
AMY J. KO	 RESEARCH STATEMENT

Software engineering is a decidedly human process; I want to understand the human factors that affect
this process and design technologies to ensure its success. To achieve this, I combine knowledge and
techniques from both Software Engineering and Human-Computer Interaction (HCI),
grounding my grounding my ideas, studies, and tool designs in empirical observations of actual people,
whether software developers, end-user programmers, or just regular software users.

PROGRAM UNDERSTANDING

My dissertation work concerns software debugging: both what makes it difficult and how to make it
more successful. To this end, I have conducted a series of studies to explore cognitive, social, and
organizational aspects of software development. I began by investigating the cognitive causes behind the
introduction of errors into code [14]. This work led to an exploration of the technical barriers that
prevent people from identifying coding errors, revealing that most developers begin debugging activities
by asking “why” questions, 60% of which are “why didn’t” questions [10,12]. I then explored the use of
Eclipse by Java programmers on a variety of debugging and enhancement tasks, finding that developers
spend 30% of their time re-navigating to relevant code [4,10]. I also also assessed the impact of
workplace interruptions, building statistical models of developers’ interruptibility [9]. I then extended the
scope of my studies to one of the largest software development companies in the world, using
ethnographic techniques to explore diagram use in the software industry [3] and to identify crucial
information needs in collocated software development teams [2].

While I learned a great number of things from these studies, the most important insight for debugging
was this: the central limitation of today’s tools is that they all require a developer to guess about the cause
of a program’s failure based on extremely limited data. For example, if a program was supposed to
produce some output in response to a command, but does not, a developer’s only recourse is to first guess
about what caused the problem and only then can they acquire data to investigate the cause, using
breakpoints, print statements, or other tools. Because these guesses are informed mainly by intuition,
experience and the perception of a program’s failure, and not by the program’s actual execution, the
guesses are often wrong and require a long period of refinement; in fact, anywhere from 50-90% of
developers’ initial guesses are completely incorrect [4,10]. Guesses can also lead to new bugs
[14], as well as inaccurate knowledge about the runtime behavior of the program [2,4].

DEBUGGING BY ASKING QUESTIONS

In response to my empirical findings, I invented the concept of a Whyline, which allows a developer to
choose why did and why didn’t questions directly about a program’s output (or lack thereof). A Whyline uses
the program as a specification of what output is possible. In response to a question, the tool provides an
answer using static and dynamic program analyses, displaying only the code and events relevant to the
question. Thus, instead of guessing, developers can immediately gather concrete data about the causes of
the symptoms they see.

I have implemented Whyline prototypes for a variety of contexts.
The first supported programs written in the Alice programming
language, an educational environment for creating interactive 3D
worlds. In this prototype, the system automatically identified
relevant questions about the program’s output, from which users
could choose using a global “why” menu (at the top of Figure 1).
Compared to the traditional debugging tools, novice and expert
programmers who used the Whyline in a lab study found bugs
8 times faster and completed 40% more tasks [13].

Amy J. Ko — Research Statement	 Page of 1 4

Figure 1. The Whyline for Alice.

Motivated by the success of the Alice
prototype, we then explored the
concept in the domain of end-user
software, in particular word processors
[8]. In this version, called Crystal, when
users of a text editor are confused
about the state of their document or
the application (for example, wondering
why the editor automatically corrected
a misspelled word), they simply click on
the word and choose the question,
“why was this text changed?” The
system knows to include this question in
the “why” menu because of an
augmented command and undo history,
which allows a developer to support
questions about each command. In
re sponse to the ques t ion , the
app l i c a t i on an a l y ze s th e da ta
dependencies within the application’s
code and runtime state to discover that
the correction occurred because the

editor’s “replace text as you type” checkbox was checked. It then shows this answer by opening the
preferences dialog that contains the checkbox, and highlighting it (Figure 2). In a comparison to normal
word processors, users with this tool were able to complete 30% more tasks, 21% faster, than those
without [6].

My latest exploration of the Whyline concept explores issues of scale by supporting questions about Java
programs with textual and graphical output [1]. Not only do Java programs pose the technical challenge
of being more complex than those used in the other prototypes, but they also raise questions about the
nature of output, for anything a program does can be considered output from some perspective. Therefore,
I use a notion of code familiarity to derive and filter
questions. For example, it would be unreasonable to
support questions about the internals of an API, which
a user of an API would know nothing about, unless the
developer is debugging the API itself. The Whyline also
chooses questions specific to the program being
debugged by identifying layers of primitive output in a
program’s code (pixels, rectangles, console output, etc.),
and then propagates this knowledge along the
program’s call graph to identify program-specific types
of output (such as button, in the case of GUIs, or the
paint stroke shown in Figure 3). This allows the Whyline
to support both why did and why didn’t questions about
program-specific output (as seen in Figure 3).

