL,
HIDING FROM
MYSELF IN
DIGITAL
WORLDS

Credit: Associated Press

PROGRAMMING
LANGUAGES (PL)
are are built by and for the few, rather than for everyone.

STUDENTS WITH DISABILITIES

ENGLISH LANGUAGE LEARNERS
MULTILINGUAL STUDENTS

STUDENTS WITHOUT DEVICES
STUDENTS WITHOUT INTERNET

NEURODIVERGENT STUDENTS

EVERYONE BUT WHITE BOYS

can’t read/write code, access content, because
we build PL tools that require pointing, sight

can’t learn because they’re forced to learn
English before or while learning PL

can’t enroll in CS classes that use PL that
require these things to practice at home

have to leave their identities behind, trading
them for capitalist ideals of efficiency,
domination, and extraction woven into PL

have to wrangle PL, tools, and docs that demand
particular kinds of communication and attention.

WHAT WOULD
IT MEAN TO
DESIGN
EDUCATIONAL
PL FOR ALL?

THIS TALK
▸ I’ll share:

▸ My background and positionality

▸ A brief review of conceptions of justice

▸ Seven justice-centered requirements for educational PL, with bad, good, and
aspirational examples (including my lab’s work on Wordplay, a new PL).

▸ You’ll leave with:

▸ A novel argument about the relationship between PL design and justice.

▸ Questions and possible answers about how to advance justice in PL design

WHO AM I TO SPEAK ON
THIS?
Positionality
▸ Background in CS + Psychology + Design

▸ Professionally privileged Professor

▸ Marginalized by race, gender, politics

▸ I design and build programming languages

▸ I study learning about computing

▸ I work with teachers, schools, community
groups, and marginalized

WHAT DOES “BETTER”
FOR “EVERYONE” MEAN?

FOUNDATIONS

RAWLSIAN JUSTICE

▸ John Rawls’ seminal A Theory of Justice (1971) defines justice through two
principles:

▸ Every person deserves a claim to the same set of equal basic liberties. (i.e.,
there should be no “birthright” to greater freedom).

▸ Any social inequalities must satisfy two conditions:

▸ They must stem solely from equality of opportunity (not birthright)

▸ They must be to the greatest benefit of the least advantaged (addressing
inequities inherent to birth).

FOUNDATIONS

EDUCATIONAL JUSTICE

▸ Paulo Freire (Pedagogy of the Oppressed)

▸ Rejected school as a context for “depositing” knowledge in minds

▸ Viewed education explicitly for fostering liberatory, collective, critical consciousness about
learners’ “limiting situations”, through dialog, mutual understanding

▸ bell hooks (Teaching to Transgress)

▸ Freire’s ideas, in practice, are constrained by racial and patriarchal capitalism that Freire
overlooked. These social and economic hierarchies limit what dialog students will engage

▸ hooks advocated for school to be a place to see these forces, connect them to students’
lived experiences, and organize around dismantling them

FOUNDATIONS

DESIGN JUSTICE

▸ Sasha Costanza-Chock (Design Justice) applies
these many notions of justice to design,
centering design choices at the margins, in
communities:

▸ Heal and empower communities

▸ Center direct stakeholder voices

▸ Prioritize community impact over design
intent

▸ View partnership as ongoing collaboration

▸ Frame designers as facilitators not deciders

▸ Value stakeholders’ lived experiences

▸ Share design knowledge with
communities

▸ Work toward community-led,
sustainable outcomes

▸ Reconnect communities rather than
exploit them

▸ Designers should understand a
communities existing solutions
before building new ones

FOUNDATIONS

WHAT DOES ANY OF THIS MEAN FOR EDUCATIONAL PL DESIGN?

▸ I worked with my colleague R.
Ben Shapiro and my doctoral
students Jayne Everson and
Megumi Kivuva to translate
these ideas of justice and our
joint lived experience teaching
computing into design
requirements that we think best
address injustices in current PL
design for education.