The Whyline for Java can support why didn’t questions
because it knows what output the program could
potentially generate. However, in addition to identifying
kinds of output, it also identifies concrete values that
might be assigned to output-affecting state. For example, a button’s enabled state typically affects its
appearance on-screen. The Whyline discovers this by propagating its knowledge about primitive output
along data flow paths through the program, identifying higher-level output-affecting program state.
Therefore, the Whyline can support questions such as “Why was this button not enabled?” or and by
finding uses of constants in assignments to output-affecting state, even questions such as “Why was this

Amy J. Ko — Research Statement	 Page of 2 4

 1

Answering Why and Why Not Questions in User Interfaces

ABSTRACT

Modern applications such as Microsoft Word have many

automatic features and hidden dependencies that are fre-

quently helpful but can be mysterious to both novice and

expert users. The “Crystal” system provides an architecture

and interaction techniques that allow the user to ask a wide

variety of questions about why the actions did and did not

happen, and how to use the related features of the applica-

tion without using natural language. A user can point to an

object or a blank space and get a popup list of questions

about it, or the user can ask about recent actions from a

temporal list. Parts of a text editor were implemented to

show that these techniques are feasible, and a user test sug-

gests that they are helpful and well-liked.

Benefit statement:

Author Keywords

Why, Help, Questions, Natural Programming.

ACM Classification Keywords

D.2.2 Design Tools and Techniques: User interfaces; D.2.6

Programming Environments: Graphical environments;

H.5.2 User Interfaces: Interaction styles, Training, help,

and documentation; D.2.11 Software Architectures.

INTRODUCTION

One of the classic guidelines for user interface design is to

have “visibility of system status” so “the system should

always keep users informed about what is going on” [18].

And yet, in an informal survey of novice and expert com-

puter users, everyone was able to remember situations in

which the computer did something that seemed mysterious.

For example, sometimes Microsoft Word automatically

changes “teh” into “the”, but it does not change “nto” into

“not”. The spacing above a paragraph can be affected by

properties in the “Format Paragraph” dialog box, along with

the heights of the actual characters on the first line of the

paragraph (even the heights of invisible characters such as

spaces). In the Windows desktop and Windows Explorer

“Icon” view, sometimes the icons go where you put them

but sometimes they auto-arrange into columns. A command

that hides all the windows can be invoked by accident,

making users wonder where all the windows went.

All of these features, and the dozens of others that we col-

lected (and that the reader can undoubtedly think of), are

quite useful to most users, and have been added to user in-

terfaces because they help most people most of the time.

However, when a novice or expert is unfamiliar with these

features, or when something happens that is not desired,

then there is no mechanism to figure out why the actions

happened, or how to control the actions. It is even more

difficult when an expected action does not happen, for ex-

ample, why did the spelling not get corrected? No help sys-

tem built into any of today’s systems can answer these

questions. As applications inevitably get more sophisti-

cated, such a facility will be even more necessary.

Inspired by the WhyLine research [11] that answers “why”

and “why not” questions about a program’s execution to aid

debugging, we created a system (see Figure 1) that answers

questions about an application. The system we created is

called Crystal, which provides Clarifications Regarding

Your Software using a Toolkit, Architecture and Language.

Submitted for Publication.

Figure 1: The answer for why “Teh" was changed into “The”.
The pink “?” in the upper left shows where the F1 key was hit.
Figure 2. The Crystal text editor, supporting questions.

Figure 3. Question asking in the
Whyline for Java.

panel not grey?” or “Why was this table’s position
not 0?”

Once the user asks a question, the Whyline
answers it using a combination of call graph
analyses, static and dynamic program slicing, and
new algorithms that identify the space of possible
explanations for why a particular line of code was
not executed. This analyses are time and identity
precise: they are specific to a particular point and
a particular object in the program’s execution. If a
user asks about some aspect of a particular object
on-screen at a particular time, the analyses identify
why that particular aspect was or was not affected
after that time. After computing the answer, the
Whyline shows a visualization that combines data
and control flow events, directly tied to their
corresponding source code (see Figure 4).

Evaluations of the Whyline for Java have shown
that people with no programming experience are
three times faster at finding the cause of a bug
than experts using Eclipse. In an ongoing study,
I am evaluating the tool on a quarter-million line
open source application, and expect to find similar
results.

OTHER PROJECTS

In addition to focusing on debugging, I have pursued several other projects, many in collaboration with
undergraduate and masters students. Some of these have been technological advances. For example, I
have invented a new kind of code editing environment called Barista that not only enables new ways to
edit and modify code, but also new was to view code and context-relevant metadata [7]. Barista is
implemented in a new programming language called Citrus, which supports novel language constructs
designed to simplify event-based application development [8]. I have also explored ways of helping users
identify errors in spreadsheet environments by propagating labels through spreadsheet formulas [11].