=

AMY BEN

JAYNE
MEGUMI

7 JUSTICE-CENTERED
REQUIREMENTS FOR EDUCATIONAL
PROGRAMMING LANGUAGES

REQUIREMENTS

OUR APPROACH

▸ Costanza-Chock’s community design principles were our starting point.

▸ From there, we examined the intersections between those principles, the
spectrum of marginalization in education mapped by education justice
researchers, and the design choices inherent to educational PL.

▸ This led to 7 design requirements for educational PL. Meeting them means
meeting the the many principles of justice we just discussed.

ALTCODE — A TRAGICOMIC MNEMONIC

▸ Accessible — empower all abilities

▸ Liberatory — see computing for what it is, good and bad

▸ Transparent — comprehensible, inspectable computation

▸ Cultural — center learners’ communities, values, languages

▸ Obtainable — free and feasible to access and use

▸ Democratic — shaped by youth and teachers

▸ Enduring — lasting and sustainable, as long as it is needed

CAVEATS

▸ There are 7, but that is not a magic number

▸ We don’t claim this is the only “right” notion of justice — conceptions of justice
evolve over time, and we don’t represent all voices

▸ We do claim that if these requirements were met, there would be many more
people globally who would be able to learn what programming languages are,
how to use them, and possibly use them for problems in their community that
no big tech company ever would.

REQUIREMENTS

EXAMPLES

▸ Throughout, I’ll critique PL for their
strengths and weakness

▸ I’ll also include examples from
Wordplay, our attempt at making
one example of a justice-centered
educational programming language.
Not because Wordplay is perfect or
best, but just because it tries new
things others haven’t.
Amy J. Ko, Carlos Aldana Lira, Isabel Amaya (2025). Wordplay: Accessible,
Multilingual Interactive Typography . ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI) https://doi.org/10.1145/3706598.3713196

ACCESSIBLE
SUPPORT ALL ABILITIES

Credit: AccessComputing

ACCESSIBLE

THE REQUIREMENT

▸ Learners and teachers must be able to use the full functionality of an
educational programming language with whatever input they can provide and
whatever output they can perceive and comprehend

▸ In practice, this means:

▸ Not just mice and keyboards, but speech, Braille keyboards and displays,
switches, gaze

▸ Not just perceptual and motorphysical, but also diversity in reading abilities,
learning, attention, sensory processing, and more.

ACCESSIBILITY

WHY?

▸ Disability justice: all people deserve the right to participate in our
computational worlds, independent of what abilities they were born with, lost,
gained.

▸ The world we have is designed for sighted, hearing, healthy, people.

▸ The world should be designed in a way that eliminates this assumption,
working for everyone.

ACCESSIBLE

BAD: SCRATCH

▸ Scratch requires the use of a pointer (mouse or touch).

▸ This excludes anyone who cannot use a pointer. It’s success at
popularizing the structured code editors of the 1980’s, and the
drag and drop paradigm of Alice of the 2000’s, has meant a
proliferation of “block-based languages” that blind learners
cannot use, that learners with motor tremors cannot use, that
quadriplegic learners cannot use.

▸ Advocacy to the Scratch team has led to little change in Scratch’s
accessibility, despite multiple opportunities during rewrites and
redesigns over the past 20 years.

ACCESSIBLE

BETTER: QUORUM

▸ Quorum’s language is designed to be highly screen
readable for learners who are blind or dyslexic, and rely
on screen readers.

▸ It also offers screen readable output of 2D and 3D
graphics.

▸ It has been widely adopted in schools for the blind as it is
the only screen readable language, IDE, and platform
that works and isn’t designed for professional
developers.

ACCESSIBILITY

WORDPLAY: ALL ABILITIES

▸ A multi-modal, WCAG compliant editor
that supports text editing, block editing,
menu editing

▸ Future work on speech-based editing.

▸ WCAG-compliant program output that
comes for free.

▸ API’s that require multilingual
descriptions of visual content (e.g., font
faces).

ACCESSIBLE

OPEN QUESTIONS

▸ Few PL are designed with learners with disabilities around the things they might
want to make

▸ What would a gaze, sound and movement-based IDE for making purely gaze,
sound, and movement-based apps be like?