FUTURE RESEARCH

The common thread in all of my work is a deep fascination with software and the people who make it. In
future research, I will strive both to improve the means by which people create software and also attempt
to understand the role of software in society, influencing the process of software engineering accordingly.

First, there is a great deal of knowledge and practice in HCI research that has little presence in the
Software Engineering research community. For example, in HCI, there are a number of sketching
technologies for exploring software design ideas. My studies suggest that similar tools may be helpful in
supporting software architecture and design conversations between software developers [4]. My studies
have also identified the crucial nature of describing and documenting design rationale in industrial
software engineering [3, 4]. HCI research has identified several design strategies for persuading users to
provide data of future value; I hope to apply these strategies to the problem of capturing software design
rationale. There are also a number of fundamental questions in software engineering about notions of
requirements, testing, correctness, and design rationale, whose answers are limited by traditions of
formalism. I am interested in augmenting these formalisms with the vast array of empirical and
observational methodologies in HCI.

Amy J. Ko — Research Statement	 Page of 3 4

Figure 4. The source code and visualization
shown for an answer in the

Second, the discipline of HCI itself could benefit from the techniques and technologies employed in
Software Engineering and Computer Science. For example, there are a number of well-understand
program analyses that could be adapted to support usability and interaction concerns, such as the
importance of feedback and the challenge of identifying rare, but catastrophic interactive situations in
safety-critical applications. Software in general suffers a notorious lack of memory: a program that crashes
once will crash again, with no apparent knowledge of its previous failure. I am interested in designing
languages and runtimes that allow programs to learn from their mistakes and adapt to their failures, much
like just-in-time compilers adapt to new information about program usage to improve performance.

IMPACT

Throughout all of this work, I expect to maintain a strong presence in both the Software Engineering and
HCI communities, making significant contributions to each field and to practice. I have already had
considerable success in bridging these academic fields, assisting in writing interdisciplinary grants to
Adobe, Microsoft, SAP, and NSF, all successfully funded. Together, my papers have been cited by others
over two hundred times by more than fifty authors spanning HCI and software engineering.

My influence also extends into practice. My work on the Whyline has received international press both in
print and online. I have demonstrated my technologies to Visual Studio and Office teams at Microsoft, to
several teams at Adobe, Inc., and to the virtual machine team at Sun Microsystems, all of whom are
interested in integrating my ideas into their future products. I am also working with several open source
developers to integrate features of my Citrus programming language into their environments and possibly
future versions of Python.

REFERENCES (CHRONOLOGICAL)
1. Ko, A.J. and Myers, B.A. (2008) Debugging Reinvented: Asking and Answering Why and Why Not Questions about Program

Behavior. To appear at the International Conference on Software Engineering (ICSE), Leipzip, Germany.
2. Ko, A. J. DeLine, R., Venolia, G. (2007). Information Needs in Collocated Software Development Teams. International Conference on

Software Engineering (ICSE), May 20-26, 344-353.
3. Cherubini, M., Venolia, G., DeLine, R. and Ko. A. J. (2007). Let's Go to the Whiteboard: How and Why Software Developers

Draw Code. ACM Conference on Human Factors in Computing Systems (CHI), April 28-May 3, 557-566.
4. Ko. A. J., Myers, B.A., Coblenz, M. and Aung, H. H. (2006). An Exploratory Study of How Developers Seek, Relate, and Collect

Relevant Information during Software Maintenance Tasks. IEEE Transactions on Software Engineering, 32(12), 971-987.
5. Ko. A. J., Myers, B.A., Chau, D. H. (2006) A Linguistic Analysis of How People Describe Software Problems. Visual Languages and

Human-Centric Computing (VL/HCC), Brighton, United Kingdom, September 4-8, 127-134.
6. Myers, B. A., Weitzman, D., Ko, A. J., Chau, D. H. (2006) Answering Why and Why Not Questions in User Interfaces. ACM

Conference on Human Factors in Computing Systems (CHI), Montreal, Canada, April 24-27, 397-406.
7. Ko, A. J., Myers, B. A. (2006) Barista: An Implementation Framework for Enabling New Tools, Interaction Techniques and

Views for Code Editors. ACM Conference on Human Factors in Computing Systems (CHI), Montreal, Canada, April 24-27, 387-396.
8. Ko, A. J. and Myers, B. A. (2005). Citrus: A Language and Toolkit for Simplifying the Creation of Structured Editors for Code

and Data. ACM Symposium on User Interface Software and Technology (UIST), Seattle WA, October 23-26, 2005, 3-12.
9. Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P. and Hudson, S.E. (2005). Examining Task Engagement in Sensor-Based

Statistical Models of Human Interruptibility. ACM Conference on Human Factors in Computing Systems (CHI), Portland OR, April 2-7,
331-340.