▸ How can code editors seamlessly integrate speech and audio feedback?

▸ How can program output of all kinds be made accessible?

▸ How can PL be designed to make it easier to make software itself more
accessible?

LIBERATORY
FOSTER CRITICAL CONSCIOUSNESS

Credit: NY Times

LIBERATORY

THE REQUIREMENT

▸ Educational PL must empower learners with new conceptions of the natural,
social, and artificial worlds, enabling them to imagine futures of computing that
dismantle racial, patriarchal capitalism, and colonialism.

▸ In practice, this means:

▸ Centering the reality that computing is both amazing and powerful, but also
kills, harms, marginalizes, and disempowers.

▸ Making space in PL design, tools, tutorials and communities for the
inherently political nature of computing.

LIBERATORY

WHY?

▸ Critical consciousness (Freire, hooks). To have a just world, everyone must
understand how and why it is unjust in relation to their lived experiences, so we
can fix it together.

▸ That includes the computational world, and PL are key media that shape the
our computational worlds.

LIBERATORY

BAD: CODE COMBAT

▸ A for profit platform that centers war,
violence, “the feeling of wizardly power at
their fingertips by using typed code”, and
learners as factory workers producing
more than “1 billion lines of code”

▸ Erases the reality that code is literally a
tool of war, used to more efficiently kill
people at scale, to silence resistance to
dictators, etc.

CodeCombat hides the limitations of
computation behind stories of profit,
domination, and xenophobia.

LIBERATORY

BETTER: GIDGET

▸ It’s not the most political of PL, but it
does frame robots and computers as
fallible, ignorant, but reliable tools

▸ This framing is used throughout the
game to show learners that machine
intelligence is limited and largely
stems from human intelligence,
demystifying code as “magic”.

Gidget conveys it’s fallibility.
Michael J. Lee, et al. (2014). Principles of a Debugging-First Puzzle Game for
Computing Education . IEEE Symposium on Visual Languages and Human-
Centered Computing (VL/HCC) https://doi.org/10.1109/VLHCC.2014.6883023

LIBERATORY

WORDPLAY: LIBERATORY

▸ Language constructs are
anthropomorphized with personalities
and relationships with each other than
center the limited and narrow views
with which they conceive the world.

▸ Learners are positioned as the only
ones of overcoming these limitations,
by understanding the nuances of
human experience fully. Documentation for the conditional expression,

in which it expresses uncertainty about the
expressibility of binary decision making.

LIBERATORY

OPEN QUESTIONS

▸ Can programming language syntax and semantics be sociopolitical? How?

▸ What are the opportunities and limits of PL themselves promoting learners’
critical consciousness about the good and bad of computing in society?

▸ How might liberatory PL be resisted by schools, governments, and parents who
do not want youth to know about computing’s dark side? Are there ways that
PL can be subversively political?

TRANSPARENT
MAKE CODE COMPREHENSIBLE

Stolen art from ChatGPT

TRANSPARENT

THE REQUIREMENT

▸ To foster youth agency via program comprehension, program execution must be
navigable in both directions and at multiple levels of granularity.

▸ This requirement is essential to agency: learners must feel they understand and
have control over program behavior, rather than it controlling them.

▸ In practice, this means:

▸ Flexible, accessible control over the speed and direction of a program’s execution

▸ Explanations of program execution that enable youth to understand what
programs do, how they do them, demystifying them

TRANSPARENT

WHY?

▸ One cannot critique, control, or reimagine something if one does not know
what it is or how it works. Bourdieu described understanding of our institutions
and social worlds as central to liberation from “symbolic domination”.

▸ The incomprehensibility of code is our field’s symbolic domination; it has for
too long enriched and empowered a small, elite group — you and I — at
everyone else’s expense.

▸ Centering comprehensibility, and transparency of software behavior more
broadly, is central to agency.

TRANSPARENT

BAD: NEARLY ALL PROFESSIONAL PROGRAMMING LANGUAGES

▸ Everything except for print statement
requires complex configuration, poor
control over execution, no reversibility.

▸ This poor support for transparency of
execution means learners who try to
comprehend programs in these
languages struggle far more to
understand what code is doing.

TRANSPARENT

BETTER: RACKET + DR. RACKET

▸ Racket offers a nice reversible stepper,
allowing learners to go forward and
backward through an expression’s
evaluation, using a “rewriting” metaphor

▸ In addition to being reversible, this is
more granular than line-by-line stepping,
giving precise visibility into program
behavior.

TRANSPARENT

WORDPLAY: REVERSIBLE, GRANULAR

▸ In Wordplay, programs can be run
forward and backwards, infinitely and
instantaneously

▸ Program evaluation can be stepped at
an an extremely fine granularity, giving
localized, accessible, explanations of
every step in all supported languages.

TRANSPARENT

OPEN QUESTIONS

▸ How can all EPL support highly flexible, reversible, granular inspectability of
program evaluation?

▸ How might LLMs be used to explain program execution for different literacy
levels, in different natural languages, across different cultures?

▸ How can technical transparency support liberatory, critical learning about what
programs do and why?

CULTURAL
EMBRACE ALL LANGUAGES,
CULTURES, AND VALUES

Credit: Clay Banks

CULTURAL

THE REQUIREMENT

▸ EPL must be culturally responsive and sustaining in how they are designed,
explained, and framed, enabling identity-inclusive pedagogy.

▸ In practice, this means:

▸ Supporting multilingual learners, using language flexibly, not just English

▸ Drawing upon many cultures to describe and explain concepts in
programming, not just Western, white settler cultures

▸ Questioning the Western cultural ideas embedded in CS, including binary
truth values, discrete math, and rigid categories

CULTURAL

WHY?

▸ Decolonization. Our social worlds are shaped by a history that has centered
the culture and language of colonizers, and steadily erased all other culture.

▸ Humanity deserves to shape the cultural worlds they live in, including restoring
those from the past and creating new ones.

▸ Computer science has not resisted colonization, it has embraced it and
amplified it. It has even become a discipline that itself colonizes, redefining and
displacing the ideas of other disciplines with its own, at the expense of nuance.

CULTURAL

BAD: PYTHON

▸ Syntax is English only, no translations, only a few non-
English locales of documentation

▸ Python 2 had very weak Unicode support, privileging
Latin characters only

▸ Libraries are full of English metaphors (“pickle”, “nanny”,
“abc”)

▸ “Zen of Python” simplicity mantras are in tension with
diversity:

▸ “There should be one — and preferably only one —
obvious way to do it.” — obvious to whom?

▸ “Special cases aren’t special enough to break the
rules.” — whose rules and why not?

In other words, the colonizers won, stop trying to
decolonize Python, its not realistic.

CULTURAL

BETTER: HEDY

▸ 47 different language supported,
even localizing the language syntax
to mirror different language
grammars.

▸ Doesn’t support mixing languages to
support our multilingual world, but
gives a glimpse of what a truly
global language and platform might
look like.

CULTURAL

WORDPLAY: MULTILINGUAL CODE AND OUTPUT

▸ All names, text, and documentation in
programs can have any number of
language-tagged aliases

▸ This allows programs and output to be
“skinned” and automatically translated
into any combination of natural
languages

CULTURAL

OPEN QUESTIONS

▸ How can EPL support multilingual learners, while also supporting their very
rational economic motivation to be English fluent?

▸ How can data structures and algorithms be described with a multiplicity of
cultural metaphors, rather than just English, Western ones?

▸ How might youth be empowered to create their own EPL, with their own ideas
about how computation should work?

OBTAINABLE
REQUIRE NO COST

Credit: Rawpixel | Deposit Photos

OBTAINABLE

THE REQUIREMENT

▸ Learners must be able to access an EPL and its tools and resources independent
of their financial means.