10. Ko, A. J., Aung, H., and Myers, B. A. (2005). Eliciting Design Requirements for Maintenance-Oriented IDEs: A Detailed Study
of Corrective and Perfective Maintenance Tasks. International Conference on Software Engineering (ICSE), St. Louis, MI, May 15-21,
126-135.

11. Coblenz, M. J., Ko, A. J., and Myers. B. A. (2005). Using Objects of Measurement to Detect Spreadsheet Errors. IEEE Symposium
on Visual Languages and Human-Centric Computing, Dallas, Texas, September 23-26, 314-316.

12. Ko, A. J. Myers, B. A., and Aung, H. (2004). Six Learning Barriers in End-User Programming Systems. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Rome, Italy, September 26-29, 199-206.

13. Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A Debugging Interface for Asking Questions About Program Failures.
ACM Conference on Human Factors in Computing Systems (CHI), Vienna, Austria, April 24-29, 151-158.

14. Ko, A. J. and Myers, B. A. (2003). Development and Evaluation of a Model of Programming Errors. IEEE Symposia on Human-
Centric Computing Languages and Environments, Auckland, New Zealand, October 28th-31st, 7-14.

Amy J. Ko — Research Statement	 Page of 4 4

AMY J. KO	 TEACHING STATEMENT
Although I love research, teaching is the reason I pursued a Ph.D. My first experience was in fourth grade,
when my teacher, prompted by my math skills, asked me to write an extra credit assignment on long
division for my classmates. I asked what the students were struggling with and crafted a number of
questions to target these difficulties. I convinced my teacher to set some time aside for the class to work on
it and let me help those that needed help. For the first time in my young life, I learned that I could not
only share my expertise with my peers, but that I had the patience and acumen to share it well.

Since then, I have pursued every opportunity I could find. I have tutored dozens of students, helping them
prepare for the SATs, understand algebra and calculus, carefully craft written arguments for essays,
among other things. As president of the Oregon State University chapter of the Association for
Computing Machinery, I created a computer science tutoring program, recruiting nearly thirty computer
science students to volunteer their time to help students struggling in introductory computer science
courses. I coached teams of students competing in the ACM Programming Contest. I created a
computing cluster of abandoned computers to help my peers learn more about parallel computing. I even
created a campus-wide, and eventually statewide software engineering competition, recruiting local
companies like Intel, Microsoft, and HP to not only sponsor the competition, but provide employees to
mentor the teams who competed and judge their submissions. The contest continued for several years.

As a Ph.D. student, my affinity for tutoring has matured. With the aid of my advisor, I have advised six
students on research projects and one through his undergraduate and masters theses. I have become
known among the younger Ph.D. students in my department as something of a mentor: dozens of my
peers come to me for advice about their research directions and struggles with their advisors. In the past
year, I played this role more formally as the official ombudsperson for our department, both advising
students through conflicts and crises and relaying concerns to our faculty. I also began a tradition of
having a Friday lunch, where students meet and dine out, discussing the perks and perils of being a Ph.D.
student. Throughout all of these experiences, I have found my individual relationships with students to be
some of the most rewarding professional relationships in my career.

In addition to helping students individually, I have also pursued several classroom opportunities. When I
was a sophomore at Oregon State University, many of my peers wished the department would offer small
special topics courses on contemporary computing topics, such as 3D graphics, gaming, and the internet.
I wanted to find a way to allow students to teach these courses for credit, as well as have students take
them for credit, as part of our computer science curriculum. To support my case, I deployed a formal
survey of my peers’ interests, and reported the data to my department chair and college dean. They
agreed that it was a fantastic idea and I volunteered to teach the first course. Thus, in my second year as
an undergraduate, I designed and taught a class of my peers on the topic of 3D rendering algorithms,
lecturing weekly, writing tests, and even holding office hours. Although the university eventually decided
that the program would dilute certain university statistics and therefore stopped it, for a whole year,
computer science undergraduates at Oregon State thrived on these student-taught courses, fostering an
active and enthusiastic community of computing culture.

As a Ph.D. student, I have continued to teach, assisting in teaching three courses, more than required by
my program. I have found ways to combine my enthusiasm for teaching with my research program,
spending a semester assessing learning barriers in students’ efforts to learn to program. This work led not
only to publications, but insights into the rising attrition in undergraduate computer science departments
and the lack of interest in computing careers in society. In the future, I would like to continue to combine
my research interests in software engineering and computer science education with my time in the
classroom, developing new kinds of educational technologies and applying my research findings and
inventions to improve students’ understanding of their discipline. To this end, I would be excited to teach
not only courses on software engineering, human-computer interaction, and programming languages, but
also introductory courses in computer science.

Amy J. Ko — Teaching Statement	 Page of 1 1