▸ In practice, this means:

▸ EPL must be free

▸ EPLs must not require paid access to the internet

▸ EPLs must not require purchasing personal devices

▸ EPL must assume old hardware, constrained and slow internet access.

OBTAINABLE

WHY?

▸ Economic justice. People’s ability to participate in the world should not be
shaped by the economic conditions in which they are born, or the
opportunities shaped by the systems of oppression that surround them.

▸ Computer science has broadly ignored this right, instead designing for those
that can access modern devices and the internet, and leaving everyone else
behind, in pursuit of profit.

OBTAINABLE

BAD: OCTOSTUDIO

▸ It is free and only requires internet access to download,
which is just.

▸ But it requires access to an Android 8 or iOS 15
compatible device, the ability to install applications on
it, and time to use the device.

▸ The only youth who might have this access are those
either with their own devices, or in schools with enough
resources to maintain 1:1 device access.

OBTAINABLE

BETTER: TI GRAPHING CALCULATORS

▸ Low cost, and most schools already own them
for math education, and have existing
subsidies.

▸ Portable, battery powered, requires no
internet access, and has a simple PL with
access to a variety of sensors (speakers, LEDs).

▸ Problematic in how TI has a near monopoly
over this market, accruing massive profit
margins, limiting innovation.

OBTAINABLE

WORDPLAY: ANY BROWSER, ANY DEVICE

▸ Wordplay is free, on the web, and does
not require an active internet
connection

▸ Its footprint is tiny, as text, emojis, and
programs require only minimal device
storage

▸ It’s fully functional on smartphones,
tablets, laptops, desktops, ancient
school and library computers

OBTAINABLE

OPEN QUESTIONS

▸ How can EPLs be financed to sustain an ecosystem of hardware and software
without exploiting youth and schools for profit?

▸ How can we reconcile a need for a multiplicity of platforms to meet a diversity
of learner needs with the limited capacity to sustain platforms?

▸ If we embrace EPLs that aren’t obtainable, how can we sustainably subsidize
access to EPLs to make them obtainable when school funding continues to
decay?

DEMOCRATIC
CENTER POWER AT THE MARGINS

Credit: Amy J. Ko

DEMOCRATIC

THE REQUIREMENT

▸ EPLs must be governed by and accountable to learners and their communities of
support, especially those marginalized in computing and society more broadly.

▸ In practice, this means:

▸ EPL must be open source

▸ EPL designers must give up the power to design to teachers and students

▸ They must have community processes to engage, gain power, and influence design

▸ Design processes must be organized to center community needs, not other goals,
like research, profit, or innovation

DEMOCRATIC

WHY?

▸ The power to shape programmable media should be one that everyone has,
as the media is used to shape what rights and opportunities everyone has.

▸ In other words, programming language creators have no right to control the
language unilaterally without the voices of those who are impacted by them,
directly, or indirectly.

DEMOCRATIC

BAD: CODE.ORG STUDIO

▸ Open source with contributors
guidelines, with advisory boards to shape
product priorities

▸ Unfortunately, design authority is
centralized in code.org's design and
engineering staff, not in the youth or
teachers that they serve

http://code.org
http://code.org

DEMOCRATIC

BETTER: PROCESSING.ORG

▸ Open source, with ample community
contributions and pull requests

▸ The foundation runs public events that solicit
advocacy

▸ Funds fellowships for teachers to explore and
shape the platform

▸ Partners with advocacy organizations at the
margins of computing

▸ Directly engages communities and
community leaders to shape priorities

http://processing.org

DEMOCRATIC

WORDPLAY: STUDENT- AND TEACHER-LED

▸ We run a quarterly design studio with
middle, high, and college students and
teachers to contribute design,
development, localization, community
organizing, and governance, to the open
source project

▸ We’ve hosted a youth and teacher
advisory council to inform critical design
and governance choices, guiding the
project priorities

DEMOCRATIC

OPEN QUESTIONS

▸ How can we sustain the creation and support of communities, especially with
low resource schools and families?

▸ How can we manage conflict in communities with different needs, and who
should hold power to resolve these conflicts?

▸ How can EPL remain redesignable in response to evolving needs in a
community, when they are often built in such immutable ways?

ENDURING
BUILT TO LAST

Credit: Unknown

ENDURING

THE REQUIREMENT

▸ EPL must be sustainable for as long as a community needs them to be,
respecting a community’s capacity for change and planet’s capacity for
computation.

▸ In practice, this means:

▸ EPL must be sustainable, maintainable, and resilient

▸ EPL must also be discardable when they no longer serve justice

ENDURING

WHY?

▸ Educational programming languages, in service of public education, or public
infrastructure.

▸ Infrastructure should be sustainable and built to last, but also amenable to
replacement when it no longer serves the public good.

▸ Current EPL governance is far from sustainable or replaceable: most are built
with very little support, and problematic languages that become popular are
hard to replace.

ENDURING

BAD: SWIFT PLAYGROUNDS

▸ Solid platform and curriculum, billions in
funding to sustain it

▸ No statement of how long it will be
supported, limiting adoptability by
teachers and districts long term

▸ No way to stop or mitigate Apple’s
capitalist efforts to weave it into
classrooms, even when such efforts might
do harm

ENDURING

BETTER: SCRATCH

▸ Large base of funding, now centralized in
the Scratch Foundation

▸ More than 20 years of support, including
multiple re-implementations.

▸ Limited openness means that
community’s capacity to maintain the
platform may be limited if the foundation
were to stop supporting the project. Credit: Scratch Foundation

ENDURING

WORDPLAY: BUILT TO LAST

▸ The platform is fully open source, with
extensive onboarding documentation
for contributions

▸ The platform is fully web standards
compliant, with minimal cloud-
dependencies for persistence and auth

▸ The platform relies on text, no images,
minimizing energy and storage use

▸ But it has a single point of failure: me.

ENDURING

OPEN QUESTIONS

▸ What are justice-centered models for sustaining EPL technically, socially, and
politically, to promote resilience?

▸ How can governance be organized to give teachers and youth power to retire
EPL that are doing more harm than good?

WHAT’S NEXT?

WHAT’S NEXT?

THE KEY POINT

▸ Educational PL play an instrumental role in structuring what kinds of computing
education are possible, who education serves, what kinds of digital worlds are
possible, and whether those worlds are just.

▸ Being justice-centered means redistributing the power to design EPL to
learners’ and their communities, to more intentionally center and support their
needs, values, cultures, and abilities

▸ ALTCODE requirements are one possible way to operationalize justice for EPL
design and they raise many technical, social, and political grand challenges for
future work.

WHAT’S NEXT?

THIS IS (VERY) HARD

▸ The challenges are technical, social, and political:

▸ Transparency requires a performance hit

▸ Multiculturalism requires political judgements about language, ideas, culture

▸ Democracy requires power sharing, conflict resolution, compromise

▸ Accessibility can create complexity

▸ Endurance requires $, time

▸ And all of this in world that increasingly bans, litigates, and defunds diversity, equity, and
justice efforts, doubling down on racial and patriarchal capitalism.

WHAT’S NEXT?

JUSTICE-CENTERED EDUCATIONAL PL ARE HARDLY ENOUGH

▸ We still need:

▸ Properly funded public schools

▸ A diverse, well-supported CS teaching workforce

▸ Accessible classrooms

▸ Universal access to devices and the internet

▸ Teaching methods that are culturally responsive, sustaining

▸ Teachers to make the most of all of the above

SOME OF US WILL BUILD, SOME OF US WILL
ORGANIZE, AND SOME OF US WILL TEACH.

I HOPE SOME OF YOU WILL JOIN US,
CREATING A COMPUTATIONAL WORLD THAT
WORKS FOR EVERYONE, ONE PL AT A TIME

DISCUSS
JUSTICE-CENTERED EDUCATIONAL PROGRAMMING LANGUAGES

Accessible
Liberatory
Transparent
Cultural
Obtainable
Democratic
Enduring

Learn more at amyko.phd and wordplay.dev

